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HIGH-DIMENSIONAL FAMILIES OF HOLOMORPHIC CURVES AND
THREE-DIMENSIONAL ENERGY SURFACES

ROHIL PRASAD

ABSTRACT. Let H : R* - R be any smooth function. This article introduces some arguments for
extracting dynamical information about the Hamiltonian flow of H from high-dimensional families
of closed holomorphic curves. We work in a very general setting, without imposing convexity or
contact-type assumptions.

For any compact regular level set Y, we prove that the Hamiltonian flow admits an infinite
family of pairwise distinct, proper, compact invariant subsets whose union is dense in Y. This is
a generalization of the Fish—Hofer theorem, which showed that Y has at least one proper compact
invariant subset. We then establish a global Le Calvez—Yoccoz property for almost every compact
regular level set Y: any compact invariant subset containing all closed orbits is either equal to
Y or is not locally maximal. Next, we prove quantitative versions, in four dimensions, of the
celebrated almost-existence theorem for Hamiltonian systems; such questions have been open for
general Hamiltonians since the late 1980s. We prove that almost every compact regular level set of H
contains at least two closed orbits, a sharp lower bound. Under explicit and C'®-generic conditions
on H, we prove almost-existence of infinitely many closed orbits.

CONTENTS
(I.__Introductionl 1
B Prelimnaned 10
[3.  Dense existence of compact invariant sets| 21
4. Global Le Calvez—Yoccoz property| 35
b.  Quantitative almost-existence] 44
|Appendix A. Existence results for closed curves| 54
[Appendix B. Generic 4-dimensional Hamiltonians| 57

58

1. INTRODUCTION
1.1. Background and statement of main results. Hamilton’s equation
(1.1) UXpy,—)=—-dH

associates to any smooth function H : R?® — R a so-called Hamiltonian vector field Xp. The
flow of X preserves the symplectic form 2. The dynamical behavior of Hamiltonian flows has
been profitably studied over many years from many different perspectives. This article studies the
invariant sets and closed orbits of Hamiltonians H : R* — R from the perspective of symplectic
geometry. Most results require H to satisfy convexity or “contact-type” assumptions. We will not
make any such assumptions. This presents several difficulties.
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The most fundamental issue is that arbitrary Hamiltonians appear to be much worse-behaved
than contact-type Hamiltonians. For example, Viterbo [Vit87] proved that any contact-type level
set of a Hamiltonian carries a closed orbit, but non-contact-type examples due to Ginzburg [Gin95],
Ginzburg-Giirel [GGO03], and Herman [Her99] have no closed orbits. Another issue is that few
tools exist to study the dynamics of arbitrary Hamiltonians. Symplectic field theory (SFT) and
its variants are not well-defined for non-contact-type Hamiltonians. Floer theory, e.g. symplectic
homology, can be defined, but appears to be weaker without a contact-type assumptio

One of our results, Theorem[I], is a very general existence result for proper, compact, X g-invariant
subsets in level sets of H. Another result, Theorem [3] gives a sharp quantitative refinement, in four
dimensions, of the celebrated almost-existence theorem for closed orbits. To compensate for the
absence of SFT and Floer theory, we develop some new arguments to extract dynamical information
from simpler invariants: moduli spaces of closed J-holomorphic curves. We now state and discuss
our results and their background in detail. Afterwards, we will give sketches of the proofs.

1.1.1. Dense existence of compact invariant sets. It follows from that dH(Xg) = 0, so the
function H is invariant under the flow of Xpg. Therefore, each level set of H is invariant under
the flow of X. Herman asked at the 1998 ICM [Her98] whether the level sets themselves contain
compact X g-invariant subsets. Here is a paraphrased version of his question.

Herman’s Question. Fiz a smooth function H : R*™ — R and a compact reqular level set Y.
Does there exist a proper, compact, X g-invariant subset A Y ?

Herman’s question is elegant but very difficult, since it is posed for arbitrary Hamiltonians without
any contact-type assumption. A groundbreaking work by Fish-Hofer [FH23] resolved Herman’s
question in the case n = 2.

Fish-Hofer Theorem ([FH23, Theorem 1]). Let H : R* — R be a smooth function and let Y be
a compact reqular level set of H. Then there exists a proper, compact, X g-invariant subset A C Y.

Our first main theorem is a generalization of the Fish—Hofer theorem.

Theorem 1. Let H : R* — R be a smooth function and let Y be a compact, connected, reqular level
set of H. Then Y contains an infinite family of pairwise distinct, proper, compact X gr-invariant
subsets whose union is dense in Y .

The connectedness assumption can be removed; see Remark In the context of symplec-
tic dynamics, Theorem [1| is a substantial and possibly unexpected generalization. To illustrate
this by way of analogy, we review detection results for closed orbits in contact-type level sets in
R*. For contact-type Y, it has been known since the 1980s, after Weinstein [Wei78], Rabinowitz
[Rab78], and Viterbo [Vit87] that Y contains a closed orbit of Xp. This was improved to two
closed orbits by Cristofaro-Gardiner—Hutchings [CGH16]ﬂ It is now known, after Hofer—Wysocki—
Zehnder [HWZ98, HWZ03], Cristofaro-Gardiner—Hutchings—Pomerleano [CGHP19|, and a recent
tour-de-force by Cristofaro-Gardiner—Hryniewicz—Hutchings—Liu [CGHHL23]|, that any star-shaped
Y has either two or infinitely many closed orbits. The works [CGHP19, [CGHHL23| extend to the
contact-type case given a torsion assumption on the Chern class; work of Colin—Dehornoy—Rechtman
[CDR23] drops the torsion assumption but requires the Hamiltonian flow to be nondegenerate. Irie

et Y = R*" be a level set bounding a compact domain U. The Floer-Hofer symplectic homology of U [FFH94]
is only known to detect dynamical features of Y, e.g. closed orbits, when Y is contact-type. Other variants are not
well-defined if Y is not contact-type.

2See [GHHM13| for an alternate approach to this result, for star-shaped Y, using contact homology.
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[Iri15] proved that for C'*°-generic Y, the closed orbits are dense. This represents over 30 years of
work, with accelerated progress in the last decade, to go from one closed orbit to infinitely many
closed orbits or to dense closed orbits. Theorem [I| proceeds straight from one proper, compact,
invariant subset in an arbitrary level set Y to a simultaneously infinite and dense family of proper,
compact, invariant subsets.

In §1.2) we outline the new ideas behind Theorem [1| that are not present in [FH23| or other
previous works. Before stating our other main results, we make some additional remarks.

Remark 1.1. Theorem [1] generalizes to disconnected level sets. Fix H : R* — R and a compact
regular level set Y. Then, each connected component Y, < Y contains an infinite family of pairwise
distinct, compact, proper Xp-invariant subsets with dense union in Y,. Here is a proof. Since Y
is compact, orientable, and null-homologous, there exists a smooth function H, : R* — R for which
0 is a regular value and Yy = H,;'(0). The Hamiltonian vector fields Xy and Xy, coincide on
Y, after rescaling the former by a nowhere zero smooth function. Thus, their flows have the same
invariant sets. Apply Theorem [I] to H,.

Remark 1.2. A celebrated construction by Katok [Kat73] shows that Hamiltonian flows on R?"
are remarkably flexible. His results imply that the conclusions of Theorem [I] fail to hold when
invariant subsets are replaced by other natural dynamical objects: closed orbits, minimal subsetsEL
and ergodic measuresﬂ Katok constructed a star-shaped level set in R* whose Hamiltonian flow has
exactly two closed orbits and exactly three ergodic invariant measures: the Dirac measures on the
closed orbits and the volume measure. The two closed orbits are the only minimal subsets of the
flow. Thus, closed orbits, minimal subsets, and ergodic measures can be quite simple. Theorem
shows that the compact invariant subsets are always quite complex and spread out throughout the
level set.

Remark 1.3. The conclusions of Theorem [l the so-called “dense existence of compact invariant
sets”, appear to be an emergent phenomenon in symplectic dynamics, at least in low dimensions.
Earlier this year, in joint work with Cristofaro-Gardiner [CGP24], an analogue of Theorem [1| for
area-preserving surface diffeomorphisms and three-dimensional Reeb flows was proved. Theorem
was announced in that article. The tools and arguments in [CGP24] are quite different from the
present work. We defer to for a more detailed comparison.

1.1.2. A global Le Calvez—Yoccoz property. A remarkable series of works in the late 1990s and early
2000s by Le Calvez—Yoccoz [LCY97], Franks [Era99], and Salazar [Sal06] established the following
result for invariant sets of homeomorphisms of the 2-sphere. Recall that a compact invariant set A
of a homeomorphism or flow is locally mazimal if any sufficiently Hausdorff-close invariant set A’
must be contained in A. For any area-preserving homeomorphism ¢ of S?, it was proved that any
compact ¢-invariant set A containing all closed orbits is either equal to S? or is not locally maximal.
We call such a result a “global Le Calvez—Yoccoz property”, since it produces invariant subsets near
any invariant subset containing all closed orbits, which could occupy a significant part of S2. These
works rely on fixed point theory; it is unclear to us how to extend their arguments to flows.

Our next theorem is a global Le Calvez-Yoccoz property for Hamiltonian flows on R*. To state
the result, we need to fix some notation. For any smooth function H : R* — R, let R.(H) denote
the set of regular values s € R such that H!(s) is compact. For any s € R.(H), let P(s) < H!(s)
denote the union of the closed orbits of Xy lying in H~1(s).

3A compact invariant subset in which every orbit is dense.
4An invariant probability measure that assigns each invariant subset a probability of 0 or 1.
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Theorem 2. Let H : R* > R be a smooth function. Then there exists a subset Q < Re(H) of full
measure such that the following holds for any s € Q. Any compact X g-invariant subset A < H~1(s)
containing P(s) is either equal to H=1(s) or is not locally mazimal in H'(s).

The global Le Calvez—Yoccoz property is quite powerful. By an elementary topological argumentﬂ
the global Le Calvez—Yoccoz property implies the dense existence of compact invariant sets. So,
Theorem 2 can be regarded as a refinement of Theorem 1], but only for almost every compact regular
level set. It is unclear to us whether every compact regular level set satisfies the global Le Calvez—
Yoccoz property. Theorem [2| also has an interesting application towards detecting closed orbits; see
Theorem @l below.

Remark 1.4. Global Le Calvez—Yoccoz properties for monotone area-preserving surface diffeomor-
phisms and Reeb flows on torsion contact 3-manifolds are proved in [CGP24]. Ginzburg-Giirel
[GG18] proved a related result. They showed that, for any Hamiltonian diffeomorphism of CP"
with finitely many periodic points, no periodic point is locally maximal. Cineli-Ginzburg—Giirel—
Mazzucchelli [CGGM23| recently proved a contact analogue of [GG18]. They showed that, for any
nondegenerate and dynamically convex star-shaped hypersurface Y  R?", no closed orbit is locally
maximal in Y.

1.1.3. Quantitative almost-existence. In the late 1980s, Hofer—Zehnder [HZ8T7] discovered the exis-
tence of closed orbits near any compact regular level set of a Hamiltonian. After some refinements
by Rabinowitz [Rab87] and Struwe [Str90], this became known as the “almost-existence” theorem:

Almost-existence theorem ([HZ87, Rab87, [Str90]). Let H : R*" — R be a smooth function.
Then there exists a subset Q € R.(H) of full measure such that for any s € Q, the level set H1(s)
contains a closed orbit of Xp.

The almost-existence theorem holds for any Hamiltonian H without convexity or contact-type
assumptions. Since its introduction, the almost-existence theorem has been generalized to many
other symplectic manifolds, sometimes with restrictions on the Hamiltonian. There have been
many significant contributions from many authors. Symplectic methods such as Floer homol-
ogy and symplectic capacities have played a key role. We mention, in no particular order, works
of Hofer-Viterbo [HV92], Cieliebak-Ginzburg-Kerman [CGK04], Ginzburg-Giirel [GG04], Biran-
Polterovich-Salamon [BPS03|, McDuff-Slimowitz [MSO01], Macarini [Mac04], Schlenk [Sch06], Macarini—
Schlenk [MSO05], Frauenfelder-Schlenk [FS07], Lu [Lu98) Lu00], and Fish-Hofer [FH22]. This list
should be regarded only as a sample of interesting works in this area; see [Gin05l, [GG09] for more
thorough surveys.

Beyond proving that closed orbits exist, establishing the optimal multiplicity of closed orbits (one,
two, infinitely many, etc.) of a Hamiltonian flow is a central problem in Hamiltonian dynamics.
The multiplicity problem has seen an enormous amount of interest and progress in several different
directions. First, a long-standing conjecture asserts that there are at least n closed orbits in any
convex level set in R?". We refer to [DLL* 24| for a comprehensive survey of results on this question.
Second, as mentioned above near Theorem [}, the multiplicity problem for contact-type level sets in
R* has been of great interest since pioneering work of Hofer-Wysocki-Zehnder [HWZ98, HWZ03].
Third, very strong multiplicity results have been proved for level sets near extrema of Hamiltonians.
The celebrated Weinstein-Moser theorem [Wei73, Mos76] shows that any level set of H : R*® — R
that is near a nondegenerate minimum of H contains at least n closed orbits. Generalizations to
other types of extrema were proved Kerman [Ker99]. A very general Weinstein—-Moser theorem,

5See the arguments in [CGP24] §2.4].
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replacing R*" by other symplectic manifolds, was proved by Ginzburg-Giirel [GG09]; some fur-
ther contributions were made by Usher [Ush09]. Finally, there are several multiplicity results for
kinetic Hamiltonians on magnetic cotangent bundles. See the works of Arnold [Arn88], Ginzburg
[Gin&7, |Gin96], Contreras [Con06|], Abbondandolo-Macarini-Paternain [AMP15], Asselle-Benedetti
[AB16], and Abbondandolo-Macarini-Mazzucchelli-Paternain [AMMP17].

