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Learned frequency-domain scattered wavefield
solutions using neural operators

Xinquan Huang and Tariq Alkhalifah

Abstract—Solving the wave equation is essential to seismic
imaging and inversion. The numerical solution of the Helmholtz
equation, fundamental to this process, often encounters sig-
nificant computational and memory challenges. We propose
an innovative frequency-domain scattered wavefield modeling
method employing neural operators adaptable to diverse seismic
velocities. The source location and frequency information are
embedded within the input background wavefield, enhancing the
neural operator’s ability to process source configurations effec-
tively. In addition, we utilize a single reference frequency, which
enables scaling from larger-domain forward modeling to higher-
frequency scenarios, thereby improving our method’s accuracy
and generalization capabilities for larger-domain applications.
Several tests on the OpenFWI datasets and realistic velocity
models validate the accuracy and efficacy of our method as
a surrogate model, demonstrating its potential to address the
computational and memory limitations of numerical methods.

Index Terms—Frequency-domain modeling, Fourier neural
operators, scattered wavefield, neural PDE solvers

I. INTRODUCTION

Solving wave equations is pivotal for various geophysical
applications like reverse time migration and full waveform in-
version. However, the computational and memory bottlenecks
often hinder real-time applications like microseismic imaging
for CO2 monitoring. Frequency-domain simulation [1] offers
a reduced dimension solution space for multi-scale waveform
inversion. Yet, it still struggles with exponentially increasing
memory demands with increasing model size and the necessity
for repeated simulations across various frequencies.

With the development of modern machine learning tech-
niques comes the possibility of using neural networks to
surrogate numerical modeling. Physics-informed neural net-
works (PINNs) have recently been employed for frequency-
domain wavefield modeling, demonstrating their potential in
solving complex wave equations in irregular geometry through
meshless solutions [2], [3], [4]. Despite their multi-frequency
and multi-source capabilities [5], PINNs’ need for retraining or
transfer learning for new velocities limits their generalization.
Consequently, developing neural networks for a range of
parametric PDEs becomes crucial. Neural operators [6] have
shown great potential in solving for parametric PDEs, which
provide instant PDE solutions given various coefficients and
boundary conditions. Recently, they have also been used for
seismic wavefield simulation, e.g., 2D time-domain wavefield
simulation [7]. However, learning seismic waveform modeling
in the time domain faces several challenges: (1) Learning the
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mapping directly from input 2D velocities and source locations
to 3D wavefield volumes (spanning 2D spatial and 1D time-
lapse domains) requires huge memory cost [8]; (2) Learning
the mapping between the snapshots at different times within
recurrent composition though decreases the memory cost, will
be subject to error propagation [9] as well as the relatively
huge inference cost due to the iterative nature. Thus, learning
in the frequency domain using neural operators, which avoids
the above limitations, could efficiently handle parametric wave
equations.

Although current neural operator implementations for the
frequency domain wavefield solutions offer memory efficiency,
they typically often use the end-to-end framework to learn the
mapping from the velocities, source locations, and frequencies
to the corresponding wavefield solutions without additional
feature engineering [8], [10]. Specifically, they treat the source
locations as binary masks and frequencies as an additional
channel for inputting neural operators with constant values.
However, without considering the physics of seismic wave-
fields, this approach offers suboptimal inputs for convolution-
based feature extraction networks. Thus, it requires additional
modifications to the network architecture, e.g., paralleled
Fourier neural operator [10] or limits the target frequencies
of modeling [8] to make the neural operators handle various
velocities and source configurations (e.g., locations and fre-
quency) simultaneously.

To tackle this challenge, we propose learned frequency-
domain scattered wavefield solutions using the Fourier neural
operator. Unlike conventional methods that add source loca-
tion and frequency as input channels, our proposed method
implicitly embeds such information into an analytically eval-
uated background wavefield for a homogeneous background
velocity. So, the neural operator focuses on mapping this back-
ground wavefield with the frequency and source information
embedded in the scattered wavefield (or the full wavefield)
for a given velocity model also as an input. The proposed
method allows the neural operators to simultaneously handle
the modeling for various velocities, frequencies, and source lo-
cations. Moreover, to improve generalization for larger-domain
velocities beyond the training sample scope, we propose
incorporating the single reference frequency [11] to enhance
the generalization ability. We demonstrate the effectiveness of
the proposed method on the OpenFWI dataset [12] and more
realistic models, e.g., extracted from Overthrust models.
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II. METHODOLOGY

A. Operator learning for Partial differential equations

Operator learning provides a stable way to build simulations
for parametric PDEs, yielding a magnitude of speed-up com-
pared to conventional numerical simulation. Parametric PDEs,
in general, can be defined as

La[u](x) = 0, x ∈ Ω (1)

where a ∈ A denotes the parameters of the operator L, such as
coefficient functions, and u ∈ U is the physical phenomenon
we aim to solve for and belonging to solution space U . The
parameters and the solution are a function of location x defined
within domain Ω. For learning an operator, we assume that,
for any a ∈ A, there exists a unique solution u = F(a) ∈ U
satisfying Eq. (1), then F is the solution operator of Eq. (1).
Regarding the acoustic wave equation in seismic modeling, a
includes the source locations, frequencies, and velocity mod-
els, and u represents the corresponding simulated wavefield.

