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1Université Paris-Saclay, Institut d’Optique Graduate School,
CNRS, Laboratoire Charles Fabry, 91127, Palaiseau, France

2Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), Largo Enrico Fermi 6, 50125 Firenze, Italy
3European Laboratory for Nonlinear Spectroscopy (LENS),

Via N. Carrara 1, 50019 Sesto Fiorentino, Italy
4QSTAR, Largo Enrico Fermi 2, 50125 Firenze, Italy

(Dated: May 3, 2024)

Tomography of single-particle-resolved detectors is of primary importance for characterizing parti-
cle correlations with applications in quantum metrology, quantum simulation and quantum comput-
ing. However, it is a non-trivial task in practice due to the unavoidable presence of noise that affects
the measurement but does not originate from the detector. In this work, we address this problem for
a three-dimensional single-atom-resolved detector where shot-to-shot atom number fluctuations are
a central issue to perform a quantum detector tomography. We overcome this difficulty by exploit-
ing the parallel measurement of counting statistics in sub-volumes of the detector, from which we
evaluate the effect of shot-to-shot fluctuations and perform a local tomography of the detector. In
addition, we illustrate the validity of our method from applying it to Gaussian quantum states with
different number statistics. Finally, we show that the response of Micro-Channel Plate detectors is
well-described from using a binomial distribution with the detection efficiency as a single parameter.

I. INTRODUCTION

Many-body correlation functions and full counting
statistics (FCS) unveil information that is not con-
tained in one-body quantities and statistical averages.
This information is crucial for understanding strongly-
correlated systems, a major goal for quantum simulators
[1–5]. Moreover, many-body correlations may be used as
ressources to enhance performances in quantum sensing
[6, 7] and in quantum computing [8]. FCS are also rele-
vant in quantum sensing [9–11] by providing direct access
to the Fisher information and thus to useful entanglement
properties of a quantum state [12–15]. One important
challenge to access FCS is the accurate characterization
of the measurement observables, particularly due to the
unavoidable detection noise. The full characterization of
a detector i.e. determining the detector response to any
quantum state is generally referred to as quantum detec-
tion tomography (QDT) [16–19]. Such characterization
does not rely on any assumption, contrary to describ-
ing a detector with a single parameter like its detection
efficiency.

QDT methods consist in determining a set of positive-
operator-valued measures (POVM) that fully character-
izes the measurement results [20, 21]. In the case of
single-particle detectors, the POVMs {Πn} relate the
measured probabilities P (Ndet = n) to the density ma-
trix ρ:

P (Ndet = n) = Tr (Πnρ) , ∀n ∈ N (1)

where P (Ndet = n) is the probability that the detected
number Ndet is equal to an integer value n. A perfect
single-particle detector is characterized by Πn = |n⟩⟨n|

and it measures the diagonal elements of ρ in the basis
of Fock states.

Equation (1) has a significant implication for tomog-
raphy methods: to evaluate the POVMs {Πn} from the
measured counting statistics P (Ndet = n), one needs to
know precisely the full density matrix ρ, a task challeng-
ing to achieve in practice. In addition, fluctuations in
ρ arising from the production of the probed state – and
thus not associated to the detection process – could be
detrimental to QDT approaches. In photonics, this issue
is often minor since intensity fluctuations of continuous-
wave lasers are small and minimally impact the photon
number statistics. As a matter of fact, QDT has mainly
been used for the counting of photons [22–25] and the
characterisation of homodyne detectors [26]. Only re-
cently has it been applied to qubit readout for pairs of
trapped ions [27], non-demolition measurement of super-
conducting qubits [28], and high-fidelity reconstruction
of states [29]. In contrast to photonics, cold samples of
atoms or molecules are produced in a pulsed way and
with large shot-to-shot number fluctuations (typically a
few percent of its mean value). Applying QDT meth-
ods in these platforms necessitates accounting for these
number fluctuations.