Thus, there is a significant gap between the generality of the almost-existence theorem and the
known multiplicity results for Hamiltonian flows. The almost-existence theorem holds for almost
every compact regular level set of any H : R?® — R; more generally the domain R?" can be replaced
by any of a large family of symplectic manifolds. On the other hand, all known multiplicity results
require that either (i) the level set is convex or contact-type, (ii) the level set is near some kind of
extremum, or (iii) the Hamiltonian is of a specific form, e.g. the kinetic Hamiltonian. This gap has
yet to be bridged. For example, the lower bound of one closed orbit in the original almost-existence
theorem has held without any improvements since the late 1980s.

Our next theorem makes some progress in this direction. We prove an almost-existence theorem
with the optimal multiplicity for any Hamiltonian H : R* — R.

Theorem 3. Let H : R* — R be a smooth function. Then there exists a subset Q € R.(H) of full
measure such that for any s € Q, the level set H='(s) contains at least two closed orbits of Xy .

The multiplicity in Theorem [3| is seen to be optimal by example. There exist smooth four-
dimensional Hamiltonians for which every regular level set contains exactly two closed orbitsﬂ
Our proof of Theorem [3| combines the ideas behind Theorems (1| and [2| with a careful quantitative
argument; we will give a sketch in

Remark 1.5. As a corollary of Theorem [3| any contact-type level set in R* contains at least two
closed orbits. This has been known since work of Cristofaro-Gardiner-Hutchings [CGH16] showing
that any Reeb flow on a closed 3-manifold has at least two closed orbits. Thus, Theorem [3| gives a
partial generalization of [CGHI6] beyond the contact case.

Our last main theorem asserts that, under some additional conditions on H, one has almost-
existence of infinitely many closed orbits.

Theorem 4. Let H : R* — R be any smooth function such that for almost every s € Re(H), any
closed orbit v = H=1(s) is either (i) hyperbolic or (i) elliptic and Moser stable. Then, there exists
a full measure subset @ € R.(H) such that for any s € Q, the level set H'(s) contains infinitely
many closed orbits of Xpr.

We define hyperbolic, elliptic, and Moser stable closed orbits in Theorem [4] follows from an
elementary argument using Theorem [2} As we will explain in Appendix [B] the set of H satisfying
the conditions of Theorem [4] is Baire-generic in C*(R?). So, we have the following corollary.

Corollary 1.6. There exists a Baire-generic subset G < C®(R*) with the following property. Any
H € G admits a full measure subset Q@ < R.(H) such that for any s € Q, the level set H™1(s)
contains infinitely many closed orbits of Xy.

1.2. Comments on the proofs. We outline the proofs of the main theorems. The outline of
Theorem (1] is a bit long, but provides the necessary context to give much more concise summaries
of the other main results.

6The convex four-dimensional Hamiltonian H(z) = (|z1]? + |22|2)/a + (|z3|? + |z4|?)/b, where a and b are positive
and rationally independent, is one such example.
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1.2.1. Dense existence of compact invariant sets. We start with Theorem [I] Fix a smooth function
H : R* - R and a compact regular level set Y. To explain our method and highlight some
challenges that we overcome, we review previous work on detecting closed orbits or invariant sets
in Y. First, assume that Y is contact-type (e.g. convex or star-shaped). Compactify R* to CP?
by adding a divisor at infinity. For any tame almost-complex structure J and any pair of points
w4 € CP?, there exists a degree 1 J-holomorphic sphere in CP? passing through w. Place w,
and w_ on opposite sides so that the sphere crosses the hypersurface Y. Then, we perform a neck
stretching procedure around Y. Since Y is contact-type, the crossing sphere satisfies uniform energy
bounds as it is strrethed. By the SFT compactness theorem [BEHT03|, the sphere breaks into a
holomorphic building. Thus, ¥ must contain a closed orbit, since each building level is asymptotic
to a non-empty union of closed orbits. This proof is illustrated in Figure

=
v

FicUure 1. A J-holomorphic sphere stretching along a contact-type hypersurface
and breaking into a building (right).

AV,

Next, we drop the contact-type assumption on Y. We outline a minor variant of Fish—Hofer’s
proof from [FH23| that Y contains a proper, compact, X pg-invariant subset. We begin the same
way, by stretching a J-holomorphic sphere that crosses Y. Without the contact-type assumption,
however, we have no a priori energy bounds. The sphere exhibits wild behavior in the neck and
the SF'T compactness theorem fails. Fish—Hofer proved that a relatively small part of the sphere,
near an end of the neck, can be controlled and limits to a single holomorphic curve in R xY. This
holomorphic curve lives in a new class of infinite energy curves that they call feral curves; they
show that the ends of feral curves limit to Xpy-invariant subsets of Y. Some additional arguments
show that this particular feral curve produced by neck-stretching limits to a proper (i.e. not equal
to V) compact X pg-invariant set A. This proof is illustrated in Figure

Our approach to Theorem |I| relies on two observations. First, the manifold CPP? has holomorphic
curves of every degree d crossing Y, not just degree 1 spheres. Indeed, the Fish—Hofer argument
outlined above can be adapted to higher degree curvesﬂ We obtain a proper compact invariant
subset Ay for each d. However, it seems difficult to tell from this viewpoint whether the subsets Ay
are distinct for different values of d, and moreover one cannot control their location in Y. So, a
different approach is required to extract new data from higher degree curves.

Our second observation is that the Fish-Hofer approach, by necessity, disregards a lot of infor-
mation. A limiting feral curve can only be constructed by restricting to very specific pieces of a

"We essentially do this in Proposition on the way to proving Theorem
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FI1GURE 2. A J-holomorphic sphere stretching wildly along a non contact-type hy-
persurface. A carefully selected sequence of controlled, but successively longer, parts
(in the boxes) limits to a feral curve (right).

stretching holomorphic curve. Our solution, which we consider to be our main conceptual contri-
bution, is to not attempt to extract limiting holomorphic curves at all. We introduce a topological
alternative to the SFT compactification, called the “stretched limit set”, which remedies issues
with both the SFT approach and the Fish—Hofer approach. Unlike the SF'T compactification, the
stretched limit set exists outside of the contact-type setting. Unlike the Fish—Hofer procedure, the
stretched limit set contains information from all parts of a stretching holomorphic curve, not just
the parts near the ends of the neck. Informally, the stretched limit set is a collection of pairs (Z, s),
where Z € (—1,1) x Y is a subsequential Hausdorff limit of height-two slices of the stretching curves,
and s € R tracks the vertical positions of these slices. See Figure [3| for an illustration and
for a formal definition. We emphasize that =, in general, is not a holomorphic curve. It could be a
much wilder closed subset of (—1,1) x Y, such as a fractal set, a subset with non-empty interior, or
even (—1,1) x Y itself.

FicUre 3. A J-holomorphic curve, possibly with genus, stretching wildly along a
non contact-type hypersurface. A Hausdorff limit of any sequence of slices (in the
boxes) yields an element of the stretched limit set (right). This is usually not a
J-holomorphic curve.
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For each d, we apply our construction to a stretching degree d curve; let X'y denote the resulting
stretched limit set. The set X4 could be large and complicated, but with some careful analysis we
extract a connected subset Z,; € X4 satisfying several properties (see Proposition . The most
notable property is that Z; consists of nearly-invariant sets. For every element (Z,s) € Z, there
exists a closed X y-invariant set A € Y such that = is J-close to (—1,1) x A, where 6 — 0 as d — o0.
Another limiting procedure, this time taking d — o0, gives after additional arguments an infinite
family of proper, compact, X g-invariant subsets with dense union. The analysis of the stretched
limit set has several different parts: delicate analysis of stretching holomorphic curves, estimates
for holomorphic curves from [FH23| [CGP24|, quantitative properties of the degree d moduli spaces,
and at one point the intersection theory of holomorphic curves. The last two parts are what require
us to work in four dimensions; we elaborate in

1.2.2. Comparisons to other works. Before moving on to other results, we compare the ideas sketched
here to [FH23, [CGP24]. The only significant overlap is the use of estimates from [FH23, [CGP24]
and an intersection theory argument inspired by [FH23Jﬁ The main dynamical results in [CGP24]
also use holomorphic curves, but they use holomorphic curves arising from the U-map in embedded
contact homology or periodic Floer homology, and deep properties of these curves derived from the
relationship of ECH and PFH with Seiberg—Witten theory. ECH and PFH are not available in our
setting. Certain other kinds of “limit sets” appeared in [FH23| [CGP24], but they are very different
from the stretched limit set. The limit set in [FH23| is a single compact invariant set representing
the end of a feral holomorphic curve. The limit set in [CGP24] is a family of invariant sets produced
from a sequence of U-map curves with action going to 0 and bounded topology. In contrast, the
stretched limit set X3 has many non-invariant sets for any fixed d. It is only by selecting a subset
of the stretched limit set and passing to the d — oo limit that we are eventually able to produce
enough invariant sets to prove Theorem

1.2.3. Global Le Calvez—Yoccoz property. To prove Theorem [2| we use a different neck stretching
procedure, inspired by the “adiabatic neck stretching” procedure introduced in [FH22]. Instead of
neck-stretching at Y, we simultaneously neck-stretch at every level set near Y. For each degree d,
we introduce an analogue, the so-called “adiabatic limit set” X 4, of the stretched limit set X' ;. We
prove that almost every s € R.(H) and every d > 1 there exists a well-behaved connected subset Zj
(see Proposition , where as above the elements become closer to being X g-invariant as d — co.
Passing to the d — oo limit produces a connected family }* of compact invariant sets in H~!(s)
such that (i) some A € )* is contained in P(s) and (ii) Y € Y*. It follows that any compact invariant
set containing P(s) is either equal to Y or is not locally maximal.

1.2.4. Quantitative almost-existence. The proof of Theorem [3|also uses adiabatic limit sets. Assume
for the sake of contradiction that there exists a positive measure subset B € R.(H) such that H~!(s)
contains at most one closed orbit for each s € B. Then, we prove that X 4 satisfies impossibly strong
restrictions for sufficiently large d; see Lemma [5.6| and Lemma Here is an informal description
of what is proved. After a slight refinement of B (see Lemma [5.2)), we prove that for all but O(d)
levels s € B, there exists (Z,s) € i’d such that = = (—1,1) x A, where A = H~!(s) is a closed
orbit. On the other hand, there exist d? levels s € B on which = can be assumed to pass through an
arbitrary point constraint. Thus, if d is sufficiently large, there must exist s € B such that H~!(s)
contains a closed orbit passing through an arbitrary point. This contradicts the assumption that

8See the proof of Proposition
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H~1(s) has at most one closed orbit. Theorem [4] is proved using Theorem [2| and the fact that
existence of a Moser stable closed orbit implies existence of infinitely many closed orbits.

1.3. Remarks and questions. We collect some remarks and follow-up questions.

1.3.1. Other 4-manifolds. Our results extend with only minor modifications to other symplectic 4-
manifolds besides R*. We explain how to extend Theorem [1| to Hamiltonians H : T*S? — R
and H : T*T? — R. We explain in §4.6/how to extend Theoremto Hamiltonians H : M — R, where
M is a smooth symplectic 4-manifold that symplectically embeds into a certain closed symplectic
4-manifold W. We require that W has bt = 1 and that the symplectic form has rational cohomology
class. Examples of such W include CP? and its symplectic blowups, as well as products S? x ¥ where
¥ is any closed and orientable surface. We explain in that Theorem [4] also holds for such M,
and that Theorem [3| holds for such M provided that (i) the symplectic form on M is exact and (ii)
for any s € R.(H), at least one component of M\ H~!(s) has compact closure.

1.3.2. Higher dimensions. It would be of exceptional interest to extend the results in this paper
to higher dimensions. However, all of our results rely on quantitative properties of moduli spaces
of holomorphic curves in four dimensions that do not obviously hold in higher dimensions. We
make essential use of the fact that, for any d, there exists a moduli space of degree d curves in CP?
whose index is much larger than d, approximately d2. In CP" for n > 2, the analogue of degree is
symplectic area. There exist holomorphic curves of symplectic area d for each d, but the index of
the moduli space grows linearly instead of quadratically in d. Also, our proof of Theorem 1] uses
the intersection theory of J-holomorphic curves, which is not available in higher dimensions.

1.3.3. Almost-existence of two or infinitely many closed orbits. As mentioned above, it is now
known, after [HWZ98, [HWZ03, [CGHP19, [CGHHL23|, that any star-shaped regular level set of
a Hamiltonian H : R* — R has either two closed orbits or has infinitely many closed orbits. In-
spired by Theorem [3] we ask if this too generalizes beyond the contact-type case.

Question. Fiz any smooth function H : R* — R. Then, does there exist a full measure subset
Q C R.(H) such that for any s € Q, the level set H~'(s) either has two or infinitely many closed
orbits?

1.3.4. Ergodic invariant measures. Although they are not the main focus of this work, one could
pursue similar results for invariant probability measures. An invariant measure analogue of the
Fish—Hofer theorem is known in any dimensiongreater than 2. Ginzburg—Niche |[GN15] proved that
for any smooth function H : R?® — R, where n > 2, each compact regular energy level Y carries at
least two ergodic X gy-invariant probability measures. Their argument is short; it combines McDuff’s
contact-type criterion [McD8T7] with Viterbo’s closed orbit theorem for contact-type hypersurfaces
[Vit87]. A holomorphic curve-based proof of their result can be found in [Pra23al [Pra23b]. Taubes
[Tau09|] proved a similar statement for exact volume-preserving flows on closed 3-manifolds.

In four dimensions, the lower bound of two ergodic measures is almost sharp. As discussed
in Remark above, there exist star-shaped level sets in R* that carry exactly three ergodic
Xpg-invariant probability measures. By Theorem (3| almost every compact regular level set of a
Hamiltonian H : R* — R carries at least three ergodic X y-invariant probability measures. It would
be interesting to obtain the sharp lower bound for all compact regular level sets.

