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Abstract. Let H : R4
Ñ R be any smooth function. This article introduces some arguments for

extracting dynamical information about the Hamiltonian flow of H from high-dimensional families
of closed holomorphic curves. We work in a very general setting, without imposing convexity or
contact-type assumptions.

For any compact regular level set Y , we prove that the Hamiltonian flow admits an infinite
family of pairwise distinct, proper, compact invariant subsets whose union is dense in Y . This is
a generalization of the Fish–Hofer theorem, which showed that Y has at least one proper compact
invariant subset. We then establish a global Le Calvez–Yoccoz property for almost every compact
regular level set Y : any compact invariant subset containing all closed orbits is either equal to
Y or is not locally maximal. Next, we prove quantitative versions, in four dimensions, of the
celebrated almost-existence theorem for Hamiltonian systems; such questions have been open for
general Hamiltonians since the late 1980s. We prove that almost every compact regular level set of H
contains at least two closed orbits, a sharp lower bound. Under explicit and C8-generic conditions
on H, we prove almost-existence of infinitely many closed orbits.
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1. Introduction

1.1. Background and statement of main results. Hamilton’s equation

(1.1) ΩpXH ,´q “ ´dH

associates to any smooth function H : R2n Ñ R a so-called Hamiltonian vector field XH . The
flow of XH preserves the symplectic form Ω. The dynamical behavior of Hamiltonian flows has
been profitably studied over many years from many different perspectives. This article studies the
invariant sets and closed orbits of Hamiltonians H : R4 Ñ R from the perspective of symplectic
geometry. Most results require H to satisfy convexity or “contact-type” assumptions. We will not
make any such assumptions. This presents several difficulties.
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The most fundamental issue is that arbitrary Hamiltonians appear to be much worse-behaved
than contact-type Hamiltonians. For example, Viterbo [Vit87] proved that any contact-type level
set of a Hamiltonian carries a closed orbit, but non-contact-type examples due to Ginzburg [Gin95],
Ginzburg–Gürel [GG03], and Herman [Her99] have no closed orbits. Another issue is that few
tools exist to study the dynamics of arbitrary Hamiltonians. Symplectic field theory (SFT) and
its variants are not well-defined for non-contact-type Hamiltonians. Floer theory, e.g. symplectic
homology, can be defined, but appears to be weaker without a contact-type assumption1.

One of our results, Theorem 1, is a very general existence result for proper, compact, XH -invariant
subsets in level sets of H. Another result, Theorem 3, gives a sharp quantitative refinement, in four
dimensions, of the celebrated almost-existence theorem for closed orbits. To compensate for the
absence of SFT and Floer theory, we develop some new arguments to extract dynamical information
from simpler invariants: moduli spaces of closed J-holomorphic curves. We now state and discuss
our results and their background in detail. Afterwards, we will give sketches of the proofs.

1.1.1. Dense existence of compact invariant sets. It follows from (1.1) that dHpXHq ” 0, so the
function H is invariant under the flow of XH . Therefore, each level set of H is invariant under
the flow of XH . Herman asked at the 1998 ICM [Her98] whether the level sets themselves contain
compact XH -invariant subsets. Here is a paraphrased version of his question.

Herman’s Question. Fix a smooth function H : R2n Ñ R and a compact regular level set Y .
Does there exist a proper, compact, XH-invariant subset Λ Ă Y ?

Herman’s question is elegant but very difficult, since it is posed for arbitrary Hamiltonians without
any contact-type assumption. A groundbreaking work by Fish–Hofer [FH23] resolved Herman’s
question in the case n “ 2.

Fish–Hofer Theorem ([FH23, Theorem 1]). Let H : R4 Ñ R be a smooth function and let Y be
a compact regular level set of H. Then there exists a proper, compact, XH-invariant subset Λ Ă Y .

Our first main theorem is a generalization of the Fish–Hofer theorem.

Theorem 1. Let H : R4 Ñ R be a smooth function and let Y be a compact, connected, regular level
set of H. Then Y contains an infinite family of pairwise distinct, proper, compact XH-invariant
subsets whose union is dense in Y .

The connectedness assumption can be removed; see Remark 1.1. In the context of symplec-
tic dynamics, Theorem 1 is a substantial and possibly unexpected generalization. To illustrate
this by way of analogy, we review detection results for closed orbits in contact-type level sets in
R4. For contact-type Y , it has been known since the 1980s, after Weinstein [Wei78], Rabinowitz
[Rab78], and Viterbo [Vit87] that Y contains a closed orbit of XH . This was improved to two
closed orbits by Cristofaro-Gardiner–Hutchings [CGH16]2. It is now known, after Hofer–Wysocki–
Zehnder [HWZ98, HWZ03], Cristofaro-Gardiner–Hutchings–Pomerleano [CGHP19], and a recent
tour-de-force by Cristofaro-Gardiner–Hryniewicz–Hutchings–Liu [CGHHL23], that any star-shaped
Y has either two or infinitely many closed orbits. The works [CGHP19, CGHHL23] extend to the
contact-type case given a torsion assumption on the Chern class; work of Colin–Dehornoy–Rechtman
[CDR23] drops the torsion assumption but requires the Hamiltonian flow to be nondegenerate. Irie

1Let Y Ă R2n be a level set bounding a compact domain U . The Floer–Hofer symplectic homology of U [FH94]
is only known to detect dynamical features of Y , e.g. closed orbits, when Y is contact-type. Other variants are not
well-defined if Y is not contact-type.

2See [GHHM13] for an alternate approach to this result, for star-shaped Y , using contact homology.
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[Iri15] proved that for C8-generic Y , the closed orbits are dense. This represents over 30 years of
work, with accelerated progress in the last decade, to go from one closed orbit to infinitely many
closed orbits or to dense closed orbits. Theorem 1 proceeds straight from one proper, compact,
invariant subset in an arbitrary level set Y to a simultaneously infinite and dense family of proper,
compact, invariant subsets.

In §1.2, we outline the new ideas behind Theorem 1 that are not present in [FH23] or other
previous works. Before stating our other main results, we make some additional remarks.

Remark 1.1. Theorem 1 generalizes to disconnected level sets. Fix H : R4 Ñ R and a compact
regular level set Y . Then, each connected component Y˚ Ă Y contains an infinite family of pairwise
distinct, compact, proper XH -invariant subsets with dense union in Y˚. Here is a proof. Since Y˚

is compact, orientable, and null-homologous, there exists a smooth function H˚ : R4 Ñ R for which
0 is a regular value and Y˚ “ H´1

˚ p0q. The Hamiltonian vector fields XH and XH˚
coincide on

Y˚ after rescaling the former by a nowhere zero smooth function. Thus, their flows have the same
invariant sets. Apply Theorem 1 to H˚.

Remark 1.2. A celebrated construction by Katok [Kat73] shows that Hamiltonian flows on R2n

are remarkably flexible. His results imply that the conclusions of Theorem 1 fail to hold when
invariant subsets are replaced by other natural dynamical objects: closed orbits, minimal subsets3,
and ergodic measures4. Katok constructed a star-shaped level set in R4 whose Hamiltonian flow has
exactly two closed orbits and exactly three ergodic invariant measures: the Dirac measures on the
closed orbits and the volume measure. The two closed orbits are the only minimal subsets of the
flow. Thus, closed orbits, minimal subsets, and ergodic measures can be quite simple. Theorem 1
shows that the compact invariant subsets are always quite complex and spread out throughout the
level set.

Remark 1.3. The conclusions of Theorem 1, the so-called “dense existence of compact invariant
sets”, appear to be an emergent phenomenon in symplectic dynamics, at least in low dimensions.
Earlier this year, in joint work with Cristofaro-Gardiner [CGP24], an analogue of Theorem 1 for
area-preserving surface diffeomorphisms and three-dimensional Reeb flows was proved. Theorem 1
was announced in that article. The tools and arguments in [CGP24] are quite different from the
present work. We defer to §1.2 for a more detailed comparison.

1.1.2. A global Le Calvez–Yoccoz property. A remarkable series of works in the late 1990s and early
2000s by Le Calvez–Yoccoz [LCY97], Franks [Fra99], and Salazar [Sal06] established the following
result for invariant sets of homeomorphisms of the 2-sphere. Recall that a compact invariant set Λ
of a homeomorphism or flow is locally maximal if any sufficiently Hausdorff-close invariant set Λ1

must be contained in Λ. For any area-preserving homeomorphism ϕ of S2, it was proved that any
compact ϕ-invariant set Λ containing all closed orbits is either equal to S2 or is not locally maximal.
We call such a result a “global Le Calvez–Yoccoz property”, since it produces invariant subsets near
any invariant subset containing all closed orbits, which could occupy a significant part of S2. These
works rely on fixed point theory; it is unclear to us how to extend their arguments to flows.

Our next theorem is a global Le Calvez–Yoccoz property for Hamiltonian flows on R4. To state
the result, we need to fix some notation. For any smooth function H : R4 Ñ R, let RcpHq denote
the set of regular values s P R such that H´1psq is compact. For any s P RcpHq, let Ppsq Ď H´1psq
denote the union of the closed orbits of XH lying in H´1psq.

3A compact invariant subset in which every orbit is dense.
4An invariant probability measure that assigns each invariant subset a probability of 0 or 1.
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Theorem 2. Let H : R4 Ñ R be a smooth function. Then there exists a subset Q Ď RcpHq of full
measure such that the following holds for any s P Q. Any compact XH-invariant subset Λ Ď H´1psq
containing Ppsq is either equal to H´1psq or is not locally maximal in H´1psq.

The global Le Calvez–Yoccoz property is quite powerful. By an elementary topological argument5,
the global Le Calvez–Yoccoz property implies the dense existence of compact invariant sets. So,
Theorem 2 can be regarded as a refinement of Theorem 1, but only for almost every compact regular
level set. It is unclear to us whether every compact regular level set satisfies the global Le Calvez–
Yoccoz property. Theorem 2 also has an interesting application towards detecting closed orbits; see
Theorem 4 below.

Remark 1.4. Global Le Calvez–Yoccoz properties for monotone area-preserving surface diffeomor-
phisms and Reeb flows on torsion contact 3-manifolds are proved in [CGP24]. Ginzburg–Gürel
[GG18] proved a related result. They showed that, for any Hamiltonian diffeomorphism of CPn

with finitely many periodic points, no periodic point is locally maximal. Cineli–Ginzburg–Gürel–
Mazzucchelli [CGGM23] recently proved a contact analogue of [GG18]. They showed that, for any
nondegenerate and dynamically convex star-shaped hypersurface Y Ă R2n, no closed orbit is locally
maximal in Y .

1.1.3. Quantitative almost-existence. In the late 1980s, Hofer–Zehnder [HZ87] discovered the exis-
tence of closed orbits near any compact regular level set of a Hamiltonian. After some refinements
by Rabinowitz [Rab87] and Struwe [Str90], this became known as the “almost-existence” theorem:

Almost-existence theorem ([HZ87, Rab87, Str90]). Let H : R2n Ñ R be a smooth function.
Then there exists a subset Q Ď RcpHq of full measure such that for any s P Q, the level set H´1psq
contains a closed orbit of XH .

The almost-existence theorem holds for any Hamiltonian H without convexity or contact-type
assumptions. Since its introduction, the almost-existence theorem has been generalized to many
other symplectic manifolds, sometimes with restrictions on the Hamiltonian. There have been
many significant contributions from many authors. Symplectic methods such as Floer homol-
ogy and symplectic capacities have played a key role. We mention, in no particular order, works
of Hofer–Viterbo [HV92], Cieliebak–Ginzburg–Kerman [CGK04], Ginzburg–Gürel [GG04], Biran–
Polterovich–Salamon [BPS03], McDuff–Slimowitz [MS01], Macarini [Mac04], Schlenk [Sch06], Macarini–
Schlenk [MS05], Frauenfelder–Schlenk [FS07], Lu [Lu98, Lu00], and Fish–Hofer [FH22]. This list
should be regarded only as a sample of interesting works in this area; see [Gin05, GG09] for more
thorough surveys.

Beyond proving that closed orbits exist, establishing the optimal multiplicity of closed orbits (one,
two, infinitely many, etc.) of a Hamiltonian flow is a central problem in Hamiltonian dynamics.
The multiplicity problem has seen an enormous amount of interest and progress in several different
directions. First, a long-standing conjecture asserts that there are at least n closed orbits in any
convex level set in R2n. We refer to [DLL`24] for a comprehensive survey of results on this question.
Second, as mentioned above near Theorem 1, the multiplicity problem for contact-type level sets in
R4 has been of great interest since pioneering work of Hofer–Wysocki–Zehnder [HWZ98, HWZ03].
Third, very strong multiplicity results have been proved for level sets near extrema of Hamiltonians.
The celebrated Weinstein–Moser theorem [Wei73, Mos76] shows that any level set of H : R2n Ñ R
that is near a nondegenerate minimum of H contains at least n closed orbits. Generalizations to
other types of extrema were proved Kerman [Ker99]. A very general Weinstein–Moser theorem,

5See the arguments in [CGP24, §2.4].
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replacing R2n by other symplectic manifolds, was proved by Ginzburg–Gürel [GG09]; some fur-
ther contributions were made by Usher [Ush09]. Finally, there are several multiplicity results for
kinetic Hamiltonians on magnetic cotangent bundles. See the works of Arnold [Arn88], Ginzburg
[Gin87, Gin96], Contreras [Con06], Abbondandolo–Macarini–Paternain [AMP15], Asselle–Benedetti
[AB16], and Abbondandolo–Macarini–Mazzucchelli–Paternain [AMMP17].

Thus, there is a significant gap between the generality of the almost-existence theorem and the
known multiplicity results for Hamiltonian flows. The almost-existence theorem holds for almost
every compact regular level set of any H : R2n Ñ R; more generally the domain R2n can be replaced
by any of a large family of symplectic manifolds. On the other hand, all known multiplicity results
require that either (i) the level set is convex or contact-type, (ii) the level set is near some kind of
extremum, or (iii) the Hamiltonian is of a specific form, e.g. the kinetic Hamiltonian. This gap has
yet to be bridged. For example, the lower bound of one closed orbit in the original almost-existence
theorem has held without any improvements since the late 1980s.

Our next theorem makes some progress in this direction. We prove an almost-existence theorem
with the optimal multiplicity for any Hamiltonian H : R4 Ñ R.

Theorem 3. Let H : R4 Ñ R be a smooth function. Then there exists a subset Q Ď RcpHq of full
measure such that for any s P Q, the level set H´1psq contains at least two closed orbits of XH .

The multiplicity in Theorem 3 is seen to be optimal by example. There exist smooth four-
dimensional Hamiltonians for which every regular level set contains exactly two closed orbits6.
Our proof of Theorem 3 combines the ideas behind Theorems 1 and 2 with a careful quantitative
argument; we will give a sketch in §1.2.

Remark 1.5. As a corollary of Theorem 3, any contact-type level set in R4 contains at least two
closed orbits. This has been known since work of Cristofaro-Gardiner–Hutchings [CGH16] showing
that any Reeb flow on a closed 3-manifold has at least two closed orbits. Thus, Theorem 3 gives a
partial generalization of [CGH16] beyond the contact case.

Our last main theorem asserts that, under some additional conditions on H, one has almost-
existence of infinitely many closed orbits.

Theorem 4. Let H : R4 Ñ R be any smooth function such that for almost every s P RcpHq, any
closed orbit γ Ă H´1psq is either (i) hyperbolic or (ii) elliptic and Moser stable. Then, there exists
a full measure subset Q Ď RcpHq such that for any s P Q, the level set H´1psq contains infinitely
many closed orbits of XH .

We define hyperbolic, elliptic, and Moser stable closed orbits in §5. Theorem 4 follows from an
elementary argument using Theorem 2. As we will explain in Appendix B, the set of H satisfying
the conditions of Theorem 4 is Baire-generic in C8pR4q. So, we have the following corollary.

Corollary 1.6. There exists a Baire-generic subset G Ď C8pR4q with the following property. Any
H P G admits a full measure subset Q Ď RcpHq such that for any s P Q, the level set H´1psq
contains infinitely many closed orbits of XH .

1.2. Comments on the proofs. We outline the proofs of the main theorems. The outline of
Theorem 1 is a bit long, but provides the necessary context to give much more concise summaries
of the other main results.

6The convex four-dimensional Hamiltonian Hpxq “ p|x1|
2

` |x2|
2
q{a ` p|x3|

2
` |x4|

2
q{b, where a and b are positive

and rationally independent, is one such example.
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1.2.1. Dense existence of compact invariant sets. We start with Theorem 1. Fix a smooth function
H : R4 Ñ R and a compact regular level set Y . To explain our method and highlight some
challenges that we overcome, we review previous work on detecting closed orbits or invariant sets
in Y . First, assume that Y is contact-type (e.g. convex or star-shaped). Compactify R4 to CP2

by adding a divisor at infinity. For any tame almost-complex structure J and any pair of points
w˘ P CP2, there exists a degree 1 J-holomorphic sphere in CP2 passing through w˘. Place w`

and w´ on opposite sides so that the sphere crosses the hypersurface Y . Then, we perform a neck
stretching procedure around Y . Since Y is contact-type, the crossing sphere satisfies uniform energy
bounds as it is strrethed. By the SFT compactness theorem [BEH`03], the sphere breaks into a
holomorphic building. Thus, Y must contain a closed orbit, since each building level is asymptotic
to a non-empty union of closed orbits. This proof is illustrated in Figure 1.

Figure 1. A J-holomorphic sphere stretching along a contact-type hypersurface
and breaking into a building (right).

Next, we drop the contact-type assumption on Y . We outline a minor variant of Fish–Hofer’s
proof from [FH23] that Y contains a proper, compact, XH -invariant subset. We begin the same
way, by stretching a J-holomorphic sphere that crosses Y . Without the contact-type assumption,
however, we have no a priori energy bounds. The sphere exhibits wild behavior in the neck and
the SFT compactness theorem fails. Fish–Hofer proved that a relatively small part of the sphere,
near an end of the neck, can be controlled and limits to a single holomorphic curve in RˆY . This
holomorphic curve lives in a new class of infinite energy curves that they call feral curves; they
show that the ends of feral curves limit to XH -invariant subsets of Y . Some additional arguments
show that this particular feral curve produced by neck-stretching limits to a proper (i.e. not equal
to Y ) compact XH -invariant set Λ. This proof is illustrated in Figure 2.

Our approach to Theorem 1 relies on two observations. First, the manifold CP2 has holomorphic
curves of every degree d crossing Y , not just degree 1 spheres. Indeed, the Fish–Hofer argument
outlined above can be adapted to higher degree curves7. We obtain a proper compact invariant
subset Λd for each d. However, it seems difficult to tell from this viewpoint whether the subsets Λd

are distinct for different values of d, and moreover one cannot control their location in Y . So, a
different approach is required to extract new data from higher degree curves.

Our second observation is that the Fish–Hofer approach, by necessity, disregards a lot of infor-
mation. A limiting feral curve can only be constructed by restricting to very specific pieces of a

7We essentially do this in Proposition 3.15 on the way to proving Theorem 1.
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Figure 2. A J-holomorphic sphere stretching wildly along a non contact-type hy-
persurface. A carefully selected sequence of controlled, but successively longer, parts
(in the boxes) limits to a feral curve (right).

stretching holomorphic curve. Our solution, which we consider to be our main conceptual contri-
bution, is to not attempt to extract limiting holomorphic curves at all. We introduce a topological
alternative to the SFT compactification, called the “stretched limit set”, which remedies issues
with both the SFT approach and the Fish–Hofer approach. Unlike the SFT compactification, the
stretched limit set exists outside of the contact-type setting. Unlike the Fish–Hofer procedure, the
stretched limit set contains information from all parts of a stretching holomorphic curve, not just
the parts near the ends of the neck. Informally, the stretched limit set is a collection of pairs pΞ, sq,
where Ξ Ď p´1, 1qˆY is a subsequential Hausdorff limit of height-two slices of the stretching curves,
and s P R tracks the vertical positions of these slices. See Figure 3 for an illustration and §3.3.4
for a formal definition. We emphasize that Ξ, in general, is not a holomorphic curve. It could be a
much wilder closed subset of p´1, 1q ˆY , such as a fractal set, a subset with non-empty interior, or
even p´1, 1q ˆ Y itself.

Figure 3. A J-holomorphic curve, possibly with genus, stretching wildly along a
non contact-type hypersurface. A Hausdorff limit of any sequence of slices (in the
boxes) yields an element of the stretched limit set (right). This is usually not a
J-holomorphic curve.
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For each d, we apply our construction to a stretching degree d curve; let X d denote the resulting
stretched limit set. The set X d could be large and complicated, but with some careful analysis we
extract a connected subset Zd Ď X d satisfying several properties (see Proposition 3.8). The most
notable property is that Zd consists of nearly-invariant sets. For every element pΞ, sq P Zd, there
exists a closed XH -invariant set Λ Ď Y such that Ξ is δ-close to p´1, 1q ˆΛ, where δ Ñ 0 as d Ñ 8.
Another limiting procedure, this time taking d Ñ 8, gives after additional arguments an infinite
family of proper, compact, XH -invariant subsets with dense union. The analysis of the stretched
limit set has several different parts: delicate analysis of stretching holomorphic curves, estimates
for holomorphic curves from [FH23, CGP24], quantitative properties of the degree d moduli spaces,
and at one point the intersection theory of holomorphic curves. The last two parts are what require
us to work in four dimensions; we elaborate in §1.3.

1.2.2. Comparisons to other works. Before moving on to other results, we compare the ideas sketched
here to [FH23, CGP24]. The only significant overlap is the use of estimates from [FH23, CGP24]
and an intersection theory argument inspired by [FH23]8. The main dynamical results in [CGP24]
also use holomorphic curves, but they use holomorphic curves arising from the U -map in embedded
contact homology or periodic Floer homology, and deep properties of these curves derived from the
relationship of ECH and PFH with Seiberg–Witten theory. ECH and PFH are not available in our
setting. Certain other kinds of “limit sets” appeared in [FH23, CGP24], but they are very different
from the stretched limit set. The limit set in [FH23] is a single compact invariant set representing
the end of a feral holomorphic curve. The limit set in [CGP24] is a family of invariant sets produced
from a sequence of U -map curves with action going to 0 and bounded topology. In contrast, the
stretched limit set X d has many non-invariant sets for any fixed d. It is only by selecting a subset
of the stretched limit set and passing to the d Ñ 8 limit that we are eventually able to produce
enough invariant sets to prove Theorem 1.

1.2.3. Global Le Calvez–Yoccoz property. To prove Theorem 2, we use a different neck stretching
procedure, inspired by the “adiabatic neck stretching” procedure introduced in [FH22]. Instead of
neck-stretching at Y , we simultaneously neck-stretch at every level set near Y . For each degree d,

we introduce an analogue, the so-called “adiabatic limit set” pX d, of the stretched limit set X d. We
prove that almost every s P RcpHq and every d ě 1 there exists a well-behaved connected subset Zs

d

(see Proposition 4.5), where as above the elements become closer to being XH -invariant as d Ñ 8.
Passing to the d Ñ 8 limit produces a connected family Ys of compact invariant sets in H´1psq

such that (i) some Λ P Ys is contained in Ppsq and (ii) Y P Ys. It follows that any compact invariant

set containing Ppsq is either equal to Y or is not locally maximal.

1.2.4. Quantitative almost-existence. The proof of Theorem 3 also uses adiabatic limit sets. Assume
for the sake of contradiction that there exists a positive measure subset B Ď RcpHq such thatH´1psq

contains at most one closed orbit for each s P B. Then, we prove that pX d satisfies impossibly strong
restrictions for sufficiently large d; see Lemma 5.6 and Lemma 5.7. Here is an informal description
of what is proved. After a slight refinement of B (see Lemma 5.2), we prove that for all but Opdq

levels s P B, there exists pΞ, sq P pX d such that Ξ “ p´1, 1q ˆ Λ, where Λ Ă H´1psq is a closed
orbit. On the other hand, there exist d2 levels s P B on which Ξ can be assumed to pass through an
arbitrary point constraint. Thus, if d is sufficiently large, there must exist s P B such that H´1psq
contains a closed orbit passing through an arbitrary point. This contradicts the assumption that

8See the proof of Proposition 3.15.
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H´1psq has at most one closed orbit. Theorem 4 is proved using Theorem 2 and the fact that
existence of a Moser stable closed orbit implies existence of infinitely many closed orbits.

1.3. Remarks and questions. We collect some remarks and follow-up questions.

1.3.1. Other 4-manifolds. Our results extend with only minor modifications to other symplectic 4-
manifolds besides R4. We explain in §3.6 how to extend Theorem 1 to Hamiltonians H : T ˚S2 Ñ R
andH : T ˚T2 Ñ R. We explain in §4.6 how to extend Theorem 2 to HamiltoniansH : M Ñ R, where
M is a smooth symplectic 4-manifold that symplectically embeds into a certain closed symplectic
4-manifold W. We require that W has b` “ 1 and that the symplectic form has rational cohomology
class. Examples of such W include CP2 and its symplectic blowups, as well as products S2ˆΣ where
Σ is any closed and orientable surface. We explain in §5.3 that Theorem 4 also holds for such M,
and that Theorem 3 holds for such M provided that (i) the symplectic form on M is exact and (ii)
for any s P RcpHq, at least one component of M zH´1psq has compact closure.

1.3.2. Higher dimensions. It would be of exceptional interest to extend the results in this paper
to higher dimensions. However, all of our results rely on quantitative properties of moduli spaces
of holomorphic curves in four dimensions that do not obviously hold in higher dimensions. We
make essential use of the fact that, for any d, there exists a moduli space of degree d curves in CP2

whose index is much larger than d, approximately d2. In CPn for n ą 2, the analogue of degree is
symplectic area. There exist holomorphic curves of symplectic area d for each d, but the index of
the moduli space grows linearly instead of quadratically in d. Also, our proof of Theorem 1 uses
the intersection theory of J-holomorphic curves, which is not available in higher dimensions.

1.3.3. Almost-existence of two or infinitely many closed orbits. As mentioned above, it is now
known, after [HWZ98, HWZ03, CGHP19, CGHHL23], that any star-shaped regular level set of
a Hamiltonian H : R4 Ñ R has either two closed orbits or has infinitely many closed orbits. In-
spired by Theorem 3, we ask if this too generalizes beyond the contact-type case.

Question. Fix any smooth function H : R4 Ñ R. Then, does there exist a full measure subset
Q Ď RcpHq such that for any s P Q, the level set H´1psq either has two or infinitely many closed
orbits?