In this work, we introduce a method for characterizing
the response of single-particle detectors in the presence of
shot-to-shot fluctuations. Our method applies to detec-
tors comprising many elementary detection units operat-
ing in parallel, such as scientific cameras with their pix-
els or Micro-Channel Plates (MCP) with their channels.
We exploit the possibility to perform two measurements:
over the entire detector – to monitor shot-to-shot fluctu-
ations – and in sub-volumes (pixels or voxels) – to per-
form a local tomography of the detector. Furthermore,
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we show that adequate choices on quantum states and
sub-volumes enable us to deduce information about the
density matrix ρ effectively probed by the detector. This
resolves the challenge of distinguishing the two terms Πn

and ρ when only their product is measured, see Eq. (1),
in contrast to previous works [27, 29]. We demonstrate
the validity of our method by characterizing a detec-
tor of metastable helium atoms (He∗) using two states
whose statistics strongly differ, a Bose-Einstein conden-
sate (BEC) and a Mott insulator [30–32]. Finally, our
findings confirm that MCPs accurately measure the full
counting statistics, with applications to the detection of
various atomic samples ranging from noble gases [33],
ions [34] and Rydberg atoms [35] to molecules [36].

II. TOMOGRAPHY IN THE PRESENCE OF
SHOT-TO-SHOT NUMBER FLUCTUATIONS

Single-particle detectors are phase-insensitive. This
implies that the POVMs {Πi} are diagonal in the Fock
states basis. They write Πi =

∑l−1
j=0 Vij |j⟩⟨j| where

Vij = P (Ndet = i|N = j) is the conditional probabil-
ity of detecting i particles given that j particles arrive
on the detector. Here the Hilbert space of Fock states
is truncated to a dimension l corresponding to the max-
imum number of particles in the system. Using Eq. (1),
the coefficients Vij can be determined from measuring the
counting statistics of l different states and from inverting
the l associated equations:

P (Ndet = i) =
l−1∑
j=0

VijP (N = j), (2)

for i = 1, ..., l, where P (N = j) = ⟨j|ρ|j⟩ are the statis-
tics of the state, i.e. before detection. A perfect detector
is characterized by Vij = δij , i.e. a matrix V of the coef-
ficients Vij which is the identity matrix.

To obtain the matrix V for a non-perfect detector, one
possibility is to use Fock states and construct the POVMs
of the detector from Eq. (2) at each value of 0 ≤ j ≤ l−1.
However, producing Fock states is extremely challenging,
if not impossible, for most experimental platforms. In ad-
dition, establishing the production of Fock states requires
a precise knowledge of the response of the detector. An
alternative choice consists in probing states whose statis-
tics are simple to characterize using an independent de-
vice. For instance, the coherent state produced by a laser
well-above threshold is fully characterized by its average
intensity ⟨I⟩ which is easily measured with a photodetec-
tor. The tomography (i.e. determining the POVMs Πi)
can thus be decoupled from the statistics of the light (i.e.
knowing the probabilities P (N = n) from the measured
value of ⟨I⟩). This protocol was used for performing the
QDT of single-photon counters in Ref. [22]. Beyond co-
herent states, the use of Gaussian states whose statistics
depend on a single parameter µ, the mean particle num-
ber µ = ⟨N⟩, are well suited to QDT. With such Gaussian

MCP

g

FIG. 1. (a) Illustration of the detection with a Micro-
Channel Plate (MCP). 4He∗ atoms impinge the MCP detector
and trigger electron avalanches resulting in detection events.
(b) Reconstructed 3D atom distribution in a single experi-
mental shot. Each dot is a detection event of a 4He∗ atom
with velocity (vx, vy, vz). The black box depicts one of the
cubic voxels where the tomography is performed (see text).
(c) Counting statistics of the atom number Nvox in a voxel
identified as a black box in panel (b). The binsize is 1. (d)
Counting statistics of the total atom number Ntot. The bin-
size is 155.

states, shot-to-shot fluctuations can be described from
considering µ as a fluctuating variable. The statistics of
the state probed by the detector are indeed the composi-
tion of the bare state statistics with the statistics of the
fluctuating parameter µ.

A central result of our work is to identify an approach
to measure the counting statistics of the mean particle
number ⟨N⟩ and to predict the statistics P (N = n) to
be used in Eq. (2). We exploit the fact that, in most
situations of interest, the correlation length lc of the
bare state – i.e. the distance beyond which two particles
are essentially uncorrelated – is much smaller than the
size D of the detector. A sub-volume of the detector
of intermediate size lc ≪ d ≪ D, named voxel in the
following, probes many correlation volumes of the quan-
tum state. This choice implies that most of the atoms
in the voxel are uncorrelated with each other, with the
consequence that the number statistics in the voxel are
Poisson statistics, regardless of the statistical properties
of the Gaussian state we consider. Our method applies
to detectors made of a large number of elementary de-
tectors working in parallel: the shot-to-shot fluctuations
are monitored from using the entire detector and this
information is used to determine the expected statistics
P (Nvox = n) of the particle number Nvox in voxels. The
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tomography of the detector is performed from analysing
its response in these voxels.

