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Abstract

Let K be a convex body in Rn, and let Π1(Rn) be the space of polynomials in n variables of degree
at most 1. Given an (n + 1)-element set Y ⊂ K in general position, we let PY denote the Lagrange
interpolation projector PY : C(K)→ Π1(Rn) with nodes in Y . In this paper, we study upper and lower
bounds for the norm of the optimal Lagrange interpolation projector, i.e., the projector with minimal
operator norm where the minimum is taken over all (n + 1)-element sets of interpolation nodes in K.
We denote this minimal norm by θn(K).

Our main result, Theorem 5.2, provides an explicit lower bound for the constant θn(K) for an ar-
bitrary convex body K ⊂ Rn and an arbitrary n ≥ 1. We prove that θn(K) ≥ χ−1

n
(
vol(K)/simpn(K)

)
where χn is the Legendre polynomial of degree n and simpn(K) is the maximum volume of a sim-
plex contained in K. The proof of this result relies on a geometric characterization of the Legendre
polynomials in terms of the volumes of certain convex polyhedra. More specifically, we show that for
every γ ≥ 1 the volume of the set

{
x = (x1, ..., xn) ∈ Rn :

∑
|x j| +

∣∣∣1 −∑
x j

∣∣∣ ≤ γ} is equal to χn(γ)/n!.
Furthermore, if K is an n-dimensional ball, this approach leads us to the equivalence θn(K) ≍

√
n

which is complemented by the exact formula for θn(K). If K is an n-dimensional cube, we obtain
explicit efficient formulae for upper and lower bounds of the constant θn(K); moreover, for small n,
these estimates enable us to compute the exact values of this constant.

MSC: 41A05, 52B55, 52C07
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1. Introduction

Let K be a convex body in Rn. Given a function f ∈ C(K), we let E1( f ; K)C(K) denote the best
approximation of f (in the C(K)-norm) by polynomials of degree at most 1 defined on Rn. (We denote
the space of these polynomials by Π1(Rn).)

Let P be a polynomial projector on K, i.e., a linear operator from C(K) into Π1(Rn) such that
P(P f |K) = P f for every function f ∈ C(K). Then the following well known inequality

E1( f ; K)C(K) ≤ ∥ f − P f ∥C(K) ≤ (1 + ∥P∥K)E1( f ; K)C(K). (1.1)
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holds. Here ∥P∥K = sup{∥P f |K∥C(K) : ∥ f ∥C(K) ≤ 1} is the C(K) operator norm of P.
Clearly, the first inequality in (1.1) is trivial because P f ∈ Π1(Rn). The second inequality is known

in the literature as Lebesgue’s Lemma. See, e.g., [6, p.30]. This lemma shows that, if the norm ∥P∥K
is not large, there is no significant loss of accuracy if we replace the best C(K)-approximant of f
by the value P f which linearly depends on the function f .

This approach provides a (fairly simple) tool for “linearizing” the best approximation element
in various problems of Analysis involving the approximation of continuous functions defined on sub-
sets of Rn. It also motivates us to study the following problem.

Main Problem 1.1 Let K be a convex body in Rn, and let Y be an (n + 1)-element subset of K
in “general position” (i.e., Y is the family of vertices of a nondegenerate simplex in Rn). Let PY be
the first order Lagrange interpolation projector with nodes in Y (i.e., PY( f ) ∈ Π1(Rn) and PY( f ) = f
on Y for every f ∈ C(K)).

(i) Find an (n + 1)-element set Yopt ⊂ K such that PYopt has the smallest operator norm among all
Lagrange interpolation projectors PY where Y is an arbitrary (n + 1)-element subset of K.

We refer to the Lagrange interpolation projector PYopt as the optimal interpolation projector, and we
call the set Yopt as an optimal set of interpolation nodes.

(ii) Calculate or give efficient estimates for the upper and lower bounds of the constant

θn(K) = ∥PYopt∥K ,

i.e., the minimum of the operator norm ∥PY∥K where the minimum is taken over all (n + 1)-element
sets Y of interpolation nodes in K.

Let us note that both upper and lower bounds of the operator norms of interpolation projectors
are important in applications. Usually, upper estimates of minimal norms of projectors are obtained
by considering projectors of some special type. The technique of obtaining lower estimates of min-
imal norms is fundamentally different – in this case it is necessary to prove the lower estimate for
an arbitrary projector.

The construction and evaluation of interpolation projectors is a classical topic in Approximation
Theory. These problems have been treated in many papers and monographs, see, e.g., [1, 3, 5, 9, 10,
15, 38, 40].

In this paper, we show that there exists a Lagrange interpolation projector whose operator norm
does not exceed n+1 (Theorem 3.1). On the other hand, we prove that for any Lagrange interpolation
projector P : C(K)→ Π1(Rn) the following inequality

∥P∥ ≥ χ−1
n

(
vol(K)

simpn(K)

)
(1.2)

holds. Here χn is the standardized Legendre polynomial of degree n and simpn(K) is the maximum
volume of a simplex contained in K. See Theorem 5.2.

The main point of the proof of inequality (1.2) is the following geometrical characterization of
Legendre polynomials given in Theorem 4.1. This theorem states that for γ ≥ 1 the volume of the set

{
x ∈ Rn :

n∑
j=1

|x j| +
∣∣∣∣1 − n∑

j=1

x j

∣∣∣∣ ≤ γ}
is equal to χn(γ)/n!.
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In the cases when K coincides with an n-dimensional cube or ball, the above inequality yields
the estimate ∥P∥ ≥ c

√
n.

Let us describe the content of the paper in more detail. In Section 2 we give basic notation, defi-
nitions, and preliminary information. Section 3 contains upper estimates of the minimum absorption
coefficient of a convex body K by a simplex and also of the minimum projector norm for linear inter-
polation on K. In Section 4 we prove Theorem 4.1 mentioned above. In Section 5 we prove inequality
(1.2). In Section 6 we present several explicit lower bounds for the constant θn(K) provided K is an n-
dimensional ball or an n-dimensional cube. Section 7 contains inequalities of the considered type
for interpolation by linear functions on an arbitrary compact set in Rn. Finally, Section 8 contains
concluding remarks, a review of some results on this topic, and a description of open questions.

2. Notation and preliminaries

Let us fix some notation. Throughout the paper n ∈ N is a positive integer. Given x = (x1, ...xn) ∈ Rn,
by ∥x∥ we denote its standard Euclidean norm

∥x∥ =
√
⟨x, x⟩ =

 n∑
i=1

x2
i

1/2

.

Hereafter, for x = (x1, ...xn), y = (y1, ...yn) ∈ Rn by ⟨x, y⟩ we denote the standard inner product in Rn:
⟨x, y⟩ = x1y1 + ... + xnyn

Given x(0) ∈ Rn and R > 0, we let B(x(0); R) denote the Euclidean ball with center x(0) and radius R:

B
(
x(0); R

)
= {x ∈ Rn : ∥x − x(0)∥ ≤ R}.

We also set
Bn = B(0; 1) and Qn = [0, 1]n.

The notation L(n) ≍ M(n) means that there exist absolute constants c1, c2 > 0 such that
c1M(n) ≤ L(n) ≤ c2M(n).

Let K be a convex body in Rn, i.e., a compact convex subset of Rn with nonempty interior. The sym-
bol σK denotes a homothetic copy of K with homothety center at the center of gravity of K and
homothety coefficient σ.