1.3.4. Ergodic invariant measures. Although they are not the main focus of this work, one could
pursue similar results for invariant probability measures. An invariant measure analogue of the
Fish–Hofer theorem is known in any dimensiongreater than 2. Ginzburg–Niche [GN15] proved that
for any smooth function H : R2n Ñ R, where n ě 2, each compact regular energy level Y carries at
least two ergodic XH -invariant probability measures. Their argument is short; it combines McDuff’s
contact-type criterion [McD87] with Viterbo’s closed orbit theorem for contact-type hypersurfaces
[Vit87]. A holomorphic curve-based proof of their result can be found in [Pra23a, Pra23b]. Taubes
[Tau09] proved a similar statement for exact volume-preserving flows on closed 3-manifolds.

In four dimensions, the lower bound of two ergodic measures is almost sharp. As discussed
in Remark 1.2 above, there exist star-shaped level sets in R4 that carry exactly three ergodic
XH -invariant probability measures. By Theorem 3, almost every compact regular level set of a
Hamiltonian H : R4 Ñ R carries at least three ergodic XH -invariant probability measures. It would
be interesting to obtain the sharp lower bound for all compact regular level sets.

Question. Fix any smooth function H : R4 Ñ R. Then, does any compact regular level set Y carry
at least three ergodic XH-invariant probability measures?
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1.4. Outline of article. Several preliminary definitions and results required for our arguments
are collected in §2. Theorem 1 is proved in §3. Theorem 2 is proved in §4. Theorem 3 and 4 are
proved in §5. We warn the reader that §5 is not self-contained. It makes free use of notation and
results from §4. Appendix A discusses existence results for closed holomorphic curves in symplectic
4-manifolds. Appendix B explains why the conditions in Theorem 4 are C8-generic.

1.5. Acknowledgements. I would like to thank Dan Cristofaro-Gardiner for useful discussions
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2. Preliminaries

This section contains definitions and results required for the proofs of the main theorems. In
§2.1–2.3, we discuss the holomorphic curve framework that we will use. In §2.4, we collect some
estimates for holomorphic curves from [FH23, CGP24]. In §2.5, we review some facts about the
Hausdorff topology for closed subsets of topological spaces. In §2.6, we present a general neck
stretching procedure for level sets of Hamiltonians on symplectic manifolds.

2.1. Geometric structures. Fix a smooth, closed, oriented manifold Y of dimension 2n´ 1 ě 3.

2.1.1. Framed Hamiltonian structures. A framed Hamiltonian structure on Y is a pair η “ pλ, ωq

of a 1-form λ and a 2-form ω such that

dω “ 0, λ^ ωn´1 ą 0.

The bundle ξ :“ kerpλq is a p2n´2q-plane bundle on Y . The two-form ω restricts to a symplectic
form on ξ. The Hamiltonian vector field Rη is defined implicitly by the equations

λpRηq ” 1, ωpRη,´q ” 0.

Example 2.1. If ω “ dλ, then λ is a contact form and Rη is equal to its Reeb vector field.

Let I Ď R be either an open or closed interval. Write a : I ˆY Ñ I for the projection onto the
real coordinate. An almost-complex structure J on I ˆY is η-adapted if

(i) J is translation-invariant;
(ii) JpBaq “ Rη;
(iii) J preserves the bundle ξ and restricts to a ω-compatible complex structure on ξ.

Let DpY q be the space of pairs pη, Jq, where η is a framed Hamiltonian structure and J is an
η-adapted almost-complex structure on RˆY . Give DpY q the topology of uniform C8-convergence.
Given a choice of pη, Jq P DpY q, we define a Riemannian metric

g :“ dab da` λb λ` ωp´, J´q.

2.1.2. Realized Hamiltonian homotopies. Let I Ď R be any closed and connected interval. A realized

Hamiltonian homotopy on I ˆY is a pair pη “ ppλ, pωq of a 1-form pλ and 2-form pω such that the
following holds:

(i) pλpBaq ” 0 and pωpBa,´q ” 0;
(ii) dpω|tsuˆY ” 0 for each s P I;
(iii) da^ pλ^ pωn´1 ą 0;

(iv) pλ is invariant under the flow of Ba;
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(v) If I is unbounded, then there exists a compact subset K Ă I such that pω is invariant under
the flow of Ba outside of KˆY .

The bundle pξ :“ kerpdaq X kerppλq is a p2n ´ 2q-plane bundle on I ˆY . The two-form pω restricts

to a symplectic form on pξ. The Hamiltonian vector field pRη is defined implicitly by the equations

dap pRηq ” 0, pλp pRηq ” 1, pωp pRη,´q.

Example 2.2. A framed Hamiltonian structure η “ pλ, ωq on Y defines a realized Hamiltonian

homotopy pη “ ppλ, pωq on I ˆY . Let pλ and pω to be the unique 1-form and 2-form such that pλpBaq ” 0,
pωpBa,´q ” 0, and

pλ|tsuˆY “ λ, pω|tsuˆY “ ω

for each s P I.

A realized Hamiltonian homotopy can be regarded as a 1-parameter family of framed Hamiltonian

structures. Fix any s P I. Define a 1-form λs and a 2-form ωs on Y as the pullbacks of pλ and pω,

respectively, by the map y ÞÑ ps, yq. Write Rs for the pullback of pRη. The pair ηs “ pλs, ωsq is a
framed Hamiltonian structure on Y and Rs is its Hamiltonian vector field.

An almost-complex structure pJ on I ˆY is pη-adapted if

(i) pJpBaq “ pR;

(ii) pJ preserves the bundle pξ and restricts to a pω-compatible complex structure on pξ;

(iii) If I is unbounded, then there exists a compact subset K Ă I such that pJ is invariant under
the flow of Ba outside of KˆY .

For each s P I, write Js for the unique translation-invariant almost-complex structure on RˆY

which coincides with pJ on tsu ˆ Y . Observe that Js is ηs-adapted.

Write DpI ˆY q for the space of pairs ppη, pJq, where pη is a Hamiltonian homotopy and pJ is a pη-
adapted almost-complex structure on I ˆY . Equip DpI ˆY q with the topology of C8-convergence.

Given a choice of pair ppη, pJq P DpI ˆY q, define a Riemannian metric

pg :“ dab da` pλb pλ` pωp´, J´q.

2.2. Holomorphic curve basics.

2.2.1. Riemann surfaces. The Riemann surfaces in this paper are allowed to have nodal singularities.
As such, define a Riemann surface to be a pair pC,nq where C is a surface C with smooth boundary
BC, equipped with an integrable almost-complex structure j, and n is the set of nodal points. This
is a discrete set of mutually disjoint pairs of points tpζ`

i , ζ
´
i qu in C z BC. We often omit the nodal

points n from the notation. A normalization rC of a Riemann surface pC,nq is a smooth surface
obtained by blowing up each point ζ˘

i to a circle Γ˘
i , and then gluing Γ`

i to Γ´
i for each i. The

diffeomorphism type of the resulting surface is independent of how Γ`
i and Γ´

i are glued together.
The Riemann surface pC,nq is irreducible if the underlying surface C is connected and connected if

the normalization rC is connected.
The genus, denoted by GpCq, of a compact Riemann surface C is the genus of the closed surface

obtained by capping off the boundary components with disks. The arithmetic genus, denoted by

GapCq, of a compact Riemann surface C is the genus of any normalization rC.
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2.2.2. Holomorphic curves in almost-complex manifolds. Fix an almost-complex manifold pW, Jq

and a Riemann surface pC,nq. A J-holomorphic curve with domain C is a smooth map u : C Ñ W
such that upζ`q “ upζ´q for each pair pζ`, ζ´q P n and such that it solves the non-linear Cauchy–
Riemann equation

J ˝Du “ Du ˝ j.

A J-holomorphic curve u : C Ñ W is compact, irreducible, or connected if the domain is compact,
irreducible, or connected, respectively. It is proper if the preimage of any compact set is compact
and boundary immersed if u immerses the boundary BC. We always assume that J-holomorphic
curves are proper and boundary immersed.

2.3. Holomorphic curves in realized Hamiltonian homotopies. Fix a closed, smooth, ori-
ented manifold Y of dimension 2n ´ 1 ě 3. Fix a closed, connected interval I Ď R and a pair

ppη, pJq P DpI ˆY q. Let u : C Ñ I ˆY be a pJ-holomorphic curve.

2.3.1. Action of a holomorphic curve. The integral
ż

C
u˚

pω

is called the action of u. Because pJ is pη-adapted, the 2-form u˚
pω is always non-negative on the

tangent planes of C. Also, u˚
pω vanishes at ζ P C if and only if either ζ is a critical point of u or

DupTζCq “ SpanpBa, pRηq. Thus, we have the following lemma.

Lemma 2.1. Fix a closed, connected interval I Ď R and a pair ppη, pJq P DpI ˆY q. Let u : C Ñ I ˆY

be a connected pJ-holomorphic curve. Then
ż

C
u˚

pω ě 0

and is equal to 0 if and only if there exists an orbit γ Ă Y of pRη such that upCq Ă Rˆγ.

Lemma 2.1 gives geometric meaning to the action. Holomorphic curves of low action, in some

sense, approximate the orbits of pRη.

2.3.2. Area of a holomorphic curve. The pullback metric u˚
pg is defined at any immersed point in

C. The volume form dvolu˚
pg is equal to the 2-form u˚pda ^ pλ ` pωq. For any Borel subset U Ă C,

write

Areau˚
pgpUq :“

ż

U z Critpuq

dvolu˚
pg “

ż

U
u˚pda^ pλ` pωq.

The equality on the right follows because u˚pda^ pλ` pωq vanishes at any critical point of u.

2.4. Area and action bounds. We collect some area and action bounds for holomorphic curves
in realized Hamiltonian homotopies. The first two results, Proposition 2.2 and 2.3, are from [FH23].
The third result, Proposition 2.4, is a slight variant of a recent result from [CGP24].

2.4.1. Stable constants. Many results in this paper involve constants depending on a choice of

ppη, pJq P DpI ˆY q. In any result, such a constant is called stable if the conclusions of the result hold

with the same constant for data in a neighborhood of ppη, pJq.
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2.4.2. Exponential area bound. The following result provides a priori bounds for pλ-integrals of the

level sets and for the area of a pJ-holomorphic curve. The bounds are expressed in terms of the

action and of the pλ-integrals of the top and bottom boundaries.

Proposition 2.2 ([FH23, Theorem 8]). Fix ppη, pJq P Dpr´8, 8s ˆ Y q. Fix any constants a` ą a´ P

r´8, 8s. Let u : C Ñ r´8, 8s ˆ Y be a compact pJ-holomorphic curve. Suppose that the following
conditions are satisfied:

(i) pa ˝ uqpCq Ă ra´, a`s;
(ii) pa ˝ uqpBCq X pa´, a`q “ H;
(iii) a` and a´ are regular values of a ˝ u.

Then there exists a stable constant c3 “ c3ppη, pJq ě 1 such that the following two bounds hold.
First, for any a0 P ra`, a´s that is a regular value of a ˝ u, we have

(2.1)

ż

pa˝uq´1pa0q

u˚
pλ ď

´

c3

ż

C
u˚

pω ` min
␣

ż

pa˝uq´1pa`q

u˚
pλ,

ż

pa˝uq´1pa´q

u˚
pλ
(

¯

ec3pa`´a´q.

Second, we have the following area bound.

(2.2) Areau˚
pgpCq ď

´

c3min
␣

ż

pa˝uq´1pa`q

u˚
pλ,

ż

pa˝uq´1pa´q

u˚
pλ
(

`

ż

C
u˚

pω
¯

pec3pa`´a´q´1q`

ż

C
u˚

pω.

2.4.3. Action quantization. The next result shows that a holomorphic curve with an interior maxi-
mum/minimum height has a positive lower bound on its action.

Proposition 2.3 ([FH23, Theorem 4]). Fix ppη, pJq P Dpr´8, 8s ˆ Y q. For any r ą 0, there exists

a stable constant ℏ “ ℏppη, pJ, rq ą 0 such that, for any compact, irreducible pJ-holomorphic curve
u : C Ñ r´8, 8s ˆ Y , we have

ż

C
u˚

pω ě ℏ ą 0

provided that the following properties are satisfied for some a0 P p´8 ` r, 8 ´ rq:

(i) Either infζPCpa ˝ uqpζq or supζPCpa ˝ uqpζq is equal to a0;
(ii) pa ˝ uqpBCq X ra0 ´ r, a0 ` rs “ H.

The original statement of [FH23, Theorem 4] assumes an a priori bound on GapCq, and the con-
stant c3 depends on this bound. The original proof of Proposition 2.3 is proved uses Proposition 2.2
and target-local Gromov compactness [Fis11]; the genus bound is required to apply the latter. Our
version does not require any a priori genus bound. This requirement can be removed by replacing
target-local Gromov compactness with the compactness theorem for J-holomorphic currents; see
[Pra23a, Remark 5.20].

2.4.4. Connected-local area bound for low-action holomorphic curves. The following technical area
bound is a variant of [CGP24, Proposition 3.8]. It was proved in the special case of annular curves
in [FH23, Theorem 5].

Proposition 2.4 ([CGP24, Proposition 3.8]). Fix ppη, pJq P Dpr´8, 8s ˆ Y q. There exists stable

constants ϵ2 “ ϵ2ppη, pJq ą 0 and ϵ3 “ ϵ3ppη, pJq ą 0 with the following property. Let u : C Ñ r´8, 8sˆY

be a compact, connected pJ-holomorphic curve such that

(i)
ş

C u
˚
pω ď ϵ2;

(ii) pa ˝ uqpBCq X r´4, 4s “ H.
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Then for any ζ P C such that pa ˝ uqpζq P p´2, 2q, we have the bound

Areau˚
pgpSϵ3pζqq ď ϵ´1

3 pχpCq2 ` 1q.

Proof. There are two differences between Proposition 2.4 and [CGP24, Proposition 3.8]. We explain
how to address these differences and defer to [CGP24] for the rest of the proof. The first difference
is that [CGP24, Proposition 3.8] is stated for framed Hamiltonian structures, while Proposition 2.4
is stated for realized Hamiltonian homotopies. The former result is stated for framed Hamiltonian
structures in order to make direct use of [FH23, Theorem 9]. This result, an essential technical
ingredient, is a exponential area bound like Proposition 2.2, but for a class of C2-small “tame
perturbations” of J-holomorphic curves. The result is stated for framed Hamiltonian structures.
The proof, however, directly generalizes to tame perturbations of J-holomorphic curves in realized
Hamiltonian homotopies.

The second difference is that [CGP24, Proposition 3.8] assumes that u : C Ñ RˆY is a proper
map from a finitely punctured closed Riemann surface, while Proposition 2.4 assumes that u is
a map from a compact Riemann surface to r´8, 8s ˆ Y . The proof of [CGP24, Proposition 3.8],
however, extends to the case where the domain is compact, as long as ζ has vertical distance at
least 1 from BC.

The non-compact domain is only used in the following argument. It is proved that there exists

some compact surface rC Ă C such that (i) ζ P rC, (ii) the vertical distance from ζ to B rC is bounded

away from 0 by a stable constant in p0, 1q, (iii) χp rCq ď χpCq, and (iv) some a priori geometric

bounds, described in [CGP24, Proposition 3.9], are satisfied. The surface rC Ă C is constructed by
taking the surface pa ˝ uq´1pra0 ´ ϵ, a0 ` ϵsq, where a0 :“ pa ˝ uqpζq and ϵ ą 0 is a small stable

constant, and then attaching all compact components of C z Intp rCq whose boundary is contained

in B rC. Property (ii) is the only property that makes essential use of the fact that C is a finitely
punctured closed Riemann surface. In the case where C is compact, (ii) can be still be proved if
the distance between ζ and BC is at least 1. □

2.5. The Hausdorff topology. Let Z denote any separable, locally compact, and metrizable
space. For example, any second countable topological manifold satisfies these conditions. Let KpZq

denote the space of closed subsets of Z, equipped with the topology of Hausdorff convergence.
Recall that KpZq is compact and metrizable [McM96, Corollary 2.2]. We review the definition of
Hausdorff convergence and then state some basic lemmas.

2.5.1. Hausdorff convergence. Fix any sequence tΛku in KpZq. Write lim inf Λk P KpZq for the set of
all z P Z such that each neighborhood intersects all but finitely many Λk. Write lim supΛk P KpZq

for the set of all z P Z such that each neighborhood intersects infinitely many Λk. Observe that
lim inf Λk Ď lim supΛk. Convergence Λk Ñ Λ in the Hausdorff topology occurs if and only if
lim inf Λk “ Λ “ lim supΛk.

2.5.2. Sets of subsequential limit points. The following lemma discusses the topology of the set of
subsequential limit points for a sequence in KpZq.

Lemma 2.5. Let Z be a separable, locally compact, and metrizable space. Let tZku denote a
sequence of connected subsets of KpZq and let Z Ď KpZq denote their set of subsequential limit
points. Assume that there exists Λk P Zk for each k such that the sequence tΛku converges in the
Hausdorff topology. Then, Z is closed and connected.

Proof. See the proof of [CGP24, Lemma 5.3]. □
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2.5.3. Continuity lemmas. We present two lemmas about continuity of maps with respect to the
Hausdorff topology. The proofs are elementary, so we omit them. The first lemma claims that
taking a union with a closed set is always Hausdorff continuous.

Lemma 2.6. Let Z be a separable, locally compact, and metrizable space. Then for any Λ1 P KpZq,
the map Λ ÞÑ Λ Y Λ1 is a continuous map KpZq Ñ KpZq.

Unlike the above, taking an intersection with a closed set is usually not continuous. The second
lemma asserts that, however, this operation is continuous in a specific setting that comes up in our
arguments.

Lemma 2.7. Let Y be a separable, locally compact, and metrizable space. For any sequence tΛku

of non-empty compact subsets of Y such that p´1, 1q ˆΛk Ñ p´1, 1q ˆΛ in Kpp´1, 1q ˆY q, we have
Λk Ñ Λ in KpY q.

2.6. Neck stretching. Let pW,Ωq denote a symplectic manifold and let J˚ be a fixed Ω-compatible
almost-complex structure. Let H : W Ñ R be any smooth function such that 0 P RcpHq. Write
Y :“ H´1p0q. As we will explain below, these choices induce a framed Hamiltonian structure η on
Y such that Rη “ XH |Y . Broadly speaking, neck stretching is the modification of J˚ near Y so
that it is diffeomorphic to a model η-adapted almost-complex structure J on I ˆY , where I is a
large compact interval.

Neck stretching constructions are well-understood when Y is contact-type (see [BEH`03]) but
they are surprisingly subtle otherwise. One must find some way to interpolate between the model
almost-complex structure near Y and the almost-complex structure J˚. This interpolation must be
done very carefully, since otherwise it is quite easy to lose control of the behavior of holomorphic
curves in the interpolation region. A neck stretching construction that is sufficient for the proof of
Theorem 1 was written down in [Pra23b]. However, it is quite different from the adiabatic neck
stretching construction used to prove Theorem 2. We take an alternate approach that gives a unified
treatment of standard neck stretching and adiabatic neck stretching.

2.6.1. Framed Hamiltonian structure. Let g˚ :“ Ωp´, J˚´q denote the J˚-invariant Riemannian
metric associated to Ω and J˚. We define a framed Hamiltonian structure η “ pλ, ωq on Y such
that the vector field R :“ Rη is equal to XH . Let ω be the restriction of Ω to Y . Let λ be the
unique smooth one-form such that λpXHq ” 1 and kerpλq “ ξ :“ TY X JintpTY q. Let J be the
unique η-adapted almost-complex structure on RˆY that coincides with J˚ on the bundle ξ.

2.6.2. Realized Hamiltonian homotopy. For any δ ą 0, let Uδ Ď W denote the open setH´1pp´δ, δqq.
Choose some δ0 such that Uδ0 does not contain any critical points of H. Now, let VH :“ ∇H{|∇H|2g˚

dneote the normalized gradient of H with respect to g˚. For any s P p´δ0, δ0q, the time-s flow of
VH restricts to a diffeomorphism fs : H

´1psq Ñ Y .

Let qλ denote the unique 1-form on Uδ0 such that (i) qλpVHq ” 0 and (ii) for any s P p´δ0, δ0q,

the restriction of qλ to H´1psq is equal to f˚
s λ. Let qω be the unique 2-form on Uδ0 such that (i)

qωpVH ,´q ” 0 and (ii) for any s P p´δ0, δ0q, the restrictions of qω and Ω to the hypersurface H´1psq

coincide. Observe that by definition, qλpXHq “ 1 at any point in Y , so there exists some δ1 P p0, δ0q

such that qλpXHq ą 0 at any point in Uδ1 . Define a vector field qX :“ XH{qλpXHq. Define a 2-plane

bundle qξ :“ kerpdHq X kerpqλq on Uδ1 . Define a diffeomorphism

ι : p´δ1, δ1q ˆ Y Ñ Uδ1 ,

ps, yq ÞÑ f´1
s pyq.
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The map ι restricts to the identity map p0, yq ÞÑ y on t0u ˆ Y and identifies tsu ˆ Y with
H´1psq for every s P p´δ1, δ1q. Observe that H ˝ ι coincides with the coordinate projection s :

p´δ1, δ1q ˆ Y Ñ p´δ1, δ1q and that ι˚VH “ Bs. Write pλ :“ ι˚qλ and pω :“ ι˚qω. The pair pη “ ppλ, pωq

is a realized Hamiltonian homotopy on p´δ1, δ1q ˆ Y . This is straightforward to verify. Write
pX :“ ι˚ qX. Observe that pX “ pRη. For any s P p´δ1, δ1q, write ηs “ pλs, ωsq P DpY q for the pullback
of pη by the map y ÞÑ ps, yq. Let Rs denote the Hamiltonian vector field of ηs. Note that ι identifies
Rs with a reparameterization of XH on H´1psq. The following lemma computes jΩ in terms of H,
qλ, and qω at any point in Y .

Lemma 2.8. At any point in Y , we have Ω “ dH ^ qλ` qω.

Proof. Fix any y P Y . Our goal is to prove

(2.3) Ωpv1, v2q “ pdH ^ qλ` qωqpv1, v2q

for any pair v1, v2 P TyW. The vector v1 splits as a sum v1 “ dHpv1qVH ` qλpv1qXH ` v1
1 where

v1
1 P qξ. The existence of the splitting follows from the splitting T W “ SpanpVH , XHq ‘ qξ. The

identification of the VH - and XH -coefficients of v1 follows because dHpVHq “ 1 and qλpXHq “ 1 at

y. Similarly, v2 “ dHpv2qVH ` qλpv2qXH ` v1
2, where v

1
2 P qξ.

The identity (2.3) follows from expanding the left-hand side and making several simplifications:

Ωpv1, v2q “ pdHpv1qqλpv2q ´ dHpv2qqλpv1qq ` Ωpv1
1, v

1
2q

` Ωpv1
1, dHpv2qVH ` qλpv2qXHq ` ΩpdHpv1qVH ` qλpv1q, v1

2q

“ pdHpv1qqλpv2q ´ dHpv2qqλpv1qq ` Ωpv1
1, v

1
2q

“ pdHpv1qqλpv2q ´ dHpv2qqλpv1qq ` qωpv1
1, v

1
2q

“ pdH ^ λ` qωqpv1, v2q.

(2.4)

The first line uses the identity ΩpVH , XHq “ 1. The second line uses the identities ΩpXH , v
1q “ 0,

ΩpVH , v
1q “ 0, where v1 is any vector in qξ. The third line uses the fact that Ω and qω coincide on

TY . The fourth line uses the following elementary identities. For any vector v1 P qξ, we have

(2.5) qωpVH , v
1q “ 0, qωpXH , v

1q “ 0.

□

2.6.3. Base almost-complex structure. Write qξ :“ kerpdHq Xkerpqλq. Choose a complex structure qJξ
on qξ which (i) coincides with the restriction of J˚ to qξ at any point in y and (ii) is compatible with

the restriction of qω to qξ. There exists an almost-complex structure qJ on W satisfying the following
properties:

(a) qJ coincides with J˚ outside Uδ0 .
(b) There exists some δ2 P p0, δ1q such that, at any point in Uδ2 , the following properties are

satisfied:
‚ qJ coincides with qJξ on qξ.

‚ qJpVHq “ qX.

(c) qJ is Ω-tame at every point, i.e. Ωpv, qJvq ą 0 for any nonzero tangent vector v.

Such an almost-complex structure is constructed as follows. Choose an almost-complex structure
qI on Uδ1 such that (i) qI coincides with qJξ on qξ and (ii) qIpVHq “ qH. By Lemma 2.8, qI is Ω-tame
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on Uδ2 for some δ2 P p0, δ1q. Let qJ be any Ω-tame almost-complex structure that is equal to J˚

outside Uδ0 and is equal to qI on Uδ2 . Write pJ :“ ι˚ qJ for the pullback of qJ . Note that by Property

(b), pJ is pη-adapted on p´δ2, δ2q ˆ Y . For each s P p´δ2, δ2q, write Js for the unique translation-

invariant almost-complex structure on RˆY agreeing with the restriction of pJ to tsu ˆ Y . The
almost-complex structure Js is ηs-adapted.

2.6.4. Deformed almost-complex structure. Fix any smooth and positive function ϕ : W Ñ p0, 1s

such that the function 1 ´ ϕ is supported in Uδ2 . Let qJϕ be the unique almost-complex structure

that is (i) equal qJ outside Uδ2 , (ii) equal to qJ on the bundle qξ, and (iii) satisfies the identity
qJϕpVHq “ ϕ´1

qX at any point in Uδ2 . A useful fact, first observed in [FH22], is that if 1 ´ ϕ is

supported in a sufficiently small neighborhood of Y , then qJϕ is Ω-tame and moreove one has a
quantitative tameness estimate.

This small neighborhood is defined as follows. Fix a constant c1 “ c1pH, g˚q ě 1 such that the
bound

(2.6) }XH}g˚ “ }VH}g˚ ď c1

is satisfied. Since pJ is Ω-tame, there exists a constant ϵ1 “ ϵ1pΩ, qJ, g˚q P p0, 1q such that

(2.7) Ωpv, qJvq ě ϵ1|v|2g˚

for any tangent vector v. Define ϵ2 :“ minp1{4, 2´8c1ϵ
1{2
1 q. Such a constant δ3 exists Since qλpXHq “

1 along Y and, by Lemma 2.8, Ω “ dH ^ qλ` qω along Y , there exists δ3 P p0, δ2q such that

(2.8) |qλpXHq ´ 1| ď ϵ2, |Ω ´ pdH ^ qλ` qωq|g˚ ď ϵ2

at any point in Uδ3 . Here is the promised tameness lemma.

Lemma 2.9. Fix any smooth and positive function ϕ : W Ñ p0, 1s such that 1 ´ ϕ is supported in

Uδ3. Then the almost-complex structure qJϕ is Ω-tame. Also, for any tangent vector v with base in
Uδ3, we have the bound

(2.9) 2Ωpv, qJϕvq ě pdH ^ qλ` qωqpv, qJϕvq.

