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SCHWARZ-PICK TYPE INEQUALITIES FROM AN OPERATOR

THEORETICAL POINT OF VIEW

Catalin Badea & Axel Renard

Abstract. — We use (versions of) the von Neumann inequality for Hilbert space con-
tractions to prove several Schwarz-Pick type inequalities. Specifically, we derive an alternate
proof for a multi-point Schwarz-Pick inequality by Beardon and Minda, along with a general-
ized version for operators. Connections with model spaces and Peschl’s invariant derivatives
are established. Finally, Schwarz-Pick inequalities for analytic functions on polydisks and
for higher order derivatives are discussed. An enhanced version of the Schwarz-Pick lemma,
using the notion of distinguished variety, is obtained for the bidisk.

Contents

Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. A three points Schwarz-Pick lemma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.A. Contractive three by three matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.B. An operator-theoretical proof of Beardon-Minda’s inequality . . . . . 8
2.C. Connecting with model spaces theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.D. A Beardon-Minda type lemma for derivatives . . . . . . . . . . . . . . . . . . . . 13

3. Operator versions of Beardon-Minda’s inequality. . . . . . . . . . . . . . . . . . . . . . 14
3.A. An operator version of the Schwarz-Pick inequality. . . . . . . . . . . . . . . 15
3.B. An operator version of the Beardon-Minda inequality . . . . . . . . . . . . 15

4. Schwarz-Pick inequalities for the polydisk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.A. Using von Neumann inequality for tuples of two by two matrices . 17
4.B. Peschl’s invariant derivatives in several variables . . . . . . . . . . . . . . . . . 18
4.C. Distinguished varieties and Schwarz-Pick inequalities . . . . . . . . . . . . . 20

5. Higher order Schwarz-Pick inequalities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6. Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2000 Mathematics Subject Classification. — 47A25, 47A30, 47A08, 30A10, 30C80, 15A60.
Key words and phrases. — von Neumann inequality, Schwarz-Pick estimates, Beardon-Minda inequal-
ity, Peschl’s invariant derivatives.

The authors acknowledge support from the Labex CEMPI (ANR-11-LABX-0007-01).

http://arxiv.org/abs/2405.01357v1


2 C. BADEA & A. RENARD

Notation

D denotes the open unit disk

T denotes the unit circle, T = D\D

‖·‖∞ for ω = (ω1, . . . , ωn) ∈ C
n, we denote ‖ω‖∞ = sup{|ωi| : 1 ≤ i ≤ n}

H(D) is the set of functions that are holomorphic on D, H(D) = H(D,C)

H(D,D) denotes the set of functions in H(D) mapping D to D

A(D) is the disk algebra, i.e. the set of functions that are holomorphic on D and

continuous on D

(z, w) denotes the complex pseudo-hyperbolic distance (z, w) := z−w
1−wz

ρ(z, w) denotes the pseudo-hyperbolic distance ρ(z, w) := |(z, w)|

d(z, w) denotes the hyperbolic distance d(z, w) = tanh−1 1+ρ(z,w)
1−ρ(z,w)

f∗(z, w) denotes the hyperbolic divided difference f∗(z, w) := (f(z),f(w))
(z,w)

H2(D) is the Hilbert-Hardy space of D

H∞(D) is the set of bounded holomorphic functions on D

B(H, K) is the set of bounded linear operators from H to K, where H and K are two

complex Hilbert spaces. B(H) is a short for B(H, H)

‖ · ‖ denotes the norm of an element of the Banach space under consideration.

When T ∈ B(H, K), ‖T ‖ denotes the operator norm

T ∗ denotes the adjoint of T , where T is a Hilbert space operator

DT denotes the defect operator of a contraction T ∈ B(H), i.e. ‖T ‖ ≤ 1. Thus

DT = (Id − T ∗T )1/2, where Id is the identity operator

σ(T ) denotes the spectrum of T ∈ B(H)

r(T ) denotes the spectral radius r(T ) = sup{|λ| : λ ∈ σ(T )} of T

Ker(T ) denotes the kernel of T

Im(T ) denotes the range (image) of T

J1, nK denotes the set of all integers j with 1 ≤ j ≤ n.

1. Introduction

The Schwarz-Pick inequality, an invariant form of the Schwarz lemma, stands as a corner-

stone in complex analysis. In geometric terms, it posits that a holomorphic map from the
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open unit disk into itself has the property of decreasing the distance between points in the

hyperbolic metric. Equivalently, if f ∈ H(D,D) and ω1 and ω2 are two points in D, then

(1.1) ρ(f(ω1), f(ω2)) =

∣∣∣∣∣
f(ω1) − f(ω2)

1 − f(ω1)f(ω2)

∣∣∣∣∣ ≤
∣∣∣∣

ω1 − ω2

1 − ω1ω2

∣∣∣∣ = ρ(ω1, ω2).

Inequality (1.1) is strict for ω1 6= ω2 unless f is a conformal automorphism of the unit

disk. Moreover,

(1.2)
|f ′(ω)|

1 − |f(ω)|2
≤ 1

1 − |ω|2
.

The Schwarz-Pick inequalities (1.1) and (1.2) have been extended in various ways by

many authors. A thorough overview of some of these advancements is provided in the

comprehensive survey [17]. For the present study the following ‘three points’ version of

(1.1) by Beardon and Minda [9] is pivotal. It involves the notion of hyperbolic divided

difference f∗(z, w) and states that if f ∈ H(D,D), then

(1.3) ρ (f∗(ω1, ω2), f∗(ω3, ω2)) ≤ ρ(ω1, ω3)

for three pairwise distinct points ω1, ω2 and ω3 in the unit disk. The Beardon-Minda

inequality unifies in an elegant way many improvements of (1.1). An analogous theorem

with more than three points has been proved in [8], where Baribeau, Rivard and Wegert

also used iterated (hyperbolic) divided differences to give simpler conditions for the n

points Nevanlinna–Pick interpolation problem. We refer also to [1, 35, 36] for related

contributions.

Various operator-theoretical interpretations of the Schwarz-Pick inequality are possible.

The most well-known interpretation, due to Sarason [41], exploits the equivalence of the

Schwarz-Pick inequality with the Nevanlinna-Pick interpolation problem for two points.

Consequently, the Schwarz-Pick inequality possesses an operator-theoretical significance

concerning norm-preserving lifting of some operators that act on specific subspaces of

the Hardy space H2(D). Additional generalizations can be derived using the commuting

lifting theorem of Sz.-Nagy and Foias (see for instance [19]). It is noteworthy that the

commutant lifting theorem is equivalent with Ando’s dilation theorem ([29]). Further

operator-theoretical interpretations of the Schwarz-Pick inequality have been explored in

[5, 6, 22, 25, 27].

The starting point of this note was the natural question of looking for an operator-

theoretical interpretation of the Beardon-Minda inequality. Notice that the Schwarz-Pick

inequality can be obtained as a particular case of the von Neumann inequality for Hilbert

space contractions. The von Neumann inequality states that if T ∈ B(H) is a bounded

linear operator acting on a complex Hilbert space H with ‖T ‖ ≤ 1 and f is a polynomial,

then

(1.4) ‖f(T )‖ ≤ sup{|f(z)| : |z| ≤ 1}.

This inequality extends to functions f in the disk algebra A(D). The inequality (1.1) is

obtained ([38, p.17], [31, exercices 2.17-2.18]) when applying von Neumann’s inequality

(1.4) to a polynomial (or an element in the disk algebra) f and a specific 2 × 2 matrix
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acting on the 2-dimensional Hilbert space C
2. Then an approximation argument gives

(1.1) for f ∈ H(D,D). A similar derivation by Agler of the Schwarz-Pick inequality

(1.1) is presented in [2] and [4, Chapter 8], where this concept is ingeniously applied

in to establish an operator-theoretical proof of Lempert’s theorem, demonstrating the

equality of the Carathéodory and Kobayashi metrics on convex domains. In this case, von

Neumann’s inequality is substituted with the notion of spectral set.

The primary objective of this manuscript is to leverage (versions of) the von Neumann

inequality to derive Schwarz-Pick type inequalities. Notably, when applying the von Neu-

mann inequality to a remarkable 3 × 3 matrix (the matrix of the model operator in the

Takenaka-Malmquist basis), the Beardon-Minda three-point Schwarz-Pick inequality is

obtained. A similar proof is given for a Beardon-Minda type inequality for derivatives and

operator versions of the Schwarz-Pick and Beardon-Minda type inequalities are obtained.