We let vol(K) denote the volume of K. If K is a convex polytope, then by ver(K) we denote the set
of all vertices of K. By a translate we mean the result of a parallel shift.

We say that an n-dimensional simplex S is circumscribed around a convex body K if K ⊂ S
and each (n − 1)-dimensional face of S contains a point of K. A convex polytope is inscribed into K
if every vertex of this polytope belongs to the boundary of K.

Definition 2.1 Let i ∈ {1, ..., n} and let di(K) be the maximal length of a segment contained in K and
parallel to the xi-axis. We refer to di(K) as the ith axial diameter of K.

The notion of axial diameter of a convex body was introduced by Scott [41, 42].

Definition 2.2 Given convex bodies K1, K2, by ξ(K1; K2) we denote the minimal σ ≥ 1 with the pro-
perty K1 ⊂ σK2. We call ξ(K1,K2) the absorption index of K1 by K2.

By α(K1,K2) we denote the minimal σ > 0 such that K1 is a subset of a translate of σK2.

3



Note that the equality ξ(K1; K2) = 1 is equivalent to the inclusion K1 ⊂ K2. Clearly, α(K1,K2) ≤
ξ(K1,K2).

Definition 2.3 By ξn(K) we denote the minimal absorption index of a convex body K by an inner
nondegenerate simplex. In other words,

ξn(K) = min{ξ(K; S ) : S is an n-dimensional simplex, S ⊂ K, vol(S ) , 0}.

By C(K) we denote the space of all continuous functions f : K → R with the uniform norm

∥ f ∥C(K) = max
x∈K
| f (x)|.

We let Π1 (Rn) denote the space of polynomials in n variables of degree at most 1.
Let S be a nondegenerate simplex in Rn with vertices x( j) =

(
x( j)

1 , . . . , x
( j)
n

)
, 1 ≤ j ≤ n+1. We define

the vertex matrix of this simplex by

A =


x(1)

1 . . . x(1)
n 1

x(2)
1 . . . x(2)

n 1
...

...
...

...

x(n+1)
1 . . . x(n+1)

n 1

 .
Clearly, matrix A is nondegenerate and

vol(S ) =
| det(A)|

n!
. (2.1)

Let
A−1 =

(
li j

)n+1

i, j=1
. (2.2)

Definition 2.4 Linear polynomials

λ j(x) = l1 jx1 + . . . + ln jxn + ln+1, j, j = 1, ..., n + 1,

are called the basic Lagrange polynomials corresponding to S .

These polynomials have the following property:

λ j

(
x(k)

)
= δk

j for all j, k = 1, ..., n + 1.

Here δk
j is the Kronecker delta. For an arbitrary x ∈ Rn, we have

x =
n+1∑
j=1

λ j(x)x( j),

n+1∑
j=1

λ j(x) = 1.

Thus, λ j(x) are the barycentric coordinates of x with respect to the simplex S . In turn, equations
λ j(x) = 0, j = 1, ..., n + 1, define the (n − 1)-dimensional hyperplanes containing the faces of S .
Therefore,

S =
{
x ∈ Rn : λ j(x) ≥ 0, j = 1, . . . , n + 1

}
.
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Also let us note that for every j = 1, ..., n + 1 we have

λ j(x) =
∆ j(x)
∆

. (2.3)

Here ∆ = det(A) and ∆ j(x) is the determinant that appears from ∆ after replacing the jth row
by the row (x1 . . . xn 1). For more information on λ j, see [25], [36].

In [24] we show that

ξ(K; S ) = (n + 1) max
1≤k≤n+1

max
x∈K

(−λk(x)) + 1 (K 1 S ), (2.4)

α(K; S ) =
n+1∑
j=1

max
x∈K

(−λ j(x)) + 1 (2.5)

(see also [25]). The equality ξ(K; S ) = α(K; S ) holds true if and only if the simplex ξ(S )S is circum-
scribed around K. This is also equivalent to the relation

max
x∈K

(−λ1(x)) = . . . = max
x∈K

(−λn+1(x)) . (2.6)

If K is a convex polytope, then the maxima on K in (2.4)–(2.6) can also be taken over x ∈ ver(K).
Note that for K = Qn formula (2.4) is proved in [22].

For an arbitrary n-dimensional nondegenerate simplex S ,

α(Qn; S ) =
n∑

i=1

1
di(S )

(2.7)

Two various approaches to (2.7) are given in [24].

Definition 2.5 Let x( j) ∈ K, 1 ≤ j ≤ n + 1, be the vertices of a nondegenerate simplex S . The
interpolation projector P : C(K)→ Π1(Rn) with nodes x( j) is determined by the equalities P f

(
x( j)

)
=

f j = f
(
x( j)

)
, 1 ≤ j ≤ n + 1. We say that an interpolation projector P : C(K) → Π1(Rn) and a

nondegenerate simplex S ⊂ K correspond to each other if the nodes of P coincide with the vertices
of S . We use notation PS and S P.

For an interpolation projector P = PS , the analogue of Lagrange interpolation formula holds:

P f (x) =
n+1∑
j=1

f
(
x( j)

)
λ j(x). (2.8)

Here λ j are the basic Lagrange polynomials of the simplex S P (see Definition 1.4).
We let ∥P∥K denote the norm of P as an operator from C(K) into C(K). Thanks to (2.8),

∥P∥K = sup
∥ f ∥C(K)=1

∥P f ∥C(K) = sup
−1≤ f j≤1

max
x∈K

∣∣∣∣∣∣∣
n+1∑
j=1

f jλ j(x)

∣∣∣∣∣∣∣
= max

x∈K
sup
−1≤ f j≤1

∣∣∣∣∣∣∣
n+1∑
j=1

f jλ j(x)

∣∣∣∣∣∣∣ = max
x∈K

sup
−1≤ f j≤1

n+1∑
j=1

f jλ j(x).

5



Because
∑

f jλ j(x) is linear in x and f1, . . . , fn+1, we have

∥P∥K = max
x∈K

max
f j=±1

n+1∑
j=1

f jλ j(x) = max
x∈K

n+1∑
j=1

|λ j(x)|. (2.9)

If K is a convex polytope in Rn (e. g., K is a cube), a simpler equality

∥P∥K = max
x∈ver(K)

n+1∑
j=1

|λ j(x)| (2.10)

holds.

Definition 2.6 We let θn(K) denote the minimal value of ∥PS ∥K where S runs over all nondegenerate
simplices with vertices in K. An interpolation projector P : C(K) → Π1 (Rn) is called minimal if
∥P∥K = θn(K).

It was shown in [20] that for any interpolation projector P : C(K)→ Π1 (Rn) and the corresponding
simplex S we have

n + 1
2n

(
∥P∥K − 1

)
+ 1 ≤ ξ(K; S ) ≤

n + 1
2

(
∥P∥K − 1

)
+ 1. (2.11)

Thanks to (2.11),
n + 1

2n

(
θn(K) − 1

)
+ 1 ≤ ξn(K) ≤

n + 1
2

(
θn(K) − 1

)
+ 1. (2.12)

Obviously, if a projector P satisfies the equality

ξn(K) =
n + 1

2

(
∥P∥K − 1

)
+ 1, (2.13)

then P is minimal and the right-hand relation in (2.12) becomes an equality.
Occasionally, we will consider the case when n + 1 is an Hadamard number, i.e., there exists

an Hadamard matrix of order n + 1.