Proof. Both assertions of the lemma proved nearly simultaneously via some elementary analysis.

Choose a tangent vector v with base in Uδ3 . Then v decomposes as a sum v “ dHpvqVH `qλpvq qX`v1

where v1 lies in qξ. We compute qJϕv “ ϕ´1dHpvq qX ´ ϕqλpvqVH ` qJv1. Expand the left-hand side of
(2.9) with respect to these splittings:

Ωpv, qJϕvq “ pϕ´1dHpvq2 ` ϕqλpvq2qΩpVH , qXq ` Ωpv1, qJv1q

` Ωpv1, ϕ´1dHpvq qX ´ ϕqλpvqVHq ` ΩpdHpvqVH ` qλpvq qX, qJv1q

“ pϕ´1dHpvq2 ` ϕqλpvq2qqλpXHq´1 ` qωpv, qJϕvq

` Ωpv1, ϕ´1dHpvq qX ´ ϕqλpvqVHq ` ΩpdHpvqVH ` qλpvq qX, qJv1q.

“ pϕ´1dHpvq2 ` ϕqλpvq2qqλpXHq´1 ` qωpv, qJϕvq

` Ωpv1,´ϕqλpvqVHq ` ΩpdHpvqVH , qJv
1q.

(2.10)

The second line is a consequence of the following simplifications. First, observe that ΩpVH , XHq “

1 and therefore that ΩpVH , qXq “ qλpXHq´1. Second, observe that pω and Ω restrict to the same 2-

form on any level set, so Ωpv1, qJv1q “ qωpv1, qJv1q, and then apply the identities in (2.5) to show
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qωpv1, qJv1q “ qωpv, qJϕvq. The third line follows from the similar fact that Ωp qX,´q is proportional to

dH, so pairs to 0 with v1 and qJv1. For any vector v2 P SpanpVH , XHq, we have

(2.11) pdH ^ qλ` qωqpv1, v2q “ pdH ^ qλ` qωqp qJv1, v2q “ 0.

The identities (2.11) follow from (2.5) above. Now, set τ “ Ω ´ pdH ^ qλ` qωq. We use (2.11) to
estimate the cross-terms at the end of (2.10):

Ωpv1,´ϕqλpvqVHq ` ΩpdHpvqVH , qJv
1q

“ τpv1,´ϕqλpvqVHq ` τpdHpvqVH , qJv
1q

ě ´c1|τ |g˚pϕ|qλpvq||v1|g˚ ` |dHpvq|| qJv1|g˚q

ě ´c1ϵ2pϕ|qλpvq||v1|g˚ ` |dHpvq|| qJv1|g˚q

ě ´c1ϵ
´1{2
1 ϵ2pϕ|qλpvq| ` |dHpvq|qqωpv, qJϕvq1{2

ě ´pϕ´1dHpvq2 ` ϕqλpvq2q{4 ´ qωpv, qJϕvq{2.

(2.12)

The second line uses the bound (2.6). The third line uses (2.8) to control |τ |g˚ . The fourth

line uses (2.7) and the identity Ωpv1, qJv1q “ qωpv1, qJϕv
1q. The fifth line uses the Cauchy–Schwarz

inequality, the fact that ϕ´1 ě 1, and the bound ϵ2 ď 2´8c´1
1 ϵ

1{2
1 . Plug in (2.12) into (2.10) and

use the upper bound on qλpXHq from (2.8) to get

(2.13) 2Ωpv, qJϕvq ě pϕ´1dHpvq2 ` ϕqλpvq2q ` qωpv, qJϕvq.

The right-hand side of (2.13) is equal to pdH ^ qλ ` qωqpv, qJϕvq, so (2.9) follows from (2.13). It

remains to show that qJϕ is Ω-tame. The right-hand side of (2.13) is positive, so qJϕ is Ω-tame on

Uδ3 . By definition, qJϕ “ qJ on the complement of Uδ3 , so
qJϕ is Ω-tame. □

2.6.5. Stretched manifolds. Fix a smooth function ϕ : W Ñ p0, 1s satisfying the following properties:

‚ The function 1 ´ ϕ is supported on Uδ3 .
‚ For any s P r´δ3, δ3s, ϕ is equal to a constant ϕpsq on the hypersurface H´1psq.
‚ For any s P r´δ3, δ3s, we have ϕpsq “ ϕp´sq.

Define a smooth manifold Wϕ and a diffeomorphism fϕ : W Ñ Wϕ as follows. Let Lϕ :“
ş0

´δ3
ϕpsq´1ds. Define a smooth function Φ : r´δ3, δ3s Ñ r´Lϕ, Lϕs by setting Φpsq :“ ´Lϕ `

şs
´δ3

ϕpsq´1. Now, writeW` :“ H´1prδ3,8qq andW´ :“ H´1pp´8,´δ3sq and setWϕ :“ W` YY r´Lϕ, Lϕsˆ

Y YY W´. We use the letter a to denote the R-coordinate on the neck. The diffeomorphism
fϕ : W Ñ Wϕ is defined to be the identity on W` and W´. It is defined on the neighborhood Uδ3

by setting

fϕ ˝ ι : p´δ3, δ3q ˆ Y Ñ p´Lϕ, Lϕq ˆ Y Ă Wϕ

to be the map ps, yq ÞÑ pΦpsq, yq. Write Ωϕ :“ pfϕq˚Ω and write pJϕ :“ pfϕq˚
qJϕ.

The almost-complex structures pJϕ could be very degenerate, since qJϕp qXq “ ϕVH is very small

when ϕ is close to 0. The pushforward by fϕ undoes this degeneracy. Define a 1-form pλϕ :“ pfϕq˚
qλ

and a 2-form pωϕ :“ pfϕq˚qω on the neck r´Lϕ, Lϕs ˆ Y . Then the pair pηϕ “ ppλϕ, pϕϕq is a realized

Hamiltonian homotopy on r´Lϕ, Lϕs ˆ Y . Write pRϕ “ pfϕq˚p qXq for its Hamiltonian vector field

and define pξϕ :“ kerpdaq X kerppλϕq. Then, we make the following claim.
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Lemma 2.10. pJϕ is pηϕ-adapted.

Proof. Recall the realized Hamiltonian homotopy pη and η̂-adapted almost-complex structure pJ on

r´δ3, δ3s ˆ Y that we defined above. Note that pηϕ “ pfϕ ˝ ιq˚pη and pJϕ “ pfϕ ˝ ιq˚
pJ . Since pJ is pω-

compatible on pξ “ kerpdsqXkerppλq, it follows from pushing forward by fϕ˝ι that pJϕ is pωϕ-compatible

on pξϕ :“ kerpdaq X kerppλϕq.

It remains to compute the action of pJϕ on Ba:

pJϕpBaq “ pfϕq˚p qJϕpf˚
ϕBaqq “ pfϕq˚

qJϕpϕpsq ¨ VHq “ pfϕq˚p qXq “ pRϕ.(2.14)

□

2.6.6. Sequence of degenerating functions. Choose a sequence of smooth functions tϕk : W Ñ p0, 1su

that C8-converges to some ϕ : W Ñ r0, 1s and satisfies the following properties:

‚ The function 1 ´ ϕk is supported on Uδ3 for each k.
‚ For each k and each s P p´δ3, δ3q, ϕk is equal to a constant ϕkpsq on the hypersurface
H´1psq.

‚ For each k and each s P p´δ3, δ3q, we have ϕkpsq “ ϕkp´sq.

‚ For each k, the integral Lϕk
“
ş0

´δ3
ϕkptq´1dt is at least 16k.

2.6.7. Convergence of geometric objects. We examine the limiting behavior as k Ñ 8 of the geo-
metric objects associated to the sequence tϕku. We simplify the notation for these objects by

replacing any “ϕk” subscripts with k and removing most of the accents. Write qJk :“ qJϕk
. Write

Lk :“ Lϕk
“
ş0

´δ3
ϕkptqdt and define a function Φkpsq :“

şs
´δ3

ϕkptq´1dt´Lk. Then, writeWk :“ Wϕk

for the stretched manifolds and fk :“ fϕk
for the diffeomorphisms W Ñ Wk. Write Ωk :“ Ωϕk

and

Jk :“ pJϕk
. Write ωk :“ pωϕk

, λk :“ pλϕk
, ηk “ pλk, ωkq, Rk :“ pRϕk

, and ξk :“ pξϕk
.

Fix any k and any a such that ra´ 8, a` 8s Ď r´Lk, Lks. Then, define pηak , J
a
k q P Dpr´8, 8s ˆ Y q

to be the pair defined by restriction of pηk, Jkq to ra ´ 8, a ` 8s ˆ Y and then translation by ´a.
The following lemma asserts that the family tpηak , J

a
k qu Ă Dpr´8, 8s ˆ Y q has compact closure.

Lemma 2.11. Fix any sequence taku such that (i) rak ´ 8, ak ` 8s Ď r´Lk, Lks for every k and
(ii) the sequence tΦ´1

k pakqu converges to some s̄p0q P r´δ3, δ3s. Then, the sequence tpηakk , Jak
k qu in

Dpr´8, 8s ˆ Y q is convergent.

Proof of Lemma 2.11. The proof will take 4 steps.
Step 1: This step proves the following elementary claim. Consider the sequence of smooth functions
sk : r´8, 8s Ñ r´δ3, δ3s defined by skpaq “ Φ´1

k pak ` aq. We claim that the sequence tsku converges
in the C8 topology to a smooth function s̄ : r´8, 8s Ñ r´δ3, δ3s. Observe that sk solves the ODE
s1
kpaq “ ϕkpskpaqq. By assumption, the sequence of initial conditions tskp0qu converges and the
coefficients tϕku converge in C8. The existence and uniqueness of solutions to ODEs then implies
that tsku converges.
Step 2: To simplify our notation, we write λ̄k :“ λakk , ω̄k :“ ωak

k , η̄k :“ ηakk , and J̄k :“ Jak
k . This

step establishes a necessary and sufficient criterion for the convergence of tη̄ku. Fix any differential
form β on r´8, 8s ˆ Y . Let β˚ denote a smooth function on r´8, 8s, valued in forms on Y , sending
a to the restriction β|tauˆY . Then, at any given point pa, yq P r´8, 8s ˆ Y , β expands as a sum

(2.15) βpa,yq “ β˚paqy ` da^ βpa,yqpBa,´q.

For any realized Hamiltonian homotopy η̄ “ pλ̄, ω̄q on r´8, 8s ˆ Y , write η̄˚ for the smooth
function a ÞÑ pλ̄˚paq, ω̄˚paqq. Now, observe that λ̄kpBaq ” 0 and ω̄kpBa,´q ” 0. It follows from the
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expansion (2.15) that η̄k Ñ η̄ “ pλ̄, ω̄q if and only if λ̄˚
k Ñ λ̄˚ and ω̄˚

k Ñ ω̄˚ in the topology of
smooth form-valued functions on r´8, 8s.
Step 3: This step constructs a pair η̄ such that η̄k Ñ η̄. We defined a realized Hamiltonian

homotopy pη on r´δ3, δ3s ˆ Y in §2.6.2 and a pη-adapted almost-complex structure pJ in §2.6.3. For
each s P r´δ3, δ3s ˆ Y , let ηs denote the framed Hamiltonian structure on Y defined by pullback
by the map y ÞÑ ps, yq. Let Js denote the unique translation-invariant almost-complex structure on

RˆY that coincides with pJ on tsu ˆ Y .
Let s̄ denote the limit of the sequence tsku from Step 1. Define a 1-form λ̄ on r´8, 8s ˆ Y by

defining λ̄pBaq ” 0 and, for each a P r´8, 8s, defining λ̄˚paq :“ λs̄paq. Define a 2-form ω̄ on r´8, 8sˆY

by defining ω̄pBa,´q ” 0 and, for each a P r´8, 8s, defining ω̄˚paq :“ ωs̄paq. By the criterion of Step
2, the convergence η̄k Ñ η̄ is equivalent to C8-convergence of the form-valued functions λ̄˚

k Ñ λ̄˚

and ω̄˚
k Ñ ω̄.

For any k, we have

λ̄k “ pι´1 ˝ f´1
k ˝ τ´akq˚

pλ, ω̄k “ pι´1 ˝ f´1
k ˝ τ´akq˚

pω.

By definition, the map f´1
k ˝ τ´ak on the cylinder r´8, 8s ˆ Y is given by the map

pa, yq ÞÑ pΦ´1
k pak ` aq, yq “ pskpaq, yq.

It follows that

λ̄˚
kpaq “ λskpaq “ λ˚ ˝ sk, ω̄˚

k paq “ ωskpaq “ ω˚ ˝ sk

for each a P r´8, 8s. Since sk Ñ s̄ in the C8 topology, it follows that λ̄˚
k converges to λ˚ ˝ s̄ “ λ̄˚

and that ω̄˚
k converges to ω˚ ˝ s̄ “ ω̄˚ as desired.

Step 4: This step defines a η̄-adapted almost-complex structure J̄ and proves that J̄k Ñ J̄ ,
completing the proof of the lemma. Write ξ̄ :“ kerpdaq X kerpλ̄q. The bundle ξ̄ has the following
form. For each s, let ξs “ kerpdaqXkerpλsq denote the translation-invariant 2-plane bundle on RˆY
associated to the framed Hamiltonian structure ηs. Then, for any a P r´8, 8s ˆ Y , the restriction

of ξ̄ to tau ˆ Y coincides with the restriction of ξs̄paq. This assertion follows from the fact that the

restriction of λ̄ to tau ˆ Y is equal to λs̄paq.

Recall the pη-adapted almost-complex structure pJ that we defined in §2.6.3. For each s P r´δ3, δ3s,
we defined Js to be the unique translation-invariant almost-complex structure on RˆY whose
restriction to tsu ˆ Y coincides with J , and observed that Js is ηs-adapted, and therefore restricts
to an ωs-compatible complex structure on the bundle ξs. Define J̄ to be the unique η̄-adapted
almost-complex structure such that for any a P r´8, 8s, when restricted to the hypersurface tauˆY ,

the action of J̄ on ξ̄ is identified with the action of J s̄paq on ξs̄paq.
Now, we will prove that J̄k Ñ J̄ . The bundle ξk :“ kerpdaq X kerpλ̄kq coincides on tau ˆ Y with

the bundle ξskpaq. When restricted to the hypersurface tau ˆ Y , the action of J̄k on ξk is identified

with the action of Jskpaq on ξskpaq. The convergence J̄k Ñ J̄ will follow from showing that, for any
smooth vector field v on r´8, 8s ˆ Y , we have J̄kpvq Ñ J̄pvq in the C8 topology. The vector field v
splits uniquely as v “ dapvqBa ` λ̄pvqX̄ ` v1, where X̄ denotes the Hamiltonian vector field of η̄ and
v1 P ξ̄. For each k, it also splits as v “ dapvqBa ` λ̄kpvqX̄k ` v1

k, where X̄k denotes the Hamiltonian
vector field of η̄k and v1

k P ξ̄k. We compute

J̄kpvq “ dapvqX̄k ´ λ̄kpvqBa ` J̄kpv1
kq, J̄pvq “ dapvqX̄ ´ λ̄pvqBaa` J̄pv1q.

By Step 3, we have η̄k Ñ η̄, so

(2.16) X̄k Ñ X̄, λ̄kpvq Ñ λ̄pvq
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and therefore

(2.17) v1
k “ v ´ dapvqBa ´ λ̄kpvqX̄k Ñ v ´ dapvqBa ´ λ̄pvqX̄ “ v1

in the C8 topology. By expanding J̄ 1
kpv1

kq and J̄pv1q as functions of pa, yq P r´8, 8s ˆ Y , we have

(2.18) J̄kpv1
kpa, yqq “ Jskpaqpv1

kpa, yqq, J̄pv1pa, yqq “ J s̄paqpv1pa, yqq.

It follows from (2.17), (2.18), and the C8-convergence sk Ñ s̄ that

(2.19) J̄kpv1
kq Ñ J̄pv1q

in the C8 topology. The convergence J̄kpvq Ñ J̄pvq follows from (2.16) and (2.19). □

Remark 2.12. Many of our results involve stable constants depending on a choice of ppη, pJq P

Dpr´8, 8s ˆ Y q. These constants can be replaced by constants independent of ppη, pJq, such that the

conclusions of the results hold for ppη, pJq “ pηak , J
a
k q for any a and k. This is a consequence of the

following general principle. By stability, for any precompact subset D˚ Ď Dpr´8, 8s ˆ Y q, stable
constants can be replaced constants that do not vary on the family D˚. Lemma 2.11 shows that
the family tpηak , J

a
k qu is precompact.

3. Dense existence of compact invariant sets

In this section, we will prove Theorem 1. For the remainder of the section, we fix a smooth
function H : R4 Ñ R. Fix s0 P RcpHq such that H´1ps0q is connected. Assume without loss of
generality that s0 “ 0; we reduce to this case by replacing H with H ´ s0, since adding a constant
to H will not change the Hamiltonian vector field. Set Y :“ H´1p0q.

3.1. An existence result for almost cylinders. As we discussed in §1.2, we construct by neck
stretching holomorphic curves of high degree. We begin by introducing “δ-almost cylinders”, a
convenient formal notion of nearly-invariant set, and proving some basic lemmas. We then state
our main existence result for almost cylinders.

3.1.1. Definition of almost cylinders. Fix any pη̂, Ĵq P Dpr´1, 1sˆY q and any δ ą 0. A closed subset

Ξ Ď p´1, 1q ˆY is a δ-almost cylinder with respect to ppη, pJq if it is non-empty and the following two
bounds hold for any point z “ pt, yq P Ξ:

(3.1) sup
τPp´1,1q

dist
pgppτ, yq,Ξq ď δ, sup

τPp´1,1q

dist
pgppt, ϕτ pyqq,Ξq ď δ.

We will omit ppη, pJq from the notation whenever there is no risk of ambiguity.

3.1.2. Properties of almost cylinders. Our first lemma shows that non-empty Hausdorff limits of
δ-almost cylinders, for δ P p0, 1{2q, are themselves δ-almost cylinders.

Lemma 3.1. Fix any δ P p0, 1{2q. Let tppηk, pJkqu be a sequence in Dpr´1, 1s ˆ Y q converging to

ppη, pJq. Fix a sequence tΞku in Kpp´1, 1q ˆ Y q such that Ξk is a δ-almost cylinder with respect to

ppηk, pJkq for each k. Then, the set Ξ “ lim supΞk is a δ-almost cylinder with respect to ppη, pJq.

Proof. The proof of the lemma will take 2 steps.
Step 1: This step shows that Ξ is non-empty. Since δ P p0, 1{2q, it follows that for each k, there
exists some point zk “ ptk, ykq P Ξk with tk P r´1{2, 1{2s. Since r´1{2, 1{2s ˆ Y is compact, the
points zk have a subsequential limit point and therefore Ξ is non-empty.
Step 2: This step shows that Ξ satisfies both bounds in (3.1). The proofs of both bounds are
similar, so we only give a full proof of the first bound. Fix any point z “ pt, yq P Ξ. Then,
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after passing to a subsequence, there exist points zk “ ptk, ykq P Ξk such that zk Ñ z. Fix any
τ P p´1, 1q. For each k, there exists z1

k P Ξk such that dist
pgkppτ, ykq, z1

kq ď δ, where pgk denotes the

Riemannian metric induced by ppηk, pJkq. Note that lim supkÑ8 dist
pgkpz1

k,Ξq “ 0. Then, using the
triangle inequality, we obtain the following bound:

dist
pgppτ, yq,Ξq ď lim sup

kÑ8

dist
pgppτ, ykq,Ξq

ď lim sup
kÑ8

pdist
pgppτ, ykq, z1

kq ` dist
pgpz1

k,Ξqq

“ lim sup
kÑ8

pdist
pgkppτ, ykq, z1

kq ` dist
pgkpz1

k,Ξqq ď δ.

The third line uses the convergence pgk Ñ pg. □

The next lemma confirms the expected fact that δ-almost cylinders become cylinders over compact
invariant sets as δ Ñ 0.

Lemma 3.2. Fix some ppη, pJq P Dpr´1, 1s ˆ Y q. Assume that Ξ is a δ-almost cylinder with respect

to ppη, pJq for every δ ą 0. Then Ξ “ p´1, 1q ˆ Λ, where Λ P KpY q is a non-empty, compact,
XH-invariant subset of Y .

Proof. For any z “ pt, yq P Ξ, taking δ Ñ 0 in (3.1) implies that pτ, yq, pt, ϕτ pyqq P Ξ. □

3.1.3. Existence of almost cylinders. We now state our main existence result for almost cylinders.

Proposition 3.3. There exists a pair pη, Jq P DpY q such that Rη “ XH and such that the following
holds. Fix a finite set of points p Ă Y and a positive integer n ą 2. Then there exists a connected
subset Zp,n Ď Kpp´1, 1q ˆ Y q with the following properties:

(a) There exists Ξ P Zp,n such that t0u ˆ p Ă Ξ.
(b) There exists Ξ P Zp,n equal to p´1, 1q ˆ Λ, where Λ is a proper, compact, XH-invariant

subset of Y .
(c) Each Ξ P Zp,n is a 1{n-almost cylinder with respect to pη, Jq.

3.2. Proof of Theorem 1. We defer the proof of Proposition 3.3 to §3.4 and first explain how to
use it to prove Theorem 1.

Proof. The proof will take 3 steps.
Step 1: This step uses Proposition 3.3 to construct a connected family of invariant subsets of Y
satisfying several properties. Fix a finite set of points p Ă Y . Let tZp,nu be the sequence of subsets
of Kpp´1, 1q ˆ Y q from Proposition 3.3. After passing to a subsequence in n, we may assume that
there exists Ξn P Zp,n such that the sequence tΞnu converges.

Let Zp Ă Kpp´1, 1q ˆ Y q be the set of all subsequential limit points of the sequence tZp,nu in
Kpp´1, 1qˆY q. That is, Ξ P Zp if and only if there exists a subsequence nj and elements Ξj P Zp,nj

such that limjÑ8 Ξj “ Ξ. Since each Zp,n is connected, Zp is connected by Lemma 2.5. We claim
that Zp satisfies the following properties:

(a) There exist some Ξ P Zp such that t0u ˆ p Ă Ξ.
(b) There exists a compact XH -invariant set Λ P KpY q such that

(i) The set p´1, 1q ˆ Λ is an element of Zp;
(ii) There exists a convergent sequence Λj Ñ Λ in KpY q such that Λj is a proper, compact,

XH -invariant set for each j.
(c) Each Ξ P Zp is equal to p´1, 1qˆΛ, where Λ P KpY q is a non-empty, compact, XH -invariant

set.
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We explain how these properties follow from Proposition 3.3(a–c) and the properties of almost
cylinders discussed above. Property (a) is a direct consequence of Proposition 3.3(a). To prove
Property (b), we observe that by Proposition 3.3(b), there exists for each n a proper compact
XH -invariant set Λn such that p´1, 1q ˆ Λn P Zp,n. There exists a subsequence tnju such that
p´1, 1q ˆΛnj Ñ p´1, 1q ˆΛ P Zp. Then apply Lemma 2.7. To prove Property (c), we observe that,
by Proposition 3.3(c) and Lemma 3.1, each element Ξ P Zp must be a 1{n-almost cylinder for each
n. Then, apply Lemma 3.2.
Step 2: This step uses another limit construction to construct a large connected family Y of
compact XH -invariant subsets. Fix a sequence of finite subsets pℓ Ă Y that converge to Y in the
Hausdorff topology. More simply put, pℓ becomes increasingly dense in Y as ℓ Ñ 8. For each
ℓ, there exists a connected subset Zpℓ

Ď Kpp´1, 1q ˆ Y q satisfying Properties (a–c) from Step 1.
After passing to a subsequence, we may assume that there exists Ξℓ P Zpℓ

such that the sequence
tΞℓu converges. Let Z denote the set of subsequential limit points of the sequence tZpℓ

u as ℓ Ñ 8.
Then, let Y Ď KpY q denote the image of Z under the map Ξ ÞÑ t0u ˆ Ξ.

Note that Z is connected by Lemma 2.5 and that Y is connected by Lemma 2.7 and Property
(c) from Step 1. The following properties of Y are deduced from Properties (a–c) from Step 1:

(a’) Y P Y.
(b’) There exists a convergent sequence Λj Ñ Λ in KpY q such that Λ P Y and each Λj is a

proper, compact, XH -invariant set.
(c’) Each Λ P Y is a non-empty, compact, XH -invariant set.

Step 3: This step finishes the proof by considering two opposite cases and resolving each one
separately. First, assume that Y consists of a single element. By Property (a’) from Step 2, we have
Y “ tY u. By Property (b’), Y is the limit of a sequence tΛju of proper, compact, XH -invariant sets.
The union of such a sequence is dense, and such a sequence must have infinitely many elements, so
the theorem is proved in this case. Second, assume that Y does not consist of a single element. By
Property (a’), we have Y P Y. Since Y is connected, Y is not an isolated point in Y. Therefore,
Y is a Hausdorff limit of a sequence tΛju, where each Λj P KpY q is a proper compact subset. By
Property (c’), each Λj is XH -invariant. As in the first case, this suffices to prove the theorem. □

3.3. Geometric setup. We have proved Theorem 1 assuming that Proposition 3.3 is true. To set
the stage, we embed Y into CP2, and then stretch the neck around Y via the procedure introduced
in §2.6. Then, we introduce the key new object in our method: the “stretched limit set”.

3.3.1. Compactification. Choose B ą 0 such that Y lies inside the open ball of symplectic volume B
centered at the origin. Denote this ball by B. Let W denote the complex projective space CP2 and
let Ω denote the Fubini–Study symplectic form, normalized so that pW,Ωq has symplectic volume
1. The ball B is symplectomorphic to W z D, where D is a complex line such that rDs P H2pW;Zq

is Poincaré dual to B´1rΩs P H2pW;Zq. Passing through the symplectomorphism B » W z D,
we regard Y as a hypersurface in W that is disjoint from D. After modifying H outside of a
neighborhood of Y , we may assume without loss of generality that it extends to a smooth function
on W, also denoted by H, such that 0 P RcpHq, Y “ H´1p0q, and H ą 0 on D. For simplicity, we
assume that B “ 1. Rescaling Ω to B´1Ω rescales XH by a constant, which does not change its
invariant subsets.

3.3.2. Recollections from §2.6. Let J˚ be an Ω-compatible almost-complex structure on W such
that D is J˚-holomorphic. Choose δ0 ą 0 such that p´δ0, δ0q Ď RcpHq and such that Uδ0 “

H´1pp´δ0, δ0qq is disjoint from D. We repeat the setup from §2.6.1–2.6.5.
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‚ In §2.6.1 we defined a framed Hamiltonian structure η “ pλ, ωq on Y .