The acoustic wave equation in the frequency domain (the
Helmholtz equation) is formulated as follows:(

ω2

v2
+∇2

)
U(x) = s, (2)

where ω is the angular frequency, v is the velocity, U is the
complex frequency-domain wavefield, s is the source term at
the location (xs, zs). Given a source location, a frequency, and
a velocity model, we typically define a neural network f with
parameters θ, fθ(v, xs, zs, ω), to represent U.

B. Embedding the source configurations into the background
wavefield

With fθ(v, xs, zs, ω) and reference pre-generated modeling
results as labels, we can train the neural network f to act as a
surrogate modeling tool. However, this approach integrates the
source location and the frequency as additional input channels,
with a scalar value representing frequency and a binary mask
denoting the source location [7]. While structurally convenient,
such representations offer limited information for effectively
utilizing learned kernels in feature extraction. Instead, here, we
propose embedding such information, including the frequency
and the source location, in the background wavefield U0,
defined, for 2D media, as:

U0(x, z) =
i

4
H

(2)
0

ω

√√√√{
(x− xs)

2
+ (z − zs)

2
}

v2
0

 , (3)

where H
(2)
0 is the zero-order Hankel function of the second

kind, (xs, zs) is the source location, v0 is the constant back-
ground velocity, and i is the imaginary unit. The beauty of
using background wavefield is that there is no need to specify
the location of the source or the frequency while still being
able to handle various source locations and frequencies. In
addition, the constant background velocity can be regarded
as the zero-wavenumber component of the velocity v. Thus,
the background wavefield also provides guided background
information for the neural network since it controls the shape

of the full wavefield. This representation or transformation of
the source location and frequencies provides rich information
for convolution-based feature extraction. Then, the input to the
neural networks is changed from the (v, xs, xz, ω) to (v,U0).

C. Learning for the scattered wavefield

As shown in many previous works [13], [9], learning the
residual of the physical wavefield rather than directly learning
the physical field itself will improve the accuracy of the
neural network-based simulation. For example, Alkhalifah et
al., (2020)[14] showed that solving for the scattered wavefield
instead of directly learning wave equation solutions can help us
avoid the point-source singularity. Inspired by those facts and
considering we have a background wavefield with embedded
frequency and source location information, we design the neu-
ral operator to predict the scattered wavefield, δU = U−U0,
satisfying

ω2

v2
δU+∇2δU+ ω2

(
1

v2
− 1

v2
0

)
U0 = 0. (4)

Following the conventional supervised learning paradigm,
we randomly sample source locations, frequencies, and veloc-
ities {vi, xi

s, z
i
s, ω

i} to compute the background wavefield U i
0

by solving Equation 3, and then generate the corresponding
wavefield δU i by solving Equation 4 numerically for each
sample. Using these samples, we train a neural network fθ
with input (vi, U i

0) to predict the scattered wavefield (or the
full wavefield by adding a residual connection from the input
background wavefield directly to output) using a mean squared
error loss

L(θ) =
1

N

N∑
i=1

∥fθ(vi, U i
0)− δU i∥22, (5)

where N is the number of training samples. As for the
choice of the neural network, we select the commonly used
benchmark network, the Fourier neural operator (FNO) [6], to
test the framework. The full pipeline of the approach is shown
in Figure 1.

III. NUMERICAL EXAMPLES

We conducted tests on two velocity datasets, OpenFWI
[12] and more realistic models, utilizing the Fourier Neural
Operator (FNO) with four blocks (Fourier layer shown in
Figure 1). Each block was configured with a truncated Fourier
mode set to 48 and a Fourier layer width of 128. The activation
function used here is the Gaussian Error Linear Unit (GELU)
[15]. We employed an Adam optimizer to train the FNO, using
a learning rate 1e-3. The training was conducted over 1000
epochs, with a batch size of 128 for the OpenFWI test and 64
for realistic models. The chosen frequency range, from 3 Hz
to 21 Hz, aligns with the primary frequency band often used
in seismic applications.
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Fig. 1: The pipeline of the proposed method, where the
labels denote the reference results using the finite-difference
method, N denotes the number of samples, and H and W
are the height and width of the images. The input has three
channels, including velocity and real and imaginary parts of
the analytical background wavefield, while the output consists
of two channels representing real and imaginary parts of the
scattered wavefield. For the FNO description, we refer the
reader to [6].