We also consider some Schwarz-Pick related inequalities for higher derivatives. Addition-

ally, we delve into the multivariable case, employing von Neumann’s inequality on n-tuples

of mutually commuting 2 × 2 or 3 × 3 matrices to prove Schwarz-Pick type inequalities for

the polydisk. In the case of the bidisk an improvement can be given using the notion of

distinguished variety and the refined version of Ando’s inequality by Agler and McCarthy

[3]. The reader is welcomed to notice that the multipoint Schwarz-Pick inequality of [8]

can also be derived as a consequence of the von Neumann inequality. However, explicit

computations with matrices become more intricate.

Outline. The manuscript is organized as follows. In the next section we use a theorem

going back to Parrott to obtain criteria for scalar and operator 3 × 3 matrices to have

(Hilbertian) operator norm no greater than one. This is applied to a specific matrix to

obtain an alternate proof of the Beardon-Minda inequality. The significance of this specific

matrix with model spaces is highlighted, and a discussion concerning the equality case in

(1.1) is given. Also, a Beardon-Minda type inequality for derivatives, originally proved

by Yamashita [44], is obtained as a consequence of the von Neumann inequality. This

inequality can be rephrased in terms of Peschl’s invariant derivatives.

In Section 3 we prove several operator versions of the Schwarz-Pick inequality and of the

Beardon-Minda inequality. The Sylvester (operator) equation AX − XB = Y plays an

important role in the proofs.

In the next section we consider the case of the polydisk. We give operator theoretical

proofs of the analogues of (1.1) and (1.2) for the polydisk and discuss the Peschl’s invariant

derivatives in several variables. The proofs uses a result of Knese [25] that the (polydisk)

von Neumann’s inequality holds for n-tuples of 3 × 3 commuting contractive matrices. In

the case of the bidisk we use a result of Agler and McCarthy [3] to obtained an enhanced

version of the Schwarz-Pick inequality.

In Section 5 we give some Schwarz-Pick related inequalities for higher derivatives. An

improvement of a classical result of F. Wiener is proved.
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Parrott’s theorem, which was essential in our proofs, is revisited in the Appendix. We

hope that this will prove beneficial for readers interested in Schwarz-Pick inequalities who

may not be extensively acquainted with operator theory.

2. A three points Schwarz-Pick lemma

In view of the preceding discussion, it is a natural question to apply the von Neumann

inequality to 3 × 3 matrices.

2.A. Contractive three by three matrices. — First, we need an explicit criterion

to determine whenever a 3 × 3-upper triangular matrix is a contraction. Note that in

view of Schur’s decomposition theorem – which states that every square matrix is unitary

equivalent to an upper-triangular matrix – it makes sense to restrict ourselves to that case.

In essence, following the approach used for 2 × 2 matrices, one can calculate the operator

norm of a 3 × 3 matrix acting on the Euclidean space C
3 using the formula:

‖T ‖2 = ‖T ∗T ‖ = r(T ∗T ) = sup{|λ| : det(T ∗T − λId) = 0}.

This computation of the operator norm ‖T ‖, the largest singular value of T , leads to an

equation of degree 3. However, the criterion derived from this observation holds limited

practical interest. An alternative approach to obtain such a criterion uses the Schur

parameters (cf. [13]). Adapting the argument in [21, Lemma 2.7], we follow here a

different approach, based on a result about completion of matrices going back to Parrott

(see [30, 19], [46, Theorem 12.22] and [7, 14]).

Theorem 2.1 (Parrott). — Let H1, H2, K1, K2 be Hilbert spaces, and suppose that the

operators

[
A

C

]
∈ B(H1, K1 ⊕ K2) and

[
C D

]
∈ B(H1 ⊕ H2, K2) are contractions. Then,

T =

[
A B

C D

]
: H1 ⊕H2 → K1 ⊕K2 is a contraction if and only if there exists a contraction

W ∈ B(H2, K1) such that B = DZ∗W DY − ZC∗Y , where Z ∈ B(H1, K1) and Y ∈
B(H2, K2) are contractions such that D = DC∗Y and A = ZDC .

Moreover,

1. Y and Z can be chosen to be (respectively) Y0 and Z0, the solutions of minimal

operator norm among all solutions of the operator equations D = DC∗Y and A =

ZDC ;

2. If T is a contraction, there exists a unique contraction W0 such that

B = DZ∗

0
W0DY0

− Z0C∗Y0 and Im
(
DZ∗

0

)⊥
⊂ Ker(W ∗

0 ).

This operator satisfies

‖W0‖ = inf{ ‖W ‖ : B = DZ∗

0
W DY0

− Z0C∗Y0}.
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We shall call Y0 and Z0 the minimal solutions and we shall refer to W0 as the minimal

solution of the equation

B = DZ∗

0
W DY0

− Z0C∗Y0.

A further discussion is given in the Appendix (Section 6). In particular, T =

[
A1 B

0 A2

]
is

a contraction if and only if B = (I − A1A∗
1)1/2W (I − A∗

2A2)1/2 for a certain contraction

W and the scalar matrix

T =

[
ω1 a

0 ω2

]

has (Euclidean) norm no greater than one if and only if |ω1| ≤ 1, |ω2| ≤ 1 and |a| ≤√
1 − |ω1|2

√
1 − |ω2|2.

The following result provides a criterion for determining whether a 3 × 3 operator matrix

is a contraction, when the central entry of the matrix, W2, is a strict contraction.

Theorem 2.2. — Let H1, H2, H3 be three Hilbert spaces. Let Wi ∈ B(Hi), 1 ≤ i ≤ 3, be

three contractions and denote

T =




W1 A1 B

0 W2 A2

0 0 W3


 ∈ B(H1 ⊕ H2 ⊕ H3).

Assume that ||W2|| < 1. Then, T is a contraction if and only if there exist three contrac-

tions V1 ∈ B(H2, H1), V2 ∈ B(H3, H2), V3 ∈ B(H3, H1) such that :




A1 = DW ∗

1
V1DW2

,(2.1)

A2 = DW ∗

2
V2DW3

,(2.2)

B =
[
DW ∗

1
(Id − V1V ∗

1 )DW ∗

1

]1/2
V3 [DW3

(Id − V ∗
2 V2)DW3

]1/2

−DW ∗

1
V1W ∗

2 V2DW3
.(2.3)

Proof. — First, if T is a contraction, then

[
W1 A1

0 W2

]
and

[
W2 A2

0 W3

]
are also contractions,

as they are compressions of T . Then Parrott’s theorem implies that (2.1) and (2.2) are

satisfied. In the following we assume that (2.1) and (2.2) are true.

Now, denote

A =
[
W1 A1

]
, C =

[
0 W2

0 0

]
and D =

[
A2

W3

]
.

By Parrott’s theorem, T is a contraction if and only if :

(2.4) B = (Id − ZZ∗)1/2V3(Id − Y ∗Y )1/2 − ZC∗Y,

for an arbitrary contraction V3 ∈ B(H3, H1). Here Y and Z are contractions such that

D = (Id−CC∗)1/2Y and A = Z(Id−C∗C)1/2, the existence of which is ensured by Parrott’s

theorem for column (respectively row) matrix-operators. Indeed,

[
A

C

]
and

[
C D

]
are
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contractions. We have Id − CC∗ =

[
Id − W2W ∗

2 0

0 Id

]
and Id− C∗C =

[
Id 0

0 Id − W ∗
2 W2

]
.

Since ‖W2‖ < 1, these operators are invertible. Thus, we get

Z = AD−1
C =

[
W1 A1D−1

W2

]
=
[
W1 DW ∗

1
V1

]
,

Y = DC∗D =

[
D−1

W ∗

2

A2

W3

]
=

[
V2DW3

W3

]
.

It follows that DZ∗ =
[
DW ∗

1
(Id − V1V ∗

1 )DW ∗

1

]1/2
, DY = [DW3

(Id − V ∗
2 V2)DW3

]1/2 and

ZC∗Y = DW ∗

1
V1W ∗

2 V2DW3
. Therefore, (2.4) is equivalent with (2.3).

We obtain the following general criterion in the scalar case.

Theorem 2.3. — Let ω1, ω2, ω3 ∈ D. Then, T =




ω1 α1 β

0 ω2 α2

0 0 ω3


 is a contraction when

acting on the Hilbert space C
3 if and only if





|ω2| < 1,(2.5)

|αi|2 ≤ (1 − |ωi|2)(1 − |ωi+1|2), i = 1, 2,(2.6)
∣∣∣β(1 − |ω2|2) + α1α2ω2

∣∣∣
2

≤
[
(1 − |ω1|2)(1 − |ω2|2) − |α1|2

]
·
[
(1 − |ω2|2)(1 − |ω3|2) − |α2|2

]
(2.7)

or




|ω2| = 1,(2.8)

αi = 0, i = 1, 2,(2.9)

|β|2 ≤ (1 − |ω1|2)(1 − |ω3|2).(2.10)

Proof. — As in the proof of Theorem 2.2, if T is a contraction, then the two dimensional

compressions

[
ω1 α1

0 ω2

]
and

[
ω2 α2

0 ω3

]
are also contractions. Thus (2.6) is satisfied, and it

will be assumed from now on. Note that if |ω2| = 1, this implies that α1 = α2 = 0.