Question. Fiz any smooth function H : R* — R. Then, does any compact reqular level set Y carry
at least three ergodic X g-invariant probability measures?
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1.4. Outline of article. Several preliminary definitions and results required for our arguments
are collected in §2] Theorem [I] is proved in §3] Theorem [2]is proved in §4] Theorem [3] and [4] are
proved in We warn the reader that §o|is not self-contained. It makes free use of notation and
results from §4 Appendix [A] discusses existence results for closed holomorphic curves in symplectic
4-manifolds. Appendix [B] explains why the conditions in Theorem [ are C*-generic.

1.5. Acknowledgements. I would like to thank Dan Cristofaro-Gardiner for useful discussions
and for an enriching collaboration on [CGP24]. T also thank Joel Fish, Viktor Ginzburg, Basak
Girel, and Helmut Hofer for useful discussions and for their comments on earlier versions of this
work. This research was supported by the Miller Institute at the University of California Berkeley.

2. PRELIMINARIES

This section contains definitions and results required for the proofs of the main theorems. In

§2.1] we discuss the holomorphic curve framework that we will use. In §2.4] we collect some

estimates for holomorphic curves from [FH23| [CGP24]. In §2.5] we review some facts about the

Hausdorff topology for closed subsets of topological spaces. In §2.6] we present a general neck

stretching procedure for level sets of Hamiltonians on symplectic manifolds.
2.1. Geometric structures. Fix a smooth, closed, oriented manifold Y of dimension 2n — 1 > 3.

2.1.1. Framed Hamiltonian structures. A framed Hamiltonian structure on Y is a pair n = (\,w)
of a 1-form A and a 2-form w such that

dwo=0, AArw™ >0

The bundle £ := ker(\) is a (2n —2)-plane bundle on Y. The two-form w restricts to a symplectic
form on . The Hamiltonian vector field R, is defined implicitly by the equations

ARy =1, w(R,,—)=0.
Example 2.1. If w = dA, then X is a contact form and R, is equal to its Reeb vector field.

Let Z < R be either an open or closed interval. Write a : Z xY — T for the projection onto the
real coordinate. An almost-complex structure J on Z XY is n-adapted if
(i) J is translation-invariant;
(ii) J(0a) = Ry;
(iii) J preserves the bundle ¢ and restricts to a w-compatible complex structure on &.
Let D(Y') be the space of pairs (n,J), where n is a framed Hamiltonian structure and J is an
n-adapted almost-complex structure on R xY. Give D(Y') the topology of uniform C*-convergence.
Given a choice of (n,J) € D(Y), we define a Riemannian metric

g:i=da®da+ A\ +w(—,J—).

2.1.2. Realized Hamiltonian homotopies. Let T < R be any closed angl\ connected interval. A realized
Hamiltonian homotopy on Z xY is a pair ) = (A\,w) of a 1-form A and 2-form @& such that the
following holds:
(i) M(@q) =0 and &(d,, —) = O;
(ii) d@lisyxy = 0 for each s € Z;
(iii) da A A A G"L > 0;
)

(iv X is invariant under the flow of d,;
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(v) If Z is unbounded, then there exists a compact subset L < Z such that & is invariant under
the flow of 0, outside of I xY.

The bundle & := ker(da) n ker(X) is a (2n — 2)-plane bundle on Z xY. The two-form & restricts
to a symplectic form on £. The Hamiltonian vector field R, is defined implicitly by the equations

da(R,) =0, AR, =1, &R, —).
Example 2.2. A framed Hamiltonian structure n = (\,w) on Y defines a realized Hamiltonian

homotopy N = (3\,@) onT xY. Let X and & to be the unique 1-form and 2-form such that X(&a) =0,
W(0q,—) =0, and

Mgy =X Olgxy = w

for each se 1.

A realized Hamiltonian homotopy can be regarded as a 1-parameter family of framed Hamiltonian
structures. Fix any s € Z. Define a 1-form A* and a 2-form w® on Y as the pullbacks of X and @,
respectively, by the map y — (s,y). Write R® for the pullback of fzn. The pair n° = (A\*,w®) is a
framed Hamiltonian structure on Y and R?® is its Hamiltonian vector field.

An almost-complex structure JonIxY is n-adapted if

(i) J(0a) = R;
(ii) J preserves the bundle §A and restricts to a W-compatible complex structure on E ;

(iii) If Z is unbounded, then there exists a compact subset X < Z such that J is invariant under
the flow of 0, outside of K xY.

For each s € Z, write J* for the unique translation-invariant almost-complex structure on R xY
which coincides with .J on {s} x Y. Observe that J* is n°-adapted.

Write D(Z xY') for the space of pairs (7, J ), where 7 is a Hamiltonian homotopy and Jis a n-
adapted almost-complex structure on Z xY . Equip D(Z xY') with the topology of C*-convergence.

~

Given a choice of pair (7, J) € D(Z xY), define a Riemannian metric

ji=da@da+ AN+ (-, J-).
2.2. Holomorphic curve basics.

2.2.1. Riemann surfaces. The Riemann surfaces in this paper are allowed to have nodal singularities.
As such, define a Riemann surface to be a pair (C,n) where C'is a surface C' with smooth boundary
0C, equipped with an integrable almost-complex structure j, and n is the set of nodal points. This
is a discrete set of mutually disjoint pairs of points {(¢;",¢;)} in C'\ @C. We often omit the nodal
points n from the notation. A normalization C of a Riemann surface (C,n) is a smooth surface
obtained by blowing up each point Cl-i to a circle Fii, and then gluing I‘;r to I';” for each 7. The
diffeomorphism type of the resulting surface is independent of how Fj and I';" are glued together.
The Riemann surface (C,n) is irreducible if the underlying surface C' is connected and connected if
the normalization C' is connected.

The genus, denoted by G(C'), of a compact Riemann surface C is the genus of the closed surface
obtained by capping off the boundary components with disks. The arithmetic genus, denoted by
Go(C), of a compact Riemann surface C' is the genus of any normalization C.
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2.2.2. Holomorphic curves in almost-complexr manifolds. Fix an almost-complex manifold (W, J)
and a Riemann surface (C,n). A J-holomorphic curve with domain C is a smooth map u : C — W
such that w(¢*) = u(¢™) for each pair (¢*,(”) € n and such that it solves the non-linear Cauchy—
Riemann equation

JoDu = Duoj.

A J-holomorphic curve u : C' — W is compact, irreducible, or connected if the domain is compact,
irreducible, or connected, respectively. It is proper if the preimage of any compact set is compact
and boundary immersed if v immerses the boundary 0C. We always assume that J-holomorphic
curves are proper and boundary immersed.

2.3. Holomorphic curves in realized Hamiltonian homotopies. Fix a closed, smooth, ori-
ented manifold Y of dimension 2n — 1 > 3. Fix a closed, connected interval Z < R and a pair
(n,J) e D(Z xY). Let u: C — I xY be a J-holomorphic curve.

2.3.1. Action of a holomorphic curve. The integral

f u*o
c

is called the action of u. Because J is n-adapted, the 2-form u*®@ is always non-negative on the
tangent planes of C'. Also, u*@ vanishes at ¢ € C if and only if either ( is a critical point of u or
Du(T¢C) = Span(0,, R;;). Thus, we have the following lemma.

A~

Lemma 2.1. Fiz a closed, connected interval Z < R and a pair (], J) € D(Z xY). Letu: C — I xY
be a connected J-holomorphic curve. Then

fu*&))O
C

and is equal to 0 if and only if there exists an orbit v Y of én such that u(C) < R x~y.

Lemma [2.1] gives geometric meaning to the action. Holomorphic curves of low action, in some
sense, approximate the orbits of R,,.

2.3.2. Area of a holomorphic curve. The pullback metric u*g\is defined at any immersed point in
C. The volume form dvol,s; is equal to the 2-form u*(da A A + &). For any Borel subset U < C,
write

Area,5(U) := f dvol,x; = J w*(da A N+ D).
U\ Crit(u) U

The equality on the right follows because u*(da A X+ @) vanishes at any critical point of u.

2.4. Area and action bounds. We collect some area and action bounds for holomorphic curves
in realized Hamiltonian homotopies. The first two results, Proposition [2.2{and are from [FH23].
The third result, Proposition is a slight variant of a recent result from [CGP24].

2.4.1. Stable constants. Many results in this paper involve constants depending on a choice of

s

(n,J) € D(Z xY). In any result, such a constant is called stable if the conclusions of the result hold
with the same constant for data in a neighborhood of (7, J).
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2.4.2. Ezponential area bound. The following result provides a priori bounds for X—integrals of the
level sets and for the area of a J-holomorphic curve. The bounds are expressed in terms of the
action and of the A-integrals of the top and bottom boundaries.

s

Proposition 2.2 ([FH23| Theorem 8)). Fiz (7, J) € D([—8,8] x Y). Fiz any constants ay > a_ €

~

[—8,8]. Letu: C — [-8,8] x Y be a compact J-holomorphic curve. Suppose that the following
conditions are satisfied:

(i) (aou)(C) = [a—,a,];
(it) (a0 u)(2C) A (a—,az) =

(11i) at and a_ are regular values of a o u.

~

Then there exists a stable constant cs = c3(n,J) = 1 such that the following two bounds hold.
First, for any ag € [ay,a_] that is a regular value of a o u, we have

(21) f U*X < (Cgf u*&} + min { f u*X’f U*X}>603(a+—a,)'
(aou)~1(ao) C (aou)~1(aq) (aou)~1(a_)

Second, we have the following area bound.

(2.2) Area,:3(C) < <03 min {J “*X’J
(aou)~1(a+) (

u*/A\}-i-J

u*@) (ee3la+—a-) _q) +f u* Q.
C

c

aou)~1(a_)

2.4.3. Action quantization. The next result shows that a holomorphic curve with an interior maxi-
mum/minimum height has a positive lower bound on its action.

~

Proposition 2.3 ([FH23, Theorem 4]). Fiz (,J) € D([-8,8] x Y). For any r > 0, there exists

a stable constant h = h(n,J,r) > 0 such that, for any compact, irreducible j—holomorphic curve
u:C — [-8,8] x Y, we have

Ju*@>h>0
c

provided that the following properties are satisfied for some ag € (=8 +r,8 —r):

(i) Either infeec(aou)(() or supeec(aowu)(C) is equal to ag;
(i1) (aow)(0C) N [ag —ryap + 7] = .

The original statement of [FH23, Theorem 4] assumes an a priori bound on G,(C), and the con-
stant c3 depends on this bound. The original proof of Proposition [2.3]is proved uses Proposition [2.2]
and target-local Gromov compactness [Fisl1]; the genus bound is required to apply the latter. Our
version does not require any a priori genus bound. This requirement can be removed by replacing
target-local Gromov compactness with the compactness theorem for J-holomorphic currents; see
[Pra23a, Remark 5.20].

2.4.4. Connected-local area bound for low-action holomorphic curves. The following technical area
bound is a variant of [CGP24l, Proposition 3.8]. It was proved in the special case of annular curves
in [FH23, Theorem 5.

~

Proposition 2.4 ([CGP24, Proposition 3.8]). Fiz (1,J) € D([—8,8] x Y). There exists stable
constants ea = eo(1], j) > 0 and e3 = e3(7, j) > 0 with the following property. Letu : C — [—8,8]xY
be a compact, connected j—holomorphic curve such that

(i) §ou*l < eo;

(ii) (aou)(0C) A [~4,4] = &.
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Then for any ¢ € C' such that (aou)(¢) € (—2,2), we have the bound
Areayeg(Ses(€)) < & (0(C)* + 1),

Proof. There are two differences between Proposition and [CGP24l, Proposition 3.8]. We explain
how to address these differences and defer to [CGP24] for the rest of the proof. The first difference
is that [CGP24) Proposition 3.8] is stated for framed Hamiltonian structures, while Proposition
is stated for realized Hamiltonian homotopies. The former result is stated for framed Hamiltonian
structures in order to make direct use of [FH23, Theorem 9]. This result, an essential technical
ingredient, is a exponential area bound like Proposition but for a class of C2-small “tame
perturbations” of J-holomorphic curves. The result is stated for framed Hamiltonian structures.
The proof, however, directly generalizes to tame perturbations of J-holomorphic curves in realized
Hamiltonian homotopies.

The second difference is that [CGP24, Proposition 3.8] assumes that v : C — R xY is a proper
map from a finitely punctured closed Riemann surface, while Proposition assumes that v is
a map from a compact Riemann surface to [—8,8] x Y. The proof of [CGP24, Proposition 3.8],
however, extends to the case where the domain is compact, as long as ¢ has vertical distance at
least 1 from 0C.

The non-compact domain is only used in the following argument. It is proved that there exists
some compact surface C < C such that (i) Ce C , (ii) the vertical distance from ¢ to oC is bounded
away from 0 by a stable constant in (0,1), (i) x(C) < x(C), and (iv) some a priori geometric
bounds, described in [CGP24, Proposition 3.9], are satisfied. The surface C < C is constructed by
taking the surface (a o u)~!([ag — €, aop + €]), where ag := (a o u)(¢) and € > 0 is a small stable
constant, and then attaching all compact components of C'\ Int(CNJ') whose boundary is contained
in oC. Property (ii) is the only property that makes essential use of the fact that C is a finitely
punctured closed Riemann surface. In the case where C' is compact, (ii) can be still be proved if
the distance between ¢ and 0C' is at least 1. U

2.5. The Hausdorff topology. Let Z denote any separable, locally compact, and metrizable
space. For example, any second countable topological manifold satisfies these conditions. Let K(Z)
denote the space of closed subsets of Z, equipped with the topology of Hausdorff convergence.
Recall that K(Z) is compact and metrizable [McM96|, Corollary 2.2]. We review the definition of
Hausdorff convergence and then state some basic lemmas.

