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Abstract—In the context of machine learning for graphs, many
researchers have empirically observed that Deep Graph Networks
(DGNs) perform favourably on node classification tasks when the
graph structure is homophilic (i.e. adjacent nodes are similar).
In this paper, we introduce Lying-GCN, a new DGN inspired
by opinion dynamics that can adaptively work in both the
heterophilic and the homophilic setting. At each layer, each
agent (node) shares its own opinions (node embeddings) with
its neighbours. Instead of sharing its opinion directly as in GCN,
we introduce a mechanism which allows agents to lie. Such a
mechanism is adaptive, thus the agents learn how and when to
lie according to the task that should be solved. We provide a
characterisation of our proposal in terms of dynamical systems,
by studying the spectral property of the coefficient matrix of
the system. While the steady state of the system collapses to
zero, we believe the lying mechanism is still usable to solve
node classification tasks. We empirically prove our belief on
both synthetic and real-world datasets, by showing that the
lying mechanism allows to increase the performances in the
heterophilic setting without harming the results in the homophilic
one.

Index Terms—Deep Graph Networks, Opinion dynamics, Het-
erophilic graphs

I. INTRODUCTION

Graphs are natural abstractions that arise in many scientific
fields such as chemistry [1], physics [2], and recommender
systems [3] to name a few. Due to this large number of appli-
cations, in recent years there has been an increasing interest in
machine learning techniques that can process graph-structured
data. Among them, Deep Graph Networks (DGNs) [4] are
able to solve a task by generating node representations of the
input graph. The generation process is based on neural [5],
[6], probabilistic [7], or even untrained message passing [8].
Researchers have empirically observed that such models per-
form favourably on node classification tasks when the graph
structure is homophilic [9], meaning that adjacent nodes in the
graph share similar features or target labels to be predicted.
In contrast, heterophilic graphs exhibit an opposite behaviour,
and structure-agnostic baselines like a Multi-Layer Perceptron
(MLP) proved to be better or very competitive compared to
DGNs at classifying nodes under heterophily [10], [11].

The scope of this paper is to introduce Lying-GCN, a new
DGN on Graph Convolution Network (GCN) [12] that is able
to perform in both the homophilic and the heterophilic setting.
The novelty of our proposal is a propagation schema which has

a straightforward interpretation in terms of opinion dynamics,
i.e. the study of how preferences or opinions emerge and
evolve in social networks. At each layer, we can interpret the
node embeddings with d channels as the private opinion of the
agents (nodes) over a specific set of topics (channels). During
the propagation, each agent listens to its neighbours to develop
new opinions. While in GCN all the agents are truth-tellers
since they share their private opinions with the neighbourhood
directly, in Lying-GCN an agent can lie: it can share opinions
that can be different from its private ones. In practice, when the
agent u communicates with the agent v, the lying mechanism
generates a set of weights which are then multiplied element-
wise with the opinion of u. Since the weights can be negative,
the agent can lie by sharing an opinion that is opposite to
its private one. To the extent of our knowledge, the only
other work which also considers the opinion dynamics in
the context of DGN is [13], where the authors introduce a
new DGN denoted as Neural Sheaf Diffusion (NSD). Their
proposal is grounded on the mathematical theory of cellular
sheaves, which has been already used to model the opinion
polarisation [14]. However, NSD cannot be interpreted in
terms of agents and opinions.

As a part of our work, we provide a characterisation of
the lying mechanism in terms of dynamical systems. To this
end, we derive the equivalent dynamical system defined as
a set of ordinary different equations. The behaviour of such
a system depends on the spectral property of the coefficient
matrix, which in our case is the result of an element-wise
multiplication between the symmetric normalised Laplacian of
the graph and a matrix that contains the opinion weights. Our
theoretical results show that, while the system asymptotically
collapses to zero, the dynamics in the early stages are rich due
to an oscillatory pattern caused by the presence of complex
eigenvalues. Thus, we believe that the lying mechanism is still
actionable to solve node classification tasks.

We empirically test our hypothesis on both synthetic and
real-world datasets, showing that 1) the lying mechanism
allows to increase the performances of GCN in the heterophilic
setting without hurting them in the homophilic ones, and 2)
we are able to reach the performances of challenging baselines
in the literature.