We use similar notation as in the proof of Theorem 2.2, with

A =
[
ω1 α1

]
, B =

[
β
]

, C =

[
0 ω2

0 0

]
and D =

[
α2

ω3

]
.

By Theorem 2.1, T is a contraction if and only if :

(2.11) B = (Id − ZZ∗)1/2V (Id − Y ∗Y )1/2 − ZC∗Y, for some contraction V,

where Y and Z are contractions such that D = (Id − CC∗)1/2Y and A = Z(Id − C∗C)1/2.

We have

Id − CC∗ =

[
1 − |ω2|2 0

0 1

]
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and

Id − C∗C =

[
1 0

0 1 − |ω2|2
]

.

First case. Assume first that |ω2| < 1. Then we can apply Theorem 2.2. An easy

computation shows that

Y = (Id − CC∗)−1/2 D =




α2√
1−|ω2|2

ω3




and

Z = A (Id − C∗C)−1/2 =
[
ω1

α1√
1−|ω2|2

]
.

Thus, T is a contraction if and only if (2.11) is satisfied, that is

β +
α1α2ω2

1 − |ω2|2 =

(
1 − |ω1|2 − |α1|2

1 − |ω2|2

)1/2

V

(
1 − |ω3|2 − |α2|2

1 − |ω2|2

)1/2

for some contraction V . This holds if and only if
∣∣∣∣∣∣

∣∣∣∣∣∣

(
1 − |ω1|2 − |α1|2

1 − |ω2|2

)−1/2 (
β +

α1α2ω2

1 − |ω2|2
)(

1 − |ω3|2 − |α2|2
1 − |ω2|2

)−1/2
∣∣∣∣∣∣

∣∣∣∣∣∣
≤ 1.

In can be easily shown that this is equivalent with the condition (2.7).

Second case. Assume now that |ω2| = 1. Let Y =

[
y1

y2

]
and Z =

[
z1 z2

]
. As D =

(Id − CC∗)1/2Y , we get D∗ = Y ∗(Id − CC∗)1/2. This holds if and only if y2 = ω3. As Y ∗

can be chosen to be 0 on Im(D∗
C)⊥ (see the Appendix), we have y1 = 0.

Similarly, A = Z(Id − C∗C)1/2 holds if and only if z1 = ω1 and, as before, we can

choose z2 = 0. We have ZC∗Y = 0. Therefore, T is a contraction if and only if |β|2 ≤
(1 − |ω3|2)(1 − |ω1|2). This is equivalent with the condition (2.10).

2.B. An operator-theoretical proof of Beardon-Minda’s inequality. — We refer

to [42, Chapter 22] for the definition and basic properties of divided differences of n + 1

(not necessarily distinct) points. We just recall here that for pairwise distinct points

z0, z1, · · · , zn ∈ C, the divided differences of f at points z0, z1, · · · , zn satisfy [f(zk)] =

f(zk) and the recurrence relation

[f(zk), · · · , f(zk+j)] =
[f(zk+1), · · · , f(zk+j)] − [f(zk), · · · , f(zk+j−1)]

zk+j − zk
,

for 0 ≤ k ≤ j ≤ n.

We also recall to the reader the following notation.

Definition 2.4. — Let z, w ∈ D and f ∈ H(D,D). We define:

1. The complex pseudo-hyperbolic distance (z, w) := z−w
1−wz ;

2. The pseudo-hyperblic distance ρ(z, w) := |(z, w)|;
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3. The hyperbolic distance d(z, w) = tanh−1 1+ρ(z,w)
1−ρ(z,w) ;

4. The hyperbolic divided difference f∗(z, w) := (f(z),f(w))
(z,w) .

We provide an operator-theoretic proof of the following result established by Beardon and

Minda [9].

Theorem 2.5 (Beardon-Minda [9]). — Let f ∈ H(D,D) and let ω1, ω2 and ω3 be

pairwise distinct points in D. Then,

(2.12) d (f∗(ω1, ω2), f∗(ω3, ω2)) ≤ d(ω1, ω3).

The proof in [9] requires an assumption that f is not a conformal automorphism of the

unit disk. Such an assumption is unnecessary in the subsequent proof.

Proof of Theorem 2.5. — First, let us notice that Beardon-Minda’s inequality (2.12) is

equivalent with

(2.13) ρ(f∗(ω1, ω2), f∗(ω3, ω2)) =

∣∣∣∣∣
f∗(ω1, ω2) − f∗(ω3, ω2)

1 − f∗(ω3, ω2)f∗(ω1, ω2)

∣∣∣∣∣ ≤
∣∣∣∣

ω1 − ω3

1 − ω3ω1

∣∣∣∣ .

For z, ω ∈ D, we have

(2.14) f∗(z, ω) =
f(z) − f(ω)

z − ω
· 1 − ωz

1 − f(ω)f(z)
.

We also record the following important identity, valid for u, v ∈ C. We have

(2.15) Su,v := (1 − |u|2)(1 − |v|2) = |1 − uv|2 − |u − v|2.

Now, let ω1, ω2, ω3 ∈ D, with ωi 6= ωj (i 6= j), and consider

T =




ω1 α1 β

0 ω2 α2

0 0 ω3


 ,

with

αi =
√

1 − |ωi|2
√

(1 − |ωi+1|2, i = 1, 2,

and

β =
−ω2α1α2

1 − |ω2|2 = −ω2

√
1 − |ω1|2

√
1 − |ω3|2.

By Theorem 2.3, T is a contraction. Assume first that f ∈ A(D) and ‖f‖∞ ≤ 1. Then the

matrix representation of f(T ) can be expressed in terms of first order and second order

divided differences as follows:

f(T ) =




f(ω1) α1[f(ω1), f(ω2)] β[f(ω1), f(ω3)] + α1α2[f(ω1), f(ω2), f(ω3)]

0 f(ω2) α2[f(ω2), f(ω3)]

0 0 f(ω3)


 .

This can be verified directly by some direct computations for monomials and polynomials.

The same formula extends to functions in the disk algebra A(D). Assume that f(ωi) 6=
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f(ωj) whenever i 6= j (otherwise, there is nothing to prove). As T is a contraction and

‖f‖∞ ≤ 1, by von Neumann’s inequality the operator f(T ) is also a contraction.

Introducing the notation

α̃i = αi[f(ωi), f(ωi+1)], i = 1, 2,

β̃ = β[f(ω1), f(ω3)] + α1α2[f(ω1), f(ω2), f(ω3)],

by Theorem 2.3, we have :

∣∣∣β̃
(
1 − |f(ω2)|2

)
+ α̃1α̃2f(ω2)

∣∣∣
2

≤
[
Sf(ω1),f(ω2) − |α̃1|2

]
×
[
Sf(ω2),f(ω3) − |α̃2|2

]
.

If we multiply each side of this inequality by |ω1 − ω3|2, we get

(2.16) Sω1,ω3

∣∣∣
(
1 − |f(ω2)|2

)
A + B

∣∣∣
2

≤ |ω1 − ω3|2C1C3,

where

A := −ω2 (f(ω1) − f(ω3)) +
(
1 − |ω2|2

)(f(ω1) − f(ω2)

ω1 − ω2
− f(ω2) − f(ω3)

ω2 − ω3

)
,

B := f(ω2)(1 − |ω2|2)(ω1 − ω3) · (f(ω1) − f(ω2))(f(ω2) − f(ω3))

(ω1 − ω2)(ω2 − ω3)
,

Ci := Sf(ωi),f(ω2) − Sωi,ω2

∣∣∣∣
f(ωi) − f(ω2)

ωi − ω2

∣∣∣∣
2

, i = 1, 3.

We want to prove that (2.16) is equivalent with (2.13). The calculations are somewhat

laborious; the key idea is to use (2.14) to make hyperbolic divided differences appear each

time we see an expression of the form f(z) − f(ω). We provide additional details to assist

the reader.