Our experiment produces ultracold gases of metastable
Helium-4 (4He∗), with unavoidable shot-to-shot fluctua-
tions of the total atom number [37]. These atomic clouds
are detected destructively by letting them fall on a two-
dimensional MCP detector illustrated on Fig. 1(a). The
MCP is composed of about 2 × 107 elementary detec-
tors (micro-channels) working in parallel [38, 39]. The
positions and arrival times of the atoms on the detector
enable the atom-by-atom reconstruction of the 3D mo-
mentum distribution of the gas as shown in Fig. 1(b).
An example of the counting statistics obtained in a voxel
(resp. over the full detector) is shown in Fig. 1(c) (resp.
Fig. 1(d)). We use a voxel whose size comprises several
elementary detectors (several micro-channels in the de-
tector plane and several time bins out-of-plane). Below
we apply our tomography method to two types of quan-
tum states produced in our experiment, a Bose-Einstein
condensate (BEC) and a Mott insulator, whose statis-
tics are markedly different. The statistics of the BEC is
that of a coherent state (for the data presented here we
measure g(2)(0) = 1.07(6) using the method described in
[32]), while the statistics of the Mott state are those of a
Gaussian thermal state in momentum space (see Fig. 6 in
Appendix A). In the following, we first describe our to-
mography method in the case of Mott insulators. Then
we show its results and compare them with those ob-
tained in the case of BECs.

III. MODEL OF THE EXPECTED COUNTING
STATISTICS PRIOR TO DETECTION

We calculate the expected counting statistics of the
atom number falling into a voxel by accounting (i) for the
statistics of the quantum state (prior to detection) and
(ii) for the shot-to-shot fluctuations. As discussed above,
we use quantum states whose statistics are determined by
a single parameter µ = ⟨N⟩. In the Mott case, we choose
on purpose the volume of a voxel such that it contains
many (∼ 125) correlation volumes, where a correlation
volume is defined as the volume over which bosons exhibit
bunching after time-of-flight [32]. As discussed above,
this choice implies that the atom number in a voxel Nvox
follows Poisson statistics:

P (Nvox = n|Ntot = λ) = e−µµ
n

n! , (3)

where µ = ⟨Nvox⟩|Ntot=λ is the conditional mean of Nvox
for a given value of the total atom number Ntot = λ.

We account for shot-to-shot atom number fluctuations
by assuming that they result in fluctuations of the atomic
(momentum) density by a global factor. The mean atom
number in the voxel ⟨Nvox⟩|Ntot=λ is proportional to the
total atom number Ntot = λ, i.e. ⟨Nvox⟩|Ntot=λ = α × λ
where α = ⟨Nvox⟩/⟨Ntot⟩. When the total atom num-
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FIG. 2. Counting statistics P (Nvox = n) of the atom num-
ber per voxel Nvox recorded with Mott insulators. The dots
are experimental data and the crosses are the prediction of
Eq. (4). For illustration, the two contributions to the pre-
dicted statistics in Eq. (4) are shown as solid lines: Pois-
son statistics with parameter µ = ⟨Nvox⟩ associated with the
probed state (red) and fluctuations of the total atom number
rescaled by α = ⟨Nvox⟩/⟨Ntot⟩ (green).

ber Ntot fluctuates, Nvox follows Poisson statistics with
a fluctuating parameter:

P (Nvox = n) =
∑
λ∈N

P (Ntot = λ)P (Nvox = n|Ntot = λ)

=
∑
λ∈N

P (Ntot = λ)e−αλ (αλ)n
n! .