The rest of the paper is organised as follows: in Section II
we introduce GCN and NSD, along with their interpretations
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in terms of opinion dynamics; in Section III we introduce our
proposal, and we study the associated dynamical system; in
Section IV we discuss other relevant approaches to increase
the performances of DGN in the heterophilic setting; in Sec-
tion V we describe our experiments, and we show the results
obtained; finally, in Section VI, we draw our conclusion.

II. BACKGROUND

A. Opinion Dynamics on Graphs

In the context of opinion dynamics, a graph G = (V, E)
represents a social network where each node v ∈ V is an agent
and each edge (u, v) ∈ E constitutes a pairwise (undirected)
communication channel. For the sake of simplicity, we assume
that the graph is connected and does not contain self-loops (i.e.
(u, u) /∈ E). The value xv ∈ R represents the (binary) opinion
of the agent v about a topic: xv > 0 (xv < 0) indicates a
positive (negative) opinion. All the opinions of all the agents
can be concatenated into a single vector x ∈ Rn, where n is
the number of nodes in G. With abuse of notation, we use xv

to denote the opinion xv of the agent v.
Since the agents can communicate with each other, the

opinions evolve over time. A straightforward way to model
the opinion dynamics is [15], [16]:

dx

dt
= −αLx, α > 0, (1)

where L = D − A is the graph Laplacian; A and D are the
adjacency matrix and the diagonal degree matrix, respectively.
The Equation (1) is a system of Ordinary Differential Equa-
tions (ODEs) known as the graph heat diffusion which results
in asymptotically stable equilibrium where all the agents
share the same opinion. This global fixed consensus does
not represent the typical behaviour of opinion distributions
in social networks; indeed, one of the most salient features of
real-world opinions is the existence of polarisation or failure
to come to a consensus, known as the community cleavage
problem [17].

To this end, the authors in [14] propose to employ cellular
sheaves theory [18]. A cellular sheaf F is a mathematical
object that augments a graph G by specifying:

• a vector space F(v) for each vertex v ∈ V;
• a vector space F(e) for each edge e ∈ E ;
• a linear map Fv P e : F(v) → F(e) for each incident

vertex-edge pair vP e.
The vector spaces F(v) are called the stalks over v, and the
linear maps Fv P e are the restriction maps.

Through the lens of the opinion dynamics, the stalk F(v)
represents the opinion space of agent v; thus, the opinion of
v can be any element in F(v), i.e. xv ∈ F(v). Rather than
sharing directly their opinions, the agents generate a discourse
based on them. The generation is performed by the restriction
maps: given an edge e = (u, v), the discourse of u and
v is given by FuP e(xu) and Fv P e(xv), respectively. Both
discourses lie in the same space: the edge stalk F(e); hence,
the edge stalks are denoted as discourse spaces.

The cellular sheaf modifies also the interpretation of con-
sensus. Two agents u and v linked by the edge e reach a con-
sensus when they agree in discourse space, i.e. FuP e(xu) =
Fv P e(xv). Note that this does not imply that u and v have the
same opinions: it means that their expressions of personally
held opinions have the appearance of agreement. The opinion
dynamics on cellular sheaf which converge to a global edge
consensus is:

dx

dt
= −αLFx, α > 0. (2)

The vector x is a 0-cochain and it records all the agent opin-
ions; thus, it lies on the space C0(G;F) obtained by merging
all the node stalks, i.e. C0(G;F) =

⊕
v∈V F(v) (where ⊕

denotes the direct sum of vector spaces). LF : C0(G;F) →
C0(G;F) is a linear operator denoted as sheaf Laplacian
and it is defined as LF (xv) =

∑
e=(u,v) F⊤

v P e(Fv P exv −
FuP exu).

For the purpose of our work, we can assume that all the
stalks are vector spaces of size d, i.e. F(v) = F(e) = Rd.
Thus, the opinion xv ∈ Rd records the intensities of opinions
or preferences of agent v on d different topics. Hence, a 0-
cochain x is a vector of size nd, the restriction maps Fv P e

are matrices d×d, and the sheaf Laplacian LF is a symmetric
matrix nd×nd. Finally, it is worth pointing out that the graph
heat diffusion equation is a cellular sheaf with d = 1 and all
the restriction maps equal to 1.