First of all, we have :

Ci = Sf(ωi),f(ω2) − Sωi,ω2
|f∗(ωi, ω2)|2 ×

∣∣∣∣∣
1 − f(ω2)f(ωi)

1 − ω2ωi

∣∣∣∣∣

2

=
∣∣∣1 − f(ω2)f(ωi)

∣∣∣
2

− |f∗(ωi, ω2)|2 × |ωi − ω2|2 ×
∣∣∣∣∣
1 − f(ω2)f(ωi)

1 − ω2ωi

∣∣∣∣∣

2

− |f∗(ωi, ω2)|2 ×
∣∣∣1 − f(ω2)f(ωi)

∣∣∣
2

+ |f∗(ωi, ω2)|2 × |ωi − ω2|2 ×
∣∣∣∣∣
1 − f(ω2)f(ωi)

1 − ω2ωi

∣∣∣∣∣

2

=
∣∣∣1 − f(ω2)f(ωi)

∣∣∣
2 (

1 − |f∗(ωi, ω2)|2
)

.

Thus, we have

C1C3 =
∣∣∣1 − f(ω2)f(ω1)

∣∣∣
2

×
∣∣∣1 − f(ω2)f(ω3)

∣∣∣
2

× Sf∗(ω1,ω2),f∗(ω3,ω2).
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Now, let us deal with the first member of the inequality. We have

A = f∗(ω1, ω2)
(
1 − f(ω2)f(ω1)

)
− f∗(ω3, ω2)

(
1 − f(ω2)f(ω3)

)

= (f∗(ω1, ω2) − f∗(ω3, ω2))
(
1 − f(ω2)f(ω1)

) (
1 − f(ω2)f(ω3)

)
+ f(ω2)D,

where D := f∗(ω1, ω2)f(ω3)
(
1 − f(ω2)f(ω1)

)
− f∗(ω3, ω2)f(ω1)

(
1 − f(ω2)f(ω3)

)
.

This term can be written as follows, where we make appear the differences f(ω3) − f(ω2)

and f(ω1) − f(ω2):

D = f∗(ω1, ω2) (f(ω3) − f(ω2))
(
1 − f(ω2)f(ω1)

)

− f∗(ω3, ω2) (f(ω1) − f(ω2))
(
1 − f(ω2)f(ω3)

)
+ f(ω2)f∗(ω1, ω2)

(
1 − f(ω2)f(ω1)

)

− f(ω2)f∗(ω3, ω2)
(
1 − f(ω2)f(ω3)

)
.

We obtain

D = f∗(ω1, ω2)f∗(ω3, ω2)

(
1 − f(ω2)f(ω3)

1 − ω2ω3

)
(ω3 − ω2)

(
1 − f(ω2)f(ω1)

)

− f∗(ω3, ω2)f∗(ω1, ω2)

(
1 − f(ω2)f(ω1)

1 − ω2ω1

)
(ω1 − ω2)

(
1 − f(ω2)f(ω3)

)
+ f(ω2)A

= −(1 − |ω2|2)(ω1 − ω3) · (f(ω1) − f(ω2))(f(ω2) − f(ω3))

(ω1 − ω2)(ω2 − ω3)
+ f(ω2)A.

Hence, we get

A = (f∗(ω1, ω2) − f∗(ω3, ω2))
(
1 − f(ω2)f(ω1)

) (
1 − f(ω2)f(ω3)

)
− B + |f(ω2)|2A.

Therefore

(1 − |f(ω2)|2)A + B = (f∗(ω1, ω2) − f∗(ω3, ω2))
(
1 − f(ω2)f(ω1)

) (
1 − f(ω2)f(ω3)

)
.

Combining all of these elements, the inequality represented by (2.16) transforms into

Sω1,ω3
|f∗(ω1, ω2) − f∗(ω3, ω2)|2 ≤ |ω1 − ω3|2 × Sf∗(ω1,ω2),f∗(ω3,ω2),

which is equivalent with (2.13).

Beardon-Minda’s inequality is thus proved for f ∈ A(D). Now, for f ∈ H(D), we have

fr : z 7→ f(rz) ∈ A(D), for every r ∈]0, 1[. Based on the preceding information, it can be

concluded that Beardon-Minda’s inequality is satisfied by the functions fr, for all r ∈]0, 1[,

so it is also by f , by letting r → 1−.

The calculations in this proof can be somewhat simplified by assuming that f(ω2) = 0

and composing with a Möbius transformation at the end. However, this approach leads

to a loss of symmetry in the formulas.
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2.C. Connecting with model spaces theory. — In [9], it is further proved that if

f does not represent an automorphism of the unit disk, equality holds in Theorem 2.5 if

and only if f is a Blaschke product of degree no greater than 2. This inference can also

be derived through operator theory considerations.

To achieve this, we must introduce certain concepts from model space theory. For a

comprehensive introduction to these notions and more details, we direct the reader to [20]

and [28].

Let H∞(D) be the set of all holomorphic functions that are bounded on D, and let H2(D)

be the Hardy-Hilbert space of D, which is the space of all holomorphic functions f ∈ H(D)

such that

sup
0<r<1

∫

T

|f(ζ)|2dm(ζ) < ∞

or, equivalently, such that

∞∑

n=0

|an|2 < ∞ if f(z) =
∞∑

n=0

anzn.

Let S : H2(D) → H2(D) be the unilateral shift, defined by S(f)(z) = zf(z). For f ∈
H∞(D), Fatou’s theorem (see e.g. [20, theorem 1.10]) states that f has radial boundary

values f(ζ), for almost every ζ ∈ T. A function u ∈ H∞(D) is said to be inner if |u(ζ)| = 1

almost everywhere on T.

If u is an inner function, the corresponding model space Ku is defined to be

Ku :=
(
uH2(D)

)⊥
=
{

f ∈ H2(D) : 〈f, uh〉 = 0, ∀ h ∈ H2(D)
}

.

We define the associated compressed shift by Su := PuS|Ku , where Pu is the orthogonal

projection from H2(D) onto Ku.

Now, let Θ be a finite Blaschke product with pairwise distinct zeros ω1, . . . , ωn ∈ D and

let bωk
(z) = z−ωk

1−ωkz denote a single Blaschke factor. Let (φ1(z), . . . , φn(z)) denote the

Takenaka–Malmquist–Walsh orthonormal basis ([20, 28]) of KΘ, i.e.

φ1(z) =

√
1 − |ω1|2
1 − ω1z

and φk(z) =




k−1∏

j=1

bωj



√

1 − |ωk|2
1 − ωkz

k = 2, . . . , n.

Writing SΘ with respect to the Takenaka–Malmquist basis gives the matrix representation

MΘ with entries

[MΘ]i,j =





ωj if i=j
∏j−1

k=i+1 (−ωk)
√

1 − |ωi|2
√

1 − |ωj |2 if i<j

0 if i>j.

It seems that the first appearance of this remarkable matrix was in [45]; see also [33, 34,

28, 19, 43]. In particular, for n = 2 and n = 3, we obtain the following matrices
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T2 :=

(
ω1

√
1 − |ω1|2

√
1 − |ω2|2

0 ω2

)
,

T3 :=




ω1

√
1 − |ω1|2

√
(1 − |ω2|2 −ω2

√
(1 − |ω1|2

√
(1 − |ω3|2)

0 ω2

√
1 − |ω2|2

√
(1 − |ω3|2

0 0 ω3


 ,

which have been used to obtain the Schwarz-Pick and Beardon-Minda inequalities.

We now show how to obtain the equality case in the Beardon-Minda inequality using the

matrix T3. It follows from our proof of Theorem 2.5 that f satisfies (2.12) with equality

if and only if ‖f(T3)‖ = 1 = ‖f‖∞. The fact that f is a finite Blaschke product of degree

≤ 2 has been proved by several authors, sometimes in relation to Crouzeix’s conjecture.

This can be generalized to n points. We refer to the discussion in [11, Theorem 3.1]. An

explicit description of the matrix which diagonalize MΘ is also given in [11].

We plan to return to the general Beardon-Minda type inequality ‖f(MΘ)‖ ≤ 1 in a future

paper.

2.D. A Beardon-Minda type lemma for derivatives. — We now investigate the

case where ω1 = ω2 = ω3 =: ω. For a holomorphic function f we use the notation

Γ(z, f) =
(1 − |z|2)|f ′(z)|

1 − |f(z)|2 .

The Schwarz-Pick inequality for derivatives (1.2) can then be expressed as |Γ(z, f)| ≤ 1.

We give now an operator theoretical proof of the following result, proved by Yamashita in

[44, Theorem 2].

Theorem 2.6. — Let f ∈ H(D,D) and let Γ(z, f) = (1−|z|2)|f ′(z)|
1−|f(z)|2

. Then, for every ω ∈ D,

(2.17)

∣∣∣∣
∂Γ(ω, f)

∂ω

∣∣∣∣ ≤ 1 − |Γ(ω, f)|2
1 − |ω|2 .

Moreover, equality holds if and only if f is a Blaschke product of degree ≤ 2.