Definition 2.7 An Hadamard matrix of order m is a square binary matrix H with entries either 1 or
−1 satisfying the equality

H−1 =
1
m

HT .

An integer m, for which an Hadamard matrix of order m exists, is called an Hadamard number.

Thus, the rows of H are pairwise orthogonal with respect to the standard scalar product on Rm.
The order of an Hadamard matrix is 1 or 2 or some multiple of 4 (see [13]). But it is still unknown

whether an Hadamard matrix exists for every order of the form m = 4k. This is one of the longest
lasting open problems in Mathematics called the Hadamard matrix conjecture. The orders below
1500 for which Hadamard matrices are not known are 668, 716, 892, 956, 1132, 1244, 1388, and 1436
(see, e.g., [11, 17]).

Definition 2.8 By hn we denote the maximum value of a determinant of order n with entries 0 or 1.
Let νn be the maximum volume of an n-dimensional simplex contained in Qn.
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The numbers hn and νn satisfy the equality hn = n!νn (see [14]). For any n, there exists in Qn

a maximum volume simplex with some vertex coinciding with a vertex of the cube. For n > 1, the
following inequalities hold

1
2

(
1 −

log(4/3)
log n

)
n log n < log(2n−1hn−1) ≤

1
2

n log n. (2.14)

The right-hand inequality in (2.14) was proved by Hadamard [12] and the left-hand one by Clements
and Lindström [4]. Consequently, for all n ∈ N(

3
4

)(n+1)/2 (n + 1)(n+1)/2

2n < hn ≤
(n + 1)(n+1)/2

2n , (2.15)

(
3
4

)(n+1)/2 (n + 1)(n+1)/2

2nn!
< νn ≤

(n + 1)(n+1)/2

2nn!
. (2.16)

The right-hand equality in each relation holds if and only if n + 1 is an Hadamard number [14]. In
some cases the right-hand inequality in (2.16) has been improved. For instance, if n is even, then

νn ≤
nn/2
√

2n + 1
2nn!

. (2.17)

If n > 1 and n ≡ 1(mod 4), then

νn ≤
(n − 1)(n−1)/2

2n−1(n − 1)!
(2.18)

(see [14]). For many n, the values of νn and hn are known exactly. The first 12 numbers νn are

ν1 = 1, ν2 =
1
2
, ν3 =

1
3
, ν4 =

1
8
, ν5 =

1
24
, ν6 =

1
80
, ν7 =

2
315

,

ν8 =
1

720
, ν9 =

1
2520

, ν10 =
1

11340
, ν11 =

9
246400

, ν12 =
3

394240
.

Definition 2.9 Let κn be the volume of the ball Bn, and let σn be the volume of a regular simplex
inscribed into Bn.

The numbers κn and σn are known exactly. Namely,

κn =
πn/2

Γ (n/2 + 1)
, σn =

1
n!

√
n + 1

(
n + 1

n

)n/2

, (2.19)

κ2k =
πk

k!
, κ2k+1 =

2k+1πk

(2k + 1)!!
=

2(k!)(4π)k

(2k + 1)!
. (2.20)

Definition 2.10 We let simpn(K) denote the maximum volume of a nondegenerate simplex S with
vertices in K.

Obviously, simpn(Qn) = νn. A regular simplex inscribed into an n-dimensional ball has the max-
imum volume among all simplices contained in this ball. There are no other simplices with this
property (see [7, 43, 46]). Thus, simpn(Bn) = σn.
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3. Inequalities ξn(K) ≤ n + 2 and θn(K) ≤ n + 1

Theorem 3.1 Let K be a convex body in Rn, and let S be an arbitrary maximum volume simplex
contained in K. Then

ξ(K; S ) ≤ n + 2 and ∥PS ∥K ≤ n + 1. (3.1)

Proof. Using a purely geometric approach, M. Lassak [16] have proved that for every maximum
volume simplex S in K the following inclusions

S ⊂ K ⊂ (n + 2)S (3.2)

hold. From this and Definition 2.2, we have ξ(K; S ) ≤ n + 2.
Let us note that (3.2) also follows from formula (2.4). In fact, because simplex S ⊂ K has maximum

volume, |∆ j(x)| ≤ |∆| for any j = 1, . . . , n + 1 and x ∈ K. (This inequality is immediate from (2.1).)
Thanks to (2.3),

−λ j(x) ≤ |λ(x)| =
|∆ j(x)|
|∆|

≤ 1, x ∈ K. (3.3)

(Recall that λ j are the basic Lagrange polynomials for the simplex S . See Definition 2.4.) By (2.4),

ξ(K; S ) = (n + 1) max
1≤k≤n+1

max
x∈K

(−λk(x)) + 1 ≤ n + 2

proving the left-hand inequality in (3.1).
The right-hand inequality in (3.1) follows from (2.9). Indeed, because |λ(x)| ≤ 1, we have

∥PS ∥K = max
x∈K

n+1∑
j=1

|λ j(x)| ≤ n + 1.

The proof of the theorem is complete. □
The following corollary is immediate from Theorem 3.1.

Corollary 3.2 For any covex body K ⊂ Rn,

ξn(K) ≤ n + 2, θn(K) ≤ n + 1. (3.4)

4. Legendre polynomials and the measure of En,γ

The standardized Legendre polynomial of degree n is the function

χn(t) =
1

2nn!

[
(t2 − 1)n

](n)
, t ∈ R.

(Rodrigues’ formula). For the properties of χn see, e.g., [44,45]. Legendre polynomials are orthogonal
on the segment [−1, 1] with the weight w(t) ≡ 1. The first standardized Legendre polynomials are

χ0(t) = 1, χ1(t) = t, χ2(t) =
1
2

(
3t2 − 1

)
, χ3(t) =

1
2

(
5t3 − 3t

)
,

χ4(t) =
1
8

(
35t4 − 30t2 + 3

)
, χ5(t) =

1
8

(
63t5 − 70t3 + 15t

)
.

8



For these polynomials the following recurrent relations

χn+1(t) = 2n+1
n+1 t · χn(t) − n

n+1 χn−1(t) (4.1)

hold. In particular, this implies χn(1) = 1. Let us also note that, if n ≥ 1 then χn(t) increases as t ≥ 1.
(This property also easily follows from formula (4.3) given below.)

We let χ−1
n denote the function inverse to χn on the semi-axis [1,+∞).

One of the key statements of our approach to the problems of optimal Lagrangian interpolation
is Theorem 4.1 formulated and proven in this section. This theorem reveals some rather surprising
connections between Legendre polynomials with the problems of optimal Lagrangian interpolation.

Given γ ≥ 1, we let En,γ define a set

En,γ =

x ∈ Rn :
n∑

j=1

|x j| +

∣∣∣∣∣∣∣1 −
n∑

j=1

x j

∣∣∣∣∣∣∣ ≤ γ
 . (4.2)

Theorem 4.1 The following equalities hold:

mesn(En,γ) =
1

2nn!

n∑
i=0

(
n
i

)2

(γ − 1)n−i(γ + 1)i =
χn(γ)

n!
. (4.3)

This result was obtained in [18]. Unfortunately, this paper is practically inaccessible to a wide
audience, so for the convenience of the reader we present it here.

Proof. First, let us prove the left-hand equality in (4.3). Let

E(1) = {x ∈ En,γ :
∑

xi > 1} and E(2) = {x ∈ En,γ :
∑

xi ≤ 1}.