2.5.1. Hausdorff convergence. Fix any sequence {Ay} in (Z). Write lim inf Ay, € (Z) for the set of
all z € Z such that each neighborhood intersects all but finitely many Ag. Write limsup Ay € K(Z)
for the set of all z € Z such that each neighborhood intersects infinitely many Ajg. Observe that
liminf Ay € limsupAg. Convergence Ay — A in the Hausdorff topology occurs if and only if
liminf Ay, = A = limsup A;.

2.5.2. Sets of subsequential limit points. The following lemma discusses the topology of the set of
subsequential limit points for a sequence in K(Z).

Lemma 2.5. Let Z be a separable, locally compact, and metrizable space. Let {Z}} denote a
sequence of connected subsets of K(Z) and let Z < K(Z) denote their set of subsequential limit
points. Assume that there exists Ay € Zj, for each k such that the sequence {Ay} converges in the
Hausdorff topology. Then, Z is closed and connected.

Proof. See the proof of [CGP24, Lemma 5.3]. O
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2.5.3. Continuity lemmas. We present two lemmas about continuity of maps with respect to the
Hausdorff topology. The proofs are elementary, so we omit them. The first lemma claims that
taking a union with a closed set is always Hausdorff continuous.

Lemma 2.6. Let Z be a separable, locally compact, and metrizable space. Then for any N € K(Z),
the map A — A U A is a continuous map K(Z) — K(Z).

Unlike the above, taking an intersection with a closed set is usually not continuous. The second
lemma asserts that, however, this operation is continuous in a specific setting that comes up in our
arguments.

Lemma 2.7. Let Y be a separable, locally compact, and metrizable space. For any sequence {Ay}
of non-empty compact subsets of Y such that (—1,1) x Ay — (=1,1) x A in K((—1,1) xY'), we have
A — A in K(Y).

2.6. Neck stretching. Let (W, Q) denote a symplectic manifold and let J, be a fixed Q-compatible
almost-complex structure. Let H : W — R be any smooth function such that 0 € R.(H). Write
Y := H-1(0). As we will explain below, these choices induce a framed Hamiltonian structure 1 on
Y such that R, = Xpyl|y. Broadly speaking, neck stretching is the modification of J, near Y so
that it is diffeomorphic to a model n-adapted almost-complex structure J on Z xY, where 7 is a
large compact interval.

Neck stretching constructions are well-understood when Y is contact-type (see [BEHT03]) but
they are surprisingly subtle otherwise. One must find some way to interpolate between the model
almost-complex structure near Y and the almost-complex structure J,. This interpolation must be
done very carefully, since otherwise it is quite easy to lose control of the behavior of holomorphic
curves in the interpolation region. A neck stretching construction that is sufficient for the proof of
Theorem (1| was written down in [Pra23b]. However, it is quite different from the adiabatic neck
stretching construction used to prove Theorem [2 We take an alternate approach that gives a unified
treatment of standard neck stretching and adiabatic neck stretching.

2.6.1. Framed Hamiltonian structure. Let g, := Q(—, Jy—) denote the J,-invariant Riemannian
metric associated to 2 and J,. We define a framed Hamiltonian structure n = (A, w) on Y such
that the vector field R := R, is equal to Xp. Let w be the restriction of {2 to Y. Let A be the
unique smooth one-form such that A(Xg) = 1 and ker(\) = £ := TY n Jine(TY). Let J be the
unique n-adapted almost-complex structure on R xY that coincides with J, on the bundle £.

2.6.2. Realized Hamiltonian homotopy. For any § > 0, let Us € W denote the open set H1((—4, §)).
Choose some ¢y such that Us, does not contain any critical points of H. Now, let Vi := VH/|VH \3*
dneote the normalized gradient of H with respect to g«. For any s € (—dg, dp), the time-s flow of
Vy restricts to a diffeomorphism fs : H™1(s) — Y.

Let X denote the unique 1-form on Us, such that (i) A(Vz) = 0 and (ii) for any s € (=8, &),
the restriction of X to H~1(s) is equal to f*A. Let & be the unique 2-form on Us, such that (i)
&(Vy,—) =0 and (ii) for any s € (=g, do), the restrictions of & and €2 to the hypersurface H~!(s)
coincide. Observe that by definition, X(X ) =1 at any point in Y, so there exists some d; € (0, do)
such that X\(Xpg) > 0 at any point in Us,. Define a vector field X := Xy /X(Xp). Define a 2-plane
bundle ¢ := ker(dH) n ker()) on Us, . Define a diffeomorphism

L:(=61,01) xY — Uy,
(s,y) = f ' (y).
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The map ¢ restricts to the identity map (0,y) — y on {0} x Y and identifies {s} x Y with
H~1(s) for every s € (—61,01). Observe that H o ¢ coincides with the coordinate projection s :
(—=01,01) X Y — (—01,61) and that *Vy = d5. Write X = *X and & := (*©. The pair 7 = (X,@)
is a realized Hamiltonian homotopy on (—d1,01) x Y. This is straightforward to verify. Write
X := 1*X. Observe that X = R For any s € (—d1,01), write n° = (A*,w?®) € D(Y) for the pullback
of 7 by the map y — (s,y). Let RS denote the Hamiltonian vector field of n°. Note that ¢ identifies
R?® with a reparameterization of Xz on H~!(s). The following lemma computes jQ2 in terms of H,

X, and & at any point in Y.
Lemma 2.8. At any point in' Y, we have Q = dH A X+ .

Proof. Fix any y € Y. Our goal is to prove
(2.3) Qv1,v2) = (dH A X + &) (v, v2)

for any pair vi,v2 € T,W. The vector v; splits as a sum v; = dH (vi)Vg + X(vl)XH + v} where
vy € E The existence of the splitting follows from the splitting TW = Span(VH,X ) ® E The
identification of the Vg- and X H- -coefficients of vy follows because dH (Vy) = 1 and )\(X ) =1at
y. Similarly, vo = dH (ve) Vg + )\(vg)XH + v}, where v} € 5

The identity (2.3} . follows from expanding the left-hand side and making several simplifications:

Q(v1,v2) = (dH (v1)A(v2) — dH (v2)A(v1)) + (v}, v5)
+ Q) dH (v2) Vi + Mv2) Xg) + QdH (v1) Vi + Avy), vh)
(24) = (dH (v1)A(v2) — dH (v2)A(v1)) + Q(v], v})
= (dH (v1)A(v2) — dH (v2)X(01)) + B(v], )
= (dH A XA+ ©)(v1,v2).
The first line uses the identity Q(Vi, X Iv{) = 1. The second line uses the identities Q(X g, v") = 0,

Q(V,v') = 0, where v' is any vector in £&. The third line uses the fact that Q and & coincide on
TY . The fourth line uses the following elementary identities. For any vector v’ € £, we have

(2.5) &./)(VH,’U/> = 0, (I)(XH,’U/) = 0.
U

2.6.3. Base almost-complex structure. Write § = ker(dH) N ker()\) Choose a complex structure jg
on & which (i) coincides with the restriction of J, to € at any point in y and (i) is compatible with
the restriction of @ to §v There exists an almost-complex structure J on W satisfying the following
properties:
(a) J coincides with J, outside Us,.
(b) There exists some d2 € (0,91) such that, at any point in Us,, the following properties are
satisfied:
o J comc1des with Jg on 5
o J(Vi) =
(c) J is Q-tame at every point, i.e. Q(v, jv) > 0 for any nonzero tangent vector v.

Such an almost-complex structure is constructed as follows. Choose an almost-complex structure
I on Us, such that (i) I coincides with J¢ on £ and (ii) I(Vy) = H. By Lemma I is Q-tame
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on Us, for some dy € (0,61). Let J be any {)-tame almost-complex structure that is equal to J,
outside Us, and is equal to I on Us,. Write J :=1*J for the pullback of J. Note that by Property
(b), J is f-adapted on (—0d2,02) x Y. For each s € (—d2,d2), write J* for the unique translation-
invariant almost-complex structure on R xY agreeing with the restriction of J to {s} xY. The
almost-complex structure J° is n®-adapted.

2.6.4. Deformed almost-complex structure. Fix any smooth and positive function ¢ : W — (0, 1]
such that the function 1 — ¢ is supported in Us,. Let j¢ be the unique almost-complex structure
that is (i) equal J outside Us,, (ii) equal to J on the bundle &, and (iii) satisfies the identity
j¢(VH) — ¢~'X at any point in Us,. A useful fact, first observed in [FH22], is that if 1 — ¢ is
supported in a sufficiently small neighborhood of Y, then j¢ is Q-tame and moreove one has a
quantitative tameness estimate.

This small neighborhood is defined as follows. Fix a constant ¢; = ¢1(H, g«) = 1 such that the
bound

(2.6) | Xt lge = IVElge < 1
is satisfied. Since J is ()-tame, there exists a constant €1 = €1(€2, j, gx) € (0,1) such that
(2.7) Qv, Jv) = el\v]g

for any tangent vector v. Define €5 := min(1/4, 2*80161/ ). Such a constant &5 exists Since \(Xp) =
1 along Y and, by Lemma 2.8, Q2 = dH A A + & along Y, there exists d3 € (0, d2) such that

(2.8) |)\(XH) —1|<e, |2—(dH A X+ D)|ge < €2
at any point in Us,. Here is the promised tameness lemma.

Lemma 2.9. Fiz any smooth and positive function ¢ : W — (0,1] such that 1 — ¢ is supported in

Us,. Then the almost-complex structure j¢ is Q-tame. Also, for any tangent vector v with base in
Us,, we have the bound

(2.9) 20(v, Jyv) = (dH A X+ &) (v, Jyv).
Proof. Both assertions of the lemma proved nearly simultaneously via some elementar}i anavlysis.
Choose a tangent vector v with base in Us,. Then v decomposes as a sum v = dH (v)Vg + A\(v) X +0'
where v’ lies in . We compute Jyv = ¢~ 'dH (v) X — ¢\ (v)Vy + Jv'. Expand the left-hand side of
(2.9) with respect to these splittings:
Qv, Jyv) = (67" dH (v)” + X)) Vir, X) + Q' Jv)
+ Qv ¢ dH(0)X — pA(v)Var) + Q(dH () Vi
210 — (@MW) + GA))AXn) ! + (o, T
+ Q67 dH ()X — g (0)V. ) + QdH (0)Vir + A(v) X, o).
= (¢7'dH (v)” + PAW))NX ) ™! + &(v, Jyv)
+ Qv —QSA(U)VH) + Q(dH(U)VH, Jv').
The second line is a consequence of the following simplifications. First, observe that Q(Vy, Xpr) =

1 and therefore that Q(Vi, X) = X(X 1)~ L. Second, observe that & and () restrict to the same 2-
form on any level set, so Q(v', Jv') = @(v/, Jv'), and then apply the identities in (2.5 to show
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S, TV = O(v, quw). The third line follows from the similar fact that (X, —) is proportional to
dH, so pairs to 0 with v" and Jv'. For any vector v” € Span(Vy, X ), we have
(2.11) (dH A X+ &)V, 0") = (dH A X + ) (Jv',0") = 0.

The identities (2.11)) follow from ({2.5) above. Now, set 7 = Q — (dH A X+ ). We use (2.11)) to
estimate the cross-terms at the end of (2.10)):

Q' —pAV)Vi) + QdH ) Vg, Jv')

= 7, =N (V)Vi) + T(dH (v) Vi, JV')

> —c1|7lgu (BIAW)[[V/ |y, + |dH (v)]|T0],)
> —c162(IN0)|[V']g, + |dH (0)]|.T0'|y,.)
> —cre; (¢ A)| + [dH (v) )5 (v, Jyv) /2
> — (¢~ dH (0)? + oA (0)2)/4 — D(v, J4v) /2.

The second line uses the bound (2.6)). The third line uses (2.8) to control |7|g,. The fourth
line uses (2.7) and the identity Q(v', Jv') = &(v', J4v'). The fifth line uses the Cauchy-Schwarz

inequality, the fact that ¢~ > 1, and the bound e; < 2_861_161/2. Plug in ([2.12)) into (2.10) and
use the upper bound on A(Xz) from (2.8) to get
(2.13) 20 (v, j¢v) > (¢ dH (v)? + oA (v)?) + B(v, Jsv).

The right-hand side of ( is equal to (dH A X + @)(v, J¢,v so (2.9) follows from It
remains to show that J¢ is Q tame. The right-hand side of (| is positive, so J¢ is Q tame on
Us,. By definition, J¢ = J on the complement of Us,, so J¢ is Q tame. O

(2.12)

\%

2.6.5. Stretched manifolds. Fix a smooth function ¢ : W — (0, 1] satisfying the following properties:

e The function 1 — ¢ is supported on Us,.
e For any s € [—d3, 03], ¢ is equal to a constant ¢(s) on the hypersurface H~1(s).
e For any s € [—03, 3], we have ¢(s) = ¢(—s).
Deﬁne a smooth manifold Wy and a diffeomorphism f, : W — Wy as follows. Let Ly :=
S 5 @ )~'ds. Define a smooth function ® : [—d3,d5] — [—Lg, Ly] by setting ®(s) := —Ly +
5_53 qb )~1. Now, write W, := H!([d5,00)) and W_ := H~!((—0c0, —83]) and set W, := W, Uy [—Lg, Ly] x
Y vy W_. We use the letter a to denote the R-coordinate on the neck. The diffeomorphism
fo : W — Wy is defined to be the identity on W and W_. It is defined on the neighborhood Us,
by setting
f¢> otL: (—53,53) xY — (—L¢,L¢) xY c W¢
to be the map (s,y) — (®(s),y). Write Qg := (f5)+Q and write j¢ = (f¢) j
The almost-complex structures f¢ could be very degenerate, since J¢( ) oVy is very small
when ¢ is close to 0. The pushforward by f, undoes this degeneracy. Define a 1-form )\¢ = ( f¢)*
and a 2-form @y := (fs)«w on the neck [—Lg, Ly] x Y. Then the pair 7y = (X¢,$¢) is a realized
Hamiltonian homotopy on [— Ly, Lg] x Y. Write }AZ(z, = ( f¢)*()\(/' ) for its Hamiltonian vector field
and define §¢ = ker(da) N ker()\¢) Then, we make the following claim.
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Lemma 2.10. j¢ is 7)y-adapted.