Proof. — Let ω ∈ D, and let T =




ω α β

0 ω α

0 0 ω


 ∈ M3(C), with α = 1 − |ω|2 and β =

−ω(1 − |ω|2). By Theorem 2.3, T is a contraction. Moreover, we can easily check that for

f in the disk algebra we have

f(T ) =




f(ω) αf ′(ω) 1
2α2f ′′(ω) + βf ′(ω)

0 f(ω) αf ′(ω)

0 0 f(ω)


 .

In this representation, the divided differences have been replaced in this limit case by first

and second-order derivatives. By von Neumann’s inequality, f(T ) is a contraction. Using
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Theorem 2.3 we obtain:∣∣∣∣
(

1

2
α2f ′′(ω) + βf ′(ω)

)(
1 − |f(ω)|2

)
+ α2f ′(ω)2f(ω)

∣∣∣∣ ≤
(
1 − |f(ω)|2

)2
−
∣∣αf ′(ω)

∣∣2 ,

which is equivalent with (2.17). A proof of the equality case can be obtained using model

spaces, as discussed in the preceding subsection.

The inequality (2.17) can be rephrased in terms of Peschl’s invariant derivatives. Let

f ∈ H(D,D), let ω ∈ D, and consider the mapping

(2.18) g : z ∈ D 7→
f
(

z+ω
1+ωz

)
− f(ω)

1 − f(ω)f
(

z+ω
1+ωz

) ∈ C.

Then g is analytic on D and g(0) = 0. We have g(z) =
∑∞

n=1
Dnf(ω)

n! zn, with Dnf(z0) :=

g(n)(0). The quantities Dnf(ω) are called Peschl’s invariant derivatives (see e.g. [24]).

The first two values of Peschl’s invariant derivatives are explicitely computed as:

D1f(ω) =
(1 − |ω|2)f ′(ω)

1 − |f(ω)|2 ,

D2f(ω) =
(1 − |ω|2)2

1 − |f(ω)|2

[
f ′′(ω) − 2ωf ′(ω)

1 − |ω|2 +
2f(ω)f ′(ω)2

1 − |f(ω)|2

]
.

With these notations, the Schwarz-Pick inequality for derivatives (1.2) can be restated as

|D1f(ω)| ≤ 1, while (2.17) can be written as |D2f(ω)| ≤ 2(1 − |D1f(ω)|2).

We refer to [12, Proposition 3.4] for a different proof of (2.17) and to Section 4.B for a

generalization to the polydisk.

3. Operator versions of Beardon-Minda’s inequality

We move now to operator versions of the Schwarz-Pick and Beardon-Minda inequalities.

The first operator generalization for the Schwarz-Pick inequality has been proved by Ky

Fan in [18]; the following discussion has been inspired by the recent paper [22].

We recall the following theorem concerning the Sylvester equation AX − XB = Y, which

has been studied e.g. in [10, 37].

Theorem 3.1 (Rosenblum,[10]). — Let H, K be two Hilbert spaces. Let A ∈ B(H)

and B ∈ B(K) be two operators with σ(A) ∩ σ(B) = ∅. Then, for every Y ∈ B(H, K),

the Sylvester equation AX − XB = Y has a unique solution X. Moreover, if Γ is a union

of closed contours in the plane with total winding numbers 1 around σ(A) and 0 around

σ(B), the solution can be expressed as

X =
1

2iπ

∫

Γ
(A − ξ)−1Y (B − ξ)−1dξ.
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3.A. An operator version of the Schwarz-Pick inequality. — The following result

is a counterpart of [22, Theorem 3.5]. When specialized to scalars, it reduces to the

Schwarz-Pick inequality for two distinct points.

Theorem 3.2. — Let H1, H2 be two Hilbert spaces. Consider three contractions W1 ∈
B(H1), W2 ∈ B(H2) and V ∈ B(H2, H1). Assume that σ(W1) ∩ σ(W2) = ∅, and that

f ∈ H(D,D) is holomorphic on an open neighborhood of σ(W1) ∪ σ(W2). We denote by

X = XW1,W2,V the unique solution of Sylvester’s equation

(3.1) W1X − XW2 = DW ∗

1
V DW2

.

Then, there exists a contraction Y ∈ B(H2, H1) such that

f(W1)X − Xf(W2) = Df(W1)∗Y Df(W2).

Proof. — Let T =

[
W1 DW ∗

1
V DW2

0 W2

]
. Denote C = DW ∗

1
V DW2

. By Parrott’s theorem, T

is a contraction. Moreover, using (3.1), we have

T =

[
W1 C

0 W2

]
=

[
Id −X

0 Id

] [
W1 0

0 W2

] [
Id X

0 Id

]
.

Notice that σ(T ) ⊂ σ(W1) ∪ σ(W2). Indeed, for λ ∈ C, we have

T − λId =

[
Id 0

0 W2 − λId

] [
Id DW ∗

1
V DW2

0 Id

] [
W1 − λId 0

0 Id

]
.

Therefore, if λ 6∈ σ(W1) ∪ σ(W2), then all factors in the previous decomposition are

invertible and thus λ 6∈ σ(T ). So it makes sense to speak about f(T ) and to write

f(T ) =

[
Id −X

0 Id

] [
f(W1) 0

0 f(W2)

] [
Id X

0 Id

]
=

[
f(W1) f(W1)X − Xf(W2)

0 f(W2)

]
.

As ‖f‖∞ ≤ 1, we have ‖f(T )‖ ≤ 1 by von Neumann’s inequality. Thus, by Parrott’s

theorem, there exists a contraction Y ∈ B(H2, H1) such that f(W1)X − Xf(W2) =

Df(W1)∗Y Df(W2).

3.B. An operator version of the Beardon-Minda inequality. — Utilizing the ana-

logue proof framework as employed in Theorem 3.2, we can deduce the following outcome

for 3 × 3 operator matrices.

Theorem 3.3. — Let H1, H2, H3 be three Hilbert spaces. Consider three contractions

W1 ∈ B(H1), W2 ∈ B(H2) and W3 ∈ B(H3). Let V1 ∈ B(H2, H1), V2 ∈ B(H3, H2), and

V3 ∈ B(H3, H1) be contractions. Assume that ‖W2‖ < 1 and that σ(Wi) ∩ σ(Wj) = ∅, for

all 1 ≤ i < j ≤ 3. Suppose that f ∈ H(D,D) is holomorphic on an open neighborhood of
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σ(W1) ∪ σ(W2) ∪ σ(W3). Let X1, X2, X3 be respectively the unique solution of Sylvester’s

equations

W1X1 − X1W2 = DW ∗

1
V1DW2

,(3.2)

W2X2 − X2W3 = DW ∗

2
V2DW3

and(3.3)

W1X3 − X3W3 = B − W3X1X2 + X1W2X2,(3.4)

where

B =
[
DW ∗

1
(Id − V1V ∗

1 )DW ∗

1

]1/2
V3 [DW3

(Id − V ∗
2 V2)DW3

]1/2 − DW ∗

1
V1W ∗

2 V2DW3
.

Then, there exist three contractions Y1 ∈ B(H2, H1), Y2 ∈ B(H3, H2), Y3 ∈ B(H3, H1) such

that :





f(W1)X1 − X1f(W2) = Df(W1)∗Y1Df(W2),(3.5)

f(W2)X2 − X2f(W3) = Df(W2)∗Y2Df(W3),(3.6)

f(W1)X3 − X3f(W3) = X1f(W2)X2 − X1X2f(W3)

+
[
Df(W1)∗(Id − Y1Y ∗

1 )Df(W1)∗

]1/2
Y3

[
Df(W3)(Id − Y ∗

2 Y2)Df(W3)

]1/2

−Df(W1)∗Y1f(W2)∗Y2Df(W3).(3.7)

Proof. — Denote A1 = DW ∗

1
V1DW2

and A2 = DW ∗

2
V2DW3

. Then, according to Theo-

rem 2.2, the operator

T =




W1 A1 B

0 W2 A2

0 0 W3




is a contraction. Notice also that X1 ∈ B(H2, H1), X2 ∈ B(H3, H2) and X3 ∈ B(H3, H1)

are respectively the unique solutions of Sylvester’s equations W1X1−X1W2 = A1, W2X2 −
X2W3 = A2 and W1X3 − X3W3 = B − W3X1X2 + X1W2X2.

In analogy with some computations in the Heisenberg group, we can write

T =




W1 A1 B

0 W2 A2

0 0 W3


 =




Id −X1 X1X2 − X3

0 Id −X2

0 0 Id







W1 0 0

0 W2 0

0 0 W3







Id X1 X3

0 Id X2

0 0 Id


 .

This diagonalization allows one to write the 3 × 3 operator matrix of f(T ), which is a

contraction by von Neumann’s inequality:

f(T ) =




Id −X1 X1X2 − X3

0 Id −X2

0 0 Id







f(W1) 0 0

0 f(W2) 0

0 0 f(W3)







Id X1 X3

0 Id X2

0 0 Id


 .