‚ In §2.6.2 we extended η to a pair qη “ pqλ, qωq on Uδ0 , fixed collar coordinates ι : p´δ1, δ1qˆY Ñ

Uδ1 , and defined a realized Hamiltonian homotopy pη “ ppλ, pωq to be the pullback ι˚qη. We

defined pΩ “ ι˚Ω.
‚ In §2.6.3 we defined an Ω-tame almost-complex structure qJ on W and fixed pJ “ ι˚ qJ ; recall

that pJ is pη-adapted on p´δ2, δ2q ˆ Y .

‚ In §2.6.4 we defined deformations qJϕ, agreeing with qJ on the bundle qξ “ kerpdsq X kerpqλq,
which by Lemma 2.9 are tame if 1 ´ ϕ is supported in Uδ3 .

‚ In §2.6.5, we defined stretched manifolds Wϕ, containing long necks r´Lϕ, Lϕs ˆ Y , and

diffeomorphisms fϕ : W Ñ Wϕ. Let pΩϕ, pηϕ “ ppλϕ, pωϕq, qξϕ, pJϕ denote the pushforwards by

fϕ of Ω, qη “ pqλ, qωq, qξ, qJ , respectively.

3.3.3. Neck stretching. We repeat the construction in §2.6.6 with some extra conditions. Choose a
constant δ4 P p0, δ3{2q and, for each k ą 4δ´1

4 , a smooth function ϕk : W Ñ p0, 1s with the following
properties:

‚ The function 1 ´ ϕk is supported on Uδ4 .
‚ For any s P p´δ3, δ3q, ϕk is equal to a constant ϕkpsq on the hypersurface H´1psq.
‚ For any s P p´δ3, δ3q, we have ϕkpsq “ ϕkp´sq.

‚ The integral Lϕk
“
ş0

´δ3
ϕkptq´1dt is at least 16k.

‚ ϕkpsq “ k´2 for every s P p´k´1, k´1q.

We require the sequence tϕku to converge as k Ñ 8 to some smooth function ϕ : W Ñ r0, 1s.

Fix any k. Define qJk, Lk, Φk, Wk, fk, Ωk, Jk, λk, ηk, Rk, and ξk as in §2.6.7. Recall the pairs
pηak , J

a
k q P Dpr´8, 8s ˆ Y q. The following convergence result is a consequence of Lemma 2.11.

Corollary 3.4. Fix any sequence taku such that ak P p´k, kq for each k. Then, we have pηakk , Jak
k q Ñ

pη, Jq in Dpr´8, 8s ˆ Y q.

Proof. Recall the functions sk from the proof of Lemma 2.11. The functions Φk restrict to dif-
feomorphisms from p´k, kq to p´k´1, k´1q. It follows that the sequence tsku converges in C8 to
the function s̄ ” 0. Now apply Lemma 2.11. Step 3 of its proof shows that the limiting pair is
pη, Jq. □

3.3.4. Stretched limit set. We introduce the stretched limit set of a sequence of Jk-holomorphic
curves. Given a0 P R, let τa0 denote the shift map pa, yq ÞÑ pa´ a0, yq on RˆY .

For any sequence tkju, fix a closed, connected Riemann surface Cj and a Jkj -holomorphic curve
uj : Cj Ñ Wkj . The stretched limit set X Ď Kpp´1, 1q ˆY q ˆ p´1, 1q is the collection of pairs pΞ, sq
for which there exists a sequence aj P p´kj , kjq such that:

(i) k´1
j aj Ñ s;

(ii) A subsequence of the slices

τaj ¨

´

ujpCjq X paj ´ 1, aj ` 1q ˆ Y
¯

Ď p´1, 1q ˆ Y

converge in Kpp´1, 1q ˆ Y q to Ξ.

Write πK and πR for the projections of Kpp´1, 1q ˆ Y q ˆ p´1, 1q onto its factors. The following
lemma asserts that a subsequence tkju can always be chosen such that the stretched limit set X is
well-connected.
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Lemma 3.5. Fix a sequence tkju and a sequence uj : Cj Ñ Wkj of Jkj -holomorphic curves. Then
there exists a subsequence tujℓu whose stretched limit set X has the following property. For any

closed, connected interval J Ď Ξ of positive length, the subset π´1
R pJ q Ď X is connected.

Proof. For each j, define a map

Sj : p´1, 1q Ñ Kpp´1, 1q ˆ Y q,

s ÞÑ τkjs ¨ u´1
kj

ppkjs´ 1, kjs` 1q ˆ Y q.

An elementary argument shows that Sj is continuous; see [CGP24, Lemma 5.2]. Choose a
subsequence tujℓu as follows. Fix a countable and dense subset s Ă p´1, 1q. For each s P s, we
require the sequence of sets tSjℓpsqu to converge.

Let X denote the stretched limit set of the sequence tujℓu and let J be any closed, connected

interval of positive length. The interval J contains some s P s. Set X 1 :“ π´1
R pJ q. The sequence

tSjℓpsqu converges to some Ξ; it follows that pΞ, sq P X 1.
We claim that X 1 is connected. We prove this claim by showing that for any element pΞ1, s1q P X 1,

there exists a connected subset X 2 Ď X 1 containing both pΞ, sq and pΞ1, s1q. By definition of X 1, there
exists a further subsequence tj1

ℓu and a sequence taℓu such that pj1
ℓq

´1aℓ Ñ s1 and Sj1
ℓ
ppj1

ℓq
´1aℓq Ñ Ξ1

in the Hausdorff topology.
For each large ℓ, define J ℓ Ď J to be the closed interval with endpoints pj1

ℓq
´1aℓ and s for each i.

Then, set Zℓ :“ Sj1
ℓ
pJ ℓq Ď Kpp´1, 1q ˆ Y q. Since Sj1

ℓ
is continuous and J ℓ is connected, it follows

that Zℓ is connected for each i. Now, define X 2 to be the set of subsequential limit points of the
sequence tZℓu. The set X 2 contains both pΞ, sq and pΞ1, s1q, and it is connected by Lemma 2.5. To
finish the proof of the claim, we only need to verify that X 2 Ď X 1. The set of subsequential limit
points of the sequence tJ ℓu is the closed interval J 2 with endpoints at s and s1. Since J is closed
and J ℓ Ď J for each ℓ, we have J 2 Ď J , which implies that X 2 Ď X 1. □

3.4. Proof of Proposition 3.3. Fix a finite set of points p Ă Y and an integer n ě 1 as in the
statement of the proposition. Let m :“ #p denote the cardinality of p.

3.4.1. Closed holomorphic curves with point constraints. For any integer d ě 1 and any integer k ě

1, define a collection of points wd,k Ă Wk as follows. Let ad,k :“ t´ikd´2 | i P ZX r´d2, d2su denote
a finite set of 2d2`1 equally spaced points in r´k, ks. Choose points w` P W` and w´ P W´. Then,
set wd,k :“ pad,k ˆpq Y tw`, w´u. The set ad,k ˆp is the set of points pa, pq P r´k, ks ˆ Y Ă Wk

such that a P ad,k and p P p.
We construct holomorphic curves ud,k passing through wd,k using the following well-known exis-

tence result. To state it, we define for any integer e ě 1 a pair of integers Ipeq :“ pe2 ` 3eq{2 and
gpeq :“ pe´ 1qpe´ 2q{2.

Proposition 3.6. Let A P H2pW;Zq denote the Poincaré dual of Ω. Fix any integer e ě 1 and
any finite subset w Ă W of size at most Ipeq{2. Then, for any Ω-tame almost-complex structure
J̄ , there exists a closed, connected Riemann surface C and a J̄-holomorphic curve u : C Ñ W such
that (i) GapCq “ gpeq, (ii) u˚rCs “ eA and (iii) w Ă upCq.

Proof. The proposition is proved in §A.3. □

Observe that #wd,k “ 2pmd2 ` m ` 2q ď Ip4mdq{2. Recall also that qJk is Ωk-tame for each k

by Lemma 2.9. Apply Proposition 3.6 with e “ 4md, w “ f´1
k pwd,kq, and J̄ “ qJk. Composing the

resulting qJk-holomorphic curve with fk, we deduce the following corollary.
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Corollary 3.7. Fix any d ě 1 and any large k. Let Ak P H2pWk;Zq denote the Poincaré dual of
rΩks. Then there exists a closed, connected Riemann surface Cd,k and a Jk-holomorphic curve ud,k :
Cd,k Ñ Wk such that (i) GapCq “ gp4mdq, (ii) pud,kq˚rCd,ks “ 4mdAk and (iii) wd,k Ă ud,kpCd,kq.

3.4.2. Construction of stretched limit sets. For each fixed d, let tud,ku denote the sequence of curves
from Corollary 3.7. For any subsequence k “ tkju, let X dpkq denote the stretched limit set of the
sequence tud,kju.

3.4.3. Main technical proposition. The following proposition concerns the structure of X dpkq when
d is large.

Proposition 3.8. Fix any integer n ě 1. Then there exists a large integer d " 1, a sequence k, and
a closed, connected interval J Ď p´1, 1q such that π´1

R pJ q Ď X dpkq has the following properties:

(a) There exists pΞ, sq P π´1
R pJ q such that t0u ˆ p Ă Ξ;

(b) There exists pΞ, sq P π´1
R pJ q such that Ξ “ p´1, 1q ˆ Λ, where Λ Ď Y is a proper, compact,

Rη-invariant set.

(c) For each pΞ, sq P π´1
R pJ q, the set Ξ is a 1{n-almost cylinder.

(d) π´1
R pJ q is connected.

3.4.4. Proof of Proposition 3.3. We defer the proof of Proposition 3.8 to §3.5. We first use Propo-
sition 3.8 to prove Proposition 3.3.

Proof. Now, let d, k, and J be as in Proposition 3.8. Set W :“ π´1pJ q Ď X dpkq. The set W
is connected by Proposition 3.8(d). Define Zp,n Ď Kpp´1, 1q ˆ Y q to be equal to πKpWq. Since
W is connected and πK is continuous, Zp,n is connected. Proposition 3.3(a–c) each follow from
Proposition 3.8(a–c) since Rη “ XH . □

3.5. Proof of Proposition 3.8.

3.5.1. Capped slices and accumulation sets. We introduce several definitions and notations to pre-
pare for the proof of Proposition 3.8.

Let R Ď r´1, 1s denote the set of levels t such that, for each d and k, we have (i) kt is a
regular value of a ˝ ud,k and (ii) the subset pa ˝ ud,kq´1pktq does not contain any nodal points.
Now, given any closed interval I Ď p´1, 1q with endpoints in R, we associate to it a compact sub-
surface CI

d,k Ď Cd,k, called a capped slice. Write Σ :“ pa ˝ ud,kq´1pk ¨ Iq. The set Σ is non-empty,

because by Corollary 3.7, ud,kpCd,kq is connected and passes through points in both components of
Wk z r´Lk, Lks ˆ Y . Moreover, Σ is a smooth, compact surface because the endpoints of I lie in
R. Call an irreducible component of Z of Cd,k z IntpΣq short if (i) ud,kpZq Ă p´k, kq ˆ Y and (ii)
supζPZpa ˝ ud,kqpζq ´ infζPZpa ˝ ud,kqpζq ď 2.

Let ∆ Ď Cd,k z IntpΣq denote the union of all short connected components. Then, set CI
d,k :“

ΣY∆. We track the level sets where the action and topology of the curves ud,k accumulate as d Ñ 8.
Given d ě 1, a real number ϵ ą 0, and a sequence k “ tkju, define a subset rωpd, ϵ;kq Ă p´1, 1q

as follows. We say s P rωpd, ϵ;kq if and only if there exists a sequence of intervals Lj satisfying the
following properties:

(i) The sequence tLju converges to tsu in KpRq;
(ii) We have the action bound lim supjÑ8

ş

C
Lj
d,kj

u˚
d,kj

ωkj ą ϵ.

The subset sωpd, ϵ;kq tracks the accumulation of action. Define sωpd;kq :“
Ť

ϵą0 sωpd, ϵ;kq.
Next, given d ě 1, an integer b ě 1, and a sequence k “ tkju, define a subset rχpd, b;kq as follows.

We say s P rχpd, b;kq if it admits a sequence of intervals Lj satisfying the following properties:
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(i) The sequence tLju converges to tsu P KpRq;

(ii) There exists a sequence of irreducible components Zd,j Ď C
Lj

d,kj
such that

lim sup
jÑ8

χpZd,jq ă ´b.

Note that, for any sequence k, any subsequence k1, any d, b, and ϵ, we have

(3.2) sωpd, ϵ;k1q Ď sωpd, ϵ; bfkq, sωpd;k1q Ď sωpd;kq, sχpd, b;k1q Ď sχpd, b;kq.

We now prove bounds on the size of these subsets. The global area and topology bounds from
Corollary 3.7 are an essential ingredient in our arguments.

Lemma 3.9. For any d ě 1, ϵ ą 0, and sequence k, there exists a subsequence k1 such that

(3.3) #rωpd, ϵ;k1q ď 8mϵ´1d.

Proof. Define N :“ t8mϵ´1du ` 1. Assume for the sake of contradiction that for any subsequence
k1, we have # sωpd, ϵ;k1q ě N . The proof will take 3 steps.
Step 1: This step proves that, given our assumptions, there exists k1 “ tkju Ď k and a finite subset
ts1, . . . , sNu with the following property. For each i, there exists a sequence of intervals Lj,i such

that (i) Lj,i Ñ si and (ii) for each j, the surfaces Cd,j,i :“ C
Lj,i

d,kj
have action

ş

Cd,j,i
u˚
d,kj

ω ě ϵ.

The proof follows from repeated application of the following inductive step. For any subsequence
k1, call a point s P p´1, 1q satisfying (i) and (ii) a pk1, ϵq-point. Note that if s is a pk1, ϵq-point, it is
a pk2, ϵq-point for any subsequence k2 Ď k1. Suppose a subsequence k1 has exactly N 1 pk1, ϵq-points
ts1, . . . , sN 1u. Then, if N 1 ă N , we claim that there exists a subsequence k2 Ď k1 with at least
N 1 ` 1 pk2, ϵq-points. To prove this, it suffices to find some k2 with a pk2, ϵq-point not equal to any
of the si. By our assumptions, we have sωpd, ϵ;k1q ą N 1, so there must exist some s P sωpd, ϵ;k1q

which is not equal to any of the si. By definition of sωpd, ϵ;k1q, there must exist a subsequence k2

such that s is a pk2, ϵq-point.
By applying the above inductive step at most N times, we find a subsequence k1 that has a set

ts1, . . . , sNu of N distinct pk1, ϵq-points.
Step 2: Let k1 “ tkju and ts1, . . . , sNu be the subsequence and levels from Step 1. This step proves
that, for sufficiently large k, the surfaces Cd,j,i are disjoint. The surface Cd,j,i is constructed by
capping Σd,j,i :“ pa˝ud,kj q´1pkj ¨Lj,iq with short connected components of Cd,kj z IntpΣd,j,iq. Thus,
every point in pa ˝ ud,kj qpCd,j,iq is a distance of at most 2 from kj ¨ Lj,i. The intervals kj ¨ Lj,i and
kj ¨ Lj,i1 are very far from each other for i ‰ i1 and k sufficiently large, so it follows that Cd,j,i and
Cd,j,i1 are disjoint.
Step 3: This step finishes the proof. By Corollary 3.7 and Lemma 2.9, we have

(3.4) 4md “

ż

Cd,kj

u˚
d,kj

Ωkj ě
1

2

N
ÿ

i“1

ż

Cd,j,i

u˚
d,kj

ωkj ě Nϵ{2 ą 4md.

This is the desired contradiction. □

Lemma 3.9 implies that, outside of a countable set of levels, no action accumulates at all.

Lemma 3.10. Fix any d ě 1 and any sequence k. Then, there exists a subsequence k1 Ď k such
that the set sωpd;k1q is countable.

Proof. By Lemma 3.9 and a diagonal argument, there exists a subsequence k1 such that sωpd, 1{n;k1q

is finite for every n ě 1. It follows that sωpd;k1q “
Ť

ně1 sωpd, 1{n;k1q is countable. □
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Now, we bound the size of sχpd, b;kq.

Lemma 3.11. There exists a constant c4 ě 1 such that the following holds for any d ě 1, b ě 1,
and sequence k. There exists a subsequence k1 Ď k such that

(3.5) #rχpd, b;k1q ď 4mpc4d` 4mb´1d2q.

To prove Lemma 3.11, we need the following technical lemma. It claims that any Z Ă Cd,k

containing an interior point with vertical distance at least 1 from its boundary has a lower bound
on its symplectic area.

Lemma 3.12. There exists a constant c4 ě 1 such that the following holds for any d and k. For
any compact and irreducible Riemann surface Z Ă Cd,k, we have

(3.6)

ż

Z
u˚
d,kΩk ě c´1

4 ą 0.

provided that:

(i) There exists a0 P p´k, kq such that ud,kpBZq Ă ta0u ˆ Y .
(ii) There exists some ζ P Z such that ud,kpζq R ra0 ´ 2, a0 ` 2s ˆ Y .

Proof. Fix a compact and irreducible surface Z Ă Cd,k satisfying (i) and (ii). We prove the bound
(3.6) in two cases. The proof will take 2 steps. Each step focuses on one case.
Step 1: This step proves (3.6) in the case where ud,kpZq Ă r´Lk, Lks ˆ Y . Fix any a1 P r´Lk, Lks

such that a1 is either equal to infζPZpa ˝ ud,kqpζq or supζPZpa ˝ ud,kqpζq and fix any ζ˚ such that
pa ˝ ud,kqpζ˚q “ a1. By (ii), it follows that a1 R ra0 ´ 2, a0 ` 2s. Choose some r P p1, 2q such that
a1˘r are regular values of a˝ud,k and define Z˚ to be the irreducible component of pa˝ud,kq´1pra1´

r, a1 ` rsq X Z containing ζ˚.
By (i), it follows that pa ˝ ud,kqpBZ˚q X ra1 ´ 1, a1 ` 1s “ H. It follows from Proposition 2.3 and

Remark 2.12 that there exists a constant c˚ ě 1 such that
ş

Z˚
u˚
d,kωk ě 2c´1

˚ . By Lemma 2.9, it

follows that
ż

Z
u˚
d,kΩk ě

1

2

ż

Z˚

u˚
d,kωk ě c´1

˚ .

Step 2: This step proves (3.6) in the case where ud,kpZq is not contained in r´Lk, Lks ˆ Y .

Let v : Z Ñ W denote the qJk-holomorphic curve defined by the restriction of f´1
k ˝ ud,k to Z.

Choose a point ζ P Z such that vpζq R Uδ3 . Choose some δ P pδ4, 2δ4q which is a regular value
of H ˝ v and define Z˚ to be the irreducible component of Z z v´1pUδq containing ζ. Let v˚ be

the restriction of v to Z˚. Note that v˚ is qJ-holomorphic, contains a point outside Uδ3 , and has
v˚pBZ˚qXW zU2δ4 “ H. It follows from the monotonicity bound [Fis11, Proposition 3.4] that there

exists a constant c˚ “ c˚pΩ, qJ, δ3, δ4q ą 0 such that
ż

Z
u˚
d,kΩk ě

ż

Z˚

u˚
d,kΩ ě c´1

˚ .

□

Now we prove Lemma 3.11.

Proof of Lemma 3.11. Let c4 be the constant from Lemma 3.12. Assume for the sake of contra-
diction that, for any subsequence k1 Ď k, we have # sχpd, b;k1q ą 4mb´1dp4md ` c4q. Given this
assumption, an analogous algorithm to Step 1 of the proof of Lemma 3.9 produces a subsequence
k1 “ tkju and a finite subset ts1, . . . , sNu, where N :“ t4mb´1dp4md ` c4qu, with the following
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property. For each i, there exists a sequence of intervals Lj,i such that (i) Lj,i Ñ tsiu and (ii) for

each j, the surfaces Cd,j,i :“ C
Lj,i

d,kj
have an irreducible component Zd,j,i with χpZd,j,iq ď ´b.

Define the surfaces Σd,j,i :“ pa ˝ ud,kj q´1pkj ¨ Lkj ,iq as in the proof of Lemma 3.9. Define Sd,j :“

Cd,kj z
ŤN

i“1 Zd,j,i to be the complement of the surfaces Zd,j,i. We claim that

(3.7) χpSd,jq ď 4mc4d.

Each connected component F of Sd,j is either (i) a compact surface with χpF q ď 0 or (ii) a
closed disk sharing a boundary component with one of the surfaces Zd,j,i. Therefore, prove (3.7), it
suffices to bound the number of components of the second type. Any component F of the second
type contains an irreducible component Z of Cd,j,i zΣd,j,i which is not “short”. Such a component

Z satisfies the conditions of Lemma 3.12. It follows from Lemma 3.12 that
ş

F u
˚
d,kj

Ωkj ě c´1
4 . By

Corollary 3.7, we have
ş

Cd,kj
u˚
d,kj

Ωkj “ 4md, so there are at most 4mc4d components of the second

type. The bound (3.7) follows.
By Corollary 3.7, we have

(3.8) χpCd,kj q “ 2#π0pCd,kj q ´ 2GpCd,kj q ě ´2GapCd,kj q ě ´16m2d2.

The first inequality follows because arithmetic genus is bounded below by genus. By (3.7), we
have

(3.9) χpCd,kj q “ χpSd,jq `

N
ÿ

i“1

χpZd,j,iq ď 4mc4d´Nb ă ´16m2d2.

The bounds (3.8) and (3.9) cannot hold simultaneously, so we arrive at a contradiction. □

3.5.2. Controlled accumulation implies almost cylinders. Define a constant ϵd :“ 128md´1 for every
d ě 1 and define b˚ :“ 64m2. We prove that every element of the stretched limit set outside of the
accumulation sets sωpd, ϵd;kq Y sχpd, b˚;kq is a δ-almost cylinder, where δ Ñ 0 as d Ñ 8.

Proposition 3.13. For any integer n ě 1, there exists some dn ě 1 such that the following holds
for all d ě dn and any sequence k “ tkju. Fix any s P p´1, 1q z prωpd, ϵd;kq Y rχpd, b˚;kqq. Then,
for any pΞ, sq P X dpkq, the set Ξ is a 1{n-almost cylinder.

The key technical input to Proposition 3.13 is the following result, which asserts that holomorphic
curves with bounded Euler characteristic and sufficiently low action are 1{n-almost cylinders away
from the boundary. We prove it using Proposition 2.4.

Proposition 3.14. Fix any pη̄, J̄q P Dpr´8, 8s ˆ Y q and integers n ě 1 and b ě 0. Then there
exists a stable constant ϵ5 “ ϵ5pη̄, J̄ , n, bq ą 0 such that the following holds. Let u : C Ñ r´8, 8s ˆY

be a compact, irreducible Ĵ-holomorphic curve such that

(i) pa ˝ uqpBCq X r´4, 4s ‰ H;
(ii) χpCq ě ´b;
(iii)

ş

C u
˚ω̄ ď ϵ5.

Then the set upCq X p´1, 1q ˆ Y P Kpp´1, 1q ˆ Y q is a 1{n-almost cylinder with respect to pη̄, J̄q.

Proof. Assume for the sake of contradiction that the proposition is false. Then, there exists a
convergent sequence pη̄k, J̄kq Ñ pη̄, J̄q and compact, irreducible J̄k-holomorphic curves uk : Ck Ñ

r´8, 8sˆY satisfying (i), (ii), and the bound
ş

Ck
u˚
kω̄k ď k´1, such that the sets ukpCkqXp´1, 1qˆY

are not 1{n-almost cylinders with respect to pη̄k, J̄kq for any k. The remainder of the proof will
derive a contradiction in 2 steps.
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Step 1: This step proves that, after passing to a subsequence, there exists some non-empty, compact,
R̄η-invariant set Λ Ď Y such that

(3.10) ukpCkq X p´2, 2q ˆ Y Ñ p´2, 2q ˆ Λ

in the Hausdorff topology on Kpp´2, 2q ˆ Y q. We prove (3.10) using Proposition 2.4. The proof is
all but identical to other recent results (see [FH23, Proposition 4.47] or [CGP24, Theorem 6]), so
we only provide a sketch. After passing to a subsequence, the slices ukpCkq X p´2, 2q ˆ Y converge
to Ξ P Kpp´2, 2q ˆ Y q. Since each Ck is irreducible, it follows from (i) that ukpCkq X r´1, 1s ˆ Y is
non-eempty for each k. Therefore, the set Ξ is non-empty.

To prove (3.10), it suffices to show that for any point z “ pa, yq P Ξ, there exists δ ą 0 such that
for any τ P p´δ, δq, we have pa ` τ, yq P Ξ and pa, ϕτ pyqq P Ξ. Then there is a sequence of points
ζk P Ck such that zk :“ ukpζkq P p´2, 2q ˆY and zk Ñ z. The surfaces Sk :“ Sϵ3pζkq have uniformly
bounded area by Proposition 2.4, and have uniformly bounded genus since χpCkq ě ´b for each k.
Thus, by target-local Gromov compactness [Fis11], the restrictions vk :“ uk|Sk

, after passing to a
subsequence and shrinking the surfaces Sk slightly, converge to a map v : S Ñ r´8, 8s ˆ Y with
ş

S v
˚ω̄ “ 0 and z P vpSq. By Lemma 2.1, vpSq lies inside RˆΓpRq, where Γ : R Ñ Y is the unique

Rη-trajectory with Γp0q “ y, and the desired property of z follows.
Step 2: Fix any sequence of points zk “ pak, ykq P ukpCkq X p´2, 2q ˆ Y and any sequence τk P

p´2, 2q. This step completes the proof by showing

lim sup
kÑ8

distḡkppτk, ykq, ukpCkq X p´2, 2q ˆ Λq “ 0,

lim sup
kÑ8

distḡkppak, ϕ
τkpykqq, ukpCkq X p´2, 2q ˆ Λq “ 0.

(3.11)

It is sufficient to establish (3.11) to complete the proof, because (3.11) implies that ukpCkq X

p´1, 1q ˆY is a 1{n-almost cylinder for large enough k, which gives a contradiction. It follows from
the Hausdorff convergence in (3.10) that

lim sup
kÑ8

distḡkpzk, r´2, 2s ˆ Λq “ 0.

For each k, choose a point z1
k “ pa1

k, y
1
kq P r´2, 2s ˆ Λ such that

distḡkpzk, z
1
kq “ distḡkpzk, r´1, 1s ˆ Λq.