Proof. Recall the realized Hamiltonian homotopy 7 and 7-adapted almost-complex structure J on
[—03,03] x Y that we defined above. Note that 7y = (fy 0 ¢)«0) and Jy = (fy 0 t)«J. Since J is @w-
compatible on & = ker(ds) mker(X), it follows from pushing forward by f;o¢ that j¢ is (y-compatible
on §¢ := ker(da) n ker(X¢).

It remains to compute the action of f¢ on dy:

(2.14) T5(0a) = (£6)+(Jo(£500) = (Fo)sdo((s) - Vir) = (f5)«(X) = Ry
O

2.6.6. Sequence of degenerating functions. Choose a sequence of smooth functions {¢; : W — (0, 1]}
that C'®-converges to some ¢ : W — [0, 1] and satisfies the following properties:

e The function 1 — ¢y, is supported on Uy, for each k.

e For each k and each s € (—d3,d3), ¢ is equal to a constant ¢x(s) on the hypersurface
H=Y(s).

e For each k and each s € (—d3,03), we have ¢i(s) = ¢dp(—s).

e For each k, the integral Ly, = S0_53 ¢ (t)~1dt is at least 16k.

2.6.7. Convergence of geometric objects. We examine the limiting behavior as k — oo of the geo-
metric objects associated to the sequence {¢r}. We simplify the notation for these objects by

replacing any “¢p” subscripts with £ and removing most of the accents. Write jk = Jy,. Write
Ly =Ly, = S05 ¢k (t)dt and define a function @ (s) := §* 5 ¢k (t)"1dt—Ly. Then, write Wy, := W,
for the stretched manifolds and f, := fg, for the dlﬂeomorphlsms W — Wj,. Write €, := Qg, and
Jk = J¢k Write Wg = wd,k, )\k = )‘¢k? Ne = ()\k,wk) Rk = R¢k, and fk —f ok

Fix any k and any a such that [a —8,a + 8] < [—Ly, Li]. Then, define (n¢, J¢) € D([-8,8] x Y)
to be the pair defined by restriction of (ng, Ji) to [a — 8,a + 8] x Y and then translation by —a.
The following lemma asserts that the family {(n}, Ji)} < D([—8,8] x Y) has compact closure.

Lemma 2.11. Fiz any sequence {ay} such that (i) [a — 8,a + 8] € [—Lyg, Lg]| for every k and
(ii) the sequence {®, ' (ay)} converges to some 5(0) € [—d3,85]. Then, the sequence {(ni*, Jo*)} in
D([—8,8] x Y) is convergent.

Proof of Lemma[2.11] The proof will take 4 steps.
Step 1: This step proves the following elementary claim. Consider the sequence of smooth functions
it [—8,8] = [~d3,85] defined by sy (a) = @, ' (ay + a). We claim that the sequence {s;} converges
in the C® topology to a smooth function s : [—8,8] — [—d3,d3]. Observe that s solves the ODE
sp(a) = ¢r(sk(a)). By assumption, the sequence of initial conditions {sj(0)} converges and the
coefficients {¢y} converge in C®. The existence and uniqueness of solutions to ODEs then implies
that {si} converges.
Step 2: To simplify our notation, we write A := A\, @), := wi*, 7y, := n*, and Ji := J*. This
step establishes a necessary and sufficient criterion for the convergence of {7x}. Fix any differential
form § on [—8,8] x Y. Let f* denote a smooth function on [—8, 8], valued in forms on Y, sending
a to the restriction B|(4yxy. Then, at any given point (a,y) € [-8,8] x Y, # expands as a sum

(215) B(a,y) = B*(a)y + da A B(a,y)(ath _)'

For any realized Hamiltonian homotopy 7 = (A, @) on [-8,8] x Y, write 7* for the smooth
function a — (A\*(a),w*(a)). Now, observe that \;(0g) = 0 and wy(0g, —) = 0. It follows from the
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expansion that 7, — 77 = (A, @) if and only if A} — A\* and @} — @* in the topology of
smooth form-valued functions on [—8, 8].

Step 3: This step constructs a pair # such that 7 — 7. We defined a realized Hamiltonian
homotopy 7 on [—d3,03] x Y in 5. and a n-adapted almost-complex structure J in For
each s € [—d3,03] x Y, let n° denote the framed Hamiltonian structure on Y defined by pullback
by the map y — (s,y). Let J° denote the unique translation-invariant almost-complex structure on
R xY that coincides with J on {s} x Y.

Let 5 denote the limit of the sequence {s;} from Step 1. Define a 1-form A on [-8,8] x Y by
defining A(d,) = 0 and, for each a € [—8, 8], defining \*(a) := X\*®). Define a 2-form @ on [—8,8] x Y’
by defining @(d,, —) = 0 and, for each a € [—8, 8], defining @*(a) := w*(®). By the criterion of Step
2, the convergence 7 — 17 is equivalent to C'®-convergence of the form-valued functions 5\,’:, — \*
and W} — ©.

For any k, we have

M= (tofito r_ak)*i, wE = (17 o fot o7 ) ¥
By definition, the map f, Lo T_q, on the cylinder [—8,8] x Y is given by the map

(a,y) = (B} (ax + a),y) = (sk(a),y).
It follows that
Xi(a) = A% = N o g, @f(a) = w™ W = wFo sy,

for each a € [—8,8]. Since s; — 5 in the C topology, it follows that A} converges to A* o 5 = A*
and that @} converges to w* o5 = w* as desired.

Step 4: This step defines a f-adapted almost-complex structure J and proves that J, — J,
completing the proof of the lemma. Write ¢ := ker(da) n ker()\). The bundle ¢ has the following
form. For each s, let £ = ker(da) nker(\?) denote the translation-invariant 2-plane bundle on R xY
associated to the framed Hamiltonian structure n®. Then, for any a € [—8,8] x Y, the restriction
of € to {a} x Y coincides with the restriction of £(4). This assertion follows from the fact that the
restriction of X to {a} x Y is equal to A*(®).

Recall the n-adapted almost-complex structure J that we defined in For each s € [—d3, d3],
we defined J*® to be the unique translation-invariant almost-complex structure on R xY whose
restriction to {s} x Y coincides with J, and observed that J* is n®-adapted, and therefore restricts
to an w®-compatible complex structure on the bundle £°. Define J to be the unique 7-adapted
almost-complex structure such that for any a € [—8, 8], when restricted to the hypersurface {a} x Y,
the action of J on £ is identified with the action of J*(®) on ¢5(@),

Now, we will prove that J; — J. The bundle &, := ker(da) n ker(\) coincides on {a} x Y with
the bundle £+(%), When restricted to the hypersurface {a} x Y, the action of .J; on & is identified
with the action of J*+(@) on £:(®) The convergence J;, — J will follow from showing that, for any
smooth vector field v on [—8,8] x Y, we have Ji(v) — J(v) in the C*® topology. The vector field v
splits uniquely as v = da(v)d, + A(v)X +v’, where X denotes the Hamiltonian vector field of 77 and
v’ € €. For each k, it also splits as v = da(v)d, + A,(v) Xy + v, where X}, denotes the Hamiltonian
vector field of 7, and v}, € &,. We compute

Je(v) = da(v) X, — \e(v)0a + Ji(vy,),  J(v) = da(v)X — A(v)daa + J (V).
By Step 3, we have 7 — 1, so

(2.16) Xp— X, A(v) = Av)
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and therefore
(2.17) v, = v —da(v)d, — M\ (v) Xy, = v —da(v)d, — A(v)X =
in the C* topology. By expanding Jj (v}) and J(v') as functions of (a,y) € [-8,8] x Y, we have

(2.18) Te(vi(a,) = T (v (a,y), T (a,y)) = T4 (W (a,9)).
It follows from , , and the C®-convergence s — 5 that
(2.19) Te(vg) = J (V')
in the C* topology. The convergence Jy(v) — J(v) follows from and (2.19). O

~

Remark 2.12. Many of our results involve stable constants depending on a choice of (7,J) €
D([—8,8] x Y). These constants can be replaced by constants independent of (7, .J), such that the

conclusions of the results hold for (7,.J) = (n, Jit) for any a and k. This is a consequence of the
following general principle. By stability, for any precompact subset D, < D([—8,8] x Y), stable
constants can be replaced constants that do not vary on the family D,. Lemma shows that

the family {(n}, J2)} is precompact.

3. DENSE EXISTENCE OF COMPACT INVARIANT SETS

In this section, we will prove Theorem For the remainder of the section, we fix a smooth
function H : R* — R. Fix sg € R.(H) such that H~'(sg) is connected. Assume without loss of
generality that sg = 0; we reduce to this case by replacing H with H — sq, since adding a constant
to H will not change the Hamiltonian vector field. Set Y := H~1(0).

3.1. An existence result for almost cylinders. As we discussed in we construct by neck
stretching holomorphic curves of high degree. We begin by introducing “d§-almost cylinders”, a
convenient formal notion of nearly-invariant set, and proving some basic lemmas. We then state
our main existence result for almost cylinders.

~

3.1.1. Definition of almost cylinders. Fix any (1, J) € D([—1,1]xY) and any § > 0. A closed subset

A~

=< (—1,1) xY is a 6-almost cylinder with respect to (1, J) if it is non-empty and the following two
bounds hold for any point z = (¢,y) € =:
(3.1) sup disty((7,9),Z) <0, sup dist;((t,¢7 (), E) < 6.

re(—1,1) Te(—1,1)

s

We will omit (7, J) from the notation whenever there is no risk of ambiguity.

3.1.2. Properties of almost cylinders. Our first lemma shows that non-empty Hausdorff limits of
d-almost cylinders, for ¢ € (0,1/2), are themselves J-almost cylinders.

Lemma 3.1. Fiz any 6 € (0,1/2). Let {(il, Js)} be a sequence in D([—1,1] x Y) converging to

A

(n,J). Fiz a sequence {Z} in K((—1,1) x Y) such that Zj, is a 6-almost cylinder with respect to

A~

(M, Jx) for each k. Then, the set = = limsup Ey, is a 6-almost cylinder with respect to (1), J).

Proof. The proof of the lemma will take 2 steps.

Step 1: This step shows that E is non-empty. Since ¢ € (0,1/2), it follows that for each k, there
exists some point z; = (tg,yx) € Ex with ¢, € [—1/2,1/2]. Since [—1/2,1/2] x Y is compact, the
points z; have a subsequential limit point and therefore = is non-empty.

Step 2: This step shows that = satisfies both bounds in . The proofs of both bounds are
similar, so we only give a full proof of the first bound. Fix any point z = (¢,y) € E. Then,
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after passing to a subsequence, there exist points zp = ({g,yx) € Z such that zp — z. Fix any
7 € (—1,1). For each k, there exists zj € Zj such that distg, ((7,yx), z;;) < J, where g;, denotes the

Riemannian metric induced by (7, jk) Note that limsupy,_,, distg, (2, =) = 0. Then, using the
triangle inequality, we obtain the following bound:
distz((7,9),E) < lillgn sup dist;((7, yx), E)
—00
< limsup(distg((7, yx), 2;,) + distz (2, 2))
k—o0
= lim sup(distg, (7, yx), 23,) + distg, (21, 2)) < 0.
k—o0

The third line uses the convergence g, — . O

The next lemma confirms the expected fact that §-almost cylinders become cylinders over compact
invariant sets as 6 — 0.

A~

Lemma 3.2. Fiz some (1, J) € D([—1,1] xY'). Assume that = is a §-almost cylinder with respect

to (n,J) for every § > 0. Then 2 = (—1,1) x A, where A € K(Y') is a non-empty, compact,
Xg-invariant subset of Y.

Proof. For any z = (t,y) € =, taking 6 — 0 in (3.1]) implies that (7,y), (¢,¢"(y)) € E. O
3.1.3. Ezistence of almost cylinders. We now state our main existence result for almost cylinders.

Proposition 3.3. There exists a pair (n,J) € D(Y') such that R,y = Xg and such that the following
holds. Fix a finite set of points p € Y and a positive integer n > 2. Then there exists a connected
subset Zp,, € K((—1,1) x Y') with the following properties:
(a) There exists = € Zp ,, such that {0} x p < E.
(b) There exists = € Zp p, equal to (—1,1) x A, where A is a proper, compact, X y-invariant
subset of Y.
(¢c) Each =€ Zp,, is a 1/n-almost cylinder with respect to (n, J).

3.2. Proof of Theorem [1I We defer the proof of Proposition [3.3] to and first explain how to
use it to prove Theorem

Proof. The proof will take 3 steps.

Step 1: This step uses Proposition [3.3] to construct a connected family of invariant subsets of YV’
satisfying several properties. Fix a finite set of points p Y. Let {Zp,} be the sequence of subsets
of £((—1,1) x Y') from Proposition After passing to a subsequence in n, we may assume that
there exists =, € Zp , such that the sequence {Z,} converges.