Thus the matrix of f(T ) is given by



f(W1) f(W1)X1 − X1f(W2) f(W1)X3 − X1f(W2)X2 + (X1X2 − X3)f(W3)

0 f(W2) f(W2)X2 − X2f(W3)

0 0 f(W3)


 .

We apply again Theorem 2.2.
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In the scalar case, the condition (3.7) is equivalent with the Beardon-Minda inequality.

4. Schwarz-Pick inequalities for the polydisk

Let n ∈ N
∗. For ω = (ω1, · · · , ωn) ∈ C

n, we denote ‖ω‖ = sup1≤i≤n |ωi| the sup norm.

4.A. Using von Neumann inequality for tuples of two by two matrices. — It

is a fascinating observation in operator theory that an analogue of the von Neumann

inequality holds for the bidisk (Ando’s theorem), but does not extend to the polydisk D
n

for n ≥ 3. However, as proved by Drury [16] and Knese [26], there is an analogue for

tuples of 2 × 2 and 3 × 3 commuting matrices.

Lemma 4.1 (Drury and Knese; see [16], [26]). — Let T1, ..., Tn be mutually com-

muting 2 × 2 or 3 × 3 contractions, and let p ∈ C[X1, · · · , Xn]. Then, we have

‖p(T1, ..., Tn)‖ ≤ ‖p‖∞ := sup{|p(z1, · · · zn)| : z ∈ D
n}.

This leads to operator theoretical proofs of the following known ([39, lemma 7.5.6])

Schwarz-Pick inequalities for the polydisk.

Theorem 4.2. — (a) Let f ∈ H(Dn,D) and let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ D
n.

Then

(4.1)

∣∣∣∣∣
f(a1, · · · , an) − f(b1, · · · , bn)

1 − f(a1, · · · , an)f(b1, · · · , bn)

∣∣∣∣∣ ≤ max
1≤i≤n

∣∣∣∣
ai − bi

1 − aibi

∣∣∣∣ .

(b) Let f ∈ H(Dn,D) and let a = (a2, . . . , an) ∈ D
n. Then,

(4.2)
n∑

i=1

(1 − |ai|2)

∣∣∣∣
∂f(a)

∂zi

∣∣∣∣ ≤ 1 − |f(a)|2.

Proof. — (a) We first observe that the result is obvious whenever a = b or f(a) = f(b).

Therefore, in the following, we assume a 6= b and f(a) 6= f(b).

For 1 ≤ i ≤ n, let

Ti =

(
ai d(ai − bi)

0 bi

)
,

with

d = min
1≤i≤n

√
(1 − |ai|2)(1 − |bi|2)

|ai − bi|2
.

Here, whenever ai = bi, we make the convention that

√
(1−|ai|2)(1−|bi|2)

|ai−bi|2
= +∞. As we

assume that a 6= b, this cannot happen for all the indices i.

It can be easily verified that the matrices Ti are mutually commuting and that ‖Ti‖ ≤ 1.

By induction it can be shown that for all i ∈ J1, nK, for all ki ∈ N,

T ki

i =

(
aki

i d
(
aki

i − bki

i

)

0 bki

i

)
.
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Let p ∈ C[X1, . . . , Xn] be a polynomial with ‖p‖∞ < 1. We have

p(T1, · · · , Tn) =

(
p(a) d(p(a) − p(b))

0 p(b)

)
.

Drury’s result imply that ‖p(T1, . . . , Tn)‖ ≤ 1. As in the one variable case, a computation

gives the Schwarz-Pick inequality (4.1) for p. By an approximation argument, (4.1) holds

also for functions in the polydisk algebra. Now, if f ∈ H(Dn,D), consider the family of

functions (fr)0<r<1 defined by fr(z1, · · · , zn) = f(rz1, . . . , rzn). For all r ∈ ]0, 1[, fr is in

the polydisk algebra and, thus, fr satisfies (4.1). Then, let r → 1− to conclude the proof.

(b) The proof follows the same method as that of Theorem 4.2. Let a = (a2, . . . , an) ∈
D

n and let p ∈ C[X1, . . . , Xn] be a polynomial with ‖p‖∞ < 1. For 1 ≤ k ≤ n, let

Tk =

(
ak γk

0 ak

)
, where γk = eiθk (1 − |ak|2), for some θk ∈ [0, 2π[ to be chosen later on.

For all k ∈ J1, nK, ‖Tk‖ ≤ 1, and, for all k, l ∈ J1, nK, TkTl = TlTk. We have

p(T1, · · · , Tn) =

(
p(a)

∑n
k=1 γk

∂p(a)
∂zk

0 p(a)

)
.

Again, by Lemma 4.1, we get ‖p(T1, . . . , Tn)‖ ≤ 1. Therefore

(4.3)

∣∣∣∣∣

n∑

k=1

γk
∂p(a)

∂zk

∣∣∣∣∣ ≤ 1 − |p(a)|2.

Now, let tk = ∂p(a1,a2)
∂zk

, 0 ≤ k ≤ n. We write tk = |tk|eiArg(tk) and we set θk = −Arg(tk).

With this choice we obtain γktk = (1 − |ak|2) |tk|. Replacing in (4.3) we get

n∑

i=1

(1 − |ai|2)

∣∣∣∣
∂p(a)

∂zi

∣∣∣∣ ≤ 1 − |p(a)|2.

We conclude by using an approximation argument.

Remark 4.3. — The study of the case of equality in the Schwarz-Pick inequalities for

the polydisk is an interesting problem. Knese [25] studied the equality case in (4.2) using

operator-theoretical methods (transfer functions) and described which functions play the

role of automorphisms of the disk in this context–they turn out to be rational inner

functions in the Schur-Agler class of the polydisk with an added symmetry constraint.

4.B. Peschl’s invariant derivatives in several variables. — The inequalities from

Section 2.D can be extended to analytic functions of several variables.

Let n ∈ N
∗, let f ∈ H(Dn,D), and fix a vector ω = (ω1, · · · , ωn) in D

n. Similarly as in the

one variable case, we define

g : z = (z1, · · · , zn) ∈ D
n 7→

f
(

z1+ω1

1+ω1z1
, · · · , zn+ωn

1+ωnzn

)
− f(ω1, · · · , ωn)

1 − f(ω1, · · · , ωn)f
(

z1+ω1

1+ω1z1
, · · · , zn+ωn

1+ωnzn

) ∈ C
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and then write

g(z1, · · · , zn) =
∞∑

j1,··· ,jn=0

∂j1+···+jng(0, · · · , 0)

∂j1z1 · · · ∂jnzn
zj1

1 · · · zjn
n =

∞∑

j1,··· ,jn=0

aj1,··· ,jnzj1

1 · · · zjn
n .

For k ∈ J1, nK, let Dkf(w) = ∂kg(0, . . . , 0) =
∑

j1+···+jn=k aj1,··· ,jn . A straightforward

computation gives :

D1f(ω) =
n∑

j=1

1 − |ωj|2
1 − |f(ω)|2 · ∂f

∂zj
(ω),

D2f(ω) =
n∑

j=1

∂2g(0, · · · , 0)

∂2zj
+ 2

∑

1≤j<k≤n

∂2f(0, · · · , 0)

∂zj∂zk

=
n∑

j=1

(1 − |ωj |2)2

1 − |f(ω)|2

(
∂2f(w)

∂2zj
+

2f(w)

1 − |f(w)|2 − 2ωj

1 − |ωj|2
· ∂f(ω)

∂zj

)

+ 2
∑

1≤j<k≤n

(1 − |zj |2)(1 − |zk|2)

1 − |f(ω)|2

(
∂f(ω)

∂zj∂zk
+

2f(ω)

1 − |f(ω)|2 · ∂f(ω)

∂zj
· ∂f(ω)

∂zk

)
.

With the same method of proof as before, we can arrive at the following result.

Theorem 4.4. — For n ∈ N
∗ let w = (ω1, . . . , ωn) ∈ D

n and consider f ∈ H(Dn,D).

Then, we have:

(4.4) |D2f(ω)| ≤ 2(1 − |D1f(ω)|2).