B. Diffusion & Deep Graph Networks

DGNs aim to learn a node representation which solves a
given task. The Graph Convolutional Network (GCN) [12] is a
DGN which computes the node embeddings with the following
layer-wise propagation rule:

h′
u = σ

(
W

(
S̃uuhu +

∑
v∈Nu

S̃uvhv

))
, (3)

where hu ∈ Rd and h′
u ∈ Rd′

are the input and output
node embeddings of the layer, respectively; σ is a non-linear
activation function, while W ∈ Rd′×d is a weight matrix that
is adjusted during the training. The matrix S̃ = D̃− 1

2 ÃD̃− 1
2

is the normalise adjacency matrix, Ã = A+I and D̃ = D+I
are the augmented adjacency and degree matrix, respectively.
The same equation can be written in matrix form:

H ′ = σ
(
S̃HW⊤

)
= σ

((
I − L̃sym

)
HW⊤

)
, (4)

where L̃sym = I − S̃ is the augmented symmetrically nor-
malised Laplacian, and H ∈ Rn×d is the matrix obtained by
stacking all the hidden representations hu for all the nodes
u ∈ V . This equation makes clear the relation between GCN
and the graph heat diffusion in Equation (1): in fact, the
GCN computation can be interpreted as a finite difference
approximation of the graph heat diffusion process (setting
apart the weight matrix W and the non-linearity σ) [19]. The
graph Laplacian is applied independently to each column of H ,
thus the hidden representation hu represents the opinions of u
over d topics which evolves separately. When the agents reach



a consensus, it means that the hidden node representations
are similar. In the DGN context, this behaviour is denoted as
oversmoothing [20], [21].

Neural Sheaf Diffusion (NSD) [13] is a recent DGN which
takes advantage of the sheaf theory to overcome the GCN lim-
itations. The layer-wise propagation of the node embeddings
in NSD is given by the following rule:

H ′ = H − σ (LF (I ⊗ V )HW ) , (5)

where H ∈ Rnd×f and H ′ ∈ Rnd×f ′
are the input and the

output node embeddings. LF ∈ Rnd×nd is the sheaf Laplacian,
V ∈ Rd×d and W ∈ Rf×f ′

are the weight matrices. Again,
σ is a non-linear activation function. NSD is closely related
to the cellular sheaf diffusion process in Equation (2) since
NSD propagation schema is equivalent to a finite difference
approximation of it (setting apart the weight matrices and the
non-linearity).

A key point in NSD is the definition of the sheaf Laplacian
LFl

. While in GCN the Laplacian is completely defined by
the graph structure, in NSD the sheaf Laplacian depends on
the restriction maps Fv P e of the cellular sheaf which must
be defined. The authors in [13] show that, given a node
classification task on a graph G, it exists a cellular sheaf on
G such that its stable equilibria can linearly separate the node
classes of G. Unfortunately, such a cellular sheaf depends on
the node class labels which are not known at training time:
thus, it can be defined only by an oracle. Notably, the sheaf
Laplacian LFl

is always symmetric.
At each layer, NSD tries to learn the right sheaf using locally

available information. Let e = (u, v) an edge in G, NSD ap-
proximate the restriction maps Fv P e by employing a paramet-
ric function approximator, i.e. Fv P e = σ (Q [hv ∥ hu]) where
the symbol ∥ denotes the concatenation of two vectors. Three
different versions of NSD have been proposed: Diag-NSD,
O(d)-NSD and Gen-NSD which impose a diagonal, orthogonal
and no constraints on the restriction maps, respectively. While
NSD stems from cellular sheaves on graphs, there is no direct
interpretation of NSD as opinion diffusion. The hidden node
representations are no longer vectors of size d (as it happens
in the GCN): instead, they are matrices of size d × f . This
worsens also the computational complexity since it scales w.r.t.
d2×f2; in practice, only small values of d have been employed
(from 1 to 5).

III. LYING GRAPH CONVOLUTIONAL NETWORK

We propose Lying-GCN, a new DGN architecture which
computes (at each layer) the node embedding as:

zv→u = tanh (V [hv ∥ hu]) (6)
mv→u = zv→u ⊙ hv (7)

h′
u = σ

(
W

(
S̃uuhu +

∑
v∈Nu

S̃uvmv→u

))
, (8)

where ⊙ is the element-wise multiplication, zv→u and mv→u

are vectors of size d, and the matrices V ∈ R2d×d and W ∈
Rd′×d are the parameters of the layer.