Let Z, < K((—1,1) x Y') be the set of all subsequential limit points of the sequence {Zp,} in
K((=1,1) xY). That is, E € Z}, if and only if there exists a subsequence n; and elements =; € Zy, ;.
such that lim;_, . =; = Z. Since each Z , is connected, Z}, is connected by Lemma We claim
that Z, satisfies the following properties:

(a) There exist some E € Zp such that {0} x p < =.
(b) There exists a compact X g-invariant set A € (Y) such that
(i) The set (—1,1) x A is an element of Zp;
(ii) There exists a convergent sequence A; — A in K(Y') such that A; is a proper, compact,
Xp-invariant set for each j.
(c) Each = € Z, is equal to (—1,1) x A, where A € K(Y') is a non-empty, compact, X g-invariant
set.
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We explain how these properties follow from Proposition (afc) and the properties of almost
cylinders discussed above. Property (a) is a direct consequence of Proposition (a). To prove
Property (b), we observe that by Proposition (b), there exists for each n a proper compact
Xp-invariant set A, such that (—1,1) x A, € Zp,. There exists a subsequence {n;} such that
(=1,1) x Ap; — (=1,1) x A € Z;,. Then apply Lemma To prove Property (c), we observe that,
by Proposition [.3{c) and Lemma [3.1] each element = € Z, must be a 1/n-almost cylinder for each
n. Then, apply Lemma |3.2
Step 2: This step uses another limit construction to construct a large connected family ) of
compact X g-invariant subsets. Fix a sequence of finite subsets py < Y that converge to Y in the
Hausdorff topology. More simply put, ps becomes increasingly dense in Y as £ — oo. For each
¢, there exists a connected subset Zp,, < K((—1,1) x Y) satisfying Properties (a—c) from Step 1.
After passing to a subsequence, we may assume that there exists Zy € Z,, such that the sequence
{Z¢} converges. Let Z denote the set of subsequential limit points of the sequence {Zp,} as £ — oo.
Then, let Y € K(Y') denote the image of Z under the map E — {0} x E.

Note that Z is connected by Lemma and that ) is connected by Lemma and Property
(c) from Step 1. The following properties of ) are deduced from Properties (a—c) from Step 1:

() Yel.

(b’) There exists a convergent sequence A; — A in K(Y') such that A € Y and each A; is a

proper, compact, X g-invariant set.

(¢’) Each A € Y is a non-empty, compact, X g-invariant set.

Step 3: This step finishes the proof by considering two opposite cases and resolving each one
separately. First, assume that ) consists of a single element. By Property (a’) from Step 2, we have
Y = {Y}. By Property (b’), Y is the limit of a sequence {A;} of proper, compact, X g-invariant sets.
The union of such a sequence is dense, and such a sequence must have infinitely many elements, so
the theorem is proved in this case. Second, assume that ) does not consist of a single element. By
Property (a’), we have Y € ). Since ) is connected, Y is not an isolated point in )). Therefore,
Y is a Hausdorff limit of a sequence {A;}, where each A; € K(Y') is a proper compact subset. By
Property (c’), each A; is Xp-invariant. As in the first case, this suffices to prove the theorem. [

3.3. Geometric setup. We have proved Theorem (1| assuming that Proposition [3.3|is true. To set
the stage, we embed Y into CP?, and then stretch the neck around Y via the procedure introduced
in Then, we introduce the key new object in our method: the “stretched limit set”.

3.3.1. Compactification. Choose B > 0 such that Y lies inside the open ball of symplectic volume B
centered at the origin. Denote this ball by B. Let W denote the complex projective space CP? and
let © denote the Fubini-Study symplectic form, normalized so that (W, ) has symplectic volume
1. The ball B is symplectomorphic to W \ D, where D is a complex line such that [D] € Hy(W;Z)
is Poincaré dual to B~![Q] € H?(W;Z). Passing through the symplectomorphism B ~ W \ D,
we regard Y as a hypersurface in W that is disjoint from . After modifying H outside of a
neighborhood of Y, we may assume without loss of generality that it extends to a smooth function
on W, also denoted by H, such that 0 € R.(H), Y = H~'(0), and H > 0 on . For simplicity, we
assume that B = 1. Rescaling 2 to B~ rescales X by a constant, which does not change its
invariant subsets.

3.3.2. Recollections from §2.6. Let J. be an Q-compatible almost-complex structure on W such

that D is Jy-holomorphic. Choose dy > 0 such that (—dp,dp) = R.(H) and such that Us, =
H~Y((—dg,p)) is disjoint from D. We repeat the setup from §2.6.1H2.6.5
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e In §2.6.1 we defined a framed Hamiltonian structure n = (A,w) on Y.

o In §2.6.2we extended 7 to a pair 77 = (X, &) on Us,, fixed collar coordinates ¢ : (=61, 01)xY —
Us,, and defined a realized Hamiltonian homotopy 1 = (X,(D) to be the pullback ¢*77. We
defined € = (*Q.

e In we defined an -tame almost-complex structure J on W and fixed J = *.J; ; recall
that J is n-adapted on (—dg,d2) x Y.

e In we defined deformations J¢, agreeing with .J on the bundle £ = ker(ds) n ker(\),
which by Lemma are tame if 1 — ¢ is supported in Us,.

o In § we deﬁned stretched manifolds W, contalnlng long necks [—Lg, Lg] x Y, and
dlﬁeomorphlsms fo: W — Wy Let Q¢, Ny = ()\¢,w¢) §¢, J¢ denote the pushforwards by
foof Q, 1= ()\ w), f, J respectively.

3.3.3. Neck stretching. We repeat the construction in with some extra conditions. Choose a
constant &, € (0,83/2) and, for each k > 45, ', a smooth function ¢y, : W — (0, 1] with the following
properties:

The function 1 — ¢, is supported on Us,.

For any s € (—03,03), ¢, is equal to a constant ¢(s) on the hypersurface H~!(s).

For any s € (—d3,d3), we have ¢r(s) = ¢r(—s).

The integral Ly, = 8353 ér(t)"1dt is at least 16k.

on(s) = k=2 for every s e (—k~ 1 k1),

We require the sequence {¢y} to converge as k — 00 to some smooth function ¢ : W — [0, 1].

Fix any k. Define jk, Ly, ®r, Wi, fr, Qr, Ji, Ak, nx, Ri, and & as in 11 Recall the pairs
(ngt, Ji¥) € D([—8,8] x Y). The following convergence result is a consequence of Lemma [2.11]

Corollary 3.4. Fiz any sequence {ay} such that aj, € (—k, k) for each k. Then, we have (n*, J*) —
(n,J) in D([—8,8] x Y).

Proof. Recall the functions s; from the proof of Lemma [2.11] The functions ®; restrict to dif-
feomorphisms from (—k, k) to (—k~!,k~1). Tt follows that the sequence {s;} converges in C* to
the function 5 = 0. Now apply Lemma Step 3 of its proof shows that the limiting pair is
(n,J). 0

3.3.4. Stretched limit set. We introduce the stretched limit set of a sequence of Ji-holomorphic
curves. Given ag € R, let 7,, denote the shift map (a,y) — (a — ap,y) on R xY".

For any sequence {k;}, fix a closed, connected Riemann surface C; and a Ji,-holomorphic curve
uj : Cj — Wy, The stretched limit set X < K((—1,1) x Y') x (—1,1) is the collection of pairs (Z, s)
for which there exists a sequence a; € (—k;j, k;) such that:

(i) k:;laj — s
(ii) A subsequence of the slices

Taj (uj(Cj) N(a;—1,a;+1) x Y) c(-L1)xY

converge in £((—1,1) x Y to =.
Write 7 and 7r for the projections of ((—1,1) x Y') x (—1,1) onto its factors. The following

lemma asserts that a subsequence {k;} can always be chosen such that the stretched limit set X is
well-connected.
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Lemma 3.5. Fir a sequence {k;} and a sequence u; : Cj — Wy of Jy,-holomorphic curves. Then
there exists a subsequence {u;,} whose stretched limit set X has the following property. For any
closed, connected interval J S Z of positive length, the subset Tr]lgl(j) c X is connected.

Proof. For each j, define a map
S;j:(-1,1) - K((-1,1) x Y),
s = Thys oy (Rjs — 1 kjs + 1) x V).

An elementary argument shows that S; is continuous; see [CGP24, Lemma 5.2]. Choose a
subsequence {uj,} as follows. Fix a countable and dense subset s © (—1,1). For each s € s, we
require the sequence of sets {S;,(s)} to converge.

Let X denote the stretched limit set of the sequence {uj,} and let 7 be any closed, connected
interval of positive length. The interval 7 contains some s € s. Set X’ := 7 Y ). The sequence
{S;,(s)} converges to some Z; it follows that (Z,s) € X’.

We claim that X’ is connected. We prove this claim by showing that for any element (=, s') € X’,
there exists a connected subset X” = X’ containing both (Z, s) and (Z', §'). By definition of X”, there
exists a further subsequence {j;} and a sequence {a,} such that (j;) 'a; — s’ and Sjé((jé)*lag) - =
in the Hausdorff topology.

For each large ¢, define J, € J to be the closed interval with endpoints ( jé)_lag and s for each i.
Then, set Z¢ := Sy (J¢) = K((—1,1) x Y). Since Sy, is continuous and J is connected, it follows
that Z, is connected for each i. Now, define X” to be the set of subsequential limit points of the
sequence {Z,}. The set X” contains both (Z, s) and (Z,s'), and it is connected by Lemma[2.5] To
finish the proof of the claim, we only need to verify that X” < X’. The set of subsequential limit
points of the sequence {7} is the closed interval J " with endpoints at s and s’. Since J is closed
and J, € J for each £, we have J” < J, which implies that X" < X’. O

3.4. Proof of Proposition Fix a finite set of points p € Y and an integer n > 1 as in the
statement of the proposition. Let m := #p denote the cardinality of p.

3.4.1. Closed holomorphic curves with point constraints. For any integer d > 1 and any integer k >
1, define a collection of points wg = Wy, as follows. Let aqy, := {—ikd 2 |i € Z n [—d?, d*]} denote
a finite set of 2d% + 1 equally spaced points in [k, k]. Choose points w, € W, and w_ € W_. Then,
set Wy := (agr x p) U {wi,w_}. The set a;) xp is the set of points (a,p) € [k, k] x Y < W,
such that a € ag; and p € p.

We construct holomorphic curves ug, passing through wgj using the following well-known exis-
tence result. To state it, we define for any integer e > 1 a pair of integers I(e) := (% + 3¢)/2 and

gle) == (e—1)(e—2)/2.

Proposition 3.6. Let A € Hy(W;Z) denote the Poincaré dual of 2. Fix any integer e = 1 and
any finite subset w = W of size at most 1(e)/2. Then, for any Q-tame almost-complex structure
J, there exists a closed, connected Riemann surface C and a J-holomorphic curve u : C — W such

that (i) Go(C) = g(e), (ii) ux[C] = €A and (iii) w < u(C).
Proof. The proposition is proved in O

Observe that #wgy = 2(md* +m + 2) < I(4md)/2. Recall also that Ji is Q-tame for each k
by Lemma Apply Proposition with e = 4md, w = fk_l(wd,k), and J = Jj,. Composing the
resulting jk—holomorphic curve with fi, we deduce the following corollary.
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Corollary 3.7. Fiz any d = 1 and any large k. Let Ay € Hy(Wy;7Z) denote the Poincaré dual of
[Q]. Then there exists a closed, connected Riemann surface Cqy, and a Jy-holomorphic curve ugy, :

Cai — Wy such that (i) Go(C) = g(4md), (i) (uak)«[Car] = 4mdAy and (i) Wa i < ugr(Cak)-

3.4.2. Construction of stretched limit sets. For each fixed d, let {uq} denote the sequence of curves
from Corollary For any subsequence k = {k;}, let X';(k) denote the stretched limit set of the
sequence {ug; |-

3.4.3. Main technical proposition. The following proposition concerns the structure of X 4(k) when
d is large.

Proposition 3.8. Fiz any integer n = 1. Then there exists a large integer d » 1, a sequence k, and
a closed, connected interval J < (—1,1) such that ﬂﬂgl(j) < X4(k) has the following properties:
(a) There exists (Z,5) € Tz (J) such that {0} x p < E;
(b) There exists (Z,s) € ng ' (J) such that == (—1,1) x A, where A €Y is a proper, compact,
Ry, -invariant set.
(¢) For each (Z,s) € ' (J), the set Z is a 1/n-almost cylinder.
(d) 7' (J) is connected.

3.4.4. Proof of Proposition [3.3. We defer the proof of Proposition to We first use Propo-
sition [3.8] to prove Proposition [3-3]

Proof. Now, let d, k, and J be as in Proposition . Set W := 7= 1(J) € X4(k). The set W
is connected by Proposition [3.§(d). Define Z,, = K((—1,1) x Y) to be equal to mx(W). Since
W is connected and 7 is continuous, Zp, is connected. Proposition (afc) each follow from
Proposition [3.8(a—c) since R, = Xpg. O

3.5. Proof of Proposition

3.5.1. Capped slices and accumulation sets. We introduce several definitions and notations to pre-
pare for the proof of Proposition [3.8
Let R < [—1,1] denote the set of levels ¢ such that, for each d and k, we have (i) kt is a
regular value of a o ugy and (ii) the subset (a o ugy)~*(kt) does not contain any nodal points.
Now, given any closed interval Z < (—1, 1) with endpoints in R, we associate to it a compact sub-
surface Ci i S Cak, called a capped slice. Write ¥ := (ao udvk)*l(k -7Z). The set ¥ is non-empty,
because by Corollary ug k(Cqy) is connected and passes through points in both components of
Wi \[—Lk, L] x Y. Moreover, ¥ is a smooth, compact surface because the endpoints of Z lie in
R. Call an irreducible component of Z of Cqy \ Int(X) short if (i) ugr(Z) < (—k,k) x Y and (ii)
supcez(a o ugk)(C) — infeez(a o ugr)(C) < 2.
Let A € Cyy\ Int(X) denote the union of all short connected components. Then, set CZ, :=
Y UA. We track the level sets where the action and topology of the curves ug ; accumulate as d = .
Given d > 1, a real number € > 0, and a sequence k = {k;}, define a subset r,(d, e; k) < (—1,1)
as follows. We say s € r,(d, €; k) if and only if there exists a sequence of intervals £; satisfying the
following properties:
(i) The sequence {L;} converges to {s} in IC(R);
(ii) We have the action bound limsup;_,, Scﬁ_ uzkjwkj > €.
™

The subset s, (d, €; k) tracks the accumulation of action. Define s, (d; k) := | . sw(d, €; k).
Next, given d > 1, an integer b > 1, and a sequence k = {k;}, define a subset r, (d, b; k) as follows.
We say s € ry(d, b; k) if it admits a sequence of intervals £; satisfying the following properties:
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(i) The sequence {L;} converges to {s} € I(R);
(ii) There exists a sequence of irreducible components Z; ; < Ciij such that
limsup x(Zaq;) < —b.
J—©
Note that, for any sequence k, any subsequence k', any d, b, and €, we have
(3.2) su(d, & K') S sy(d, bfk), su(d;K') S su(di k), s,(d,b;K') < s\ (d,b; k).