Thus, we have |ak ´ a1
k| Ñ 0 and distpyk, y

1
kq Ñ 0, where the distance on Y is taken with respect

to some arbitrary but fixed Riemannian metric. It follows that

(3.12) lim sup
kÑ8

distḡkppτk, ykq, pτk, y
1
kqq “ 0, lim sup

kÑ8

distḡkppak, ϕ
τkpykqq, pak, ϕ

τkpy1
kqq “ 0.

Since pτk, y
1
kq and pak, ϕ

τkpy1
kqq lie in p´2, 2q ˆ Λ for each k, it follows from (3.12) that

(3.13) lim sup
kÑ8

distḡkppτk, ykq, p´2, 2q ˆ Λq “ 0, lim sup
kÑ8

distḡkppak, ϕ
τkpykqq, p´2, 2q ˆ Λq “ 0.

Combining (3.13) with (3.10) proves (3.11). □

Now, we are ready to prove Proposition 3.13.

Proof of Proposition 3.13. Let d be sufficiently large so that 64md´1 ď ϵ5pη, J, n, b˚q, where ϵ5
denotes the stable constant from Proposition 3.14. Fix any pΞ, sq P X dpkq, where s R rωpd, ϵd;kq Y

rχpd, b˚;kq. Then, there exists a sequence aj P p´kj , kjq such that k´1
j aj Ñ s and the slices

Ξj :“ τaj ¨ pud,kj pCd,kj q X paj ´ 1, aj ` 1q ˆ Y q
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converge in the Hausdorff topology to Ξ. For each j, choose a closed, connected interval Lj with
endpoints in R, such that

rk´1
j paj ´ 4q, k´1

j paj ` 4qs Ă Lj Ă rk´1
j paj ´ 6q, k´1

j paj ` 6qs.

Consider the capped slices Zj :“ C
Lj

d,kj
. Note that ud,kj pZjq Ă raj ´ 8, aj ` 8s ˆ Y for each

j. Since s R rχpd, b˚;kq, we have that, for sufficiently large j, each irreducible component of
Zj has Euler characteristic at most ´64m2. Since s R rωpd, ϵd;kq, we have that, for sufficiently
large j, the action

ş

Zj
u˚
d,kj

ωkj is at most 64md´1 ď ϵ5pη, J, n, b˚q. By Proposition 3.14, the set

Ξj “ ud,kj pZjq X p´1, 1q ˆ Y is a 1{n-almost cylinder with respect to pη
aj
kj
, J

aj
kj

q for each j. By

Lemma 3.1 and Corollary 3.4, it follows that Ξ is a 1{n-almost cylinder with respect to pη, Jq. □

3.5.3. Existence of a single proper compact invariant set. The following result asserts that at levels
where there is no ω-accumulation and controlled χ-accumulation, any element of the stretched limit
set is a cylinder over a proper, compact, Rη-invariant set. A key part of the proof is the use of
intersection theory to show that the invariant set is proper. This part is inspired by [FH23, Theorem
7], which shows that certain feral holomorphic curves have ends limiting to proper invariant sets.
The proof of that result required some curvature bounds (see [FH23, Theorem 6]) for feral curves
that are not available to us. We use alternative arguments to circumvent this issue.

Proposition 3.15. Fix d ě 1, k “ tkju, and s P p´1, 1q z psωpd;kq Y rχpd, b˚;kqq. Then, for any
pΞ, sq P X dpkq, the set Ξ is equal to p´1, 1q ˆ Λ, where Λ Ď Y is a proper, non-empty, compact,
Rη-invariant set.

As preparation, we introduce the moduli space of degree 1 holomorphic spheres and its relevant
properties. For each k, let Mk denote the moduli space of Jk-holomorphic spheres in Wk that are
Poincaré dual to rΩs and pass through a fixed point w8 P D. By the adjunction inequality [McD91,
Theorem 1.3], each element of Mk is embedded.

Lemma 3.16. The moduli space Mk satisfies the following properties for each k:

(a) For any k and any S P Mk, the algebraic intersection number of ud,k and S is equal to 4md.
(b) For any k and any a0 P r´k, ks, there exists some S P Mk such that

inf
zPSXr´k,ksˆY

apzq “ a0.

Proof. Property (a) follows from Corollary 3.7. Property (b) follows from an open-closed argument
as in the very similar [FH23, Proposition 3.5]. Extend the coordinate a to a smooth function
a : Wk Ñ R, such that a ě k on W` and a ď ´k on W´. The range apWkq is a compact interval
I Ă R containing r´k, ks. Let a denote the set of all a0 P I for which there exists S P Mk such that
infzPS apzq “ a0. Since D P Mk, the set a is non-empty. By automatic transversality of the moduli
space [HLS97], the set a is open. By the Gromov compactness theorem, and the lack of bubbling
due to the degree restriction, the set a is closed. We conclude that a “ I. Therefore, r´k, ks Ă a,
which is equivalent to Property (b). □

The following lemma proves everything but properness of Λ.

Lemma 3.17. Fix d, k, s as in Proposition 3.15. Then, for any pΞ, sq P X dpkq, the set Ξ is equal
to p´1, 1q ˆ Λ, where Λ Ď Y is a non-empty, compact, Rη-invariant set.



32 ROHIL PRASAD

Proof. Fix any n ě 1. Observe that s R rωpd, ϵ5;kq, where ϵ5 “ ϵ5pη, J, n, b˚q ą 0 is the constant
from Proposition 3.14. By Proposition 3.13, Ξ is a 1{n-almost cylinder. Therefore, Ξ is a 1{n-almost
cylinder for every n, so the claim follows from Lemma 3.2. □

We are now ready to prove the proposition.

Proof. By Lemma 3.17, Ξ “ p´1, 1q ˆ Λ where Λ Ď Y is a non-empty, compact, Rη-invariant set.
It suffices to show that Λ is a proper subset of Y . Assume for the sake of contradiction that Λ “ Y .
The proof will take 5 steps.
Step 1: For each j, define aj :“ kjs. By Lemma 3.16(b), there exists for each j a sphere Sj P Mkj

such that infzPSjXr´kj ,kjsˆY apzq “ aj . This step extracts a certain limiting disk from the sequence

tSju. For simplicity, assume that Sj intersects taj `1{2uˆY transversely for each j. Choose zj P Sj
such that apzjq “ aj . Let Σj denote the connected component of zj in Sj X raj , aj ` 1{2s ˆ Y . Let
vj : Σj Ñ p´1, 1q ˆ Y denote the composition of Σj ãÑ Sj with τaj .

Each map vj is J
aj
kj
-holomorphic; see §2.6.7. The surfaces Σj each have zero genus. They have

uniformly bounded area by Proposition 2.2 and Remark 2.12. Therefore, by target-local Gromov
compactness [Fis11] and Corollary 3.4, after passing to a subsequence in j, there exists a sequence
of surfaces Σj Ď Σj and a compact, connected J-holomorphic curve v : Σ Ñ p´1, 1q ˆ Y such that

(i) Σj contains pa ˝ vjq
´1pr1{4, 1{4s ˆ Y q and (ii) the restrictions vj :“ vj |Σj

converge to v in the

Gromov topology.
For any r ą 0, let Dprq Ă C denote the closed disk of radius r centered at the origin. Choose

some small r0 ą 0 and an embedding θ : Dpr0q ãÑ Σ with image disjoint from any nodal points and
from BΣ, such that v ˝ θ is an embedding and such that pv ˝ θq˚ω ‰ 0 at any point in Dpr0q.
Step 2: This step introduces the so-called “vertical foliation” and uses it to define tubular neigh-
borhood coordinates for the map v ˝ϕ. For any y P Y , let Γy : R Ñ Y denote the unique trajectory
of Rη for which Γyp0q “ y. The planes RˆΓypRq form a smooth 2-dimensional foliation of RˆY
called the vertical foliation. Each leaf is an immersed J-holomorphic plane, parameterized as fol-
lows. For any point z “ pa, yq P RˆY , let Pz : C Ñ RˆY be the map s` t ¨ i ÞÑ pa` s,Γyptqq. The
map Pz is an injective J-holomorphic immersion with image RˆΓypRq.

Since pv ˝ θq˚ω ‰ 0 everywhere, the map v ˝ϕ is transverse to the vertical foliation. We construct
a tubular neighborhood such that each fiber is a J-holomorphic disk inside a vertical leaf. We
formulate this precisely as follows. There exists an embedding Θ : Dpr0q ˆDpr0q ãÑ RˆY with the
following properties:

‚ For any ζ P Dpr0q, we have Θpζ, 0q “ pv ˝ θqpζq;
‚ For any ζ P Dr0 , write z “ pv ˝ θqpζq. The map Θpζ,´q : Dpr0q Ñ RˆY is equal to the
restriction of Pz to the disk Dpr0q.

The images vjpΣjq are graphical over Dpr0{2q for large j. Since θpDpr0qq Ă Σ does not contain

any nodal points or boundary points, there exist embeddings θj : Dpr0q Ñ Σj such that vj ˝ θj
converges to v ˝ θ in the C8 topology. Setting r1 :“ r0{2, we observe that, for sufficiently large j,
there exists a smooth map xj : Dpr1q Ñ Dpr1q ˆDpr0q such that

pΦ ˝ xjqpζq “ pvj ˝ θjqpζq.

for any ζ P Dpr1q. Moreover, the maps xj converge in the C8 topology to the map x : ζ ÞÑ pζ, 0q.
Step 3: With the setup from Steps 1 and 2 complete, this step explores the consequences of our
assumption that Λ “ Y . We show that there exists 8md pieces of the curves ud,kj pCd,kj q that
converge as j Ñ 8 to vertical surfaces positively intersecting the disk v ˝ θpDpr0qq.
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Choose a finite set of 8md points tpℓu Ă Dpr1q z BDpr1q and write zℓ :“ pv ˝ θqppℓq for each ℓ. By
assumption, Λ “ Y , so for each ℓ, there exists a sequence of points zℓ,j P ud,kj pCd,kj q X paj ´ 1, aj `

1q ˆ Y such that τaj pzℓ,jq Ñ zℓ. For each ℓ and j, fix ζℓ,j P u´1
d,kj

pzℓ,jq and define Sℓ,j :“ Sϵ3pζℓ,jq.

Write wℓ,j : Sℓ,j Ñ p´1, 1q ˆ Y for the composition of ud,kj , restricted to Sℓ,j , with the shift τaj .
By Proposition 3.6, GpSℓ,jq has an ℓ- and j-independent upper bound. By Proposition 2.4, the

areas of the maps wℓ,j are uniformly bounded. By target-local Gromov compactness [Fis11], after

passing to a subsequence in j, there exists a sequence of surfaces Sℓ,j and a compact connected

J-holomorphic curve wℓ : Sℓ Ñ p´1, 1q ˆ Y such that (i) wℓpBSℓq is disjoint from Bϵ3{2pzℓq and (ii)
the restrictions wℓ,j :“ wℓ,j |Sℓ,j

converge to wℓ in the Gromov topology.

For any ℓ, we have
ş

Sℓ
w˚

ℓω
aj
kj

“ 0. By lemma 2.1, we have wℓpSℓq Ă PzℓpCq. By the open mapping

theorem, P´1
zℓ

˝ wℓpSℓq contains an open neighborhood of 0. Choose r2 ă minpr0, ϵ3{4q such that,

for any ℓ, the image pP´1
zℓ

˝ wℓqpSℓq contains Dpr2q. Write Ŝℓ :“ pw´1
ℓ ˝ ΘqpDpr1q ˆ Dpr2qq. After

shrinking r2, we may assume without loss of generality that BŜℓ contains no nodal points or critical
points.

Fix Ŝℓ,j :“ pw´1
ℓ,j ˝ ΘqpDpr1q ˆ Dpr2qq for each j. Since BŜℓ contains no nodal points or critical

points, it follows that wℓ,j |Ŝℓ,j
converges in the Gromov topology to wℓ|Ŝℓ

. There exists a normaliza-

tion rSℓ of Ŝℓ such that the following holds. Let yℓ : rSℓ Ñ Dpr1q ˆDpr2q denote the lift of Θ´1 ˝wℓ

to the normalization. Then for sufficiently large j, there are normalizations rSℓ,j of Ŝℓ,j , lifts hℓ,j of

Θ´1 ˝wℓ,j , and diffeomorphisms ψℓ,j : rSℓ Ñ rSℓ,j such that the maps yℓ,j :“ hℓ,j ˝ψℓ,j converge to yℓ
in the C0 topology.
Step 4: The step proves that there exists some sufficiently large j such that, for each ℓ, the maps
xj and yℓ,j have positive algebraic intersection number. Denote the algebraic intersection number

by a dot, e.g. xj ¨ yℓ,j . For any ℓ, the map Θ´1 ˝ wℓ is a surjective holomorphic map from Ŝℓ onto
Θptpℓu ˆDpr2qq. Thus, the lift yℓ is a positive degree cover of tpℓu ˆDpr2q.

Recall that x denotes the map ζ ÞÑ pζ, 0q. We have x ¨ yℓ ą 0. For any sufficiently large j,
xj is C0-close to x and yℓ,j is C0-close to yℓ. The map xj is homotopic to x via the straight-line
homotopy t ÞÑ p1 ´ tqxj ` tx. The map yℓ,j is homotopic to yℓ via the straight-line homotopy
t ÞÑ p1´ tqyℓ,j ` tyℓ. The only intersections along these homotopies are interior intersections. Thus,
the algebraic intersection number is homotopy invariant, so

xj ¨ yℓ,j “ x ¨ yℓ ą 0

for sufficiently large j.
Step 5: This step completes the proof. By Step 4, xj ¨ yℓ,j ą 0 for each ℓ and for each large j. It
follows that Sj ¨ wℓ,j ą 0 for each sufficiently large j. The local intersections of Sj and ud,kj are
non-negative [McD91, Theorem 1.1]. By summing over ℓ, we conclude that Sj ¨ ud,kj ě 8md for
sufficiently large j. This contradicts Lemma 3.16(a).

□

3.5.4. Completing the proof. We prove Proposition 3.8 using Lemma 3.9, Lemma 3.10, Lemma 3.11,
Proposition 3.13, and Proposition 3.15.

Proof of Proposition 3.8. Fix any n ě 1 and any d ě dn, where dn is as in Proposition 3.13. By
Lemma 3.5, Lemma 3.9, Lemma 3.10, and Lemma 3.11, there exists a sequence k “ tkju such that

(i) the bounds (3.3) and (3.5) are satisfied, (ii) sωpd;kq is countable, and (iii) π´1
R pJ q Ď X dpkq is
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connected for any closed, connected interval J of positive length. Write X d :“ X dpkq. The proof
will take 2 steps.
Step 1: This step constructs a closed, connected interval J Ă p´1, 1q of positive length such that
(a) J contains id´2 for some i P r´d2, d2s X Z, (b) J does not intersect sωpd, ϵd;kq Y sχpd, b˚;kq,
where ϵd “ 128md´1 and b˚ “ 64m2, and (c) J contains some s R sωpd;kq. Let c4 denote the
constant from Lemma 3.11 and take d ě 64mc4. It follows from (3.3) and (3.5) that

#prωpd;kq Y rχpd;kqq ď d2{2.

From this bound, it follows that there exists a closed, connected interval J Ă p´1, 1q of length
2d´2 satisfying (b), i.e. J does not intersect sωpd, ϵd;kqYsχpd, b˚;kq. We verify that J also satisfies
(a) and (c). Since J has length 2d´2, (a) follows from the pigeonhole principle. Property (c) follows
because, by (ii) above, sωpd;kq is countable, while J is uncountable.
Step 2: This step completes the proof of the proposition. We verify that J satisfies each of
Proposition 3.8(a–d). By Property (a) from Step 1, there exists s “ id´2 lying in J . Observe that
kjs P ad,kj for each j, so the curves ud,kj pass through tkjsu ˆ p for each j. Take Ξ to be any
subsequential limit of the slices

τkjs ¨

´

ud,kj pCd,kj q X pkjs´ 1, kjs` 1q ˆ Y
¯

Ď p´1, 1q ˆ Y.

Then we have pΞ, sq P X d and t0u ˆ p Ă Ξ, which implies Proposition 3.8(a). Proposition 3.8(b)
follows from Property (b) of Step 1 and Proposition 3.13. Proposition 3.8(c) follows from Property
(c) of Step 1 and Proposition 3.15. Proposition 3.8(d) follows from Property (iii) of the sequence
k. □

3.6. Other 4-manifolds. We explain how to adapt the proof of Theorem 1 to Hamiltonians on
either M0 :“ T ˚S2 or on M1 :“ T ˚T2.

3.6.1. Compactification. We compactify to pS2 ˆ S2,Ωq. The symplectic structure Ω is equal to
ω ˆ ω, where ω is an area form on S2 with area 1. Write L0 Ă S2 ˆ S2 for the Lagrangian anti-
diagonal and write L1 :“ S1 ˆS1, where we view S1 Ă S2 as the equator. Write D0 Ă S2 ˆS2 for the
diagonal and write D1 :“ twu ˆ S2, where w P S2 zS1. For each i, a small neighborhood of the zero
section in Mi is symplectomorphic to a small neighborhood of the Lagrangian Li, and is disjoint
from the symplectic divisor Di. For each i, after an appropriate rescaling about the zero section,
we view Y as a hypersurface in S2 ˆ S2 which is disjoint from the divisor Di.

3.6.2. The curves ud,k. The closed curves are defined using Proposition A.5, a version of Proposi-
tion 3.6 that holds for more symplectic 4-manifolds, including S2 ˆ S2.

3.6.3. Intersection theory argument. We need to adapt Lemma 3.9, Lemma 3.11, Proposition 3.14,
and Proposition 3.15. The first three results go through with minimal modifications, but Proposi-
tion 3.15 requires some more care. The method of proof, which involved intersecting the curves ud,k
with a moduli space Mk of embedded Jk-holomorphic spheres in CP2 remains the same, but we
need a suitable analogue of Mk. When we are working in M0, we replace Mk with the moduli space
of stable Jk-holomorphic spheres representing the class rt˚u ˆ S2s ` rS2 ˆ t˚us. Denote this space
by M0

k. It consists either of embedded Jk-holomorphic spheres representing rt˚u ˆ S2s ` rS2 ˆ t˚us

or of pairs of spheres connected by a nodal point, where the map on one sphere is an embedding
representing the class rt˚u ˆS2s, and the map on the other sphere is an embedding representing the
class rS2 ˆ t˚us. When we are working in M1, we replace Mk with the moduli space of embedded
spheres representing the class rS2 ˆ t˚us. Note that Di P Mi

k for each k and each i. The analogues
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of Lemma 3.16 hold for the spaces Mi
k, and from here onwards the same argument goes through

without modification.

4. Global Le Calvez–Yoccoz property

The goal of this section is to prove Theorem 2. We prove the following equivalent result.

Theorem 5. Let H : R4 Ñ R be a smooth function. Then, for any s0 P RcpHq, there exists some
δ5 ą 0 and a full measure subset Q Ď RcpHq X ps0 ´ δ5, s0 ` δ5q such that the following holds. Fix
any s P Q and set Y “ H´1psq. Then any compact XH-invariant subset Λ Ď Y containing Ppsq is
either equal to Y or is not locally maximal.

For the remainder of the section, fix a smooth function H : R4 Ñ R. Fix any s0 P RcpHq.
Assume without loss of generality that s0 “ 0; we reduce to this case by replacing H with H ´ s0.
Set Y :“ H´1p0q.

4.1. An existence result for almost cylinders. To state our result, we recall several definitions
and terms introduced in the previous section. We repeat the setup in §3.3.1, §2.6.1, and §2.6.2.
We compactify to W “ CP2, define a collar map ι : p´δ1, δ1q ˆ Y Ñ W, and define a pair ppη, pJq P

Dpp´δ1, δ1q ˆ Y q. Recall that, for any s P p´δ1, δ1q, pηs, Jsq P DpY q denotes the pullback of ppη, pJq

by the map y ÞÑ ps, yq. Recall the definition of δ-almost cylinders from §3.1. Now, we state a new
existence result for almost cylinders.

Proposition 4.1. There exists a constant δ5 P p0, 1q such that the following holds for any finite set
of points p Ă Y and any positive integer n ě 1. There exists a subset Qp,n Ď p´δ5, δ5q of measure at
least p2´ 2nqδ5, and for each s P Qp,n a connected subset Zs

p,n Ď Kpp´1, 1q ˆ Y q with the following
properties:

(a) There exists some Λn P Zs
p,n such that t0u ˆ p Ă Λn.

(b) There exists some Λn P Zs
p,n equal to p´1, 1q ˆ Ξn, where Ξn is a finite union of closed

orbits of Rs.
(c) Each Λ P Zs

p,n is a 1{n-almost cylinder with respect to the pair pηs, Jsq P DpY q.

4.2. Proof of Theorem 5. We defer the proof of Proposition 4.1 to §4.4. We first use it to
complete the proof of Theorem 5.

Proof. Fix any finite set of points p Ă Y and any n ě 1, let Qp,n Ď p´δ5, δ5q be the set from Propo-
sition 4.1 and, for any s P Qp,n, let Zs

p,n be the collection of almost-cylinders from Proposition 4.1.
Define the set

Qp :“
ď

ℓě1

č

něℓ

Qp,n Ď p´δ5, δ5q.

The rest of the proof will take 3 steps.
Step 1: This step proves that Qp has full measure in p´δ5, δ5q. Since |Qp,n | ě p2 ´ 2´nqδ5 for

each n, we have |
Ş

něℓQp,n ě p2 ´ 2´ℓ`1qδ5|. Taking the union over all ℓ, we have |Qp | “ 2δ5.
Step 2: For any s P Qp, choose nj Ñ 8 such that (i) s P Qp,nj for each j and (ii) there exists
Ξj P Zs

p,nj
such that the sequence tΞju converges. Let Zs

p denote the set of subsequential limit

points of the sequence tZs
p,nj

u as j Ñ 8. Since Zs
p,nj

is connected for each j, the set Zs
p is connected

by (ii) and Lemma 2.5. We claim that Zs
p has the following properties:

(a) There exists some Ξ P Zs
p such that t0u ˆ p Ă Ξ.

(b) There exists a compact subset Λ Ď Ppsq such that p´1, 1q ˆ Λ P Zs
p.
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(c) Each Ξ P Zs
p is equal to p´1, 1q ˆ Λ, where Λ P KpY q is a non-empty compact Rs-invariant

set.

These properties follow from Proposition 4.1(a–c), Lemma 3.1, and Lemma 3.2.
Step 3: This step finishes the proof. Fix a sequence of finite subsets pℓ Ă Y that converge to Y
in the Hausdorff topology as ℓ Ñ 8. Define Q :“

Ş

ℓQpℓ
. Since Q is a countable intersection of

full measure subsets, it has full measure itself. Fix any s P Q. After passing to a subsequence in ℓ,
there exists Ξℓ P Zs

pℓ
for each ℓ such that the sequence tΞℓu converges. Define Zs to be the set of

subsequential limit points of the sequence tZs
pℓ

u. By Lemma 2.5, Zs is connected. Let Ys Ď KpY q

denote the image of Zs under the map Ξ ÞÑ Ξ X t0u ˆ Y . By Property (c) above and Lemma 2.7,
the set Ys is connected. The set Ys has the following properties, which follow from Properties (a–c)
above:

(a’) Y P Ys.

(b’) There exists a compact Rs-invariant subset Λ Ď Ppsq such that Λ P Ys.
(c’) Each Λ P Ys is a non-empty compact Rs-invariant set.

Fix s P Q and an Rs-invariant set Λ containing Ppsq. We will show that if Λ ‰ Y , then the set
Λ is not locally maximal. Let Y denote the image of Ys under the map Λ1 ÞÑ Λ Y Λ1. The family
Y is connected by Lemma 2.6, consists of Rs-invariant sets by Property (c’), and contains both Y
and Λ by Properties (a’) and (b’). It follows that Λ is not locally maximal. □

4.3. Geometric setup. The geometric setup for this section mostly follows §3.3. However, we will
use a different neck stretching procedure. Instead of stretching the neck around the hypersurface Y
as in §3.3 above, we simultaneously stretch the neck around each of the hypersurfaces H´1psq for
small s. On a technical level, this only requires minor changes to the setup. The most significant

change is the replacement of the sequence tϕku with a new sequence tpϕku.

4.3.1. Recollections from §3. We repeat the setup from §3.3, starting from §2.6.3 and ending at
§2.6.5.

‚ In §2.6.3 we defined an Ω-tame almost-complex structure qJ on W and fixed pJ “ ι˚ qJ ; recall

alaso that pJ is pη-adapted on p´δ2, δ2q ˆ Y .

‚ In §2.6.4 we defined deformations qJϕ, agreeing with qJ on the bundle qξ “ kerpdsq X kerpqλq,
which by Lemma 2.9 are tame if 1 ´ ϕ is supported in Uδ3 .

‚ In §2.6.5, we defined stretched manifolds Wϕ, containing long necks r´Lϕ, Lϕs ˆ Y , and

diffeomorphisms fϕ : W Ñ Wϕ. Let pΩϕ, pηϕ “ ppλϕ, pωϕq, qξϕ, pJϕ denote the pushforwards by

fϕ of Ω, qη “ pqλ, qωq, qξ, qJ , respectively.

The remainder of our setup consists of minor variations on §3.3.3, §2.6.7, and §3.3.4.

4.3.2. Adiabatic neck stretching. Choose a constant δ4 P p0, δ3{2q, a constant δ5 P p0, δ4{2q and, for

each k ą 4δ´1
5 , a smooth function pϕk : W Ñ p0, 1s with the following properties:

‚ The function 1 ´ pϕk is supported on Uδ4 .

‚ For any s P p´δ3, δ3q, pϕk is equal to a constant pϕkpsq on the hypersurface H´1psq.

‚ For any s P p´δ3, δ3q, we have pϕkpsq “ pϕkp´sq.

‚ The integral L
pϕk

“
ş0

´δ3
pϕkptq´1dt is at least 16k.

‚ pϕkpsq “ δ´1
5 k´1 for every s P p´k´1, k´1q.
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We require the sequence tpϕku to converge in the C8 topology as k Ñ 8. The sequence tpϕku

is identical to the sequence tϕku from §3.3.3, apart from the last property. This change gives a
different geometric convergence result, see Corollary 4.2 below.

We simplify the notation for the various geometric objects associated with pϕk. Write qJk :“ qJ
pϕk

9.

Define pLk :“ L
pϕk

“
ş0

´δ3
pϕkptqdt and define a function pΦkpsq :“

şs
´δ3

pϕkptq´1dt ´ Lk. Then, write

xWk :“ W
pϕk

for the stretched manifolds and pfk :“ f
pϕk

for the diffeomorphisms W Ñ xWk. Write

pΩk :“ Ω
pϕk

and pJk :“ pJϕk
. Write pωk :“ pωϕk

, pλk :“ pλϕk
, pηk “ ppλk, pωkq, pRk :“ pRϕk

, and pξk :“ pξϕk
.