A. Synthetic tests on OpenFWI dataset

Here, we first applied the proposed method to the OpenFWI
dataset, focusing on the ’CurveVelA’ velocity class [12], as
illustrated in Figure 3. This class of velocities includes curved
layers, and the value of velocity within the layers gradually
increases with depth. This test involved a comprehensive
training set comprising 9,000 samples, encompassing various
velocities, source locations, and frequencies, and a correspond-
ing validating set comprising 1,000 samples. Although the
Fourier neural operator can learn the mapping between infinite
function space, the training data here are discretized samples
with a spatial resolution of 139×139. The training curve and
validation error analysis are shown in Figure 2, and as we can
see, the training converges well.

After the training, we evaluated the FNO for various
unseen velocities, shown in Figure 4. For comparison, we
use the optimal 9-point finite difference method to calculate
the reference results with a spatial interval of 0.0125 km at
both x and z directions. The predictions of FNO match well
with the reference wavefields from numerical finite-difference
modeling. It demonstrates that the network managed to extract
the source location information and the frequency from the
background wavefield and learn the relations between the
various velocities and simulated complex wavefields.

B. More realistic velocity models

To further test the effectiveness of the proposed method, we
choose more realistic velocity models to test, e.g., the combi-
nations of Overthrust, Marmousi models, and so on. Figure 5
shows samples of velocities in the training dataset. The number

0 200 400 600 800 1000

Epochs

10°4

10°2

M
S
E

L
o
ss

0 200 400 600 800 1000

Epochs

2£ 10°1

3£ 10°1

4£ 10°1

6£ 10°1

R
el

at
iv

e
L
2

er
ro

r

real part

imaginary part

Fig. 2: The training history for the ’CurveVelA’ test. Top:
the training loss curve; Bottom: the validation error, which is
measured by the relative L2 norm between the predictions and
reference simulated results.
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Fig. 3: Samples of velocity models from the ’CurveVelA’ class.

of training samples is 5,400, while that for validation is 600.
Figure 6 shows the training loss curve and the validation error
at each epoch. We also train FNO up to 1000 epochs, and it
converges well. We similarly obtain the numerical reference
results on unseen cases (unseen configurations of velocities,
frequencies, and source locations) with a spatial interval of
0.025 km in both x and z directions and compare them with
the predictions from the FNO. Figure 7 shows a comparison
between the numerical solutions and the network predictions.
Like the OpenFWI dataset tests, the FNO predicts accurate
wavefields instantly.
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Fig. 4: The results of the network predictions for velocity models (Column 1) from the test set. The plots include the background
wavefield (Column 2), the reference results from numerical solutions (Column 3), the predictions (Column 4), and the difference
between the predictions and the numerical solutions (Column 5). In rows 1 and 3, we show the real part of the wavefields,
while in rows 2 and 4, we show the imaginary part of the wavefields. The first two rows are the results of the same velocity
and same frequency of 4.25 Hz but with different source locations. The third row is the result of the prediction on another
velocity but with a frequency of 7.55 Hz, while the fourth row is the result of 9.88 Hz.
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Fig. 5: Samples of realistic velocity models used in the
training.

C. Generalization test with reference frequency:

As shown in [16], FNO faces aliasing problems across
different resolution scales, yielding large errors when we
apply the pre-trained neural operator to predict wavefields for
an unseen resolution, like when we increase the simulation
domain. So, we extend our testing to evaluate the proposed
method’s generalization capabilities on an unseen sample for
a larger model, utilizing the concept of reference frequency.
The neural network was initially trained on velocities covering
an area of 6.4×6.4 km2 with a resolution of 256×256. We then
conducted a generalization test on a velocity model spanning
12.8×12.8 km2. with the same spatial interval. Due to the
inherent resolution independence of the FNO, it seamlessly
outputs the wavefield for the larger domain, which we refer
to as ’direct prediction’, as depicted in Figure 8. Although
the main components of the wavefield have been predicted by
the FNO, their relative errors are still large. We calculate the
relative L2 norm, which is the Euclidean distance from the
prediction to the reference solutions divided by the Euclidean
norm of the reference solutions, and the relative errors for
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Fig. 6: The training history for the realistic models test. Top:
the training loss curve; Bottom: the validation error, which is
measured by the relative L2 norm between the predictions and
reference simulated results.