Let us give explicit formulae for the volumes m1 = mesn(E(1)) and m2 = mesn(E(2)).
Let us fix k, 1 ≤ k ≤ n, and consider a non-empty subset G ⊂ E(1) consisting of all points x =

(x1, ..., xn) such that x1, . . . , xk ≥ 0 and xk+1, . . . , xn < 0. Let yi = xi for i = 1, ..., k, yi = −xi

for i = k + 1, ..., n, and let y = (y1, ..., yn). Then

G =
{

y : 1 + yk+1 + . . . + yn ≤ y1 + . . . + yk ≤
γ + 1

2
, yi ≥ 0

}
,

hence

mesn(G) =

α∫
1

dy1

α−y1∫
1

dy2 . . .

α−y1−...−yk−1∫
1

dyk

y1+...+yk−1∫
0

dyk+1

y1+...+yk−1−yk+1∫
0

dyk+2 . . .

y1+...+yk−1−yk+1−...−yn−1∫
0

dyn.

Throughout the proof, α = (γ + 1)/2. If b > 0, then

b∫
0

dz1

b−z1∫
0

dz2 . . .

b−z1−...−zl−1∫
0

dzl =
bl

l!
,

9



so

mesn(G) =

α∫
1

dy1

α−y1∫
1

dy2 . . .

α−y1−...−yk−1∫
1

1
(n − k)!

(y1 + . . . + yk − 1)n−k dyk

=


∫

y1+...+yk≤α

−

∫
y1+...+yk≤1

 1
(n − k)!

(y1 + . . . + yk − 1)n−k dy1 . . . dyk

= J1 − J2.

The first integral equals

J1 =

k∑
j=1

(−1) j+1 (α − 1)n−k+ j

(n − k + j)!
αk− j

(k − j)!
+

(−1)n+k

n!
.

The value of J2 appears from this expression if instead of α we take 1. Consequently,

mesn(G) = J1 − J2

=

k∑
j=1

(−1) j+1 (α − 1)n−k+ j

(n − k + j)!
αk− j

(k − j)!

=
(−1)k+1

n!

k−1∑
i=0

(
n
i

)
(α − 1)n−i(−α)i. (4.4)

Clearly, the set E(1) is the union of all pairwise disjoint sets G with various k = 1, . . . , n,. Therefore,
the measure of E(1) is equal to

m1 =

n∑
k=1

(
n
k

)
(−1)k+1

n!

k−1∑
i=0

(
n
i

)
(α − 1)n−i(−α)i.

Changing the order of summation and using the identity

i∑
k=0

(−1)k

(
n
k

)
= (−1)i

(
n − 1

i

)
(4.5)

(see, e. g., [39]) we get

m1 =
1
n!

n−1∑
i=0

(
n
i

)
(α − 1)n−i(−α)i

i∑
k=0

(−1)k

(
n
k

)

=
1
n!

n−1∑
i=0

(
n
i

)(
n − 1

i

)
(α − 1)n−iαi. (4.6)

Now, let us turn to E(2). First, note that E(2) contains the domain S = {xi ≥ 0,
∑

xi ≤ 1} with
the measure 1/n!. Next, fix k ∈ {1, ..., n} and consider the subset G′ ⊂ E(2) corresponding to the

10



inequalities x1, . . . , xk < 0; xk+1, . . . , xn ≥ 0. Put y1 = −x1, . . . , yk = −xk; yk+1 = xk+1, . . . , yn = xn.
Then

G′ = {y : yk+1 + . . . + yn ≤ 1 + y1 + . . . + yk ≤
γ − 1

2
, yi ≥ 0}.

Let β = (γ − 1)/2. Then the following equalities hold:

mesn(G′) =

β∫
0

dy1

β−y1∫
0

dy2 . . .

β−y1−...−yk−1∫
0

dyk

1+y1+...+yk∫
0

dyk+1

1+y1+...+yk−yk+1∫
0

dyk+2 . . .

1+y1+...+yk−yk+1−...−yn−1∫
0

dyn

=

β∫
0

dy1

β−y1∫
0

dy2 . . .

β−y1−...−yk−1∫
0

(1 + y1 + . . . + yk)n−k

(n − k)!
dyk

=

 k−1∑
j=0

(−1)k−1− j (1 + β)n− jβ j

(n − j)! j!

 + (−1)k

n!
=

(−1)k+1

n!


 k−1∑

j=0

(
n
j

)
(1 + β)n− j(−β) j

 − 1

 .
Clearly, the set E(2) is the union of all such sets G′ corresponding to various k = 1, . . . , n, and the sim-

plex S . Therefore,

m2 = mesn(E(2)) =
1
n!


 n∑

k=1

(−1)k+1
(
n
k

) 
 k−1∑

j=0

(
n
j

)
(1 + β)n− j(−β) j

 − 1


 + 1

 .
Note that 1 + β = (γ + 1)/2 = α and β = (γ − 1)/2 = α − 1. Let us make the substitution i = n − j

in the internal sum in the right hand side of this equality, and make use of the formula

n∑
k=0

(−1)k

(
n
k

)
=

n∑
k=1

(−1)k

(
n
k

)
+ 1 = 0.

We obtain the following:

m2 =
1
n!

(
1 +

n∑
k=1

(−1)k+1
(
n
k

)(
(−1)n

n∑
i=n−k+1

(
n
i

)
(α − 1)n−i(−α)i − 1

))
=

(−1)n

n!

n∑
k=1

(−1)k+1
(
n
k

) n∑
i=n−k+1

(
n
i

)
(α − 1)n−i(−α)i.

Changing the order of summation, we obtain

m2 =
(−1)n

n!

n∑
i=1

(
n
i

)
(α − 1)n−i(−α)i

n∑
k=n+1−i

(−1)k+1
(
n
k

)
.

Using (4.5), we can write

n∑
k=n+1−i

(−1)k+1
(
n
k

)
=

n∑
k=n+1−i

(−1)k+1
(

n
n − k

)
=

i−1∑
j=0

(−1)n− j+1
(
n
j

)
= (−1)n+i

(
n − 1
i − 1

)
.
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Therefore,

m2 =
1
n!

n∑
i=1

(
n
i

)(
n − 1
i − 1

)
(α − 1)n−iαi. (4.7)

From this, (4.6) and (4.7), we have

mesn(En,γ) = m1 + m2

=
1
n!

n−1∑
i=0

(
n
i

)(
n − 1

i

)
(α − 1)n−iαi +

1
n!

n∑
i=1

(
n
i

)(
n − 1
i − 1

)
(α − 1)n−iαi

=
1
n!

n−1∑
i=1

(
n
i

) ((
n − 1

i

)
+

(
n − 1
i − 1

))
(α − 1)n−iαi +

1
n!

(
(α − 1)n + αn

)
=

1
n!

n∑
i=0

(
n
i

)2

(α − 1)n−iαi =
1

2nn!

n∑
i=0

(
n
i

)2

(γ − 1)n−i(γ + 1)i

completing the proof of the left-hand equality in (4.3). We took into account that(
n − 1

i

)
+

(
n − 1
i − 1

)
=

(
n
i

)
.

The right-hand equality in (4.3) follows from the identity

n∑
i=0

(
n
i

)2

ti = (1 − t)nχn

(
1 + t
1 − t

)
. See [39].