Fix any k and any a such that ra´8, a`8s Ď r´pLk, pLks. Then, we define ppηak ,
pJa
k q P Dpr´8, 8sˆY q

to be the pair defined by restriction of ppηk, pJkq to ra ´ 8, a ` 8s ˆ Y and then translation by ´a.
The following convergence result is a consequence of Lemma 2.11.

Corollary 4.2. Fix any sequence taku such that ak P p´k, kq for each k and the sequence tδ5k
´1aku

converges to some s P r´δ5, δ5s. Then, we have ppηakk , pJak
k q Ñ pηs, Jsq in Dpr´8, 8s ˆ Y q.

Proof. Let psk : r´8, 8s Ñ r´δ3, δ3s denote the functions a ÞÑ pΦ´1
k pak ` aq. Observe that pΦ´1

k paq “

δ5k
´1a for any a P p´k, kq. Then, given our assumptions on taku, the sequence tpsku converges in

the C8 topology to ps ” s. Now apply Lemma 2.11. Step 3 of its proof shows that the limiting pair
is pηs, Jsq. □

4.3.3. Adiabatic limit set. We introduce an adiabatic analogue of the stretched limit set from §3.3.4.
For any sequence tkju, fix a closed, connected Riemann surface pCj and a pJkj -holomorphic curve

puj : pCj Ñ xWkj . The adiabatic limit set pX Ď Kpp´1, 1q ˆ Y q ˆ p´δ5, δ5q is the collection of pairs
pΞ, sq for which there exists a sequence taju such that

(i) δ5k
´1
j aj Ñ s

(ii) A subsequence of the slices

τaj ¨

´

pujp pCjq X paj ´ 1, aj ` 1q ˆ Y
¯

Ď p´1, 1q ˆ Y

converges in Kpp´1, 1q ˆ Y q to Ξ.

4.4. Proof of Proposition 4.1. Fix a finite set of points p Ă Y . Let m :“ #p denote the
cardinality of p.

4.4.1. Closed holomorphic curves with point constraints. Define point constraints pwd,k Ă xWk as
follows. Let pad,k Ă r´k, ks denote a finite subset of 2d2 ` 1 equally spaced points:

pad,k :“ t´ikd´2 | i P ZXr´d2, d2su.

Choose points w˘ P W˘ and set pwd,k :“ pad,k ˆ pYtw`, w´u. Using Lemma 2.9 and Proposi-
tion 3.6 above, we obtain the following analogue of Corollary 3.7.

Corollary 4.3. Fix any integer d ě 1 and any k sufficiently large so that pJk is pΩk-tame. Then

there exists a closed, connected Riemann surface pCd,k and a pJk-holomorphic curve pud,k : pCd,k Ñ xWk

such that (i) Gap pCd,kq “ gp4mdq, (ii) the class ppud,kq˚r pCd,ks is Poincaré dual to 4mdrpΩks and (iii)

pwd,k Ă pud,kp pCd,kq.

9This coincides with the notation for qJϕk from the previous section, but the two almost-complex structures never
appear together so the ambiguity does not impact clarity.
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4.4.2. Construction of adiabatic limit sets. For each fixed d, let tpud,ku denote the sequence of curves

from Corollary 4.3. For any sequence k, let pX dpkq denote the adiabatic limit set of this sequence
tpud,kju. The analogue of Lemma 3.5 holds for adiabatic limit sets, with the same proof.

Lemma 4.4. For any fixed d ě 1 and any sequence k “ tkju, there exists a subsequence k1 Ď k

such that for any closed, connected interval J of positive length, the subset π´1
R pJ q Ď pX dpk1q is

connected.

4.4.3. Main technical proposition. The following proposition concerns the structure of pX dpkq when
d is large. It is analogous to Proposition 3.8.

Proposition 4.5. Fix any integer n ě 1. Then there exists a large integer d " 1, a sequence k,
and a subset Q Ă p´δ5, δ5q of measure at least p2 ´ 2´n´1qδ5 such that the following holds for any

s P Q. Define J :“ r´δ5, δ5s X rs ´ d´2, s ` d´2s. Then π´1
R pJ q Ď pX dpkq satisfies the following

properties:

(a) There exists pΞ, s1q P π´1
R pJ q such that t0u ˆ p Ă Ξ.

(b) There exists pΞ, s1q P π´1
R pJ q such that Ξ “ p´1, 1q ˆ Λ, where Λ Ď Y is a finite union of

closed orbits of Rs.
(c) For every pΞ, s1q P π´1

R pJ q, the set Ξ is a 1{n-almost cylinder with respect to pηs, Jsq.

(d) The set π´1
R pJ q is connected.

4.4.4. Proof of Proposition 4.1. We defer the proof of Proposition 4.5 to §4.5. We first use Propo-
sition 4.5 and Lemma 4.4 to prove Proposition 4.1.

Proof. Fix n ě 1 and some large d ě 28nδ
´1{2
5 . Let k be the sequence and let Q Ď p´δ5, δ5q be the

set of measure at least p2´ 2´n´1qδ5 produced by Proposition 4.5. Define Qp,n :“ p´δ5 ` d´2, δ5 ´

d´2q X Q. Since d ě 28n, it follows that Qp,n has measure at least p2 ´ 2´nqδ5. Fix any s P Qp,n

and let J Ă p´δ5, δ5q denote the interval ps´d´2, s`d´2q. Set W :“ π´1
R pJ q Ď pX dpkq. The set W

is connected by Proposition 4.5(d). Define Zs
p,n Ď Kpp´1, 1q ˆ Y q to be equal to πKpWq. The set

W is connected and πK is continuous, so Zs
p,n is connected. Now, Proposition 4.1(a–c) each follow

from Proposition 4.5(a–c). □

4.5. Proof of Proposition 4.5. The proof of Proposition 4.5 follows a similar format to the proof
of Proposition 3.8.

4.5.1. Capped slices, accumulation, and blowup. We introduce several definitions and notations. Let
pR Ď p´δ5, δ5q denote the set of levels s such that, for each d and k, we have (i) δ´1

5 ks is a regular

value of pud,k and (ii) the subset pa ˝ pud,kq´1pδ´1
5 ksq does not contain any nodal points. Now, given

any closed interval I Ď p´δ, δq with endpoints in pR, we associate to it a capped slice pCI
d,k Ď pCd,k,

defined as in §3.5.1, but scaling I by δ´1
5 k instead of k. Define accumulation sets psωpd, ϵ;kq and

psχpd, b;kq as follows. We say s P psωpd, ϵ;kq if and only if there exists a sequence of intervals Lj

satisfying the following properties:

(i) The sequence tLju converges to tsu in KpRq;
(ii) We have lim supjÑ8

ş

pC
Lj
d,kj

pu˚
d,kj

pωkj ą ϵ.

Define psωpd;kq :“
Ť

ϵą0psωpd, ϵ;kq. We say s P psχpd, b;kq if it admits a sequence of intervals Lj

satisfying the following properties:

(i) The sequence tLju converges to tsu P KpRq;
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(ii) There exists a sequence of irreducible components Zd,j Ď pC
Lj

d,kj
such that

lim sup
jÑ8

χpZd,jq ă ´b.

The following lemma bounds the sizes of the accumulation sets.

Lemma 4.6. There exists a positive constant c5 ě 1 such that the following holds for any d ě 1,
b ě 1, ϵ ą 0, and sequence k. There exists a subsequence k1 Ď k such that

(4.1) #psωpd, ϵ;k1q ď 4mϵ´1d, #psχpd, b;k1q ď 4mpc5d` 4mb´1d2q.

Proof. The lemma follows from repeating the proofs of Lemmas 3.9 and 3.11, changing the notation,
and making a couple of other modifications that we list here. The constant c5 replaces the constant
c4 from Lemma 3.11. It arises from an analogue of Lemma 3.12, with an identical proof. We replace
the uses of Corollary 3.7 with Corollary 4.3. □

Lemma 4.6 has the following consequence.

Lemma 4.7. Fix any d ě 1 and any sequence k. Then, there exists a subsequence k1 Ď k such that
psωpd;k1q is countable.

We now introduce a new set that did not appear in §3.5, which tracks the levels sets on which

the integral of pλ blows up. To ease some technical complications, our definition will use a smoothed

version of the pλ-integral. Define a smooth function r : r´2, 2s Ñ r0, 1s such that (i) r “ 0 in a
neighborhood of ´2, (ii) r “ 1 in a neighborhood of 2, (iii) r1paq P r0, 1s for each a P r´2, 2s,
and (iv) rpaq “ a for a P r´1{2, 1{2s. For any k and any s P p´δ5, δ5q, define as,k :“ δ5k

´1s and
let rs,k :“ r ˝ τas,k denote the smooth function a ÞÑ rpa ´ as,kq. For any d ě 1, any k, and any
s P p´δ5, δ5q, define the surface

(4.2) Cs,d,k :“ pa ˝ pud,kq´1pas,k ´ 4, as,k ` 4q.

Define a smooth function

(4.3)

Ed,k,λ : p´δ5, δ5q Ñ p0,8q,

s ÞÑ

ż

Cs,d,k

pu˚
d,kpr1

s,kpaqpda^ pλkqq.

For any d ě 1, any sequence k “ tkju, and any constant A ą 0, let psλpd,A;kq denote the set of
all s P p´δ5, δ5q with the following property. For any sequence sj Ñ s, we have

lim inf
jÑ8

Ed,kj ,λpsjq ą A.

Define psλpd;kq :“
Ş

Aą0psλpd,A;kq. This is a null set.

Lemma 4.8. For any d ě 1 and any sequence k, the set psλpd;kq has zero Lebesgue measure.

Lemma 4.8 is proved from the following bound on psλpd,A;kq.

Lemma 4.9. Fix any d ě 1, any sequence k “ tkju, and any A ą 0. Then the set psλpd,A;kq is
open and has Lebesgue measure at most 512A´1md.

Proof. The proof will take 3 steps.
Step 1: This step proves that that psλpd,A;kq is open. For each j, let Ej :“ Ed,kj ,λ. Let

Gj :“ tps, Ed,kj ,λpsqq : s P p´δ5p1 ´ 2k´1
j q, δ5p1 ´ 2k´1

j qqu Ă R2
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denote the graph of Ej . Let G :“ lim supGj denote the set of limit points of the sequence of subsets

tGju; this is a closed subset of R2. Then, a point s P p´δ5, δ5q lies in psλpd,A;kq if and only if there
is no E P r0, As such that ps, Eq P G. Since G is closed, this is an open condition, and therefore
psλpd,A;kq is open.
Step 2: This step proves the following claim. Fix any compact subset ps Ď psλpd,A;k1q. Then, we
claim that there exists some js ě 1 such that if j ě js, then Ejpsq ą A for every s P s. This is
equivalent to showing that Gj X sˆr0, As is empty for sufficiently large j. Observe that G is disjoint

from sˆr0, As. Any limit point of the sequence of sets tGj X sˆr0, Asu must lie in G X sˆr0, As. It
follows that the sequence has no limit points. Thus, all but finitely many elements of are empty.
Step 3: This step completes the proof. For any open subset U Ď R, the Lebesgue measure |U | is
equal to the supremum of |K| over all compact subsets K Ă U . Therefore, it suffices to prove the
bound

(4.4) |ps| ď 200A´1md

for any compact subset ps Ď psλpd,A;kq. Since ps is compact, by Step 2 there exists some js ě 1 such
that for any j ě js and any s, we have Ejpsq ą A. It follows that

ż

Cs,d,kj

pu˚
d,kj

pr1
s,kj

paqda^ pλkj q ą A

for any such s and j. Since r1
s,kpaq P r0, 1s for every a, we deduce the bound

(4.5)

ż

pa˝pud,kj
q´1ppas,kj ´2,as,kj `2qq

pu˚
d,kj

pda^ pλkj q ě A.

Corollary 4.3 and Lemma 2.9 imply a global bound on the integral of da^ pλkj for each j:

(4.6)

ż

pa˝pud,kj
q´1pp´kj ,kjqq

pu˚
d,kj

pda^ pλkj q ď 8δ´1
5 mkjd.

Now, for each j, choose a maximal collection of points tsj,iu
mj,i

i“1 in ps such that the intervals

psj,i ´ 4δ5k
´1
j , sj,i ` 4δ5k

´1
j q are pairwise disjoint. It follows from the maximality property that the

tripled intervals psj,i ´ 12δ5k
´1
j , sj,i ` 12δ5k

´1
j q cover the set ps. It follows that

(4.7) |ps| ď 64δ5k
´1
j mj,i.

By (4.5), we have

(4.8)

mj,i
ÿ

i“1

ż

pa˝pud,kj
q´1ppδ´1

5 kjsj,i´2,δ´1
5 kjsj,i`2qq

pu˚
d,kj

pda^ pλkj q ě Amj,i.

The sets pa ˝ pud,kq´1ppkjsj,i ´ 4, kjsj,i ` 4qq are disjoint by construction. It follows from (4.6)

that the left-hand side of (4.8) is bounded above by 8mδ´1
5 kjd. After re-arranging, we have mj,i ď

8A´1δ´1
5 mkjd. Plug this into (4.7) to show |ps| ď 200A´1md, proving (4.4). □

4.5.2. Controlled accumulation implies almost cylinders. Fix any d ě 1 and any n ě 1. Define
constants ϵd,n :“ 22nδ´1

5 md´1{2 and bn “ 22n`2m2δ´1
5 . The following result is an analogue of

Proposition 3.13.
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Proposition 4.10. For any integer n ě 1, there exists some dn ě 1 such that the following holds
for all d ě dn and any sequence k. Fix any s P p´δ5, δ5q z ppsωpd, ϵd,nq Y psχpd, bnq. Then, for any

pΞ, sq P pX dpkq, the set Ξ is a 1{n-almost cylinder with respect to pηs, Jsq.

Proof. The proposition follows from repeating the proof of Proposition 3.13 and changing the no-
tation. Corollary 4.2 is used instead of Corollary 3.4. □

4.5.3. No blowup implies closed orbits. The following proposition has no analogue in §3.5. It asserts
that, at any level lying outside the blowup set and ω-accumulation set, the adiabatic limit set
contains a union of closed orbits. The statement and proof are inspired by [FH22, Proposition 3.9].

Proposition 4.11. For any d ě 1, any sequence k, and any s R psλpd;kq Y psωpd;kq, there exists

pΞ, sq P pX dpkq such that Ξ “ p´1, 1q ˆ Λ, where Λ is a finite union of closed orbits of Rs.

We prove Proposition 4.11 using a more technical and general result, Proposition 4.12 below.
This result is formulated using the language of currents and geometric convergence. For any s, a
closed Rs-orbit set is a finite collection O “ tpγi,miqu of pairs pγi,miq where γi is a closed orbit
of Rs and mi is a positive integer. The orbit set O is naturally a 1-current on Y . A 1-current on
Y is a continuous linear functional on the space of smooth 1-forms on Y . The pairing of O with
a smooth 1-form α is defined to be Opαq :“

ř

imi

ş

γi
α. Consider two orbit sets O and O1 to be

equivalent if they are equivalent as 1-currents.
We also work with 2-currents on I ˆ Y , where I Ă R is any connected interval. These are

continuous linear functionals on the space of compactly supported 2-forms on Y . For example, any
closed Rs-orbit set O defines a 2-dimensional current I ˆO on I ˆY ; the pairing with a smooth
2-form β is defined by

pI ˆOqpβq :“
ÿ

i

mi

ż

I ˆγi

β.

The support supppCq Ď I ˆY of a 2-current C is the complement of the largest open set U
such that Cpβq “ 0 for any β compactly supported in U . A sequence of 2-currents tCju on I ˆY
geometrically converges to a 2-current C if and only if i) Cjpβq Ñ Cpβq for any compactly supported
2-form β and ii) supppCjq XK Ñ supppCq XK in KpKq for any compact subset K Ă I ˆY .

For each d, k, and s P p´δ5, δ5q, we define a 2-current Cs,d,k on p´2, 2q ˆ Y by the formula

Cs,d,kpβq :“

ż

Cs,d,k

pτs,k ˝ pud,kq˚β.

Now, we state our technical proposition.

Proposition 4.12. Fix any d ě 1, any sequence k “ tkju, and any s R psωpd;kq. Fix any sequence
sj Ñ s such that lim infjÑ8 Ed,kj ,λpsjq ă 8. Then, there exists a closed Rs-orbit set O such that
the sequence of currents tCsj ,d,kju has a subsquence converging geometrically to p´2, 2q ˆ O.

We explain why Proposition 4.12 implies Proposition 4.11.

Proof of Proposition 4.11. Since s R psλpd;kq, there exists a sequence sj Ñ s such that lim infjÑ8 Ed,kj ,λpsjq ă

8. By Proposition 4.12, after passing to a subsequence, there exists a closed Rs-orbit set O such
that Csj ,d,kj Ñ p´2, 2q ˆO. For each j, we write aj :“ asj ,kj and Cj :“ Csj ,d,kj for brevity. For each
j, the slices

Ξj :“ τaj ¨

´

pud,kp pCd,kq X paj ´ 1, aj ` 1q ˆ Y
¯
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are equal to supppCjqXp´1, 1qˆY . We claim that Ξj Ñ p´1, 1qˆO, which implies the proposition.
First, we prove lim supΞj Ď p´1, 1q ˆ O. Fix any point z P lim supΞj . Then, any neighborhood of
z intersects infinitely many Ξj . This implies that any neighborhood of z intersects infinitely many
of the sets supppCjq X r´1, 1s ˆY , so by geometric convergence it follows that z P r´1, 1s ˆO. Since
z P p´1, 1qˆY , it follows that z P p´1, 1qˆO. Second, we prove p´1, 1qˆO Ď lim inf Ξj . Choose any
point z P p´1, 1q ˆO. By geometric convergence, we have r´1, 1s ˆO “ lim supppCjq X r´1, 1s ˆY ,
so any neighborhood of z intersects all but finitely many of the sets supppCjq X r´1, 1s ˆ Y . It
follows that any neighborhood of z intersects all but finitely many of the Ξj , so z P lim inf Ξj . □

The proof of Proposition 4.12 relies on the compactness properties of J-holomorphic currents and
some arguments from [Pra23a, §5]. We discuss a special class of J-holomorphic currents, similar to
the J-holomorphic currents from ECH [Hut14, §3.1], and state some key results. We refer the reader
to [DW21] or to [Pra23a, §5] for a more detailed and general exposition. Given an open interval
I and a pair pη̄, J̄q P DpI ˆY q, a J̄-holomorphic current is a finite collection C “ tpui, niqu where
each Ci is an irreducible, non-compact Riemann surface without boundary, each ui : Ci Ñ I ˆY is
a proper J̄-holomorphic curve, and each ni is a positive integer. The collection C defines a 2-current
by the formula

Cpβq :“
ÿ

i

ni

ż

Ci

u˚
i β.

For example, taking pη̄, J̄q “ pηs, Jsq and O “ tpγi,miqu to be a closed Rs-orbit set, the 2-current
I ˆO “ tpI ˆγi,miqu is Js-holomorphic. The currents Cs,d,k defined above form another class of

examples: they are pJ
as,k
k -holomorphic currents. Consider two J̄-holomorphic currents C and C1 to

be equivalent if they are equivalent as 2-currents. The area of a J̄-holomorphic current is

AreaḡpCq :“
ÿ

i

ni

ż

Ci

dvolu˚
i ḡ

“
ÿ

i

ni

ż

Ci

u˚
i pda^ λ̄` ω̄q P r0,8s.

Taubes [Tau98] proved that a sequence of holomorphic currents with bounded area in a 4-manifold
has a geometrically convergent subsequence.

Proposition 4.13 ([Tau98, Proposition 3.3]). Fix a finite constant c ą 0. Fix an open interval I
and a convergent sequence pη̄k, J̄kq Ñ pη̄, J̄q P DpI ˆY q. For each k, let Ck be a J̄k-holomorphic
current on I ˆY such that AreaḡkpCkq ď c. Then, after passing to a subsequence, the sequence tCku

geometrically converges to a J̄-holomorphic current C such that AreaḡpCq ď c.

Proof. Repeat the proof in [Tau98, Proposition 3.3] to extract a subsequence that geometrically
converges to a J̄-holomorphic current C “ tpui : Ci Ñ I ˆY, niqu. By the lower semicontinuity of
mass [Pra23a, Lemma 5.5], we have the area bound AreaḡpCq ď lim supkÑ8 AreaḡkpCkq. □

The next lemma asserts that holomorphic currents with zero action are cylinders over closed orbit
sets.

Lemma 4.14. Fix an open interval I and any s P r´δ3, δ3s. If C is a Js-holomorphic current on
I ˆY such that (i) Cpθ ¨ ωsq “ 0 for any compactly supported function θ : I ˆY Ñ r0,8q and (ii)
AreagspCq ă 8, then there exists a closed Rs-orbit set O such that C “ I ˆO.

Proof. The lemma follows from the arguments in [Pra23a, Lemmas 5.27, 5.28, 5.29]. □

The key to Proposition 4.12 is the following estimate, which controls the area of Cs,d,k by the
action and by the integral Ed,k,λpsq.
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Lemma 4.15. There exists a constant c6 ě 1 such that the following bound holds for any d, k, and
s P p´δ5, δ5q:

Area
pg
as,k
k

pCs,d,kq ď c6pEd,k,λpsq `

ż

Cs,d,k

pu˚
d,kpωkq.

Proof. Let R Ă pas,k ´ 2, as,k ` 2q denote the set of regular values of a ˝ pud,k in the interval
pas,k ´ 2, as,k ` 2q. By the co-area formula [FH23, Lemma 4.13], we have

(4.9) Ed,k,λpsq “

ż

R
r1pt´ as,kq

´

ż

pa˝rud,kq´1ptq
pu˚
d,k

pλk

¯

dt.

Let E Ď R denote the subset of t such that r1pt ´ as,kq ą 1{2. Then E is non-empty and open.
Write | E | for its Lebesgue measure. Note that | E | does not depend on s or k. Define

L :“ inf
tPR

ż

pa˝rud,kq´1ptq
pu˚
d,k

pλk.

It follows from (4.9) that Ed,k,λpsq ě 1
2L| E |. Re-arrange this bound to show L ď 2| E |´1Ed,k,λpsq.

Using the area bound from Proposition 2.2 and Remark 2.12, we find

Area
pg
as,k
k

pCs,d,kq ď Area
pu˚
d,kpgk

pCs,d,kq ď c˚pL`

ż

Cs,d,k

pu˚
d,kpωkq ď c˚p2| E |´1Ed,k,s `

ż

Cs,d,k

pu˚
d,kpωkq

(4.10)

for some s-, d-, and k-independent constant c˚ ě 1. The second inequality uses Proposition 2.2
and Remark 2.12. The third inequality uses the bound on L. By (4.10), the lemma holds with
c6 “ c˚ ¨ maxp2| E |´1, 1q. □

We now prove Proposition 4.12.

Proof of Proposition 4.12. Fix d, k, and sj Ñ s as in the statement of the proposition. We simplify
our notation as follows. For each j, write aj :“ asj ,kj , Cj :“ Csj ,d,kj , Cj :“ Csj ,d,kj , and Ej :“ Ed,kj ,λ.

Write uj :“ pud,kj , ωj :“ pω
aj
kj
, and gj :“ pg

aj
kj

for each j. Recall that lim infjÑ8 Ed,kj ,λpsjq ă 8. Since

s R psωpd;kq, we have limjÑ8

ş

Cj
u˚
j pωkj “ 0. Combine these two bounds with Lemma 4.15. We

deduce that lim infjÑ8 Areagj pCjq ă 8.
By Proposition 4.13 and Corollary 4.2, after passing to a subsequence, the currents Cj geometri-

cally converge to a Js-holomorphic current C with finite area. Next, we prove that Cpθωsq “ 0 for
any compactly supported smooth function θ : p´2, 2q ˆ Y Ñ r0,8q. Using the triangle inequality
and Corollary 4.2, we have

| Cpθωsq| “ lim
jÑ8

| Cjpθω
sq| ď lim sup

jÑ8

| Cjpθωjq| ` lim sup
jÑ8

Areagj pCjq ¨ }θpωj ´ ωsq}gj

ď lim sup
jÑ8

| Cjpθωjq| ď lim sup
jÑ8

ż

Cj

u˚
j pωkj “ 0.

Since C has zero action and finite area, the proposition follows from Lemma 4.14. □

4.5.4. Completing the proof. We prove Proposition 4.5 using Lemma 4.4, Lemma 4.6, Lemma 4.7,
Lemma 4.8, Proposition 4.10, and Proposition 4.11.

Proof of Proposition 4.5. Fix any n ą 1. By Lemma 4.4, Lemma 4.6, and Lemma 4.7, there exists a
sequence k “ tkju such that (i) the bounds (4.1) are satisfied for ϵ “ ϵd,2n and b “ b2n, (ii) sωpd;kq
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is countable for any d ě 1, and (iii) for any d and any closed, connected interval J of positive

length, the set π´1
R pJ q Ď pX dpkq is connected. Set pX d :“ pX dpkq for any d ě 1.

For any d, let Qd,n denote the set of s P p´δ5, δ5q such that the interval ps´d´2, s`d´2q does not
intersect psωpd, ϵd,2n;kq or psχpd, b2n;kq. We will show that, when d is sufficiently large, Qd,n satisfies
the assertions of the proposition. The proof will take 5 steps.
Step 1: This step shows that Qd,n has measure at least p2 ´ 2´nqδ5 when d is sufficiently large.
Let c5 ě 1 denote the constant from Lemma 4.6. It follows from (4.1) that

#ppsωpd, ϵd,2nq Y psχpd, b2nqq ď p2´4n `Opd´1{2qqδ5d
2.