(4)

To estimate in the experiment the two contributions
to the expected statistics (see Eq. (4)), we analyse a
set of ∼ 600 shots recorded in identical conditions. The
counting statistics of the total atom number P (Ntot = λ)
are measured directly by counting atoms impinging the
full detector. To increase the signal-to-noise ratio of the
counting statistics in a voxel, we make use of the spheri-
cal symmetry of the atomic clouds. The counting statis-
tics P (Nvox = n) shown in Fig. 2 are an average of the
counting statistics of 24 voxels with identical atomic den-
sities (see Appendix B). The prediction from Eq. (4) is in
excellent agreement with the measured counting statis-
tics. Fig. 2 also illustrates the need to account for both
contributions – from shot-to-shot fluctuations and from
quantum statistics – as they exhibit similar widths.
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IV. DETECTOR TOMOGRAPHY USING MOTT
INSULATORS

A. Counting statistics with a varying mean atom
number

We proceed to perform the tomography of the detec-
tor, i.e. determine the coefficients Vij shown in Eq. (2),
using the knowledge of the expected counting statistics
P (Nvox = n) in the voxel (see Eq. (4)). Experimentally,
one has to sample the mean detected atom number to
span a large range of values and access a large set of
POVMs. To this aim, we produce the same Mott insula-
tor state and sample different atom numbers by sending
a controlled fraction of the atoms towards the detector
[40], as introduced in Ref. [29]. Varying the duration
t of the associated Rabi oscillations samples the mean
detected atom number. Importantly, the Poissonian na-
ture of the counting statistics measured in a voxel does
not vary with t. Indeed, the Rabi oscillation acts as a
beam splitter which selects atoms according to a bino-
mial distribution of efficiency sin2(πfRt) independently
on the atom momentum. For each duration t, the result-
ing counting statistics P (Nvox = n) are Poissonian with
the mean rescaled by sin2(πfRt).

We record counting statistics at varying Rabi pulse
durations {tk}k=1..10, with their mean atom numbers
⟨Nvox⟩k plotted in Fig. 3(a) as a function of the Rabi
duration. We fit the variation of ⟨Nvox⟩ with ⟨Nvox⟩k =
nπ sin2(πfRtk) to extract the mean atom number nπ at
π-pulse and the Rabi frequency fR.

From using Eq. (4), the expected counting statistics at
any duration tk writes:

Pk(Nvox = n) =
∑
λ∈N

P (Ntot = λ)e−α(tk)λ (α(tk)λ)n
n! (5)

where α(tk) = nπ sin2(πfRtk)/⟨Ntot⟩. Examples of mea-
sured counting statistics together with the correspond-
ing predictions Pk(Nvox = n) obtained from Eq. (5) are
shown in Fig. 3(b). Only a few input parameters are
used to compute the expected counting statistics Pk: nπ
and fR which are fitted from Fig. 3(a) and the counting
statistics of the total atom number which are measured
– in parallel of the voxel atom number – at the π-pulse.
The overall agreement over the full range of atom num-
bers sampled in the experiment validites our approach to
predict the counting statistics in a voxel using Eq. (5).
Note that this comparison implicitly assumes a perfect
detector. Below, we include the effect of an imperfect
detector through the matrix V introduced in Eq. (2).

To further increase the number of independent sam-
ples, we exploit the density profile of the atomic cloud
and use two additional voxels located at different atomic
densities (also averaged using spherical symmetry). This
effectively amounts to sample in parallel 3 Rabi oscilla-
tions whose average atom numbers differ, leading to 3×10
measured counting statistics.
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FIG. 3. (a) Measured mean atom number ⟨Nvox⟩ plotted
as a function of the duration of the Rabi pulse (experimental
data using Mott insulators). The markers indicate the mean
value and the error bars indicate one standard deviation. The
black line is a sinusoidal fit of the mean values. (b) Counting
statistics of Nvox at different pulse duration t for the data
shown in (a). Circles are the experimental data and solid
lines are the predictions from Eq. (5).

B. Optimization procedure

The tomography consists in comparing the expected
counting statistics from Eq. (5) with the detected ones
and in attributing the discrepancies to the imperfections
of the detector. We emphasize that the tomography con-
siders all the experimental imperfections – except the
atom number fluctuations – as detector imperfections.
Such imperfections include e.g. fluctuations of the Rabi
frequency and statistical noise. Therefore, the tomogra-
phy outcome depicts the detector’s performance in the
worst-case scenario.