The Lying-GCN propagation has a straightforward interpre-
tation in terms of opinions. At each layer, each agent (node)
u has a private opinion hl

u ∈ Rd over d topics. The initial
opinion h0

u can be obtained as a linear combination of the
input feature xu ∈ Rf , i.e. h0

u = W0xu. The agents do not
share directly their opinions; as in the cellular sheaf diffusion,
they can talk to each other over the communication links
(edges) by making a discourse. Let e = (u, v) an edge, agent
v produce a discourse mv→u ∈ Rd for agent u starting from
its opinions hv . Hence, the agent can lie to its neighbour by
multiplying its opinion with a weight zv→u ∈ Rd. The weight
has a value zd ∈ [−1, 1] for each topic d; if zd = 1, agent
v is not lying and it will share its real opinion on d to u.
Conversely, if zd = −1, agent v is lying and it will share the
opposite of its opinion on d.

After the propagation, a weight matrix W and a non-
linearity σ are applied node-wise to generate the new opinions
(node embeddings). This step can be interpreted as a reflection
period, where each agent reasons about its new information to
build new opinions over a (possibly different) set of topics
{1, . . . , d′}. Since the weight matrix is shared among all
nodes, all the agents share the same way of thinking.

By comparing Equation (3) and Equation (8), we can
recover the GCN propagation by setting all the opinion weights
z equals to one. In this way, the message mv→u sent from v
to u is equal to its hidden state hv . Lying-GCN also shares
some similarities with NSD, since the message construction in
Equation (7) can be interpreted as the application of a diagonal
transportation maps such that diag

(
F⊤

uP eFv P e

)
= zv→u,

where diag(B) is the vector formed by the elements on
the main diagonal of the matrix B. In our proposal, the
diffusion process is not symmetric since zv→u ̸= zu→v . This
is not true in Diag-NSD, where it holds

(
F⊤

uP eFv P e

)
=(

F⊤
v P eFuP e

)⊤
.

A. Computational Complexity

The computation of the messages requires O(md2+md) =
O(md2) operations, where m is the number of edges in the
graph. The node embedding propagation has the same com-
plexity of GCN, i.e. O(nd2+md). Thus, the final complexity
of a Lying-GCN layer is O(nd2+md2). Note that, compared
with NSD, the computational complexity depends only on the
number of topics d.

B. The Lying Diffusion Process

To better understand the effect of the opinion weights, it
is convenient to rewrite the propagation schema in a matrix
form. For the sake of simplicity, we focus on a single topic
and we ignore both the non-linearity σ and the weight matrix
W . Thus, let h ∈ Rn a vector which contains all the opinion
hu ∈ R of the agents, we can rewrite the propagation as:

h′ = S̃ ⊙ (Z + I)h, (9)

where Z ∈ Rn×n is a non-symmetric matrix which contains
the opinion weight, i.e. Zuv = tanh (Q[hv ∥ hu]) if (u, v) ∈ E
and Zuv: = 0 otherwise. The identity I allows to preserve
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Fig. 1. From left to right, the evolution of the heat, sheaf and lying diffusion process on a chain graph with three nodes. In each plot, we show how the
value attached to each node evolves over time.

the self-loops added in S̃. By recalling the definition of the
Laplacian L̃sym = I − S̃, we obtain:

h′ =
(
(I − L̃sym)⊙ (Z + I)

)
h

=
(
I − L̃sym ⊙ (Z + I)

)
h,

(10)

where the last equality holds since we assume that there are no
self-loops in the input graph (i.e. Zuu = 0 for each node u ∈
V , which implies I⊙Z = 0). If we assume that the matrix Z is
the same for each layer, the Lying-GCN propagation schema
is a numerical discretisation of the following system of ODEs:

dh

dt
= −

(
L̃sym ⊙ (Z + I)

)
h, (11)

whose solution is:

h(t) = e−Eth(0) =

n∑
i=i

cie
−λitui, (12)

where E = (L̃sym⊙(Z + I)), and (λi, ui) its i-th eigenvalue-
eigenvector pair; {c1, . . . cn} are constants that depend on the
initial state h(0). Thus, the behaviour of the system depends
on the spectral properties of E.

Proposition 1: The real part of each non-zero eigenvalue of
E is strictly positive.