Let us set t = (γ − 1)/(γ + 1). Then (1 − t)n = 2n(γ + 1)−n and (1 + t)/(1 − t) = γ. Hence,

mesn(G) =
1

2nn!

n∑
i=0

(
n
i

)2

(γ − 1)n−i(γ + 1)i =
1

2nn!

n∑
i=0

(
n
i

)2

(γ + 1)n−i

=
1

2nn!
(γ + 1)n

n∑
i=0

(
n
i

)2(γ − 1
γ + 1

)i
=
χn(γ)

n!
.

The proof of Theorem 4.1 is complete. □
Let us give some simple examples. The set E1,2 = {x ∈ R : |x|+|1−x| ≤ 2} is the segment [−1/2, 3/2]

with the length mes1(E1,2) = χ1(2)/1! = 2. The set E2,2 = {x ∈ R2 : |x1| + |x2| + |1 − x1 − x2| ≤ 2}
is a hexagon on the plane with the area mes2(E2,2) = χ2(2)/2! = 11/4.

The three-dimensional domain

E3,2 = {x ∈ R3 : |x1| + |x2| + |x3| + |1 − x1 − x2 − x3| ≤ 2}

is shown in Fig. 1. It has the volume mes3(E3,2) = χ3(2)/3! = 17/6.
There is an interesting open problem related to the above-mentioned equality (4.3). Essentially,

this equality along with Rodrigues’ formula and other well-known relations gives a characterization
of Legendre polynomials. This characterization is written via the volumes of some convex polyhedra.
Namely, for t ≥ 1

χn(t) = n! mesn(En,t), (4.8)

where En,t is defined by (4.2).

12



Figure 1: The set E3,2

The question arises about analogues of (4.8) for other classes of orthogonal polynomials, such as
Chebyshev polynomials or, more generally, Jacobi polynomials: Is the equality (4.8) a particular
case of a more general pattern? We would be grateful for any information on this matter.

Let us note that, from (4.8) and (4.1), we have

mesn+1(En+1,t) =
2n + 1

(n + 1)2 t mesn(En,t) −
1

(n + 1)2 mesn−1(En−1,t).

The direct establishing this recurrence relation for the measures of En,t could provide a proof of The-
orem 4.1 different from the above.

5. Inequality θn(K) ≥ χ−1
n

(
vol(K)

simpn(K)

)
Based on Theorem 4.1, in this section we obtain lower bounds for the norm of the projection

operator associated with linear interpolation on an arbitrary convex body K.

Theorem 5.1 Suppose P : C(K)→ Π1 (Rn) is an arbitrary interpolation projector. Then for the cor-
responding simplex S ⊂ K and the node matrix A we have

∥P∥K ≥ χ−1
n

(
n!vol(K)
| det(A)|

)
= χ−1

n

(
vol(K)
vol(S )

)
. (5.1)

Proof. For each i = 1, . . . , n, let us subtract from the ith row of A its (n + 1)th row. Denote by B
the submatrix of order n which stands in the first n rows and columns of the result matrix. Then

| det(B)| = | det(A)| = n!vol(S ) ≤ n!vol(K)

so that
| det(B)|
n!vol(K)

≤ 1. (5.2)

Let x( j) be the vertices and λ j be the basic Lagrange polynomials of simplex S . Since λ1(x), . . . ,
λn+1(x) are the barycentric coordinates of a point x with respect to S , we have

∥P∥K = max
x∈K

n+1∑
j=1

|λ j(x)| = max

 n+1∑
j=1

|β j| :
n+1∑
j=1

β j = 1,
n+1∑
j=1

β jx( j) ∈ K

 .
13



Let us replace βn+1 with the equal value 1 −
n∑

j=1
β j. The condition

n+1∑
j=1
β jx( j) ∈ K is equivalent to

n∑
j=1

β j(x( j) − x(n+1)) ∈ K′ = K − x(n+1).

Hence,

∥P∥K = max

 n∑
j=1

∣∣∣β j

∣∣∣ + ∣∣∣∣∣∣∣1 −
n∑

j=1

β j

∣∣∣∣∣∣∣
 (5.3)

where the maximum is taken over all β j such that
n∑

j=1
β j(x( j) − x(n+1)) ∈ K′. Clearly, vol(K′) = vol(K).

Let us consider the nondegenerate linear operator F : Rn → Rn, which maps the point β =
(β1, . . . , βn) to the point x = F(β) according to the rule

x =
n∑

j=1

β j

(
x( j) − x(n+1)

)
.

We have the matrix equality F(β) = (β1, . . . , βn)B, where B is the above introduced matrix of order n
with the entries bi j = x(i)

j − x(n+1)
j . Let us put

γ∗ = χ−1
n

(
n!vol(K)
| det B|

)
.

Note that, thanks to (5.2), (n!vol(K))/| det(B)| ≥ 1 so that the constant γ∗ is well defined. Let us also
note that χn(γ∗) = n!vol(K)/| det(B)|.

Given γ ≥ 1, let us introduce a set

En,γ =

β = (β1, . . . , βn) ∈ Rn :
n∑

j=1

|β j| +

∣∣∣∣∣∣∣1 −
n∑

j=1

β j

∣∣∣∣∣∣∣ ≤ γ
 .

Let us show that K′ 1 F(En,γ) provided γ < γ∗. Indeed, this is immediate from Theorem 4.1
because, thanks to this theorem,

mesn(F(En,γ)) < mesn(F(En,γ∗)) = | det B| ·mesn(En,γ∗)

= | det B| ·
χn(γ∗)

n!
= vol(K) = vol(K′).

Thus, for every ε > 0 there exists a point x(ε) with the properties:

x(ε) =
∑

β(ε)
j

(
x( j) − x(n+1)

)
∈ K′ and

∣∣∣∣∑ β(ε)
j

∣∣∣∣ + ∣∣∣∣1 −∑
β(ε)

j

∣∣∣∣ ≥ γ∗ − ε.
In view of (5.3) this gives ∥P∥K ≥ γ∗ − ε. Since ε > 0 is an arbitrary, we obtain

∥P∥K ≥ γ∗ = χ−1
n

(
n!vol(K)
| det(B)|

)
= χ−1

n

(
n!vol(K)
| det(A)|

)
= χ−1

n

(
vol(K)
vol(S )

)
.

The theorem is proved. □

Recall that simpn(K) denotes the maximum volume of a nondegenerate simplex S with vertices
in K (see Definition 2.10).
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Theorem 5.2 Let K be an arbitrary convex body in Rn. Then

θn(K) ≥ χ−1
n

(
vol(K)

simpn(K)

)
. (5.4)

Proof. By (5.1), for any interpolation projector P : C(K)→ Π1 (Rn),

∥P∥K ≥ χ−1
n

(
vol(K)
vol(S )

)
≥ χ−1

n

(
vol(K)

simpn(K)

)
,

where S = S P. This immediately gives (5.4). □

Remark 5.3 If simplex S ⊂ K has maximum volume, then K ⊂ (n + 2)S , see (3.2). Therefore,
the ratio vol(K)/simpn(K) in (5.4) is bounded from above by (n + 2)n.

In the case K = Qn we have vol(K) = 1, simpn(K) = νn (see Definition 2.8). If K = Bn, then
vol(K) = κn, simpn(K) = σn (see Definition 2.9). Thus, in these cases, (5.4) imply the following two
inequalities:

θn(Qn) ≥ χ−1
n

(
1
νn

)
and θn(Bn) ≥ χ−1

n

(
κn

σn

)
. (5.5)

In the next section we will give two important consequences of these inequalities. ◁

Remark 5.4 Inequalities (3.4) and (5.4) show that for each convex body K ⊂ Rn

χ−1
n

(
vol(K)

simpn(K)

)
≤ θn(K) ≤ n + 1.