Proof. — For 1 ≤ k ≤ n, let

Tk =




ωk αk βk

0 ωk αk

0 0 ωk


 ∈ M3(C),

with αk = 1 − |ωk|2 and βk = −ωk(1 − |ωk|2). By Theorem 2.3, Tk is a contraction, for

all k ∈ J1, nK. Moreover, for all 1 ≤ k, j ≤ n, TjTk = TkTj . Therefore, by Knese’s result,

p(T1, . . . , Tn) is a contraction, for every p ∈ C[X1, . . . , Xn] with ‖p‖∞ < 1. Moreover, it is

easy to check that

p(T1, . . . , Tn) =




p(ω) γ1 γ2

0 p(ω) γ1

0 0 p(ω)


 ,

with

γ1 =
n∑

j=1

αj
∂p(ω)

∂zj
,

γ2 =
1

2

n∑

j=1

α2
j

∂2p(w)

∂2zj
+

∑

1≤j<k≤n

αjαk
∂2p(w)

∂zj∂zk
+

n∑

j=1

βj
∂p(w)

∂zj
.

By Theorem 2.3, we obtain :

(4.5)
∣∣∣γ2

(
1 − |p(ω)|2

)
+ γ2

1p(ω)
∣∣∣ ≤ (1 − |p(ω)|2)2 − |γ1|2,
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which is equivalent with (4.4) for polynomials. The inequality extends to all functions

f ∈ H(Dn,D).

4.C. Distinguished varieties and Schwarz-Pick inequalities. — In the bidisk case,

the refined version of Ando’s inequality by Agler and McCarthy [3] results in corresponding

enhancements of Schwarz-Pick type inequalities.

We start by recalling the notion of distinguished variety introduced in [3]. A distinguished

variety is a set of the form V ∩ D
2
, where V is an algebraic set in C

2 (so there is a

polynomial q ∈ C[z, w] such that V = {(z, w) ∈ D
2 : q(z, w) = 0}) with the property that

V ∩ ∂(D2) = V ∩ T
2.

Therefore a distinguished variety is the trace on D
2 of a one-dimensional complex algebraic

variety V in C
2 such that V intersects D

2 and exits the bidisk through its distinguished

boundary, T2, without intersecting any other part of its topological boundary. A distin-

guished variety has ([3]) the following determinantal representation

(4.6) V ∩ D
2 =

{
(z, w) ∈ D

2 : det (Ψ(z) − wId) = 0
}

for some matrix-valued rational function Ψ on the unit disc that is unitary on the unit

circle.

Agler and McCarthy proved in [3] that for any pair of commuting contractive matrices

(T1, T2) without unimodular eigenvalues, there is a distinguished variety V ∩D
2 such that

the von-Neumann inequality holds on V ∩ D
2 for any polynomial p in C[z1, z2], i.e.

(4.7) ‖p(T1, T2)‖ ≤ sup
(z1,z2)∈V ∩D2

|p(z1, z2)|.

Theorem 4.5. — (a) Let (a1, a2) and (b1, b2) be two points in the bidisk D
2. Then there

is a distinguished variety V ∩ D
2 such that the Schwarz-Pick inequality

(4.8)

∣∣∣∣∣
f(a1, a2) − f(b1, b2)

1 − f(a1, a2)f(b1, b2)

∣∣∣∣∣ ≤ max

{∣∣∣∣
a1 − b1

1 − a1b1

∣∣∣∣ ,
∣∣∣∣

a2 − b2

1 − a2b2

∣∣∣∣
}

holds for any function f which is holomorphic on the bidisk D
2 and continuous on D

2
with

sup
(z1,z2)∈V ∩D2

|f(z1, z2)| ≤ 1.

(b) Let (a1, a2) and (b1, b2) be two points in the bidisk D
2. Then there is a distinguished

variety V ∩D
2 such that the Schwarz-Pick inequality (4.8) holds for any function f which

is holomorphic in the bidisk D
2 and for which there is a sequence of positive real number

(rn) convergent to 1 with rn < 1 such that

sup
n≥1,(z1,z2)∈V ∩D2

|f(rnz1, rnz2)| ≤ 1.

Proof. — Consider the matrices

T1 =

(
a1 d(a1 − b1)

0 b1

)
, T2 =

(
a2 d(a2 − b2)

0 b2

)
,



SCHWARZ-PICK TYPE INEQUALITIES 21

with

d = min

{√
(1 − |a1|2)(1 − |b1|2)

|a1 − b1|2 ,

√
(1 − |a2|2)(1 − |b2|2)

|a2 − b2|2

}
,

with the same conventions as in the proof of Theorem 4.2, (a). Following [3], we can

also assume that T1 and T2 are jointly diagonalizable (this is the first case in the proof

of [3, Theorem 3.1]). It follows from the result proved in [3] (see also [4, p.211] for

details and unexplained terminology) that there is a distinguished variety V such that

T = (T1, T2) can be extended to a pair of commuting unitaries U = (U1, U2) with spectrum

σ(U) = V ∩ ∂(D2) = V ∩T
2. As f is in the bidisk algebra, f(T ) and f(U) are well-defined

and f(T ) is a restriction of f(U) to C
2 × C

2. We obtain, as in [3], that

(4.9) ‖f(T1, T2)‖ ≤ sup
(z1,z2)∈V ∩D2

|f(z1, f2)|.

Therefore f(T1, T2) is a contraction and the proof of Theorem 4.2, (a), implies that in-

equality (4.8) holds true. The second part, (b), follows from (a) applied to the functions

f(rnz1, rnz2) and then making n → ∞.

The following result follows in a similar manner from the Agler and McCarthy result and

the proof of Theorem 4.4.

Theorem 4.6. — Let w = (ω1, ω2) ∈ D
2. Then there exists a distinguished variety V ∩D

2

such that

(4.10) |D2f(ω)| ≤ 2(1 − |D1f(ω)|2)

for every f ∈ A(D
2
) with

sup
(z1,z2)∈V ∩D2

|f(z1, z2)| ≤ 1.

Some Nevanlinna–Pick interpolation problems on distinguished varieties in the bidisk have

been studied in [23].

5. Higher order Schwarz-Pick inequalities

Let f ∈ H(D,D) be an analytic function of D into itself with f(z) =
∑∞

n=0 anzn. It has

been proved by F.W. Wiener that for each k ≥ 1 we have

(5.1) |ak| ≤ 1 − |a0|2.

We refer for instance to [32] for an operator theoretical proof of this inequality and for

applications to Bohr’s phenomenon. For k = 1, the inequality (5.1) gives |f ′(0)| ≤ 1 −
|f(0)|2. Applying this inequality to F (z) = f((ω +z)/1+ωz), for a fixed ω ∈ D, we obtain

the Schwarz-Pick inequality (1.2). For an arbitrary k, a similar reasoning has been used

by Ruscheveyeh [40] to obtain the following sharp higher-order inequality for an analytic

function f ∈ H(D,D), z ∈ D and k ≥ 1:

(5.2) |f (k)(z)| ≤ k!(1 − |f(z)|2)

(1 − |z|)k(1 + |z|) .
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We prove in this section some results related to the estimate (5.1).

Theorem 5.1. — Let f : D 7→ D be an analytic function. Assume that

f(z) =
∞∑

n=0

anzn (z ∈ D).

Then, for each n ≥ 1 and each k ≥ 1 we have

(5.3)
∣∣∣an+k(1 − |a2

0|) + anaka0

∣∣∣
2

≤
[
(1 − |a0|2)2 − |an|2

]
·
[
(1 − |a0|2)2 − |ak|2

]
.

Proof. — As ‖f‖∞ ≤ 1, the multiplication operator Mf given by Mf (g) = fg acts con-

tractively on the Hardy space H2(D). Recall that {zn : n ≥ 0} is an orthonormal basis

of H2(D). The compression T = PKMf | K of Mf to the 3-dimensional Euclidean space

K = span(1, zn, zn+k) is also a contraction. The matrix of T is given by

T =




a0 an an+k

0 a0 ak

0 0 a0


 .

Then (5.3) is a consequence of Theorem 2.3.

When a0 = 0 we obtain the following consequence.

Corollary 5.2. — Let f be a analytic function of D into D with f(0) = 0 and f(z) =∑∞
n=1 anzn for z ∈ D. Then

(5.4) |an+k| ≤
√

1 − |an|2 ·
√

1 − |ak|2.

For n = k = 1, and a0 = 0, we obtain the inequality |a2| ≤ 1 − |a1|2. Applying this

inequality to (2.18) we obtain Yamashita’s inequality |D2f(ω)| ≤ 2(1 − |D1f(ω)|2).

The following consequence is an improvement of Wiener’s inequality (5.1).

Corollary 5.3. — Let f be a analytic function of D into D with f(z) =
∑∞

n=0 anzn for

z ∈ D. Then

1 − |a0|2 − |an| ≥
∣∣a2n(1 − |a2

0|) + a2
na0

∣∣
2(1 − |a0|2)

.

Proof. — Applying (5.3) for k = n we obtain
∣∣∣a2n(1 − |a2

0|) + a2
na0

∣∣∣ ≤
[
(1 − |a0|2)2 − |an|2

]
.