Proposition 1 (the proof is in Appendix A) ensures us that
the lying diffusion process converges to the zero vector since
limt→+∞ e−λit = 0 for all λi > 0. However, since E is no
longer symmetric, we have no guarantee that its eigenvalues
are real values. The presence of complex eigenvalues enriches
the process by adding oscillating dynamics. The oscillations
derive from the exponentiation of the eigenvalues imaginary
part since eiθ = cos θ + i sin θ due to Euler’s formula.

In Figure 1 we show the behaviour of three different
examples of diffusion processes on a very simple chain graph
u1 ↔ u2 ↔ u3. The leftmost plot depicts the evolution of
the graph heat diffusion process. As expected, the process
converges to a state which depends on the node degree and the
initial condition [20]. Note that all the nodes have the same
opinion since all the values are positive. The plot in the middle
represents the evolution of a sheaf Laplacian with d = 1 and
edge weights −1 and 1 on the edges u1 ↔ u2 and u2 ↔ u3,
respectively. Thanks to the negative edge weight, the opinions
of u1 and u2 diverge (regardless of the initial condition). In

the rightmost plot, we show the evolution of our proposal: the
lying diffusion process. In this case, the only negative weight
is on the edge u2 → u1, i.e. the agent u2 lies to u1, but not
vice versa. As expected, the process converges to 0. However,
the process has more variability due to the complex part of the
eigenvalues: for example, it is the only process where it exists
an instant ti such that ui(ti) > uj ̸=i(ti) for all i ∈ {1, 2, 3}.
Finally, it is worth highlighting that by carefully choosing the
values in Z, the lying diffusion process can mimic both the
heat and the sheaf diffusion.

The analysis conducted above suggests that Lying-GCN
may suffer from oversmoothing. According to [13], [22], the
oversmoothing phenomena is related to the poor performances
in the heterophilic setting; thus, it could be reasonable to ask
if our proposal is still actionable to solve node classification
tasks. We believe that the answer is positive since, in practice,
Lying-GCN can learn a different opinion weights matrix Z
at each layer. Thus, it can adaptively change the behaviour
of the propagation schema to improve the performance. We
empirically prove our belief in Section V.

IV. OTHER RELATED WORKS

As in our proposal, Graph Attention Network (GAT) [23]
and Graph Neural Networks with Feature-wise Linear Mod-
ulation (GNN-FiLM) [24] define a learnable mechanism to
build a message from node u to its neighbour v during
the propagation step. For example, GAT learns an attention
coefficient αvu which measures the importance of node u´s
embeddings to determine the new embeddings of v. While
both models can learn asymmetric weights, they cannot model
negative interaction among nodes since the weights are always
positive. The inability to model negative interactions worsens
the performance in the heterophilic setting.

Other DGN architectures can learn negative values along
edges. For example, Frequency Adaptation Graph Convolu-
tional Networks (FAGCN) [25] employs an attention mech-
anism to learn the proportion of low-frequency and high-
frequency signals to consider during propagation. Interestingly,
this can be reduced to learning a weight αvu ∈ [−1, 1] over the
edge (u, v). A similar approach is employed in GGCN [22],
where the authors employ also a correction term on edges
to compensate for the different behaviour between low-degree
and high-degree nodes. However, in both approaches, the (pos-



sibly negative) edge weights are shared among all the channels
of the node embeddings. On the contrary, our proposal can
learn a different weight to each topic by allowing the definition
of a different diffusion process for each topic.

Finally, other models in the literature (e.g. H2GCN [26],
FSGNN [27]) address the heterophilic setting without modify-
ing the propagation schema. Instead, they use techniques such
as defining a different set of weights for ego- and neighbour-
embeddings, considering k-hop neighbours, and concatenating
all the intermediate node-representation. It is worth highlight-
ing that these approaches are orthogonal to our proposal and
they could be considered also in Lying-GCN.

V. EXPERIMENTS & RESULTS

In this work, we focus on node classification tasks where
the goal is to assign a label to all the nodes in the input graph
G = (V, E). For each node u ∈ V , we denote the input features
as a vector xv ∈ Rf , and the output label as yu ∈ C (where C
is the set of all possible labels). All the models are equipped
with an input layer and a linear classifier to process the input
features and generate the output labels, respectively.