We now prove bounds on the size of these subsets. The global area and topology bounds from
Corollary are an essential ingredient in our arguments.

Lemma 3.9. For any d > 1, € > 0, and sequence k, there exists a subsequence K such that
(3.3) #r,(d,e; k') < 8meld.

Proof. Define N := |8me~'d| + 1. Assume for the sake of contradiction that for any subsequence
k', we have #s,(d, ¢;k’) = N. The proof will take 3 steps.
Step 1: This step proves that, given our assumptions, there exists k' = {k;} < k and a finite subset
{s1,...,sn} with the following property. For each i, there exists a sequence of intervals £;; such
that (i) £;; — s; and (ii) for each j, the surfaces Cy j; := Cdﬂfc; have action SCdM u§7kjw > e

The proof follows from repeated application of the following inductive step. For any subsequence
k', call a point s € (—1,1) satisfying (i) and (ii) a (k’, €)-point. Note that if s is a (k’, ¢)-point, it is
a (k”, €)-point for any subsequence k” = k’. Suppose a subsequence k' has exactly N’ (k/, ¢)-points
{s1,...,8n7}. Then, if N < N, we claim that there exists a subsequence k” < k' with at least
N’ +1 (K", ¢)-points. To prove this, it suffices to find some k” with a (k”, €)-point not equal to any
of the s;. By our assumptions, we have s, (d, €;k’) > N’ so there must exist some s € s, (d, €; k')
which is not equal to any of the s;. By definition of s, (d, €; k'), there must exist a subsequence k”
such that s is a (k”, €)-point.

By applying the above inductive step at most N times, we find a subsequence k’ that has a set
{s1,...,sNn} of N distinct (K, €)-points.
Step 2: Let k' = {k;} and {s1,..., sn} be the subsequence and levels from Step 1. This step proves
that, for sufficiently large k, the surfaces Cy;; are disjoint. The surface Cy;; is constructed by
capping Xq;; 1= (aoudkj)_l(kj - L;;) with short connected components of Cy; \ Int(X;;). Thus,
every point in (a o ugk;)(Ca,j;) is a distance of at most 2 from k; - £;;. The intervals k; - £;; and
kj - L;; are very far from each other for i # i’ and k sufficiently large, so it follows that Cy;; and
Cq i are disjoint.
Step 3: This step finishes the proof. By Corollary [3.7] and Lemma, we have

N

1

(3.4) dmd = . Ug g, ey = 3 Z JC Ug o, wWr; = Nej2 > dmd.
.k i=1YC4d,j,

This is the desired contradiction. O

Lemma [3.9| implies that, outside of a countable set of levels, no action accumulates at all.

Lemma 3.10. Fiz any d > 1 and any sequence k. Then, there exists a subsequence k' < k such
that the set s, (d; k') is countable.

Proof. By Lemma and a diagonal argument, there exists a subsequence k' such that s, (d, 1/n; k')
is finite for every n > 1. It follows that s, (d; k') = (J,=1 sw(d, 1/n;K’) is countable. O
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Now, we bound the size of s, (d, b; k).

Lemma 3.11. There exists a constant ¢4 = 1 such that the following holds for any d > 1, b > 1,
and sequence k. There exists a subsequence k' < k such that

(3.5) #r,(d, b;X') < dm(cad + d4mb~'d?).

To prove Lemma [3.11} we need the following technical lemma. It claims that any Z < Cyp
containing an interior point with vertical distance at least 1 from its boundary has a lower bound
on its symplectic area.

Lemma 3.12. There exists a constant ¢4 = 1 such that the following holds for any d and k. For
any compact and irreducible Riemann surface Z < Cqy,, we have

(3.6) f wh e =t > 0.
Z

provided that:
(i) There exists ag € (—k, k) such that uq(0Z) < {ag} x Y.
(ii) There exists some ¢ € Z such that ug(¢) ¢ [ao —2,a0 + 2] x Y.

Proof. Fix a compact and irreducible surface Z < Cy, satisfying (i) and (ii). We prove the bound
in two cases. The proof will take 2 steps. Each step focuses on one case.
Step 1: This step proves in the case where ug(Z) < [—Ly, Li| x Y. Fix any a1 € [—Ly, L]
such that a; is either equal to infeez(a o ug)(¢) or supeey(a o uqr)(¢) and fix any ¢, such that
(@aougr)(Cs) = a1. By (ii), it follows that a; ¢ [ap — 2, ap + 2]. Choose some r € (1,2) such that
a1 £ are regular values of aougy, and define Z, to be the irreducible component of (aoug k)~ ([a; —
r,a; +r]) N Z containing (.

By (i), it follows that (a o ugk)(0Zs) N [a1 —1,a1 + 1] = &. It follows from Proposition [2.3 and
Remark E that there exists a constant c, > 1 such that SZ* u:‘l’kwk > 2¢;'. By Lemm it
follows that

f uﬁka = 1f u;‘zkwk = 6;1.

z 2)z, 7

Step 2: This step proves in the case where ug(Z) is not contained in [—Ly, L] x Y.
Let v : Z — W denote the jk—holomorphic curve defined by the restriction of f, Lo uqp to Z.
Choose a point ¢ € Z such that v(¢) ¢ Us,. Choose some § € (d4,204) which is a regular value
of H ov and define Z, to be the irreducible component of Z\v~!(Us) containing ¢. Let v, be
the restriction of v to Z,. Note that v, is j—holomorphic, contains a point outside Us,, and has
0x(0Z4) "W \ Uys, = &. It follows from the monotonicity bound [Fis1Il Proposition 3.4] that there
exists a constant c, = ¢, (€2, j, Jd3,04) > 0 such that

Now we prove Lemma

Proof of Lemma[3.11. Let ¢4 be the constant from Lemma Assume for the sake of contra-
diction that, for any subsequence k' < k, we have #s,(d, b;k’) > 4mb~'d(4md + c4). Given this
assumption, an analogous algorithm to Step 1 of the proof of Lemma [3.9] produces a subsequence
k' = {k;} and a finite subset {s1,...,sn}, where N := [4mb~Lld(4md + c4)|, with the following
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property. For each i, there exists a sequence of intervals £;; such that (i) £;; — {s;} and (ii) for
each j, the surfaces Cy j; := Cé:;c; have an irreducible component Zg ;; with x(Zq,) < —b.

Define the surfaces ¥4 ;; := (a0 ud7kj)_1(k:j - L; ;) as in the proof of Lemma Define Sg ; :=
Cak; \ UZ]\L 1 Zd,ji to be the complement of the surfaces Zg;;. We claim that
(3.7) X(Sa,j) < 4meyd.

Each connected component F' of Sy is either (i) a compact surface with x(F) < 0 or (ii) a
closed disk sharing a boundary component with one of the surfaces Zg ;. Therefore, prove ({3.7)), it
suffices to bound the number of components of the second type. Any component F' of the second
type contains an irreducible component Z of CdJ’i\Ed,j,i which is not “short”. Such a component
Z satisfies the conditions of Lemma It follows from Lemma that SF u;kj Oy, = 021. By

Corollary we have Scd i uy k; U, = 4md, so there are at most 4mcyd components of the second
g ’

type. The bound ({3.7)) follows.
By Corollary we have

(3.8) X(Cag;) = 2#m0(Cap,) — 2G(Cap;) = —2Ga(Cap,;) = —16m>d>.

The first inequality follows because arithmetic genus is bounded below by genus. By (3.7)), we
have

N
(3.9) X(Car,) = X(Saz) + Y X(Zaji) < 4mead — Nb < —16m>d>.
i=1
The bounds (3.8) and (3.9 cannot hold simultaneously, so we arrive at a contradiction. O

3.5.2. Controlled accumulation implies almost cylinders. Define a constant e := 128md~" for every
d > 1 and define by := 64m?. We prove that every element of the stretched limit set outside of the
accumulation sets s,,(d, €4; k) U sy (d, by; k) is a d-almost cylinder, where 6 — 0 as d — 0.

Proposition 3.13. For any integer n = 1, there exists some d, = 1 such that the following holds
for all d = d,, and any sequence k = {k;}. Fiz any s € (—1,1)\ (ro(d, eg; k) v ry(d, bs; k)). Then,
for any (E,s) € Xy4(k), the set = is a 1/n-almost cylinder.

The key technical input to Proposition[3.13|is the following result, which asserts that holomorphic
curves with bounded Euler characteristic and sufficiently low action are 1/n-almost cylinders away
from the boundary. We prove it using Proposition [2.4

Proposition 3.14. Fiz any (,J) € D([-8,8] x Y') and integers n = 1 and b = 0. Then there
exists a stable constant €5 = €5(7, J,n,b) > 0 such that the following holds. Letu: C — [-8,8] x Y
be a compact, irreducible J-holomorphic curve such that
(1) (aou)(0C) N [—4,4] # &;
(1) X(C) = —b;
(11i) §ou*o < es.
Then the set u(C) n (—1,1) x Y € K((—1,1) x Y) is a 1/n-almost cylinder with respect to (7, .J).

Proof. Assume for the sake of contradiction that the proposition is false. Then, there exists a
convergent sequence (7, Jx) — (7,J) and compact, irreducible Ji-holomorphic curves uy, : Cp —
[—8,8] x Y satisfying (i), (ii), and the bound Sck ufoy < k™1, such that the sets ug(Cg) n(—1,1) x Y
are not 1/n-almost cylinders with respect to (7, Jx) for any k. The remainder of the proof will
derive a contradiction in 2 steps.
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Step 1: This step proves that, after passing to a subsequence, there exists some non-empty, compact,
R, -invariant set A < Y such that

(3.10) up(Cr) N (=2,2) x Y — (=2,2) x A

in the Hausdorff topology on IC((—2,2) x Y'). We prove using Proposition The proof is
all but identical to other recent results (see [FH23| Proposition 4.47] or [CGP24, Theorem 6]), so
we only provide a sketch. After passing to a subsequence, the slices ug(Cy) N (—2,2) x Y converge
to 2 € K((—2,2) x Y). Since each C}, is irreducible, it follows from (i) that ug(Ck) n[—1,1] x YV is
non-eempty for each k. Therefore, the set = is non-empty.

To prove , it suffices to show that for any point z = (a,y) € Z, there exists 6 > 0 such that
for any 7 € (—6,6), we have (a + 7,y) € Z and (a,¢"(y)) € Z. Then there is a sequence of points
Ck € Ck such that z 1= ug((x) € (—2,2) x Y and 2z, — z. The surfaces Sy := Se,({x) have uniformly
bounded area by Proposition and have uniformly bounded genus since x(Cy) = —b for each k.
Thus, by target-local Gromov compactness [Fis11], the restrictions vy := ugls,, after passing to a
subsequence and shrinking the surfaces Sy slightly, converge to a map v : S — [-8,8] x Y with
§gv*@ =0 and z € v(S). By Lemma v(S) lies inside R xI'(R), where I" : R — Y is the unique
R, -trajectory with I'(0) = y, and the desired property of z follows.

Step 2: Fix any sequence of points zp = (ak,yx) € ug(Ck) N (—2,2) x Y and any sequence 73, €
(—2,2). This step completes the proof by showing
lim sup distg, ((7x, yx), ux(Ck) N (=2,2) x A) =0,
k—o0
lim sup distg, ((ag, ¢™ (yx)), ux(Ck) N (=2,2) x A) = 0.
k—00

It is sufficient to establish to complete the proof, because implies that ug(Ck) N
(—1,1) x Y is a 1/n-almost cylinder for large enough k, which gives a contradiction. It follows from
the Hausdorff convergence in that

lim sup distg, (zx, [—2,2] x A) = 0.

k—o0

(3.11)

For each k, choose a point zj, = (a},,y;) € [—2,2] x A such that
distg, (zx, 2,) = distg, (2, [—1,1] x A).