In Section 6 we prove analogues of these inequalities for an arbitrary (not necessarily convex) compact
set E ⊂ Rn with vol(conv(E)) > 0. ◁

6. Inequalities θn(Qn) > c
√

n and θn(Bn) > c
√

n

The Stirling formula (see, e. g., [8]) n! =
√

2πn (n/e)ne
ζn
12n , 0 < ζn < 1, yields

√
2πn

(n
e

)n
< n! <

√
2πn

(n
e

)n
e

1
12n . (6.1)

Let us also see that for every n > 1 the following inequality

χ−1
n (s) >

 s(
n
⌊n/2⌋

)
1/n

(6.2)

holds. In fact, if t ≥ 1 and n > 1, then, according to (4.3),

χn(t) =
1
2n

n∑
i=0

(
n
i

)2

(t − 1)n−i(t + 1)i <

(
n
⌊n/2⌋

)
·

1
2n

n∑
i=0

(
n
i

)
(t − 1)n−i(t + 1)i

=

(
n
⌊n/2⌋

)
· (2t)n · 2−n =

(
n
⌊n/2⌋

)
tn
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proving (6.2). For even n, we have (
n
⌊n/2⌋

)
=

(
n

n/2

)
=

n!
((n/2)!)2 ,

therefore,

χ−1
n (s) >

(
s ((n/2)!)2

n!

)1/n

. (6.3)

If n is odd, then (
n
⌊n/2⌋

)
=

n!
n+1

2 ! n−1
2 !

so that, thanks to (6.2),

χ−1
n (s) >

 s n+1
2 ! n−1

2 !
n!

1/n

. (6.4)

Theorem 6.1 For all n ∈ N,

θn(Qn) >

√
n − 1
e

. (6.5)

Proof. The case n = 1 is trivial since θ1(Q1) = 1. If n > 1, from (6.3), (6.4) and the Hadamard
inequality (2.16), we have νn ≤ (n + 1)(n+1)/2 /2nn!.

For even n, thanks to the first inequality in (5.5), the left-hand inequality in (6.1), and (6.3), we get

θn(Qn) ≥ χ−1
n

(
1
νn

)
≥ χ−1

n

(
2nn!

(n + 1)(n+1)/2

)
> 2

(
[(n/2)!]2

(n + 1)(n+1)/2

)1/n

>
2

(n + 1)1/2+1/(2n)

(
√
πn

( n
2e

)n/2
)2/n

=
(πn)1/n n

e(n + 1)1/2+1/(2n) >

√
n − 1
e

.

If n is odd, then, thanks to (6.4),

θn(Qn) ≥ χ−1
n

(
1
νn

)
≥ χ−1

n

(
2nn!

(n + 1)(n+1)/2

)
>

 2n n+1
2 ! n−1

2 !
(n + 1)(n+1)/2

1/n

> 2

π
√

n2 − 1
(
n2 − 1

)(n−1)/2
(n + 1)

(2e)n


1/n

=
1
e
π1/n
√

n − 1(n + 1)1/(2n) >

√
n − 1
e

proving that (6.5) holds for all n. □

In some situations, the estimates of Theorem 2.4 can be improved [25]. In particular, we prove that
θn >

√
n/e if n is even, and θn > n/(e

√
n − 1) provided n > 1 and n ≡ 1(mod 4).

Let us also note that, thanks to (6.5), the inequality θn(Qn) > c
√

n holds with some c, 0 < c < 1.
A suitable estimate is

θn(Qn) >
2
√

2
3e
√

n. (6.6)
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Indeed, if n ≤ 8, then the right-hand side of (6.6) is less than 1, while for n ≥ 9

θn(Qn) >

√
n − 1
e

≥
2
√

2
3e
√

n.

Notice that
2
√

2
3e
= 0.3468 . . .

This approach was extended to linear interpolation on the unit ball Bn, see [27].

Corollary 6.2 For every n,

θn(Bn) ≥ χ−1
n

(
π

n
2 n!

Γ (n/2 + 1)
√

n + 1 ((n + 1)/n)n/2

)
. (6.7)

If n = 2k, then (6.7) is equivalent to the inequality

θ2k(B2k) ≥ χ−1
2k

(
πk(2k)!

k!
√

2k + 1 ((2k + 1)/2k)k

)
. (6.8)

For n = 2k + 1 we have

θ2k+1(B2k+1) ≥ χ−1
2k+1

(
2(k!)(4π)k

√
2k + 2 ((2k + 2)/(2k + 1))(2k+1)/2

)
. (6.9)

Proof. It is sufficient to apply the second inequality in (5.5), (2.19), and (2.20). □

Thanks to (6.3) and (6.4), inequalities (6.8) and (6.9) imply the following low bound for the constant
θn(Bn) (see [28]).

Theorem 6.3 There exists an absolute constant c > 0 such that

θn(Bn) > c
√

n. (6.10)

Inequality (6.10) takes place with the constant

c =
3
√
π

√
12e · 6√3

= 0.2135... . (6.11)

7. Estimates for linear interpolation on an arbitrary compact set

In this section we show how the above approach leads to estimates of the minimum projector norm
under linear interpolation on a compact set.

Let E be an arbitrary compact in Rn. Everywhere in this section, we let K denote the convex hull of
the set E. We will assume that vol(K) > 0. By ∥P∥E we denote the norm of the interpolation projector
P : C(E) → Π1(Rn) as an operator from C(E) to C(E). We let θn(E) denote the minimal norm ∥P∥E
over all projectors P with nodes in E. By simpn(E) we denote the maximum volume of a simplex
with vertices in E.

We will need the following elementary lemma.
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Lemma 7.1 If φ : Rn → R is a convex continuous function, then max
K

φ = max
E

φ.

Proof. The maxima from the condition exist since φ is a continuous function. As K = conv(E),
for any y ∈ K there exist a number m, points y(1), . . . , y(m) ∈ E and numbers µ1, . . . , µm such that

y =
m∑

i=1

µiy(i), µi ≥ 0, and
m∑

i=1

µi = 1.

Clearly, φ(y(i)) ≤ max
E

φ. The convexity of φ implies

φ(y) = φ

 m∑
i=1

µiy(i)

 ≤ m∑
i=1

µiφ(y(i)) ≤

 m∑
i=1

µi

 max
E

φ = max
E

φ.

Therefore, max
K

φ ≤ max
E

φ. The inverse inequality is obvious. □

Clearly, the result of Lemma 7.1 is well-known. It is immediate from the following Bauer’s maxi-
mum principle [2]. Any function that is convex and continuous, and defined on a convex and compact
set, attains its maximum at some extreme point of that set. Consequently, maximum φ on K = conv(E)
is attained at some extreme point of E.

Theorem 7.2 We have

θn(E) ≥ χ−1
n

(
vol(K)

simpn(E)

)
. (7.1)

Proof. First, let us note that for an arbitrary polynomial p ∈ Π1(Rn) the following inequality

∥p∥E = ∥p∥K (7.2)

holds. (Recall that K = conv(E).) This is immediate from Lemma 7.1 for the convex continuous
function φ(x) = |p(x)|.