It follows that, when d is sufficiently large, the complement of Qd,n has measure at most
2´4n`1δ5 ď 2´n´1δ5. This implies that Qd,n has measure at least p2 ´ 2´n´1qδ5.
Step 2: Fix any s P Qd,n and define the interval J “ ps ´ d´2, s ` d´2q. This step shows that J
satisfies Proposition 4.5(a). Recall that the curves pud,k satisfy point constraints on the levels pad,k
from §4.3. The set δ5k

´1 ¨ pad,k is, for any k, a set of 2d2 ` 1 equally spaced points in p´δ5, δ5q.
Therefore, any interval of length 2d´2 must contain at least one of these points. Proposition 4.5(a)
follows.
Step 3: This step shows that J satisfies Proposition 4.5(b). By Property (ii) of the sequence k
and Lemma 4.8, the set psωpd;kq Ypsλpd;kq has Lebesgue measure zero. It follows that J intersects
the complement of this set. Then Proposition 4.5(b) follows from Proposition 4.11.
Step 4: This step shows that J satisfies Proposition 4.5(c) when d is sufficiently large. Any s1 P J
satisfies |s1 ´ s| ď d´2. As s1 Ñ s, we have convergence pηs

1

, Js1

q Ñ pηs, Jsq. It follows that if d is

sufficiently large, for any s1 P J and any Ξ that is a 1{2n-almost cylinder with respect to pηs
1

, Js1

q,
we have that Ξ is a 1{n-almost cylinder with respect to pηs, Jsq. By construction, J does not
intersect psωpd, ϵd,2n;kq or psχpd, b2n;kq. By Proposition 4.10, if we take d sufficiently large, then for

s1 P J and any pΞ, s1q P pX d, we have that Ξ is a 1{2n-almost cylinder with respect to pηs
1

, Js1

q.
Therefore, Ξ is a 1{n-almost cylinder with respect to pηs, Jsq. This proves Proposition 4.5(c).
Step 5: This step shows that J satisfies Proposition 4.5(d). This follows from Property (iii) of k
because J has positive length. □

4.6. Other 4-manifolds. LetM be any symplectic 4-manifold that embeds into a closed symplectic
4-manifoldW such that b` “ 1 and the symplectic form Ω has rational cohomology class. Theorem 2
holds for any smooth function H : M Ñ R. To generalize the proof to this case, we replace
Proposition 3.6 with the more general Proposition A.5.

5. Quantitative almost-existence

In this section, we prove Theorems 3 and 4. The proof of Theorem 3 relies heavily on the ideas,
language, and results in §4. The proof of Theorem 4 requires no additional background of a reader
who is willing to accept Theorem 2 as true.

5.1. Proof of Theorem 3. We prove Theorem 3 by proving the following equivalent result.

Theorem 6. Let H : R4 Ñ R be a smooth function. Then for any s0 P RcpHq, there exists some
δ5 ą 0 and a full measure subset Q Ď RcpHq X ps0 ´ δ5, s0 ` δ5q such that, for any s P Q, the level
set H´1psq contains at least two closed XH-orbits.

For the remainder of the section, we fix a smooth function H : R4 Ñ R and s0 P RcpHq. Assume
without loss of generality that s0 “ 0 by replacing H with H ´ s0. Set Y :“ H´1p0q. Assume for
the sake of contradiction that Theorem 6 is false. We will begin with some geometric setup.



HIGH-DIMENSIONAL FAMILIES AND THREE-DIMENSIONAL ENERGY SURFACES 45

5.1.1. Recollections from §4. We repeat the geometric setup from §4.3. Notation will often be used
without any reminders.

5.1.2. Fixing a primitive. The symplectic form Ω is exact on W z D. Fix a smooth 1-form ν such

that dν coincides with Ω to W z D. Define pν :“ ι˚ν. Observe that dpν “ pΩ.
For any s P r´δ1, δ1s, define a 1-form νs on Y to be the pullback of pν by the map y ÞÑ ps, yq.

Define a 1-form ν̄s on r´8, 8s ˆ Y to be the unique 1-form such that ν̄spBaq ” 0 and such that ν̄s

restricts to νs on each level set tau ˆ Y . For any k, define pνk :“ p pfkq˚ν. We have dpνk “ pΩk for
every k. A convergence lemma similar to Corollary 4.2 holds for ν. Fix any k and any a such that

ra´ 8, a` 8s Ď r´pLk, pLks. Let pνak be the restriction of τ˚
ak
pνk to r´8, 8s ˆ Y .

Lemma 5.1. Fix any sequence taku such that ak P p´k, kq for each k and such that δ5k
´1ak Ñ s.

Then, we have pνakk Ñ ν̄s.

Proof. The proof is similar to Steps 2 and 3 of the proof of Lemma 2.11. Write ν̄k :“ pνakk for each
k. Define a smooth, form-valued function ν̄˚ on r´8, 8s by defining ν̄˚paq to be the pullback of ν̄k
by y ÞÑ pa, yq. To show ν̄k Ñ pνs, it suffices to show

(5.1) ν̄˚
k Ñ νs, ν̄kpBaq Ñ 0,

in the C8 topology. In the first assertion of (5.1), we regard νs as a constant form-valued function
on r´8, 8s. The convergence ν̄˚

k Ñ νs follows from an explicit computation. Consider the smooth

functions psk : r´8, 8s Ñ r´δ3, δ3s defined by a ÞÑ pΦ´1
k pak ` aq. Since δ´1

5 kak Ñ s, the sequence

tpsku C8-converges to the constant function s̄paq “ s. We compute ν̄˚
k paq “ νskpaq for each a. Since

sk Ñ s̄, we have ν̄˚
k “ ν˚ ˝ sk Ñ ν˚ ˝ s̄ “ νs, proving the first item in (5.1).

Next, we verify the second assertion. The map pf´1
k : Wk Ñ W restricts on p´k, kq ˆ Y to the

map pa, yq ÞÑ pδ5k
´1a, yq. Therefore, on p´k, kq ˆY , we have p pf´1

k q˚pBaq “ δ5k
´1Bs. Thus, we have

ν̄kpBaq “ pνppτak ˝ pf´1
k q˚pBaqq “ δ5k

´1
pνpBsq.(5.2)

The second assertion of (5.1) follows from (5.2). □

5.1.3. The bad subset. The assumption that Theorem 6 is false implies that a positive measure
subset of levels contain at most one closed orbit. After some modifications, this subset satisfies
several other properties. Lemma 5.2 below contains all of this. To state the lemma, we introduce
some additional notation.

Recall the constant δ5 defined in §4.3.2. Recall that every s P p´δ5, δ5q is a regular value of
H. For any integer i, let T i Ď p´δ5, δ5q denote the set of s such that H´1psq contains exactly i
closed orbits. For any s P T 1, let qγs Ă H´1psq denote the unique closed orbit. Define functions

eλ : T 1 Ñ R sending s ÞÑ
ş

qγs
qλ and eν : T 1 Ñ R sending s ÞÑ

ş

qγs
ν. Now, we state and prove the

promised lemma.

Lemma 5.2. Then there exists a compact subset B3 Ď p´δ5, δ5q with positive Lebesgue measure
such that:

(a) For each s P B3, the hypersurface H´1psq contains exactly one closed orbit.
(b) The function eλ is continuous on B3.
(c) The function eν is continuous on B3.

Proof of Lemma 5.2. The proof of the lemma will take 4 steps.
Step 1: Let B0 :“ T 0 X T 1 denote the set of levels s for which H´1psq contains at most one closed
orbit.
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This step proves that B0 is measurable. Observe that B0 is measurable if and only if the comple-
ment

Ť

iě2 T i is measurable. For any integer ℓ ě 1, let Sℓ denote the set of levels s P r´δ5, δ5s such

that H´1psq contains two closed orbits that (i) have XH -period at most ℓ and (ii) have Hausdorff
distance at least ℓ´1 with respect to the Euclidean metric. The set Sℓ is compact. We have

ď

iě2

T i “
ď

ℓě1

Sℓ Xp´δ5, δ5q.

Therefore,
Ť

iě2 T i is measurable.
Step 2: By assumption, B0 has positive outer Lebesgue measure. This step refines B0 to satisfy
Property (a) of the lemma. By the almost-existence theorem [HZ87, Rab87, Str90], there exists a
full measure subset Q0 Ď p´δ5, δ5q such that s R T 0

10. The intersection B1 :“ B0 XQ0 has positive
Lebesgue measure and is contained in T 1.
Step 3: This step refines B1 to satisfy Property (b) of the lemma. We claim that eλ is lower
semicontinuous on B1. Fix any convergent sequence sk Ñ s. Any subsequence of the closed orbits
qγsk either has no limit or converges to a cover of qγs. Therefore,

eλpsq “

ż

qγs

qλ ď lim inf
kÑ8

ż

qγsk

qλ “ lim inf
kÑ8

epskq.

Since eλ is lower semicontinuous, it is measurable. By Lusin’s theorem, eλ is continuous on a
compact subset B2 Ď B1 of positive Lebesgue measure.
Step 4: This step refines B2 to satisfy Property (c) of the lemma. Define functions e`

ν :“ maxp0, eνq

and e´
ν :“ minp0, eνq on B2. We claim that e`

ν is lower semicontinuous and that e´
ν is upper

semicontinuous. Choose a convergent sequence sk Ñ s. Since eλ is continuous on B2, the orbits qγsk
have uniformly bounded XH -period. After passing to a subsequence, they converge to a cover of
qγs. Our claim follows. Then, by Lusin’s theorem, there exists a compact subset B3 Ď B2 of positive
Lebesgue measure on which both e`

ν and e´
ν are continuous. Therefore, eν “ e`

ν ` e´
ν is continuous

on B3. The subset B3 satisfies Properties (a–c). □

5.1.4. Closed curves with point constraints. Repeat the construction from §4.4.1. Thus, we have a
family tpud,ku of holomorphic curves for d ě 1, k ě 1. We make only one modification. We replace
the point constraints pwd,k with finite subsets qwd,k Ă Wk. We will specify qwd,k when we complete
the proof of Theorem 6. None of the intermediate results below depend on the choice of qwd,k.

5.1.5. Computation of eν using holomorphic curves. We prove a technical lemma, Lemma 5.4 below,
computing eν using the curves tpud,ku.

We need some additional notation regarding closed orbits. Fix s P B3. Recall that qγs deontes the
unique closed orbit of XH in H´1psq. Define pγs Ă Y to be the projection to Y of the closed loop

ι´1pqγsq Ă tsu ˆ Y . Note that pγs is the unique closed orbit of the vector field pRs. For any integer
m ě 1, we let mpγs denote the closed Rs-orbit set tppγs,mqu.

We also recall some notation from §4.5.1. For each d, s, k, write as,k “ δ´1
5 ks, Cs,d,k “ pa ˝

pud,kq´1ppas,k ´ 2, as,k ` 2qq, and Cs,d,k for the 2-current defined by

Cs,d,kpβq “

ż

Cs,d,k

pτas,k ˝ pud,kq˚β.

We also recall the function r : r´2, 2s Ñ r0, 1s and the function

Ed,k,λpsq “ Cs,d,kpr1paqda^ pλkq.

10This can be deduced using adiabatic neck stretching of holomorphic spheres, following [FH22] or §4
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The following result is a consequence of Proposition 4.12.

Corollary 5.3. Fix any d ě 1, any sequence of point constraints tqwd,ku, and any sequence k.
Then, for any countable subset

s Ă B3 z ppsλpd;kq Y sωpd;kqq

there exists a subsequence k1 “ tkju such that the following holds. For each s P s, there exists some
integer m ě 1 such that the sequence tCs,d,kju geometrically converges to p´2, 2q ¨m ¨ pγs.

Proof. Label the elements of s as tsℓuℓě1. Applying Proposition 4.12 successively for each ℓ gives

the following result. There exists a sequence tkℓuℓě1 of nested subsequences

. . . Ď k2 Ď k1 Ď k

such that the following holds for each ℓ ě 1. Expanding kℓ “ tkℓju, there exists a closed pRsℓ-orbit

set Oℓ such that tCsℓ,d,k
ℓ
j
u converges geometrically to p´2, 2q ˆOℓ as ℓ Ñ 8. The set Oℓ must equal

tppγsℓ ,mℓqu for some mℓ ě 1 because pγsℓ is the only closed orbit of pRsℓ . A diagonal subsequence k1

then satisfies the conditions of the corollary. □

The next lemma computes eνpsq using the holomorphic curves tpud,ku.

Lemma 5.4. Fix any collection of point constraints tqwd,ku. Fix any s P B3. Suppose that there
exists d ě 1, a sequence sj Ñ s, and a sequence k “ tkju such that the currents tCsj ,d,kju geomet-
rically converge to p´2, 2q ˆ m ¨ pγs as j Ñ 8. Then, there exists a sequence of real numbers tāju
with the following properties.

(a) āj is a regular value of a ˝ pud,kj for every j.
(b) āj P pasj ,kj ´ 2, asj ,kj ` 2q for every j.
(c) We have

lim
jÑ8

ż

pa˝pud,kj
q´1pājq

pu˚
d,kj

pνkj “ m ¨ eνpsq.

Proof of Lemma 5.4. The proof will take 4 steps.
Step 1: This step fixes several items of notation and then reduces the lemma to another claim. For

each j, write aj :“ asj ,kj , Cj :“ Csj ,d,kj , and Cj :“ Csj ,d,kj . Write ν̄j :“ pν
aj
kj
, λ̄j :“ pλ

aj
kj
, ω̄j :“ pω

aj
kj
,

and Ω̄j :“ dν̄j . Finally, define uj :“ τaj ˝ pud,kj . The lemma is equivalent to the claim that there
exists a sequence of real numbers traju such that

(a) raj is a regular value of a ˝ uj for every j.
(b) raj P p´2, 2q for every j.
(c) We have

lim
jÑ8

ż

pa˝ujq´1prajq

u˚
j ν̄j “ m ¨ eνpsq.

To see why, observe that traju satisfies (a,b,c) above if and only if the sequence tāj :“ raj ` as,kju

satisfies Lemma 5.4(a,b,c).
Step 2: This step recovers m ¨ eνpsq as a limit of tCjpβ

squ for some fixed test form βs. Define a
compactly supported 2-form βs :“ r1paqda^ ν̄s. By the geometric convergence Cj Ñ p´2, 2q ˆmqγs,
we have

lim
jÑ8

Cjpβ
sq “ m

ż

p´2,2qˆqγs

r1paqda^ ν̄s “ m
´

ż 2

´2
r1paqda

¯´

ż

qγs

νs
¯

“ mprp2q ´ rp´2qqeνpsq “ m ¨ eνpsq.

(5.3)
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The last identity follows because rp2q “ 1 and rp´2q “ 0.

Step 3: For each j, write η̄j :“ pλ̄j , ω̄jq, J̄j :“ pJ
aj
kj
, and ḡj for the metric associated to pη̄j , J̄jq.

Then, define βj :“ r1paqda^ ν̄j . This step shows that

(5.4) lim
jÑ8

Cjpβ
sq “ lim

jÑ8
Cjpβjq.

We prove (5.4) using the geometric convergence of tCju, Corollary 4.2, and Lemma 5.1. We have

lim
jÑ8

Cjpβ
s ´ βjq

“

ż

Cj

u˚
j pβs ´ βjq ď lim sup

jÑ8

}ν̄s ´ ν̄j}ḡj Cjpr
1paqpda^ λ̄j ` ω̄jqq.

(5.5)

The inequality uses the identity u˚
j pda^ λ̄j ` ω̄jq “ dvolu˚

j ḡj
. By Corollary 4.2, the Riemannian

metrics ḡj converge in the C8 topology. By Lemma 5.1, we have

(5.6) lim
jÑ8

}ν̄s ´ ν̄j}ḡj “ 0.

We have

lim sup
jÑ8

Cjpr
1paqpda^ λ̄j ` ω̄jqq

ď lim sup
jÑ8

Cjpr
1paqpda^ λs ` ωsqq

` lim sup
jÑ8

p}λs ´ λ̄j}ḡj ` }ωs ´ ω̄j}ḡj q Cjpr
1paqpda^ λ̄j ` ω̄jqq.

(5.7)

By Corollary 4.2, we have }λs ´ λ̄j}ḡj Ñ 0 and }ωs ´ ω̄j}ḡj Ñ 0. It follows from this and the
geometric convergence of tCju that the left-hand side of (5.7) is finite. Combined with (5.6), the
right-hand side of (5.5) must equal 0. This proves (5.4).
Step 4: This step completes the proof of the lemma. Choose some ra P p0, 2q very close to 2 such
that:

(i) For each j, ra and ´ra are regular values of a ˝ uj .
(ii) rpraq “ 1 and rp´raq “ 0.
(iii) r1paq “ 0 for any a such that |a| ě ra.

It follows from (iii) that

(5.8)

ż

pa˝ujq´1pr´ra,rasq

u˚
j βj “ Cjpβjq

for each j. Using Stokes’ theorem and (ii), we compute
ż

pa˝ujq´1pr´ra,rasq

u˚
j βj

“

ż

pa˝ujq´1pr´ra,rasq

u˚
j pr1paqda^ ν̄jq “

ż

pa˝ujq´1pr´ra,rasq

dpu˚
j prpaqν̄jqq ´ u˚

j prpaqΩ̄jq

“

ż

pa˝ujq´1praq

u˚
j ν̄j ´

ż

pa˝ujq´1pr´ra,rasq

u˚
j prpaqΩ̄jq.

(5.9)
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We now control the second term on the right-hand side of (5.9). Let χ : p´2, 2q Ñ r0, 1s be a
compactly supported smooth function such that χpaq “ 1 whenever |a| ď ra. Then, we have

lim sup
jÑ8

ż

pa˝ujq´1pr´ra,rasq

u˚
j prpaqΩ̄jq

ď lim sup
jÑ8

CjpχpaqrpaqΩ̄jq

ď lim sup
jÑ8

Cjpχpaqrpaqωsq ` lim sup
jÑ8

}ωs ´ Ω̄j}ḡj lim sup
jÑ8

Cjpχpaqpda^ λ̄j ` ω̄jqq “ 0.

(5.10)

The last line uses three facts. First, it uses the geometric convergence of tCju. Second, it
uses the convergence }ωs ´ Ω̄j}ḡj Ñ 0, which follows from Lemma 5.1. Third, it uses the bound

lim supjÑ8 Cjpχpaqpda^λ̄j `ω̄jqq ă 8, which follows from an identical argument to the one proving
that the left-hand side of (5.7) is finite. Now, putting (5.3), (5.4), (5.8), (5.9), and (5.10) together,
we have

lim
jÑ8

ż

pa˝ujq´1praq

u˚
j ν̄j “ m ¨ eνpsq.

Therefore, the sequence traju, where raj :“ ra for each j, satisfies each of the conditions (a–c) from
Step 1. □

5.1.6. Positive lower bound on eν . We refine B3 so that eν is positive. The proof uses Lemma 5.4
and Stokes’ theorem.

Lemma 5.5. There exists a compact subset B4 Ď B3 of positive Lebesgue measure and a constant
c7 ě 1 such that eνpsq ě c´1

7 for every s P B4.

Proof. Fix arbitrary point constraints tqw1,ku. The proof will take 2 steps.
Step 1: This step shows that, for any sequence k and any s P B3 z ppsλp1;kq Y psωp1;kq, we have
eνpsq ą 0.

By Proposition 4.12, there exists a subsequence k1 “ tkju and a sequence sj Ñ s such that the
currents tCsj ,1,kju geometrically converge to p´2, 2q ˆmpγs for some integer m ě 1. By Lemma 5.4,
there exists a sequence of regular values tāju of a ˝ pu1,kj such that

(5.11) lim
jÑ8

ż

pa˝pu1,kj
q´1pājq

pu˚
1,kj

pνkj “ m ¨ eνpsq.

For each j, set Γj :“ pa˝pu1,kj q´1pājq Ă pC1,kj . The submanifold Γj separates pCd,kj into two halves
Σj,˘ intersecting W` and W´, respectively. It follows from Stokes’ theorem that

(5.12)

ż

Γj

pu˚
1,kj

pνkj “

ż

Σj,´

pu˚
1,kj

pΩkj ą 0.

By (5.11) and (5.12), we have eνpsq ą 0.
Step 2: This step finishes the proof. By Lemma 4.7 and Lemma 4.8, there exists a sequence k
such that the set psλp1;kq Y psωp1;kq has Lebesgue measure zero. Choose a compact subset B4 Ď

B3 z ppsλp1;kq Ypsωp1;kqq of positive Lebesgue measure. By Step 1, eν is positive on B4. The lemma
follows because B4 is compact and eν is continuous (Lemma 5.2(c)). □
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5.1.7. Restrictions on accumulation and blowup. Recall the adiabatic limit sets tpX dpkqu from §4.4.2.
Recall the sets psωpd;kq and psλpd;kq from §4.5.1. Let B5 Ď B4 be the full measure subset of points
with Lebesgue density 1. The following lemma proves that, after passing to a subsequence, the set
psωpd;kq X B5 has Opdq points. This is quite strong since the set psωpd;kq could itself be infinite.

Lemma 5.6. There exists a constant c8 ě 1 such that the following holds for any d ě 1, any point
constraints tqwd,ku, and any sequence k. There exists a subsequence k1 Ď k such that

#ppsωpd;k1q X B5q ď c8d.

The next lemma asserts that λ-integrals do not blow up if there is no ω-accumulation.

Lemma 5.7. Fix any d ě 1, any point constraints tqwd,ku, and any sequence k “ tkju. Then, for
any s P B5 that does not lie in psωpd;kq, we have

lim inf
jÑ8

Ed,kj ,λpsq ă 8.

5.1.8. Deriving a contradiction. We defer the proofs of Lemmas 5.6 and 5.7 and first give the proof

of Theorem 3. Let c8 ě 1 be the constant from Lemma 5.6. Fix d ą c8. Fix a set w “ twd,iu
d2
i“1 Ă W

as follows. Choose a subset tsd,iu
d2
i“1 Ď B5. Then, for each i, let wd,i be any point in H´1psd,iq that

does not lie on qγsd,i . For each k, define point constraints qwd,k :“ pΦkpwq.
We use Lemmas 5.6 and 5.7 to prove the following claim. We claim that there exists d ě 1 and

i P t1, . . . , d2u such that the hypersurface H´1psd,iq contains a closed orbit passing through the
point wd,i. By construction, there are no closed orbits passing through wd,i. Therefore, once the
claim is established, we arrive at a contradiction.

Proof of claim. By Lemma 5.6 and the inclusion tsd,iu Ă B5, there exists a sequence k “ tkju

such that psωpd;kq X tsidud
2

i“1 contains c8d ă d2 points. Thus, there exists i P t1, . . . , d2u such that
sd,i R psωpd;kq. Let y P Y be such that ιpsd,i, yq “ wd,i. Let R :“ Rsd,i denote the Hamiltonian vector
field of ηsd,i . Recall that R is conjugated by the map ιpsd,i,´q to a reparameterization of XH on the
hypersurface H´1psd,iq. By Lemma 5.7, we have lim infjÑ8 Ed,kj ,λpsd,iq ă 8.. By Proposition 4.12,

setting aj :“ δ´1
5 kjsd,i, a subsequence of the slices

τaj ¨

´

pud,kj p pCd,kj q X raj ´ 1{2, aj ` 1{2s ˆ Y
¯

converges in the Hausdorff topology to r´1{2, 1{2s ˆ γ, where γ Ă Y is a closed orbit of R. Each
slice contains p0, yq, so γ contains y. Thus, ιpsd,i, γq is a closed orbit of XH passing through wd,i. □

5.1.9. Proof of Lemma 5.6. The argument proving Lemma 5.6 is technical and has no analogue in
prior works, so we provide a sketch. Suppose there is positive accumulation of action at a level
s P B5. By Stokes’ theorem, for large k, the ν-integrals on the level sets of pud,k will make a positive
jump at s. As k Ñ 8, the ν-integrals cluster near a discrete set with gap at least c7{2, where c7 is
the constant from Lemma 5.4. We use this to prove that the positive jump has size at least c7{2,
so at least c7{2 action must accumulate at s. By Lemma 4.6, it follows that there are only Opdq

points where action accumulates. We now provide a detailed proof.

Proof. Let c7 be the constant from Lemma 5.5. Define c8 :“ 8c7. Assume for the sake of contra-
diction that for any subsequence k1 Ď k, we have #ppsωpd;k1q X B5q ą c8d. The proof will take 6
steps.
Step 1: This step finds a well-behaved subsequence of k. By Lemma 4.7 and Lemma 4.8, there
exists a subsequence k1 such that psλpd;k1q Ypsωpd;k1q has Lebesgue measure 0. Choose a countable
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dense subset s Ď B5 z ppsλpd,k1q Y psωpd;k1qq as follows. Let tUiu denote the collection of open
intervals in R that have rational endpoints and intersect B5. Since each point in B5 has Lebesgue
density 1, Ui intersects B5 if and only if Ui intersects B5 z ppsλpd,k1q Y psωpd;k1qq. Choose a point

si P Ui X pB5 z ppsλpd,k1q Y psωpd;k1qqq

for each i and let s be the collection of all si. Note that the sets Ui X B5 form a countable basis of
relatively open sets for B5, so s is dense in B5.

By Corollary 5.3, there exists a further subsequence k2 Ď k1 such that for each s P s, the currents
tCs,d,kukPk2 geometrically converge to p´2, 2q ˆ mspγs for some ms ě 1. Next, set N :“ tc8du ` 1.

After passing to at most N successive subsequences of k2, there exists a subsequence k1 “ tkju of

k2 and a set of N distinct levels s1, . . . , sN in B5 with the following property. There exists a positive
constant ϵ P p0, 1q and, for each i, a sequence of intervals tLj,i “ rsj,i,´, sj,i,`su converging to si,
such that

(5.13) lim sup
jÑ8

ż

pC
Lj,i
d,kj

pu˚
d,kj

pωkj ą 0.

We simplify the notation. For each j, write uj :“ pud,kj ,
pCj,i :“ pC

Lj,i

d,kj
, νj :“ pνkj , and Ωj :“ pΩkj .

By Lemma 2.9 and (5.13), there exists ϵ P p0, 1q such that, for each i, we have

(5.14) lim sup
jÑ8

ż

pCj,i

u˚
jΩj ě ϵ.

Step 2: This step proves that, for each i, there exists a pair si,˘ P s such that:

(i) si,´ ă si ă si,`;
(ii) |eνpsi,´q ´ eνpsi,`q| ă ϵp4c7dq´2.

We also require

(iii) the intervals rsi,´, si,`s are pairwise disjoint.

By Lemma 5.2, eν is continuous on B5. Therefore, there exists δ ą 0 such that the intervals
psi ´ δ, si ` δq are pairwise disjoint and, for any i and any pair s˘ P psi ´ δ, si ` δq X B5, we have
|eνps`q ´ eνps´q| ă ϵp4c7dq´2. Since s has Lebesgue density 1 in B5 and B5 has positive Lebesgue
measure, there exist open intervals U` Ď psi, si ` δq and U´ Ď psi ´ δ, siq with rational endpoints
such that U˘ both intersect B5. Choose si,` P sXU` and si,´ P sXU´.
Step 3: This step recalls how to compute eνpsi,˘q using Lemma 5.4. Apply Lemma 5.4 to si,` and
si,´. There exists two sequences tāj,i,`u and tāj,i,´u such that:

(a) āj,i,` and āj,i,´ are regular values of a ˝ uj for every j.
(b) āj,i,` P pasi,`,kj ´ 2, asi,`,kj ` 2q and āj,i,´ P pasi,´,kj ´ 2, asi,´,kj ` 2q for every j.
(c) There exists positive integers mi,` and mi,´ such that

lim
jÑ8

ż

pa˝ujq´1pāj,i,`q

u˚
j νj “ mi,`eνpsi,`q, lim

jÑ8

ż

pa˝ujq´1pāj,i,´q

u˚
j ν “ mi,´eνpsi,´q.