We estimate V from minimizing the sum of the differ-
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ences between measured and reconstructed statistics for
the 30 sets of experimental data:

d2 =
30∑
k=1

l−1∑
i=0

P (Ndet
vox = i) −

l−1∑
j=0

VijP (Nvox = j)

2

,

(6)
with the constraints Vij ≥ 0 and

∑
i Vij =

1. We used a trust-region type algorithm from
scipy.optimize.minimize to impose the constraints
during the optimization [41–43]. We have verified that
the result of the optimization does not depend on the
initial guess for the matrix V : identical optimized matri-
ces V are obtained when starting either from a random
matrix, the identity matrix or a constant matrix.

Importantly, the optimisation procedure is performed
by letting only the response of the detector, i.e. the co-
efficients Vij , to vary. This is in contrast to the methods
used in [27, 29] where both the statistics of the quantum
state, i.e. the expected counting statistics P (Nvox = j),
and the response of the detector (Vij) are left to vary.
Our choice stems from the fact that, in the case of our
measurements, we find that the solution of the optimisa-
tion procedure is not unique if we leave both P (Nvox = j)
and Vij to vary. For this reason, our prediction of the full
counting statistics P (Nvox = j) in voxels (see Eq. (4)) is
a crucial asset to perform a tomography of the single-
atom-resolved detector.

C. Response of the MCP detector

The matrix V reconstructed using the data with Mott
insulators is shown in Fig. 4(a). To avoid overfitting,
we restrict the size of V to ∼ 30 × 30 as we have 30
counting statistics. We find that V is approximately di-
agonal, indicating that the detector does not distort the
measured full counting statistics. In addition, the back-
ground noise is negligible for our experimental param-
eters and the number of dark counts is 0.035(5). The
broadening of the diagonal of V at j ≳ 20 is likely due
to some underdetermination of the reconstruction occur-
ring at large j where fewer distributions have significant
weights. In order to extract quantitative information on
the response of our detector, we make use of the columns
of the V matrix, which quantify the probabilities to actu-
ally detect i atoms while j are expected. These probabil-
ities are fitted by Gaussians to get a mean and standard
deviation which correspond to the accuracy and precision
at each atom number j, plotted in Fig. 4(b) and 4(c). As
expected from the matrix V , the fits confirm an accuracy
at the single-atom level: P (Ndet = i|N = j) is centered
within the interval ]j − 1, j + 1[. The precision at one
standard deviation is ∼ 0.5.
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FIG. 4. (a) Reconstructed matrix V = {Vij} of the He∗

detector from probing Mott insulators. (b)-(c) Averages ⟨i −
j⟩ and standard deviations ∆(i − j) of the probabilities to
detect i − j atoms given that j are expected. These values
are obtained from fitting each column of the V matrix with a
normalized Gaussian function. Error bars correspond to 68%
confidence interval obtained from a bootstrap method and
account for statistical fluctuations due to the finite sample
size.

V. DISCUSSION OF THE TOMOGRAPHY
METHOD

To test our tomography method, we compare the re-
sults on Mott insulators, discussed above, with those ob-
tained from probing Bose-Einstein condensates (BECs)
which have different number statistics. We choose the
voxel size such that the average number of detected par-
ticles ⟨Nvox⟩ is similar to that used with Mott states. Be-
cause the density of a BEC in momentum space is much
larger than that of a Mott insulator, the voxel size used
in the BEC case is much smaller than that used in the
case of a Mott insulator and not larger than a correlation
volume. The bare statistics of BECs being Poissonian,
the predictions of Eq. (5) still hold. We have recorded
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counting statistics at various Rabi durations and applied
the optimization algorithm exactly as described previ-
ously. The matrices V reconstructed using the data with
BECs and with Mott insulators are shown respectively
in Fig. 5(a) and Fig. 5(b). We restrict the size of the
matrices V to 10 × 10 since we have 10 measured count-
ing statistics with BECs. The response V obtained with
BECs is close to be a diagonal matrix and agrees well
with that obtained with Mott insulators. The consis-
tency of the two independent reconstructions supports
the validity of our tomography results.
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FIG. 5. (a)-(b) Reconstructed matrix V = {Vij} of the He∗

detector from probing Mott insulators, V Mott (a) and BECs,
V BEC (b). (c) Experimental counting statistics P (Ndet

vox = n)
of the BEC data (dots) and the corresponding reconstructed
counting statistics

∑
j

V Mott
nj P (Nvox = j) using the matrix

V calibrated with Mott insulators (diamonds). Errorbars are
68% confidence interval estimated using a bootstrap method.