Let P : C(E) → Π1(Rn) be an arbitrary interpolation projector with nodes in E. We will consider
it also as a projector from C(K). Thanks to (7.2), it follows that ∥P∥E = ∥P∥K . Therefore, thanks to
inequality (5.4) of Theorem 5.2,

θn(E) ≥ θn(K) ≥ χ−1
n

(
vol(K)

simpn(K)

)
.

Finally, let us see that simpn(K) = simpn(E). Indeed, let us suppose S ⊂ K is any simplex with
some vertex x < E. Without changing other vertices, we can replace vertex x by vertex x′ so that
the volume of the resulting simplex does not decrease. Indeed, this volume increases with dist(x;Γ),
where Γ is the (n − 1)-dimensional hyperplane containing all the vertices of the simplex except x.
Let Γ be given by the equation q(z) = ⟨a, z⟩ + a0 = 0, a = (a1, . . . , an) ∈ Rn, a0 ∈ R. Then

dist(x;Γ) =
|q(x)|
||a|||

is obviously a convex continuous function. By Lemma 7.1, the maximum of dist(x;Γ) on K is attained
at some point x′ ∈ E.Applying this procedure sequentially to all vertices of the simplex not belonging
to E, we construct a new simplex with vertices on E without reducing the volume.

Thus, simpn(K) = simpn(E), and the proof is complete. □
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Theorem 7.3 Let E ⊂ Rn be a compact set such that vol(conv(E)) > 0. Then the following inequality

θn(E) ≤ n + 1 (7.3)

holds.

Proof. For an arbitrary interpolation projector P : C(E)→ Π1(Rn), we have the following equality

∥P∥E = max
x∈E

n+1∑
j=1

|λ j(x)|.

This can be proved in the same way as in the case E = K (see (2.9)).
Let S be a simplex with maximum volume over all family of simplices with vertices in E. For

this simplex, |λ j(x)| ≤ 1 (see the proof of Theorem 3.1, inequality (3.3)). By the above formula, the
corresponding projector P = PS satisfies ∥PS ∥E ≤ n + 1. Consequently, θn(E) ≤ n + 1. □

Let us combine inequalities (7.1) and (7.3). If E ⊂ Rn is an arbitrary compact set satisfying
the condition vol(conv(E)) > 0, then

χ−1
n

(
vol(conv(E))

simpn(E)

)
≤ θn(E) ≤ n + 1.

8. Concluding remarks and open questions

Despite the apparent simplicity of formulation, the problem of finding exact values of θn(Qn) is very
difficult. Since 2006, these values are known only for n = 1, 2, 3, and 7 (see [19], [25]) . Namely,

θ1(Q1) = 1, θ2(Q2) =
2
√

5
5
+ 1 = 1.8944 . . . , θ3(Q3) = 2, θ7(Q7) =

5
2
.

The corresponding numbers ξ(Qn) are

ξ1(Q1) = 1, ξ2(Q2) =
3
√

5
5
+ 1 = 2.3416 . . . , ξ3(Q3) = 3, ξ7(Q7) = 7.

Hence, for each n = 1, 2, 3, 7 the right-hand inequality in (2.12) becomes an equality:

ξn(Qn) =
n + 1

2
(θn(Qn) − 1) + 1. (8.1)

If a nondegenerate simplex S is contained in Qn, then di(S ) ≤ 1. Using (2.7) we get

ξ(Qn; S ) ≥ α(Qn; S ) =
n∑

i=1

1
di(S )

≥ n.

Therefore, always ξn(Qn) ≥ n. If n + 1 is an Hadamard number, then ξn(Qn) = n (see [24, 25]).
Thanks to (2.12), inequality ξn(Qn) ≥ n implies

θn(Qn) ≥ 3 −
4

n + 1
. (8.2)

If n = 1, 3, or 7, then in (8.2) we have an equality.
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For 1 ≤ n ≤ 3 the simplices corresponding to minimal projectors are just the same that the extremal
simplices with respect to ξn(Qn). The proofs are given in [21, 25] (see also the recent survey [31]).
Let us mention here these results.

The case n = 1 is trivial: θ1(Q1) = 1 and a unique extremal simplex is the segment [0, 1] coinciding
with Q1. Suppose n = 2. Up to rotations, the only simplex extremal with respect both to θ2(Q2) and
ξ2(Q2) is the triangle with vertices (0, 0), (1, τ), (τ, 1), where τ = (3 −

√
5)/2 = 0.3819 . . . . This

number satisfies τ2 − 3τ + 1 = 0 or
τ

1 − τ
=

1 − τ
1

.

Hence, τ delivers the golden section of the segment [0,1]. Sharp inequality ∥P∥Q2 ≥ 2
√

5/5 + 1 for
projectors corresponding to simplices S ⊂ Q2 gives the new characterization of this classical notion.

Up to coordinate substitution, each extremal simplex in Q3 coincides with the tetrahedron S ′ with
vertices

(1, 1, 0), (1, 0, 1), (0, 1, 1), (0, 0, 0)

or the tetrahedron S ′′ with vertices(
1
2
, 0, 0

)
,

(
1
2
, 1, 0

)
,

(
0,

1
2
, 1

)
,

(
1,

1
2
, 1

)
.

In other words, if ∥PS ∥Q3 = 3, then either vertices of S coincide with vertices of the cube and form a
regular tetrahedron or coincide with the centers of opposite edges of two opposite faces of the cube
and does not belong to a common plane.

Let us turn to the case n = 7. Since 8 is an Hadamard number, there exists a seven-dimensional
regular simplex having vertices at vertices of the cube. We can take the simplex with the vertices

(1, 1, 1, 1, 1, 1, 1), (0, 1, 0, 1, 0, 1, 0), (0, 0, 1, 1, 0, 0, 1), (1, 0, 0, 1, 1, 0, 0),

(0, 0, 0, 0, 1, 1, 1), (1, 0, 1, 0, 0, 1, 0), (1, 1, 0, 0, 0, 0, 1), (0, 1, 1, 0, 1, 0, 0).

The equality ξ7(Q7) = 7 and inequality

ξn(Qn) ≤
n + 1

2
(θn(Qn) − 1) + 1

imply θ7(Q7) ≥ 5/2. But for the corresponding projector, ∥P∥Q7 = 5/2. Therefore, θ7 = 5/2, and this
projector is minimal.

Let n+1 be an Hadamard number, and let S be an n-dimensional regular simplex having the vertices
at vertices of Qn Then, for the corresponding projector PS : C(Qn)→ Π1(Rn), we have

∥PS ∥Qn ≤
√

n + 1. (8.3)

Various proofs of (8.3) are given in [18] and [25]. Paper [29] contains the proof essentially making
use of the structure of an Hadamard matrix. The equality ∥PS ∥Qn =

√
n + 1 may hold as for all regular

simplices S having vertices at vertices of the cube (n = 1, n = 3), as for some of them (n = 15), or
may not be executed at all.

As it is shown in Section 5, for each n, θn(Qn) ≥
√

n − 1/e. Therefore, if n + 1 is an Hadamard
number, then √

n − 1
e

≤ θn(Qn) ≤
√

n + 1.
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In other words, the above estimate θn(Qn) ≥ c
√

n is sharp at least when n+ 1 is an Hadamard number.
For these dimensions, θn(Qn) ≍

√
n.