We simplify our notation as follows. Recall that sj,i,˘ denote the endpoints of Lj,i. For each i

and each j, define aj,i,´ :“ δ´1
5 kjsj,i,´ and aj,i,` :“ δ´1

5 kjsj,i,`. We have pa ˝ ujqp pCj,iq Ď raj,i,´ ´

2, aj,i,` ` 2s for each j and i. Since sj,i,` Ñ si and sj,i,´ Ñ si, it follows that raj,i,´ ´ 2, aj,i,` ` 2s

lies inside rasi,´,kj ` 2, asi,`,kj ´ 2s for sufficiently large j. It follows from Property (b) above that
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raj,i,´´2, aj,i,``2s lies inside rāj,i,´, āj,i,`s for sufficiently large j. Apply this to obtain the following
symplectic area bound:.

lim sup
jÑ8

ż

pCj,i

u˚
jΩj ď lim sup

jÑ8

ż

pa˝ujq´1prāj,i,´,āj,i,`sq

u˚
jΩj

“ lim sup
jÑ8

´

ż

pa˝ujq´1pāj,i,`q

u˚
j νj ´

ż

pa˝ujq´1pāj,i,´q

u˚
j νj

¯

“ mi,`eνpsi,`q ´mi,´eνpsi,´q

(5.15)

The second line uses Stokes’ theorem. The third line uses Property (c) above.
Step 4: This step proves that mi,` ě mi,´ ` 1 for each i. First, we prove

(5.16) mi,` ď 4c7d, mi,´ ď 4c7d.

Observe that

mi,`eνpsi,`q “ lim
jÑ8

ż

pa˝ujq´1pāj,`q

u˚
j νj ď lim sup

jÑ8

ż

pCd,kj

u˚
jΩj ď 4d.(5.17)

The first inequality follows from Stokes’ theorem. The second follows from Corollary 4.3. Plug
the bound eνpsi,`q ě c´1

7 into (5.17). Re-arrange to obtain the first bound in (5.16). The second
bound in (5.16) follows from an identical argument. By (5.14) and (5.15), we have

pmi,` ´mi,´qeνpsi,`q `mi,´peνpsi,`q ´ eνpsi,´qq “ mi,`eνpsi,`q ´mi,´eνpsi,´q ě ϵ.

Apply (5.16) to bound the left-hand side from above. We have

pmi,` ´mi,´qeνpsi,`q ` 4c7d|eνpsi,`q ´ eνpsi,´q| ě ϵ.

Since |eνpsi,`q ´ eνpsi,´q| ă p4c7dq´1ϵ and eνpsi,`q ą 0 (Lemma 5.5), the bound mi,` ´mi,´ ą 0
follows. Since both of mi,˘ are integers, we have mi,` ě mi,´ ` 1.
Step 5: This step shows that, for any i, we have the bound

(5.18) lim inf
jÑ8

ż

pa˝ujq´1prāj,i,´,āj,i,`sq

u˚
jΩj ě c´1

7 {2.

We have

mi,`eνpsi,`q ´mi,´eνpsi,´q ě eνpsi,´q ´mi,`|eνpsi,`q ´ eνpsi,´q|

ě c´1
7 ´mi,`|eνpsi,`q ´ eνpsi,´q| ě c´1

7 {2.
(5.19)

The first inequality uses Lemma 5.5 and the bound mi,` ě mi,´ ` 1 from Step 4. The second
inequality uses Lemma 5.5. The third inequality uses (5.16) and the bound |eνpsi,`q ´ eνpsi,´q| ă

p4c7dq´2. Now (5.18) follows from (5.15) and (5.19).
Step 6: This step completes the proof. By Property (iii) in Step 2, the intervals rāj,i,´, āj,i,`s are
pairwise disjoint for sufficiently large fixed j. Sum (5.18) over all i and apply Corollary 4.3. We
have

Nc´1
7 {2 ď

N
ÿ

i“1

lim inf
jÑ8

ż

pa˝ujq´1prāj,i,´,āj,i,`sq

u˚
jΩj ď lim inf

jÑ8

N
ÿ

i“1

ż

pa˝ujq´1prāj,i,´,āj,i,`sq

u˚
jΩj

ď lim inf
jÑ8

ż

pCd,kj

u˚
jΩj ď 4d.

(5.20)

The second inequality follows from Fatou’s lemma. Recall from Step 1 that N ą 8c7d. Therefore,
(5.20) implies 4d ă 4d. This is the desired contradiction. □
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5.1.10. Proof of Lemma 5.7. Here is a sketch of the proof. For any s P B5 not in psωpd;kq, we
consider limit points of sequences tEd,kj ,λpsjqu where sj Ñ s. After passing to a subsequence, at
least one limit point exists. The set of limit points is discrete, since they are λ-integrals over iterates
of qγs. After passing to a subsequence, the set of limit points is connected. It follows from these
observations that no sequence tEd,kj ,λpsjqu can diverge. We now give a detailed proof.

Proof. Assume for the sake of contradiction that for any subsequence k1 Ď k, there exists some
s P B5, such that s R psωpd;k1q and such that tEλ,d,kpsqukPk1 diverges. The proof will take 3 steps.
Step 1: This step is very similar to Step 1 of the proof of Lemma 5.6. We find a well-behaved
subsequence of k. By Lemma 4.7 and Lemma 4.8, there exists a subsequence k1 such that psλpd;k1qY

psωpd;k1q has Lebesgue measure 0. Choose a countable dense subset s Ď B5 z ppsλpd,k1q Ypsωpd;k1qq.
By Corollary 5.3, there exists a subsequence k1 “ tkju of k1 such that for each s P s, the currents

tCs,d,kju geometrically converge to p´2, 2q ˆm ¨ qγs for some m ě 1.

Step 2: By assumption, there exists some s P psλpd;k1q X B5 that does not lie in psωpd;k1q. For each
j, write Ej :“ Ed,kj ,λ. This step shows that there exists a sequence sj Ñ s such that

lim inf
jÑ8

Ejpsjq ă 8.

For each s1 P s, the currents Cs1,d,kj converge geometrically as j Ñ 8 to a current p´2, 2q ˆmpγs1

for some integer m ě 1. It follows that limjÑ8 Ejps
1q “ meλps1q.

The same argument proving (5.16) shows that m ď 4c7d. By Lemma 5.2(b), there exists a
constant c9 ě 1 such that eλ ď c9. It follows that

lim
jÑ8

Ejps
1q ď 4c7c9d

for any s1 P s. Since s is dense in p´δ5, δ5q, there exists a sequence sj Ñ s such that lim infjÑ8 Ejpsjq ď

4c7c9d.
Step 2: This step proves that, for any s P B5 and any sequence sj Ñ s, any limit point of the
sequence tEjpsjqu lies in the set Z ¨eλpsq Ă R. Let E be any such limit point. Fix a subsequence tjℓu
such that Ejℓpsjℓq Ñ E. To simplify notation, write s1

ℓ :“ sjℓ , k
1
ℓ :“ kjℓ , a

1
ℓ :“ as1

ℓ,k
1
ℓ
, C 1

ℓ :“ Cs1
ℓ,d,k

1
ℓ
,

and C1
ℓ :“ Cs1

ℓ,d,k
1
ℓ
. Write u1

ℓ :“ pud,k1
ℓ
, λ1

ℓ :“
pλ
a1
ℓ

k1
ℓ
, and ω1

ℓ :“ pωk1
ℓ
. Since s R psωpd;k1q, Proposition 4.12

shows that after passing to a subsequence, C1
ℓ Ñ p´2, 2q ˆm ¨ qγs for some integer m ě 1. The claim

then follows from a computation:

E “ lim
ℓÑ8

Ejℓps
1
ℓq “ lim

ℓÑ8
C1
ℓpr

1paqda^ λ1
ℓq “ lim

ℓÑ8
C1
ℓpr

1paqda^ λsq

“ m
´

ż 2

´2
r1paq

¯

eλpsq “ m ¨ eλpsq.

The third equality requires two facts to prove. First, since s R psωpd;k1q, Lemma 4.15 implies that
AreapC1

ℓq is uniformly bounded. Second, we have λ1
ℓ Ñ λs by Corollary 4.2. The fourth equality

uses the convergence C1
ℓ Ñ p´2, 2q ˆmqγs.

Step 3: This step completes the proof. By Step 1, there exists some E P R and a sequence
sj Ñ s such that lim infjÑ8 Ejpsjq ď E. After passing to a subsequence in j, we may assume that
lim supjÑ8 Ejpsjq ă E ` 1. Choose some E1 ą E ` 1 such that E1 R Z ¨eλpsq. By assumption,
limjÑ8 Ejpsq “ 8. We have Ejpsq ą E1 ą Ejpsjq for each sufficiently large j. By the intermediate
value theorem, for each sufficiently large j, there exists s1

j such that |s1
j´s| ď |sj´s| and Ejps

1
jq “ E1.

Therefore, s1
j Ñ s and limjÑ8 Ejps

1
jq “ E1. This contradicts Step 2. □
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5.2. Proof of Theorem 4. To prove Theorem 4, we recall some known dynamical properties of
C8-generic Hamiltonians H : R4 Ñ R. Let γ Ă H´1psq be a closed orbit of XH . Choosing a
point x P γ. The linearized flow of XH defines a linear operator Pγ : TxR4 Ñ TxR4. The orbit
γ is hyperbolic if Pγ has a real eigenvalue with norm not equal to 1. It is elliptic if Pγ has an
eigenvalue of norm 1 that is not a root of unity. These properties do not depend on the choice of
x P γ. An elliptic orbit γ Ă H´1psq is Moser stable if it has nondegenerate Birkhoff normal form;
see Appendix B for details. A deep theorem of Moser [Mos62] implies that a Moser stable elliptic
orbit is accumulated by an infinite sequence of closed orbits in H´1psq. Now, we prove Theorem 4
using Theorem 2.

Proof of Theorem 4. Let Q˚ Ď RcpHq denote set of all levels s such that any closed orbit γ Ă

H´1psq is either (i) hyperbolic or (ii) elliptic and Moser stable. By the assumptions of the theorem,
Q˚ has full Lebesgue measure in RcpHq. Let H Ď RcpHq denote the set of all s such that every
closed orbit in H´1psq is hyperbolic. Let E Ď RcpHq denote the set of s such that H´1psq contains
a Moser stable elliptic closed orbit. Let A Ď RcpHq denote the set of s such that H´1psq contains
infinitely many closed orbits. Our goal is to show that A has full Lebesgue measure in RcpHq. A
Moser stable orbit is accumulated by an infinite sequence of closed orbits, so

(5.21) E Ď A
By Theorem 2, there exists a full measure subset Q1 Ď RcpHq such that for any s P Q1, the set

Ppsq is either equal to H´1psq or not locally maximal. In particular, if s P Q1 and H´1psq contains
finitely many closed orbits, then at least one has to be non-hyperbolic. It follows that

(5.22) Q1 XH Ď A .

Recall that Q˚ Ď E YH. By (5.21) and (5.22), we have

(5.23) Q1 XQ˚ Ď pQ1 X Eq Y pQ1 XHq Ď A .

Thus, the set Q :“ Q1 XQ˚ is a subset of RcpHq with full Lebesgue measure, in which every
corresponding level set has infinitely many closed orbits. □

5.3. Other 4-manifolds. Consider a smooth function H : M Ñ R where M is a symplectic 4-
manifold. Assume that M symplectically embeds into a closed symplectic 4-manifold W with b` “ 1
and rational symplectic form Ω.

5.3.1. Almost-existence of two closed orbits. Theorem 3 extends to this situation provided that (i)
the symplectic form on M is exact and (ii) for any s P RcpHq, at least one component of M zH´1psq
has compact closure. It follows, for example, that Theorem 3 extends to the casesM P tT ˚S2, T ˚T2u.
As explained in §4.6, the results of §4 go through for H. However, the proofs of Lemmas 5.6 and
5.7 rely on the facts that (i) R4 is an exact symplectic manifold and (ii) each compact regular level
set of H bounds a compact domain.

5.3.2. Generic almost-existence of infinitely many closed orbits. Theorem 4 generalizes to this sit-
uation without any exactness assumptions. This is because the theorem follows directly from
Theorem 2. Lemma B.1 holds for any symplectic 4-manifold, so Corollary 1.6 generalizes as well.

Appendix A. Existence results for closed curves

This appendix contains a proof of Proposition 3.6. It also discusses a version that holds for many
other closed symplectic 4-manifolds with b` “ 1, such as S2 ˆS2. The results follow from combining
some known results about Taubes’ Gromov invariant.
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A.1. Taubes’ Gromov invariant. Let W be a closed symplectic 4-manifold with symplectic form
Ω. Let J be any Ω-tame almost-complex structure. A J-holomorphic cycle in W is a finite set of
pairs C “ tpui, niqu. Each ui is a somewhere injective J-holomorphic map Ci Ñ W from a closed,
irreducible Riemann surface Ci without any nodal points. Each ni is a positive integer. The support
of C is the set

supppCq :“
ď

i

uipCiq Ă W .

The homology class of C is the class rCs :“
ř

imipuiq˚rCis P H2pW;Zq. Taubes’ Gromov invariant,
constructed in [Tau96], is an integer-valued function

GrpW,´q : H2pW;Zq b ApWq Ñ Z
defined by counting J-holomorphic cycles satisfying incidence conditions. Fix A P H2pX;Zq. Define
the index

IpAq :“ xc1pWq, Ay `A ¨A P Z .
The index IpAq is an even integer. If IpAq ă 0, we define GrpW, Aq “ 0. If IpAq ě 0, then

GrpW, Aq is defined as follows. We denote by DpAq the set of triples pJ,w,Γq where J is a smooth

Ω-tame almost-complex structure, w P WIpAq{2 is a set of IpAq{2´k points inW, and Γ is a collection
of . Then, GrpW, Aq is a count of J-holomorphic cycles C such that rCs “ A and w Ă supppCq,
where pJ,wq is chosen from a Baire-generic subset of DpAq. The definition of the count and the
proof that it is independent of choices are quite subtle. We will only use the following consequence.

Proposition A.1. Fix A P H2pW;Zq and assume that GrpW, Aq ‰ 0. Then there exists a Baire-
generic subset D0 Ď DpAq such that the following holds for any pJ,wq P D0. There exists a
J-holomorphic cycle C “ tpui, niqu such that:

(a) rCs “ A.
(b) w Ă supppCq.
(c) For each i, let Ai be the class puiq˚rCis. Then we have 0 ď IpAiq ď IpAq.
(d) For each i, the image uipCiq contains exactly IpAiq{2 points from w.

Proof. The proposition follows from the definition of GrpW, Aq; see the list [Tau96, (1.4)]. □

A.2. Improved existence for positive classes. Let W be a closed symplectic 4-manifold with
symplectic form Ω as above. We will deduce an improved version of Propositions A.1 when A
has certain strong positivity properties, that we now discuss. Let E Ă H2pW;Zq denote the set
of B P H2pW;Zq such that B ¨ B “ ´1 and, for any Ω-tame almost-complex structure J , there
exists an embedded J-holomorphic sphere S Ă W representing B. For any A P H2pW;Zq, define
gpAq :“ 1

2pA ¨ A ´ xc1pWq, Ayq ` 1. Let P Ď H2pW;Zq denote the set of all classes A P H2pW;Zq

satisfying the following conditions:

‚ A ¨A ą 0.
‚ IpAq ě 0 and gpAq ě 0.
‚ xrΩs, Ay ą 0.
‚ A ¨B ě 0 for all B P E .

Now, we state the improved existence result.

Proposition A.2. Fix A P P Ď H2pW;Zq and assume that GrpW, Aq ‰ 0. There exists a Baire-
generic subset D1 Ď DpAq such that the following holds for any pJ,wq P D1. There exists a closed,
embedded J-holomorphic surface C Ă W such that (i) GpCq “ gpAq, (ii) rCs “ A and (iii) w Ă C.

The proof relies on the following lemma.
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Lemma A.3. Fix A P P. There exists a Baire-generic subset D2 Ď DpAq such that the following
holds for any pJ,wq P D2. Let C “ tpui, niqu be a J-holomorphic current such that rCs “ A and
w Ă supppCq. Then, C satisfies the following additional restrictions:

(a) For each i, let Ai denote the class represented by ui. Then IpAiq ě 0.
(b) We have

ř

i niIpAiq ď IpAq.
(c) We have

ř

i niIpAiq “ IpAq if and only if C “ tpC, 1qu, where C Ă W is a closed, embedded
J-holomorphic surface of genus gpAq.

Proof. This is proved by Taubes [Tau11, Proposition 3.4]. □

We prove Proposition A.2 by combining Proposition A.1 and Lemma A.3.

Proof of Proposition A.2. Define D1 Ď DpAq to be the intersection of the subsets D0 and D2 from
Proposition A.1 and Lemma A.3. By Proposition A.1, there exists a J-holomorphic cycle C “

tpui, niqu such that:

(a) rCs “ A.
(b) w Ă supppCq.
(c) Write Ai “ uipCiq for each i. Then for each i, we have 0 ď IpAiq ď IpAq.
(d) For each i, the image uipCiq contains exactly IpAiq{2 points from w.

Combining (d) with Lemma A.3(a,b), we have

IpAq ď
ÿ

i

IpAiq ď
ÿ

i

niIpAiq ď IpAq.

Therefore, we have IpAq “
ř

i niIpAiq. The proposition now follows from Lemma A.3(c). □

Combining Proposition A.2 with the Gromov compactness theorem, we obtain an existence result
for all pJ,wq.

Corollary A.4. Fix any A P P such that GrpW, Aq ‰ 0 and any finite subset w Ă W of size at
most IpAq{2. Then, for any Ω-tame almost-complex structure J , there exists a closed, connected
Riemann surface C and a J-holomorphic curve u : C Ñ W such that (i) GapCq “ gpAq, (ii)
u˚rCs “ A and (iii) w Ă upCq.

A.3. Closed curves in CP2. We prove Proposition 3.6 using Corollary A.4.

Proof of Proposition 3.6. Let A P H2pCP2;Zq denote the Poincaré dual of Ω. Then A is represented
by an embedded holomorphic sphere D Ă CP2 of self intersection 1. Given Corollary A.4, it suffices
to show that, for any integer e ě 1, we have eA P P and GrpCP2, eAq ‰ 0. The former claim follows
from the computatations eA ¨ eA “ e2, IpeAq “ e2 ` 3e, gpeAq “ pe ´ 1qpe ´ 2q{2, xΩ, eAy “ e,
and the fact that CP2 is positive-definite and contains no surfaces of negative self-intersection. The
computation GrpCP2, eAq ‰ 0 can be done by explicitly counting J-curves for an integrable J (see
for example [Edt22, Theorem B.3]). □

A.4. Closed curves in closed symplectic 4-manifolds with b` “ 1. Corollary A.4 yields
existence results for symplectic 4-manifolds besides CP2.

Proposition A.5. Let W be any closed symplectic 4-manifold such that b` “ 1 and the symplectic
form Ω has rational cohomology class. Let A P H2pW;Qq denote the Poincaré dual of rΩs. Fix any
positive integer e ą 1` |xc1pWq, Ay|{pA ¨Aq such that eA P H2pW;Zq. Fix any set w Ă W such that

#w ď e2pA ¨Aq ` exc1pWq, Ay ´ 1.
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Then, for any Ω-tame almost-complex structure J̄ , there exists a closed, connected Riemann
surface C and a J̄-holomorphic curve u : C Ñ W such that (i) GapCq “ 1

2pe2pA¨Aq´exc1pWq, Ayq`

1, (ii) u˚rCs “ eA and (iii) w Ă upCq.

Proof. Let A P H2pW;Qq denote the Poincaré dual of Ω and let e be any positive integer larger
than 1 ` |xc1pWq, Ay|{pA ¨ Aq such that eA P H2pW;Zq. The proof of the proposition will take 3
steps.
Step 1: This step shows that, for any integer e ě 1 ` |xc1pWq, Ay|{pA

ś

Aq, we have A P P. Note
that A ¨A ą 0. Using the lower bound on e, we have

IpeAq “ exc1pWq, Ay ` e2pA ¨Aq ą epxc1pWq, Ay ` |xc1pWq, Ay| ą 0

and

gpeAq “
1

2
p´exc1pWq, Ay ` e2pA ¨Aqq ` 1 ą

e

2
p´xc1pWq, Ay ` |xc1pWq, Ay|q ` 1 ě 0.

Since A is dual to rΩs, we have xΩ, eAy ą 0. Since A is dual to rΩs, it must pair positively with
any J-holomorphic sphere. Thus, we have verified all the necessary conditions and conclude that
eA P P.
Step 2: This step proves the proposition with the additional assumption that either (i) b1pWq ‰ 2
or (ii) the cup product on H1pW;Zq is nonzero. We claim that GrpW, eAq ‰ 0. The claim is proved
as follows. In [LL99], Li–Liu showed that Taubes’ “SW “ Gr” theorem extends to the b` “ 1 case,
so GrpW, eAq is equal to a corresponding Seiberg–Witten invariant. It follows from a result of the
same authors, namely [LL01, Lemma 3.3], that this Seiberg–Witten invariant does not vanish. Now
the proposition follows from Corollary A.4.
Step 3: This step explains how to prove the proposition in the exceptional case where b1 “ 2 and
the cup product on H1pW;Zq is zero. Choose a pair of disjoint curves γ1 and γ2 whose homology
classes generate H1pW;Zq{Torsion. In this case, as explained in [Tau17, Proposition 1.1], a slightly
weaker version of Proposition A.2 holds. For a generic choice of J 1, a generic choice of IpeAq{2 ´ 1
points w1, and small perturbations γ1

1 and γ1
2 of the chosen loops, there exists an embedded J 1-

holomorphic surface C Ă W such that (i) GpCq “ gpAq, (ii) rCs “ A, (iii) w1 Ă C and (iv) C
intersects γ1

1 and γ1
2. The proposition follows from taking J 1 Ñ J and w1 Ñ w and applying the

Gromov compactness theorem. □

Appendix B. Generic 4-dimensional Hamiltonians

The goal of this appendix is to sketch a proof of the following lemma.

Lemma B.1. There exists a Baire-generic subset G Ď C8pR4q such that the following holds. For
any H P G, there exists a full measure subset Q˚ Ď RcpHq such that for each s P Q˚, every closed
orbit γ Ă H´1psq is either (i) hyperbolic or (ii) elliptic and Moser stable.

Lemma B.1 follows from Takens’ [Tak70] perturbation theorem for Hamiltonians. We explain
Moser stability, then explain Takens’ result, then give the proof.

B.1. Moser stability. We discuss Moser’s work in [Mos62]. Fix any area-preserving diffeomor-
phism ϕ of the 2-disk such that, near 0, we have a Birkhoff normal form

ϕpr, θq “ pr, θ ` α0 ` α1rq `Opr2q

where pr, θq denote polar coordinates. Assume that the Birkhoff normal form is nondegenerate, i.e.
α0 is irrational and α1 ‰ 0. Thus, ϕ is, up to higher order terms, an integrable monotone twist map
of the disk. The higher order terms, however, significantly affect the dynamics. Nevertheless, Moser
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proved that some integrability survives; the origin is accumulated by a positive measure family of
smooth ϕ-invariant circles. Since α1 ‰ 0, there must exist an infinite sequence of invariant circles
accumulating at 0, with pairwise distinct rotation numbers. Thus, the Poincaré–Birkhoff theorem
implies that 0 is accumulated by periodic points of ϕ.

Fix any H P C8pR4q and any s P R. For any elliptic closed orbit γ Ă H´1psq and any transverse
2-disk D Ă H´1psq, the Poincaré return map is conjugate near 0 to a Birkhoff normal form as
above. We say γ is Moser stable if the Birkhoff normal form is nondegenerate.

B.2. Takens’ theorem. Takens [Tak70] proved a powerful jet perturbation theorem for Poincaré
return maps of closed orbits of Hamiltonians, generalizing a result for 1-jets by Robinson [Rob70].
For any n ě 1, let Jrpnq denote the set of r-jets at 0 of smooth symplectic diffeomorphisms of R2n

that fix 0 P R2n. We say a subset Q Ă Jrpnq is invariant if σQσ´1 “ Q for all σ P Jrpnq. The
following lemma is a consequence of Takens’ results.

Lemma B.2 ([Tak70, Theorem A]). Fix n ě 1, r ě 1, T ą 0, and any finite collection Q1, . . . , QN

of invariant real analytic subvarieties of Jrpnq. Then, there exists a Baire-generic subset G˚ Ď

C8pR2nq such that each H P G˚ has the following property. For any closed orbit γ of XH with
minimal period ă T , there exists a neighborhood U of γ in which all but finitely many closed orbits
of minimal period ă T have Poincaré return maps whose r-jet at 0 does not lie in

ŤN
i“1Qi.

Let us give an informal explanation of how Lemma B.2 follows from Taken’s results. For generic
H, the closed orbits live in smooth 1-parameter families. Therefore, we cannot expect every r-jet
of every closed orbit in a 1-parameter family to avoid the subvarieties Qi. However, Takens proved
that, for generic H, each 1-parameter family of r-jets will intersect each Qi transversely. Therefore,
all but finitely many r-jets in each family will avoid

ŤN
i“1Qi.

B.3. Moser stability is generic. We sketch a proof of Lemma B.1.

Proof. There exists a countable collection of invariant real analytic subvarieties tQiu Ă J2p2q such
that the following holds. If γ is a closed orbit of XH such that the 2-jet of the Poincaré map avoids
each Qi, then γ is either (i) hyperbolic or (ii) elliptic and Moser stable.

Fix any N ě 1 and let QN Ď RcpHq denote the set of all levels s such that, for each closed orbit
γ Ă H´1psq of minimal period ă N , the 2-jet of its Poincaré return map avoids Q1, . . . , QN . By
Lemma B.2, there exists a Baire-generic subset GN such that if H P GN , then only a discrete set of
closed orbits have 2-jets intersecting

ŤN
i“1Qi. It follows that if H P GN , then the complement of

QN in RcpHq is discrete. Therefore, if H P GN , the set QN has full Lebesgue measure in RcpHq.
Define G˚ :“

Ş

Ně1 GN . If H P G˚, then Q˚ :“
Ş

Ně1QN has full Lebesgue measure in RcpHq.

For any s P Q˚, every closed orbit γ Ă H´1psq is either (i) hyperbolic or (ii) elliptic and Moser
stable. □
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[GG09] Viktor L. Ginzburg and Başak Z. Gürel. Periodic orbits of twisted geodesic flows and the Weinstein-Moser
theorem. Comment. Math. Helv., 84(4):865–907, 2009.
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