As an alternative to performing a tomography with
BECs, the experimental data using BECs can be com-
pared to the reconstructed ones using the matrix V =
VMott in order to test how tomography with a given state
– Mott insulators here – can predict detection outcomes

in general. By using the total atom number measured
with BECs, we predict P (Nvox = n) from Eq.(5). The
matrix V = V Mott obtained through tomography with
Mott insulators is then used to compute the expected
counting statistics P (Ndet

vox = i) =
∑l−1
j=0 V

Mott
ij P (Nvox =

j). Fig. 5(c) shows a comparison between these recon-
structed counting statistics for BECs and the actual mea-
sured ones, resulting in a remarkable agreement.

Two additional points regarding the efficiency of the
detector are worth noting. First, the quantum efficiency
p of the detector is not accessible to our tomography
method as both Poisson and thermal distributions are
perfectly rescaled when affected by a binomial of effi-
ciency p. The detection efficiency is implicitly included
in the expected counting statistics when we use in Eq.(5)
the detected quantities P (Ndet

tot = λ) and αdet. The ma-
trix V determined above can be interpreted as gathering
the probabilities to detect i atoms given that we would
have detected j atoms with a detector whose response
is described by a binomial distribution of value p. In
other words, the matrix V quantifies the difference be-
tween the response of our detector and that described by
a binomial distribution. For completness, we determined
p = 0.53(3) by comparing the average atom numbers de-
tected by the MCP with those obtained by absorption
imaging, see appendix C. Second, we chose a regime of
parameters such that the response of the detector is not
affected by the saturation of the MCP. For larger atomic
fluxes than those used in this work, the quantum effi-
ciency would be reduced by a factor 1/(1 +n/n0), where
n0 ∼ 600 is the threshold where saturation appears [44]
and the matrix V would deviate from a diagonal for num-
bers n ≥ n0.

Finally, we illustrate the effect of the calibrated detec-
tion on a quantum state whose properties are particu-
larly sensitive to detection: a two-mode squeezed state.
Our experiment produces two-mode squeezed states be-
tween modes of opposite momenta in the quantum de-
pletion of Bose-Einstein condensates [45, 46]. For il-
lustration, let us consider a perfect two-mode squeezed
state |ψ⟩ =

∑
n cn|n⟩k|n⟩−k. The variance of the num-

ber difference δNk,−k = N(k) − N(−k) of the bare
state (i.e. before detection) is equal to zero, σδN =
⟨δN2

k,−k⟩ − ⟨δNk,−k⟩2 = 0. If one accounts only for
the detection efficiency p = 0.53(3) (see above) and de-
scribes the detection process with a binomial distribu-
tion, the measured variance would be significantly larger,
σB
δN =

√
2p(1 − p)⟨N(k)⟩ = 3.9 with ⟨N(k)⟩ = 30. Ac-

counting for the reconstructed response of our detector,
i.e. using the matrix V on top of the binomial distri-
bution, leads to σMCP

δN = 4.3(1) for the same popula-
tion ⟨N(k)⟩ = 30 of the modes k and −k. This latter
value is not significantly larger than that of σB

δN , a result
which highlights the fact that our detector is correctly de-
scribed by a binomial distribution of value p = 0.53(3).
The small difference (∼ 10%) between σB

δN and σMCP
δN

illustrates the sensitivity of the observable σδN to the
detection process and the interest in performing QDT.
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VI. CONCLUSION

We have presented a method to characterize a
single-particle detector in presence of shot-to-shot
number fluctuations. The tomography is performed in
sub-volumes of the detector, typically larger than the
correlation volume of the particles, while the counting
statistics of the total particle number reaching the
detector are used to quantify the role of shot-to-shot
number fluctuations. The choices made within our
method – on quantum states and on voxel sizes – allow
us to predict the expected counting statistics, leading
to a well-defined optimization algorithm from which the
detector is characterized. We have applied this method
to characterize the POVMs of a 3D single-atom-resolved

detector for metastable helium atoms. In the Fock state
basis of detected atom number, we find that the detector
realises an almost perfect projection. This shows that
the He∗ detector is overall well described by a binomial
process with an efficiency p = 0.53(3).
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fluctuating parameter:

P (Nvox = n) =
∑
λ∈N

P (Ntot = λ)P (Nvox = n|Ntot = λ)

=
∑
λ∈N

P (Ntot = λ) 1
1 + αλ

(
αλ

1 + αλ

)n

,

(A1)

where α = ⟨Nvox⟩/⟨Ntot⟩. In Fig. 6, we plot the counting
statistics measured in a volume V ∼ 0.5Vc for various
pulse durations. The measured statistics agree well with
the expected thermal distributions, see Eq. (A1). Recall
that in the main text, the voxel we use is much larger
than Vc, hence the expected Poisson statistics [32].
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FIG. 6. Atom number distributions of the same data used
in Fig. 3.b measured in voxels of volume V = (0.025kd)3 ∼
0.5Vc. Dots are experimental data and solid lines are the
predictions from Eq. (A1).

Appendix B: Homogeneity and averaging over
similar voxels

In Fig. 7, we plot the counting statistics measured in
the individual voxels that we use to obtain the average
counting statistics shown in the main text in Fig. 2. The
counting statistics of individual voxels are identical up to
the statistical noise. Additionally, the average counting
statistics do not exhibit any broadening that would result
from inhomogeneities between the different voxels. These
results confirm the assumption that the response of our
detector is homogeneous and they justify the average over
several voxels used in the main text.
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FIG. 7. Counting statistics in 24 voxels with identical sizes,
each voxel is associated to a single color. The atom number is
(mean ± standard deviation) 15.95 ± 1.25 atoms. The black
line and gray area correspond to the mean and one standard
deviation over these counting statistics, respectively.

Appendix C: Finite detection efficiency, binomial
response of the detector and Eq. (4)

As discussed in the main text, we have performed
a calibration of the detection efficiency of the MCP
detector from a comparison with a calibrated absorption
imaging. The results are plotted in Fig. 8. A linear fit
yields a detection efficiency of p = 0.53(3).

0 200 400 600 800
Nabs

0

100

200

300

400

N
m

cp

FIG. 8. Measured atom number Nmcp as a function of the
measured atom number Nabs with absorption imaging. The
line is a linear fit whose slope p = 0.53(3) corresponds to the
detection efficiency of the MCP detector.

Equation (4) of the main text involves two quantities,
P (Ntot = λ) and α, for which we have not discussed
the role of a finite detection efficiency p. In the exper-
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iment, we have access to the detected quantities only,
P (Ndet

tot = λ) and αdet = ⟨Ndet
vox⟩/⟨Ndet

tot ⟩. If we account
for the finite detection efficiency through using a bino-
mial distribution with p and if we assume that the detec-
tion noise ∝

√
Np(1 − p) is negligible compared to the

shot-to-shot fluctuations, then we have

P (Ntot = λ) ≃ P (Ndet
tot = pλ) and α = αdet.

In our experiment, the measured shot-to-shot fluctua-
tions have indeed a much larger distribution than that
associated to the detection noise, so that the above
assumption is verified.

The use of detected quantities in Eq. (4) implies that
P (Nvox = n) is not the bare state statistics but the state
statistics through a detection process described by a bi-

nomial response:

P (Nvox = n) =
∑
λ∈N

P (Ndet
tot = λ)P (Nvox = n|Ndet

tot = λ)

=
∑
λ∈N

P (Ndet
tot = λ)e−αλ (αλ)n

n!

≃
∑
λ∈N

P (Ntot = λ) e−αpλ (αpλ)n
n!︸ ︷︷ ︸

Binomial of Poisson

As discussed in the main text, the reconstructed ma-
trix V does not include the effect of the finite detection
efficiency p of the detector. To relate the measured quan-
tities to the bare state statistics P (N = k), we need to
include this effect. These probabilities to detect i atoms
given that there are k atoms can be obtained by mul-
tiplying V by a matrix B gathering the probabilities to
expect the detection of j atoms given that there are k
atoms:

P (Ndet = i) =
∑
k

(V ×B)ik P (N = k). (C1)

where Bjk =
(
k
j

)
pj(1 − p)k−j describes a binomial distri-

bution parametrized by p.
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