In our experiments, we focus on two DGNs obtained
by applying the lying message propagation schema: Lying-
GCN and Lying-GCNII. While the former has been already
discussed in Section III, the latter is obtained by combining
the lying propagation schema with GCNII [28]. GCNII is a
deep GCN model that resolves the oversmoothing problem by
employing (at each layer) a skip connection from the input
feature (possibly pre-processed), and by adding an identity
matrix to the weight matrix. The code of our experiments is
publicly available 1.

A. Synthetic Experiments

We generate two different synthetic graphs that we denote
as bipartite and tripartite. Both are multipartite graphs, i.e.
their nodes are partitioned into k sets such that there are no
edges between nodes in the same partition. In the bipartite
graph k = 2, while in the tripartite k = 3. The structure
generation is completely random: give a node v in a partition,
we randomly select dv neighbours from the other partition.
The procedure ensures that the average node degree in the
graph is equal to the desired value. In our experiments, we
set an average node degree of 5. The total number of nodes
is 1600 for each graph, and they are divided into k equally
size partitions. For each node v, the output node label yv ∈
1, . . . , k is the partition to which the node belongs, and the
input node feature xv ∈ Rf are sampled from a multivariate
Gaussian distribution with zero mean and unitary variance, i.e.
xv ∼ N (0, I). It is important to note that the input features
of a node do not provide any information about its partition.

For both datasets, we consider an experimental setup where
we randomly split 60% of the nodes for training, 20% for
validation, and 20% for testing. To assess the model perfor-
mances, we first carry out model selection by selecting the

1https://github.com/danielecastellana22/lying-graph-convolution

TABLE I
TEST RESULTS ON SYNTHETIC DATA

Bipartite Tripartite

Lying-GCN 99.31± 0.48 71.62± 2.43
Lying-GCNII 99.03± 0.73 78.50± 2.33

GCN 94.19± 2.49 52.38± 2.70
GCNII 97.31± 0.92 48.16± 3.92

best configuration on the validation set, where accuracy is
the metric of interest. After the best configuration is selected,
we estimate the trained model’s empirical risk on the test
nodes. This process is repeated 10 times for different splits.
The hyper-parameters validated are: the number of layers
l ∈ {1, . . . , 10}, the size of the hidden representation d ∈
{5, 10, 20} which is the same for all layers, and the activation
function σ ∈ {tanh, relu}. The parameters are learned using
Adam [29] optimiser with a learning rate is fixed at 0.01; there
is no weight decay nor dropout. For the Lying-GCNII, we also
set α = 0.1 and λ = 1.

In Table I we report means and standard deviations of
the test results. On the bipartite graph, all the models reach
an accuracy higher than 90%. The introduction of the lying
mechanism is beneficial since both Lying-GCN and Lying-
GCNII reach an accuracy of 99%. The improvement over GCN
and GCNII is marginal (5% for the Lying-GCN and 2% for
the Lying-GCNII) but it is statistically significant (p-value <
0.05). On the tripartite graph, the accuracy results are much
lower, suggesting that the task is more difficult. This is in line
with recent works which show that the heterophily itself is
not enough to characterise the behaviour of DGNs [30]–[32].
The bipartite graph has an easy pattern (although completely
heterophilic): to determine the label (partition) of a node, it is
enough to know the partition of one of its neighbours. In the
tripartite graph, this is no longer valid since we have to exclude
two partitions to infer a node label. In this more complex
context, the benefits of the lying mechanism are more evident:
while GCN and GCNII reach an accuracy near 50%, Lying-
GCN and Lying-GCNII reach an accuracy of 72% and 78%,
respectively. The advantages of our proposal are more evident
by observing Figure 2: the plot of the embeddings obtained
by the best configuration of GCNII (Figure 2b) does not show
any clusterisation, making the classification task difficult for
the linear classifier; actually, GCNII embeddings are almost
the same of the input features plotted in Figure 2a. On the
contrary, the plot of the embeddings obtained by the best
configuration of Lying-GCNII (Figure 2c) shows three evident
clusters (although overlapped). All the plots are obtained by
employing t-SNE [33] to map the high-dimensional hidden
node representations into a two-dimensional space.