Therefore

1 − |a0|2 − |an| ≥
∣∣a2n(1 − |a2

0|) + a2
na0

∣∣
1 − |a0|2 + |an| ≥

∣∣a2n(1 − |a2
0|) + a2

na0

∣∣
2(1 − |a0|2)

.

The proof is complete.
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6. Appendix

The objective of this Appendix is to revisit Parrott’s theorem as stated in Theorem 2.1.

We adopt the approach presented by Davis, Kahan, and Weinberger in [14], making some

modifications, particularly regarding the selection of solutions with minimal norms.

This appendix is primarily intended for readers interested in Schwarz-Pick inequalities

who may not have an extensive background in operator theory.

We start by recalling the following lemma.

Lemma 6.1 (Douglas [15]). — Let L, M1, M2 be Hilbert spaces. Suppose that A ∈
B(L, M1), B ∈ B(L, M2) and c ≥ 0. Then, B∗B ≤ c2A∗A if and only if there exists

C ∈ B(M1, M2) such that

(6.1)





B = CA,

‖C‖ ≤ c

Moreover, if it is the case, there exists a unique operator C0 satisfying (6.1) such that

Im(A)⊥ ⊂ Ker(C0). The operator C0 satisfies

‖C0‖2 = inf{ ‖C‖2 : C satisfies (6.1)} = inf{µ ≥ 0 : B∗B ≤ µA∗A}
and will thus be referred as the minimal solution of the equation B = CA.

From this lemma, we deduce the following result about column matrices. Recall that the

defect operator of B is given by DB = (Id − B∗B)1/2.

Proposition 6.2. — Let H, K1, K2 be Hilbert spaces. Suppose that A ∈ B(H, K1) and

B ∈ B(H, K2) are contractions. Then,

[
A

B

]
: H1 → K1 ⊕ K2 is a contraction if and only

if there exists a contraction V ∈ B(H, K1) such that A = V DB.

Moreover, if it is the case, there exists a unique contraction V0 such that A = V0DB and

Im(DB)⊥ ⊂ Ker(V0). Then V0 satisfies

‖V0‖ = inf{ ‖V ‖ : A = V DB }
and will thus be referred as the minimal solution of the equation A = V DB.

Proof. — The column matrix

[
A

B

]
is a contraction if and only if A∗A ≤ Id−B∗B = D∗

BDB .

Using Lemma 6.1, we obtain A = V DB with ‖V ‖ ≤ 1.

Corollary 6.3. — Let H, K1, K2, A, B be as in Proposition 6.2, and let U ∈ B(H) be an

arbitrary (but fixed) isometry. Then,

[
A

B

]
: H1 → K1 ⊕ K2 is a contraction if and only if

there exists a contraction V ∈ B(H, K1) such that A = V UDB.
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Moreover, if it is the case, there exists a unique contraction V0 such that A = V0UDB and

Im(UDB)⊥ ⊂ Ker(V0). Then the operator V0 satisfies

‖V0‖ = inf{ ‖V ‖ : A = V UDB }

and will thus be referred as the minimal solution of the equation A = V UDB.

Proof. — It is enough to prove the sufficiency part. By Proposition 6.2, if

[
A

B

]
is a

contraction, there exists a contraction W ∈ B(H, K1) such that A = W DB . Moreover, W

can be chosen such that W = 0 on Im(DB)⊥ (and in this case, the minimal solution W0

is unique).

Now, let V = W U∗. As U is an isometry, it is easy to see that V is a contraction and

that V UDB = W DB = A. Moreover, V = 0 on Im(UDB)⊥. Indeed, let x ∈ Im(UDB)⊥.

For all x′ ∈ H, 〈x, UDBx′〉 = 0, which can be rewritten 〈U∗x, DBx′〉 = 0. Thus, for

x ∈ Im(UDB)⊥, U∗x ∈ Im(DB)⊥ and, then, V x = W U∗x = 0 (by minimality of W ). It

is moreover easy to see that there exists a unique V such that A = V UDB and V = 0 on

Im(DB)⊥.

Corollary 6.4. — Let H1, H2, K be Hilbert spaces. Suppose that A ∈ B(H1, K) and

B ∈ B(H2, K) are contractions. Then,
[
A B

]
: H1 ⊕ H2 → K is a contraction if and

only if there exists a contraction V ∈ B(H1, K) such that A = DB∗V .

Moreover, if it is the case, there exists a unique contraction V0 such that A = DB∗V0 and

Im(DB∗ )⊥ ⊂ Ker(V ∗
0 ). We have

‖V0‖ = inf{ ‖V ‖ : A = DB∗V }.

The operator V0 will be referred as the minimal solution of the equation A = DB∗V .

Proof. — Observe that
[
A B

]
is a contraction if and only if

[
A B

]∗
=

[
A∗

B∗

]
is a

contraction, and then apply Proposition 6.2.

Proof of Theorem 2.1. — First of all, the existence of two contractions Z ∈ B(H1, K1)

and Y ∈ B(H2, K2) such that D = DC∗Y and A = ZDC comes from Proposition 6.2 and

Corollary 6.4, as

[
A

C

]
and

[
C D

]
are contractions. We denote the minimal solutions by

Y0, and respectively Z0.
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Set A =
[
A B

]
and B =

[
C D

]
, so that we have T =

[
A

B

]
, with ||B|| ≤ 1. Now, using

that T DT = DT ∗T , we have

IdH1⊕H2
− B∗B =

[
IdH1

− C∗C −C∗D

−D∗C IdH2
− D∗D

]

=

[
IdH1

− C∗C −C∗DC∗Y0

−Y ∗
0 DC∗C IdH2

− Y ∗
0 DC∗DC∗Y0

]

=

[
IdH1

− C∗C −DCC∗Y0

−Y ∗
0 CDC IdH2

− Y ∗
0 Y0 + Y ∗

0 CC∗Y0

]

= S∗S,

where S =

[
DC −C∗Y0

0 DY0

]
.

For every w ∈ H1 ⊕ H2, we have

〈(IdH1⊕H2
− B∗B)w, w〉 = 〈S∗Sw, w〉,

which is equivalent with ‖Sw‖ = ‖DBw‖. Thus, there is an isometry U ∈ B(H1 ⊕ H2)

such that S = UDB. Indeed, let U : Im (DB) → H1 ⊕ H2, DBx 7→ Sx. We extend U by

continuity to Im (DB), and we set U = Id on Im (DB)⊥.

Suppose that T is a contraction. Then, by Corollary 6.3, there exists a contraction

V =
[
V1 V2

]
∈ B(H1 ⊕ H2, K1)

such that

(6.2)

(6.3)

{
A = VUDB,

V = 0 on Im(S)⊥.

By Corollary 6.4, there exists a contraction W ∈ B(H2, K1) such that V =
[
V1 DV ∗

1
W
]
.

The operator W can be chosen such that Im(DV ∗

1
) ⊂ Ker(W ∗) (in that case, the minimal

solution W0 is unique).

Then, (6.2) is equivalent with

[
A B

]
=
[
V1 DV ∗

1
W
] [DC −C∗Y0

0 DY0

]

=
[
V1DC −V1C∗Y0 + DV ∗

1
W DY0

]
.(6.4)

In particular, we have A = V1DC . We now show that V1 = Z0.

Fact 1. — Im(DC)⊥ ⊕ {0} ⊂ Im(S)⊥.



26 C. BADEA & A. RENARD

Proof. — Let v ∈ Im(DC)⊥ = Ker(DC). In order to prove that

[
v

0

]
∈ Ker(S∗) = Im(S)⊥,

notice that we have

S∗

[
v

0

]
=

[
0

−Y ∗
0 Cv

]
.

As we know that Y ∗
0 = 0 on Im(DC∗)⊥ = Ker(DC∗), it is enough to show Cv ∈ Ker(DC∗).

Using again the identity CDC = DC∗C, we have

‖DC∗Cv‖2 = 〈DC∗Cv, DC∗Cv〉 = 〈Cv, D2
C∗Cv〉 = 〈Cv, CD2

Cv〉 = 0,

which completes the proof of the Fact 1.

Continuing the proof of Theorem 2.1, we can deduce from (6.3) that V1 = 0 on Im(DC)⊥

and, thus, V1 = Z0. Finally, (6.4) is equivalent with

B = −Z0C∗Y0 + DZ∗

0
W DY0

.

Conversely, if there exists a contraction W ∈ B(H2, K1) such that B = DZ∗

0
V DY0

−
Z0C∗Y0, then it is easy to check that A = V′S = V′UDB, with V′ =

[
Z DZ∗W

]
. As V′

is a contraction (Corollary 6.4), this implies that T is a contraction (Corollary 6.3).
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