The upper bounds of θn(Qn) for special n were improved by A. Ukhalov and his students
with the help of computer methods. In particular, simplices of maximum volume in the cube were
considered. In all situations where n + 1 is an Hadamard number, the full set of Hadamard matri-
ces of the corresponding order was used. In particular, to obtain an estimate for θ23, all existing 60
Hadamard matrices of order 24 were considered. To estimate θ27, we have to consider 487 Hadamard
matrices of order 28. Known nowaday upper estimates for 1 ≤ n ≤ 27 are given in [37]. Here they
are (for brevity, we write θn = θn(Qn)):

θ1 = 1, θ2 =
2
√

5
5
+ 1, θ3 = 2, θ4 ≤

3(4 +
√

2)
7

, θ5 ≤ 2.448804,

θ6 ≤ 2.6000 . . . , θ7 =
5
2
, θ8 ≤

22
7
, θ9 ≤ 3, θ10 ≤

19
5
, θ11 ≤ 3,

θ12 ≤
17
5
, θ13 ≤

49
13
, θ14 ≤

21
5
, θ15 ≤

7
2
, θ16 ≤

21
5
, θ17 ≤

139
34

,

θ18 ≤ 5.1400 . . . , θ19 ≤ 4, θ20 ≤ 4.68879 . . . , θ21 ≤
251
50

, θ22 ≤
1817
335

,

θ23 ≤
9
2
, θ24 ≤

103
21

, θ25 ≤ 5, θ26 ≤
474
91

, θ27 ≤ 5.

The best nowaday known lower bound of θn(Qn) has the form

θn(Qn) ≥ max
[
3 −

4
n + 1

, χ−1
n

(
1
νn

)]
. (8.4)

Here χn is the standardized Legendre polynomial of degree n, see Section 3. The values of the right-
hand side of (8.4) for 1 ≤ n ≤ 54 are given in [37].

As noted in Section 1 (see (2.11)), the inequality

ξn(Qn) ≤
n + 1

2
(θn(Qn) − 1) + 1 (8.5)

is true for any n. So far, we know only four values of n for which this relation becomes an equality:
n = 1, 2, 3, and 7. These are exactly the cases in which we know the exact values both of θn(Qn) and
ξn(Qn). In [32] the authors conjectured that the minimum of n for which inequality (8.5) is strict is 4.
This is still an open problem.

The above given estimate ξn(Qn) ≥ n occurs to be exact in order of n. If n > 2, then

ξn(Qn) ≤
n2 − 3
n − 1

(8.6)

(see [23,25]). If n > 1, the right-hand side of (8.6) is strictly smaller than n+ 1. Inequality ξn < n+ 1
holds true also for n = 1, 2. Thus, always n ≤ ξn(Qn) < n + 1, i.e., ξn(Qn) − n ∈ [0, 1). However, the
exact values of the constant ξn(Qn) are currently only known for n = 2, n = 5 and n = 9, as well as
for an infinite set of n for which there exists an Hadamard matrix of order n + 1.

In all these cases, except n = 2, the equality ξn(Qn) = n holds. In the noted Hadamard’s case, one
can give the proof using the structure of Hadamard matrix of order n + 1, see [33]. In [33], we have
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also discovered the exact values of ξn(Qn) for n = 5 and n = 9 and constructed several infinite families
of extremal simplices for n = 5, 7, 9.

Thanks to the equivalence ξn(Qn) ≍ n and inequality θn ≥ c
√

n, for all sufficiently large n, we have

ξn(Qn) <
n + 1

2
(θn(Qn) − 1) + 1. (8.7)

Let n0 be the minimal natural number such that for all n ≥ n0 inequality (8.7) holds. The prob-
lem about the exact value of n0 is very difficult. The known lower and upper bounds differ quite
significantly. From the preceding, we have the estimate n0 ≥ 8. In 2009 we proved that n0 ≤ 57
(see [21, 25]). A sufficient condition for the validity of (8.7) for n > 2 is the inequality

χn

(
3n − 5
n − 1

)
· νn < 1. (8.8)

It was proved in [21] that (8.8) is satisfied for n ≤ 57. Later calculations allowed the upper bound
of n0 to be slightly lowered. In [34] it is noted that n0 ≤ 53. In other words, inequality (8.7) is satisfied
at least starting from n = 53. A better estimate from above for n0 is an open problem.

Let us now proceed to interpolation on the unit ball Bn.
It was shown in [26] that ξn(Bn) = n for all n. Moreover, for a simplex S ⊂ Bn, the equality

ξ(Bn; S ) = n is equivalent to the fact that S is a regular simplex inscribed in the ball. By (2.11), for
any projector P : C(Bn)→ Π1 (Rn) we have

∥P∥Bn ≥ 3 −
4

n + 1
. (8.9)

The right-hand equality in (2.12), i. e., the equality

ξn(Bn) =
n + 1

2

(
θn(Bn) − 1

)
+ 1, (8.10)

is equivalent to

θn(Bn) = 3 −
4

n + 1
. (8.11)

As it shown in [35], equalities (8.10) – (8.11) take place for 1 ≤ n ≤ 4, while starting from n = 5 we
have the strict inequality

ξn(Bn) <
n + 1

2

(
θn(Bn) − 1

)
+ 1.

For 1 ≤ n ≤ 4, equality in (8.9) holds only if S P is a regular inscribed simplex.
The fact that the lower estimate θn(Bn) > c

√
n obtained in Section 5 is exact in dimension n was

first established in [35]: the equivalence θn(Bn) ≍
√

n is valid.
A complete solution to the problem about the values of the numbers θn(Bn) was given in [30]. Let

us briefly describe these results. Let ψ : [0, n + 1]→ R be a function defined by

ψ(t) =
2
√

n
n + 1

(
t(n + 1 − t)

)1/2
+

∣∣∣∣∣1 − 2t
n + 1

∣∣∣∣∣ ,
and let

a = an =

n + 1
2
−

√
n + 1
2

 .
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Let S be a regular simplex inscribed in Bn, and let pn be the norm of PS . It was proved in [35] that

pn = max{ψ(a), ψ(a + 1)} and
√

n ≤ pn ≤
√

n + 1.

Moreover, pn =
√

n only for n = 1 and pn =
√

n + 1 holds if and only if
√

n + 1 is an integer.
The equality θn(Bn) = pn was obtained first for 1 ≤ n ≤ 4 (different proofs are given in [35]

and [28]). As a conjecture for all n, this statement was formulated in [28]. In [30] we developed a
certain new geometric approach to the problem which enabled us to prove this conjecture, i.e., the
equality θn(Bn) = pn for an arbitrary positive integer n.

Thus, the following ineuality
√

n ≤ θn(Bn) ≤
√

n + 1 holds for all n. Furthermore, we proved that
the minimal is any projector corresponding to a regular simplex inscribed into the boundary sphere,
and there are no other minimal projections in this case.

Let kn coincide with that of the numbers an and an + 1 on which ψ(t) takes a larger value. The
numbers kn increase with n, but not strictly monotonically. If n ≥ 2, then kn ≤ n/2. As an example,
we give below the numbers kn for 1 ≤ n ≤ 15, n = 50, n = 100, and n = 1000 ( [35]):

k1 = k2 = k3 = k4 = 1, k5 = k6 = 2, k7 = k8 = k9 = 3, k10 = k11 = 4,

k12 = k13 = 5, k14 = k15 = 6, k50 = 22, k100 = 45, k1000 = 485.

Finally, let us note that equality (8.10) holds for those and only those dimensions n when kn = 1.
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