To better understand the behaviour of our proposed models,
we plot in Figure 3 the validation accuracy obtained by varying
the number of layers. From the plot, it is clear that Lying-GCN
suffers when the number of layers increases. This behaviour is
not shared with Lying-GCNII, showing that the mechanisms

https://github.com/danielecastellana22/lying-graph-convolution
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Fig. 2. t-SNE plot of node information on the tripartite graph: (a) the input features, (b) the node embeddings of the best GCNII configuration, and (c) the
node embeddings of the best Lying-GCNII configuration.
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Fig. 3. Validation accuracy w.r.t. the number of layers for all models on
synthetic datasets.

introduced by GCNII to increase the depth of the DGN are
still beneficial when applied to our proposal. Thus, we argue
that the new propagation scheme proposed in this paper is
orthogonal with respect to the mechanisms introduced by
GCNII; while the former enables richer dynamics during the
propagation into each layer, the latter increases the stability of
deep networks obtained by stacking multiple layers.

B. Real-world Experiments

We test our models on four real-world datasets [34]–[36]
with different edge homophily coefficients h, from h = 0.11
(very heterophilic) to h = 0.81 (very homophilic). We do not
consider other typical heterophilic datasets such as squirrel
and chameleon since there is a train-test data leakage due
to replicated nodes [37]. Also, the usage of the WebKB 2

datasets introduced in [36] is discouraged due to they very
small sizes. Among them, we only consider Texas due to its
high heterophily level. For all the datasets, we consider the
10 fixed splits provided in [36], where each split contains
48%/32%/20% of nodes per class for training, validation and
testing, respectively. To assess the model performances, we
first carry out model selection by selecting the best configura-
tion on the validation set, where again the accuracy is the
metric of interest. After the best configuration is selected,
we estimate the trained model’s empirical risk on the test
nodes. This procedure is executed independently for each
split. The hyper-parameters validated are: the number of layers

2http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb

l ∈ {2, 3, 4, 5, 10, 20, 30}, the size of the hidden representation
d ∈ {16, 32, 64} which is the same for all layers, the weight
decay wd ∈ 0, 0.01, 0.1, the probability dropout on the input
feature pi ∈ {0.4, 0.6, 0.95}, the probability dropout after each
convolutional layer pl ∈ {0.2, 0.4, 0.6, 0.8}. For Lying-GCN,
we also validated the activation function σ ∈ {tanh, relu, elu}.
For Lying-GCNII, the activation function σ is the ReLU,
and we validate the hyper-parameters α ∈ {0.1, 0.2, 05}
and λ ∈ {0.5, 1, 1.5}. The parameters are learned using
AdamW [38] optimiser with a learning rate is fixed at 0.01
for both models.

In addition to GCN and GCNII, we also consider other
baselines that we have already discussed in Section IV:
GAT [23], GGCN [22], Diag-NSD [13] and FAGCN [25]. All
the baseline results are taken from [13] and they are obtained
on the same set of splits as ours. All the results are reported
in Table II, where results in bold are not statistically different
(p-value > 0.05) w.r.t the state of the art. The results confirm
what we have observed on the synthetic datasets: the lying
mechanism is useful when the dataset is heterophilic (Lying-
GCN and Lying-GCNII outperform GCN and GCNII by 17%
and 6% on texas, respectively). If we focus on homophilic
datasets (citeseer and cora), the results of our proposal are
comparable with GCN and GCNII: in particular, Lying-GCNII
obtain results that are statically not different from the state-
of-art. This suggests that our approach is not harmful and
that it adapts to the characteristics of the input graph. Also,
Lying-GCNII always outperforms Lying-GCN highlighting the
benefit of a more stable and deep architecture. Among the
baseline models (the bottom part of the table), GAT is the
only model that cannot set negative weight over edges: on
all the datasets except citeseer, Lying-GCNII outperforms
GAT. The huge difference in performances on texas and film
datasets highlights the benefits of negative edge weights in
the heterophilic setting. On the film dataset, Lying-GCNII
outperforms FAGCN even if the two approaches are similar:
this highlights the benefit of learning a different edge weight
for each channel. GGCN and Diag-NSD are very challenging
baselines based on negative edge weights, and our proposal
Lying-GCNII obtains comparable results on all the datasets.
Also, it is worth pointing out that both GGCN and Diag-NSD

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb


TABLE II
TEST RESULTS ON REAL-WORLD DATASETS

texas film citeseer cora
Hom. level 0.11 0.22 0.74 0.81
#Nodes 183 7,600 3,327 2,708
#Edges 295 26,752 4,676 5,278
#Classes 5 5 7 6