direct predictions are 0.520 for the real part and 0.518 for
the imaginary part of the wavefields. It is hard to obtain a
high-accuracy prediction for a large unseen domain directly.
Crucially, leveraging the reference frequency concept [11]
allows us to upscale the 4.78 Hz wavefield in the large domain
(12.8×12.8 km2) to an equivalent 9.56 Hz wavefield in the
smaller domain (6.4×6.4 km2). This provides us with physical
support to predict high-frequency wavefields for a large-
scale velocity model rather than a direct prediction of high-
resolution wavefields. As illustrated in Figure 9, this scaled
wavefield demonstrates enhanced accuracy compared to direct
predictions. The relative errors calculated at the resolution
of 256×256 between the predictions of our method without
interpolation and the reference results, shown in Figure 8, are
0.052 for the real part and 0.054 for the imaginary part of the
wavefield. After bilinear interpolation of the prediction using
our method, the errors at a resolution of 512×512 are 0.096 for
the real part and 0.097 for the imaginary part of the wavefield.
Though the errors slightly increase, as shown in Figure 9, the
predictions using our method are still close to the reference
results.

IV. DISCUSSIONS

The proposed method has shown good performance on the
OpenFWI and realistic velocity models. It frees us at inference
time from numerical simulations, in which the computational
complexity is high. Taking the test on realistic models as
an example, the numerical simulation, executed in parallel
on an Intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz, for

each velocity and frequency at a resolution of 256×256
requires 6.4 seconds, and that at a resolution of 512×512
requires 38.3 seconds. Using our method, the elapsed time
on an NVIDIA A100 GPU (we do not fully utilize the
GPU due to the relatively small input size and batch size)
is 0.036 seconds for the resolution of 256×256, 1.1 seconds
for the resolution of 512×512. Those speedups come from
two main aspects: (1) we avoid repeated simulations; (2) we
can easily utilize the latest hardware and software advances
of accelerated computing [17] because we build the algorithm
on machine learning. However, we recognize the challenges
associated with the preparation of data-label pairs required
for training the neural operator, particularly as the resolution
of training samples increases. Additionally, the generalization
capability to unseen velocities hinges on the diversity and
volume of the training samples. While these challenges can be
mitigated to some extent through physics-constrained learning,
our focus in this paper is on introducing the neural operator
with the background wavefield as input. Furthermore, the
generalization prowess of our method across varied velocity
models holds promising implications for applications in full
waveform inversion (FWI), potentially eliminating the need for
retraining and achieving real-time FWI. In our implementation,
we decided to have the actual velocity as input and the
scattered wavefield as output. However, the method can be
equally applied by alternatively having the perturbation veloc-
ity (difference between the true and homogeneous background)
as input and also the option of having the scattered or the full
wavefield as output. As mentioned earlier, the full wavefield
can also be obtained by employing a residual connection
between the input background wavefield and the scattered
wavefield.

V. CONCLUSIONS

We presented a novel implementation for predicting the
wavefield using the Fourier Neural Operator (FNO) by in-
corporating the analytically derived background wavefield as
input. As a result, the source location and frequency are
embedded in the background wavefield, facilitating compact
and effective feature engineering. This methodology enables
efficient surrogate modeling across various velocities, frequen-
cies, and source locations. Our tests on both the OpenFWI
dataset and some realistic velocity models have demonstrated
the high accuracy and effectiveness of the proposed method.
Additionally, incorporating a reference frequency strategy sig-
nificantly enhances the accuracy of our model in generalizing
to larger, unseen domain, marking a substantial advancement
in the field of frequency-domain wavefield modeling.
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Fig. 7: The results of the network predictions for four realistic velocity models in which the order of the plots are the same as
in Figure 4. The frequencies for each forward modeling are, 3.93 Hz, 5.00 Hz, 12.60 Hz, and 20.66 Hz from top to bottom.
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Fig. 8: A generalization test on a realistic velocity model (Column 1) covering an area of 12.8×12.8km2. Column 2 shows
the real and imaginary parts of the analytical background wavefield defined on 12.8×12.8km2 with an interval of 0.025 km
in both x and z directions and with a frequency of 4.78 Hz; Column 3 represents the numerical solutions using optimal
9-point finite-difference method on a grid of 512 × 512 with a spatial interval of 0.025 km; Column 4 and Column 5 are the
predictions using a conventional method and corresponding errors compared to the numerical solutions.
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Fig. 9: A generalization test on a realistic velocity model (the same velocity shown in Figure 8) using our method. The first
column shows the input of our method, which are the 9.56 Hz analytical background wavefields defined on 6.4×6.4km2 with
an interval of 0.025 km in both x and z directions. Columns 2, 3, and 4 show the numerical solutions, the predictions of our
method, and the errors.
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