Lying-GCN 72.43± 7.13 35.95± 1.05 74.84± 1.44 86.42± 0.73
Lying-GCNII 83.51± 5.73 37.05± 1.02 76.33± 1.86 87.78± 1.43

GCN 55.14± 5.16 27.32± 1.10 76.50± 1.36 86.98± 1.27
GCNII 77.57± 3.83 37.44± 1.30 77.33± 1.48 88.37± 1.25

GAT 52.16± 6.63 27.44± 0.89 76.55± 1.23 86.33± 0.48
FAGCN 82.43± 6.89 34.87± 1.25 N/A N/A
GGCN 84.86± 4.55 37.54± 1.56 77.14± 1.45 87.95± 1.05
Diag-NSD 85.67± 6.95 37.79± 1.01 77.14± 1.85 87.14± 1.06

MLP 80.81± 4.75 36.53± 0.70 74.02± 1.90 75.69± 2.00

employ other mechanisms that could be helpful in practice:
for example, GGCN learns a set of weight for each layer to
combine the self-representation of a node (hv) with the sum
of the message received; similarly, Diag-NSD augments the
restriction maps with fixed values (1 and -1) to improve the
diffusion when the node representations are not good enough
to learn good maps. Both strategies could be integrated with
the lying diffusion process.

VI. CONCLUSION

In this paper, we introduce Lying-GCN, a new DGN based
on opinion dynamics. The key of our proposal is the intro-
duction of a lying mechanism which allows nodes to not
share their hidden representation directly. Instead, each node
shares different messages to each neighbour by multiplying its
hidden representation with a set of weights obtained through
an adaptive procedure.

We also provide a characterisation of the lying mechanism
in terms of dynamical systems. On the one hand, our theo-
retical results show that the system asymptotically collapses
to zero, meaning that the DGN is prone to oversmoothing.
On the other hand, they highlight an oscillatory pattern in the
early stages of the diffusion due to the presence of complex
eigenvalues.

The empirical results confirm that Lying-GCN improves the
performances of GCN in the heterophilic setting without harm-
ing in the homophilic one, notwithstanding its performance
degradation when the number of layers increases. Interestingly,
the poor performances obtained by deep networks can be
counteracted by employing the two techniques introduced by
GCNII. On four real-world datasets, Lying-GCNII is able to
perform on par with state-of-the-art models. Thus, we argue
that the new propagation scheme proposed in this paper is
orthogonal to the mechanisms introduced by GCNII; while the
former enables richer dynamics during propagation, the latter
increases the stability of deep networks obtained by stacking
multiple layers.

Our findings highlight that the interplay between perfor-
mances in the heterophilic setting and oversmoothing phenom-
ena needs to deepen. In fact, while recent papers such as [13],

[22] show that the two phenomena have common causes, we
show that they can be also addressed separately. In particular,
it is interesting that the lying mechanism that we introduce to
increase the performances on heterophily graphs operates on
the propagation schema (i.e. it modifies the Laplacian), while
the techniques which reduce the oversmoothing (e.g. [39],
[40]) acts on the weight matrices. To this end, it would be
interesting to develop a new adaptive propagation schema that
can guarantee also the absence of oversmoothing. We would
like to develop and study such a schema through the lens
of tensor theory, which has been proven to be effective on
structured data [41]–[43].
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APPENDIX

Proof of Proposition 1: First of all, we observe that
the Laplacian matrix L̃ = D̃ − Ã = D − A is diagonally
dominant since L̃uu = gu =

∑
v ̸=u |L̃uv|, where gu is

the degree of node u. By the definition of Z, it holds that
Zuu = 0 since we assume there are no self-loops in the
original input graph and Zuv ∈ [−1, 1] since it is the image
of the tanh function. It follows that also the matrix B =
L̃ ⊙ (Z + I) is diagonally dominant since Buu = L̃uu = gu
and

∑
v ̸=u |Buv| =

∑
v ̸=u |L̃uv| · |Zuv| ≤

∑
v ̸=u |L̃uv| = gu.

By Gersgorin’s theorem [44], the real part of each nonzero
eigenvalue of B is strictly positive. Finally, we conclude by
showing that the eigenvalues of E and B have the same sign
since E = D̃− 1

2BD̃− 1
2 and D̃− 1

2 has strictly positive entries.
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