Thus, we have |a;, — aj,| — 0 and dist(yx,y;,) — 0, where the distance on Y is taken with respect
to some arbitrary but fixed Riemannian metric. It follows that

(3.12) lim sup distg, (7, Yk), (Tk, y3,)) = 0,  limsup distg, ((ak, 9™ (yx)), (ak, 9™ (y3,)) = 0.

k—o0 k—o0

Since (7x,y;,) and (ag, ¢™ (y}.)) lie in (—2,2) x A for each k, it follows from (3.12)) that
(3.13)  limsupdistg, (7, yx), (—2,2) x A) =0, limsupdistg, ((ax, o™ (yx)), (—2,2) x A) = 0.

k—o0 k—o0

Combining (3.13)) with (3.10) proves (3.11)). O

Now, we are ready to prove Proposition [3.13

Proof of Proposition[3.13. Let d be sufficiently large so that 64md=1 < e5(n, J,n,bs), where €5
denotes the stable constant from Proposition Fix any (2, s) € X4(k), where s ¢ r,,(d, eg; k) U
ry(d, by; k). Then, there exists a sequence a; € (—kj, kj) such that k:j_laj — s and the slices

Ej = Tay (ud7kj (Cd,kj) N (aj — 1,aj + 1) X Y)
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converge in the Hausdorff topology to Z. For each j, choose a closed, connected interval £; with
endpoints in R, such that

k5 (a; — 4)

: ki'aj +4)] < £ < [k (aj — 6)

] J

,k};l(a]’ + 6)]

Consider the capped slices Z; := Cifcj. Note that ug;(Z;) < [a; — 8,a; + 8] x Y for each
j. Since s ¢ ry(d,bs;k), we have that, for sufficiently large j, each irreducible component of
Z; has Euler characteristic at most —64m?2. Since s ¢ r,(d,eq; k), we have that, for sufficiently
large j, the action SZ]» u;kjwkj is at most 64md~! < e5(n, J,n,bs). By Proposition the set

Ej = ugr;(Zj) n (=1,1) x Y is a 1/n-almost cylinder with respect to (nZJJ, Jgj) for each j. By
Lemma and Corollary it follows that = is a 1/n-almost cylinder with respect to (n,J). O

3.5.3. Emistence of a single proper compact invariant set. The following result asserts that at levels
where there is no w-accumulation and controlled y-accumulation, any element of the stretched limit
set is a cylinder over a proper, compact, R,-invariant set. A key part of the proof is the use of
intersection theory to show that the invariant set is proper. This part is inspired by [FH23, Theorem
7], which shows that certain feral holomorphic curves have ends limiting to proper invariant sets.
The proof of that result required some curvature bounds (see [FH23, Theorem 6]) for feral curves
that are not available to us. We use alternative arguments to circumvent this issue.

Proposition 3.15. Fiz d > 1, k = {k;}, and s € (—1,1)\ (sw(d; k) U ry(d, bs; k)). Then, for any
(2,5) € X4(k), the set = is equal to (—1,1) x A, where A €'Y is a proper, non-empty, compact,
Ry -invariant set.

As preparation, we introduce the moduli space of degree 1 holomorphic spheres and its relevant
properties. For each k, let M} denote the moduli space of Ji-holomorphic spheres in Wy, that are
Poincaré dual to [2] and pass through a fixed point wy, € D. By the adjunction inequality [McD91l
Theorem 1.3], each element of My, is embedded.

Lemma 3.16. The moduli space My, satisfies the following properties for each k:

(a) For any k and any S € My, the algebraic intersection number of ugy and S is equal to 4md.
(b) For any k and any ag € [—k, k], there exists some S € My, such that
zesm[lfllcf,k]xya<z) - a0

Proof. Property (a) follows from Corollary [3.7, Property (b) follows from an open-closed argument
as in the very similar [FH23, Proposition 3.5]. Extend the coordinate a to a smooth function
a: Wi — R, such that a = k on W, and a < —k on W_. The range a(Wy) is a compact interval
Z < R containing [—k, k]. Let a denote the set of all ag € Z for which there exists S € M, such that
inf,es a(z) = ag. Since D € My, the set a is non-empty. By automatic transversality of the moduli
space [HLS97], the set a is open. By the Gromov compactness theorem, and the lack of bubbling
due to the degree restriction, the set a is closed. We conclude that a = Z. Therefore, [k, k] < a,
which is equivalent to Property (b). O

The following lemma proves everything but properness of A.

Lemma 3.17. Fiz d, k, s as in Proposition . Then, for any (E,s) € Xq(k), the set E is equal
to (=1,1) x A, where A 'Y is a non-empty, compact, R, -invariant set.
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Proof. Fix any n > 1. Observe that s ¢ r,(d, €5; k), where €5 = €5(n, J,n,bx) > 0 is the constant
from Proposition By Proposition = is a 1/n-almost cylinder. Therefore, = is a 1/n-almost
cylinder for every n, so the claim follows from Lemma [3.2] O

We are now ready to prove the proposition.

Proof. By Lemma == (—1,1) x A where A € Y is a non-empty, compact, R,-invariant set.
It suffices to show that A is a proper subset of Y. Assume for the sake of contradiction that A =Y.
The proof will take 5 steps.

Step 1: For each j, define a; := kjs. By Lemma (b), there exists for each j a sphere S; € My,
such that inf 2€S;n[—k; k;]xY a(z) = aj. This step extracts a certain limiting disk from the sequence
{S;}. For simplicity, assume that S; intersects {a; +1/2} x Y transversely for each j. Choose z; € S;
such that a(z;) = a;. Let ¥; denote the connected component of z; in S; N [a;,a; +1/2] x Y. Let
vj : ¥j — (=1,1) x Y denote the composition of ¥; — §; with 7.

Each map v; is JZJ] -holomorphic; see §2.6.7, The surfaces X; each have zero genus. They have
uniformly bounded area by Proposition [2.2] and Remark Therefore, by target-local Gromov
compactness [Fisll] and Corollary after passing to a subsequence in j, there exists a sequence
of surfaces ij c ¥, and a compact, connected J-holomorphic curve v : ¥ — (=1,1) x Y such that
(i) ¥, contains (aowv;j)~'([1/4,1/4] x Y)) and (ii) the restrictions v; := vj|§j converge to v in the
Gromov topology.

For any r > 0, let D(r) < C denote the closed disk of radius r centered at the origin. Choose

some small 7y > 0 and an embedding 6 : D(ry) — ¥ with image disjoint from any nodal points and
from 0%, such that v o @ is an embedding and such that (v o 0)*w # 0 at any point in D(rg).
Step 2: This step introduces the so-called “vertical foliation” and uses it to define tubular neigh-
borhood coordinates for the map vo ¢. For any y € Y, let I'y : R — Y denote the unique trajectory
of R, for which I';(0) = y. The planes R xI'y(R) form a smooth 2-dimensional foliation of R xY
called the wertical foliation. Each leaf is an immersed J-holomorphic plane, parameterized as fol-
lows. For any point z = (a,y) € R xY, let P, : C - R xY be the map s +t-i+— (a+s,I'y(t)). The
map P, is an injective J-holomorphic immersion with image R xI',(R).

Since (Uo60)*w # 0 everywhere, the map To ¢ is transverse to the vertical foliation. We construct
a tubular neighborhood such that each fiber is a J-holomorphic disk inside a vertical leaf. We
formulate this precisely as follows. There exists an embedding © : D(rg) x D(rg) <— R xY with the
following properties:

e For any ¢ € D(rp), we have O((,0) = (v00)(();
e For any ¢ € D,,, write z = (00 0)(¢). The map ©({,—) : D(r9) — R xY is equal to the
restriction of P, to the disk D(rg).

The images v,(X;) are graphical over D(ro/2) for large j. Since 8(D(rg)) = ¥ does not contain
any nodal points or boundary points, there exist embeddings 6; : D(rg) — X; such that v; o 6;
converges to T o 6 in the C* topology. Setting 1 := r9/2, we observe that, for sufficiently large j,
there exists a smooth map x; : D(r1) — D(r1) x D(rg) such that

(@0 25)(¢) = (vj ©0;)(C)-

for any ¢ € D(r1). Moreover, the maps x; converge in the C* topology to the map x : ( — (¢,0).
Step 3: With the setup from Steps 1 and 2 complete, this step explores the consequences of our
assumption that A = Y. We show that there exists 8mnd pieces of the curves ud7kj(0d,kj) that
converge as j — o0 to vertical surfaces positively intersecting the disk v o 6(D(ro)).
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Choose a finite set of 8md points {p;} < D(r1)\ dD(r1) and write zp := (v o 8)(ps) for each ¢. By
assumption, A =Y, so for each /, there exists a sequence of points zy; € ugk; (Cax;) N (aj —1,a; +
1) x Y such that 74,(2¢;) — 2¢. For each £ and j, fix (s ; € u;ij(zm) and define Sy ; := Se,((rj)-
Write wy j : Sgj — (—1,1) x Y for the composition of uq k;, restricted to Sy j, with the shift 7.

By Proposition G(Se,;) has an (- and j-independent upper bound. By Proposition the
areas of the maps wy ; are uniformly bounded. By target-local Gromov compactness [Fis11], after
passing to a subsequence in j, there exists a sequence of surfaces ?g,j and a compact connected
J-holomorphic curve wy : Sy — (—1,1) x Y such that (i) w,(dSy) is disjoint from B, 5(z¢) and (ii)
the restrictions wy ; := wg,j|§2’j converge to Wy in the Gromov topology.

For any ¢, we have ng @Z‘w,:j =0. By lemma we have w,(S;) = P,,(C). By the open mapping
theorem, P! o wy(S) contains an open neighborhood of 0. Choose ry < min(ro, e3/4) such that,
for any ¢, the image (P;,' o wy)(S,) contains D(ry). Write Sy = (W, 0 ©)(D(r1) x D(rs)). After
shrinking ro, we may assume without loss of generality that 05, contains no nodal points or critical
points.

Fix 5'4] = (*_1 0 ©)(D(ry) x D(rg)) for each j. Since 85, contains no nodal points or critical
points, it follows that Wy g S0,

tion Sg of Sy such that the followmg holds. Let y, : Sg — D(ry) x D(rg) denote the lift of O~ o,
to the normalization. Then for sufﬁmently large j, there are normalizations Sy j of Sy j» lifts hy ; of

. There exists a normaliza-

o lo wy,;, and diffeomorphisms )y ; : Sg — Sg] such that the maps y, ; := hy j 01y ; converge to y,
in the C topology.

Step 4: The step proves that there exists some sufficiently large j such that, for each £, the maps
x; and y, ; have positive algebraic intersection number. Denote the algebraic intersection number
by a dot, e.g. x; - ys ;. For any ¢, the map ©~! owy is a surjective holomorphic map from Sy onto
©({pe} x D(rq9)). Thus, the lift y, is a positive degree cover of {ps} x D(r3).

Recall that = denotes the map ¢ — ((,0). We have z -y, > 0. For any sufficiently large j,
xj is CP-close to x and Ye,j is C%-close to yy. The map x; is homotopic to x via the straight-line
homotopy t — (1 — t)x; + tx. The map y,; is homotopic to y, via the straight-line homotopy
t — (1—1)ye,; + ty,. The only intersections along these homotopies are interior intersections. Thus,
the algebraic intersection number is homotopy invariant, so

Ti-Yej =2 ye>0

for sufficiently large j.
Step 5: This step completes the proof. By Step 4, ;- yp; > 0 for each ¢ and for each large j. It
follows that S; - wy; > 0 for each sufficiently large j. The local intersections of S; and ugy; are
non-negative [McD91, Theorem 1.1]. By summing over ¢, we conclude that S; - ugy, > 8md for
sufficiently large j. This contradicts Lemma a).

O

3.5.4. Completing the proof. We prove Proposition using Lemma[3.9] Lemma Lemma [3.11
Proposition and Proposition [3.15

Proof of Proposition[3.8 Fix any n > 1 and any d > d,,, where d,, is as in Proposition [3.13] By
Lemma Lemma Lemma and Lemma there exists a sequence k = {k;} such that
(i) the bounds (3.3) and (3.5) are satisfied, (ii) s, (d; k) is countable, and (iii) 75" (J) < Xa(k) is
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connected for any closed, connected interval J of positive length. Write X'y := X'4(k). The proof
will take 2 steps.

Step 1: This step constructs a closed, connected interval J < (—1,1) of positive length such that
(a) J contains id=2 for some i € [—d?,d*] N Z, (b) J does not intersect s,,(d, e4; k) U s,(d, bs; k),
where e; = 128md~! and b, = 64m?, and (c) J contains some s ¢ s, (d;k). Let ¢4 denote the
constant from Lemma and take d = 64mcy. It follows from and that

#(ru(d; k) Uy (d;k)) < d?/2.

From this bound, it follows that there exists a closed, connected interval J < (—1,1) of length

2d~? satisfying (b), i.e. J does not intersect s,,(d, e4; k) Usy(d, by; k). We verify that J also satisfies
(a) and (c). Since J has length 2d2, (a) follows from the pigeonhole principle. Property (c) follows
because, by (ii) above, s, (d;k) is countable, while 7 is uncountable.
Step 2: This step completes the proof of the proposition. We verify that J satisfies each of
Proposition afd). By Property (a) from Step 1, there exists s = id~2 lying in J. Observe that
kjs € aqy, for each j, so the curves ugy; pass through {kjs} x p for each j. Take = to be any
subsequential limit of the slices

Thjs * (ud,kj(cd,kj) N (kjs — 1, kjs + 1) x Y) c(-L1)xY.

Then we have (Z,s) € X4 and {0} x p < Z, which implies Proposition [3.8|a). Proposition [3.8|(b)
follows from Property (b) of Step 1 and Proposition Proposition [3.8(c) follows from Property
(c) of Step 1 and Proposition Proposition [3.8(d) follows from Property (iii) of the sequence
k. O

3.6. Other 4-manifolds. We explain how to adapt the proof of Theorem [I| to Hamiltonians on
either M := T*S? or on My := T*T?.

3.6.1. Compactification. We compactify to (S? x S?,Q). The symplectic structure € is equal to
w X w, where w is an area form on S? with area 1. Write Ly = S? x S? for the Lagrangian anti-
diagonal and write L1 := S! x S, where we view S' = S? as the equator. Write Dy < S? x S? for the
diagonal and write Dy := {w} x S?, where w € S?\ S'. For each 4, a small neighborhood of the zero
section in M; is symplectomorphic to a small neighborhood of the Lagrangian L;, and is disjoint
from the symplectic divisor ID;. For each i, after an appropriate rescaling about the zero section,
we view Y as a hypersurface in S? x S? which is disjoint from the divisor ;.

3.6.2. The curves uqy. The closed curves are defined using Proposition a version of Proposi-
tion that holds for more symplectic 4-manifolds, including S? x S2.

3.6.3. Intersection theory argument. We need to adapt Lemma Lemma [3.11] Proposition
and Proposition The first three results go through with minimal modifications, but Proposi-
tion requires some more care. The method of proof, which involved intersecting the curves uq j
with a moduli space M, of embedded Jj,-holomorphic spheres in CP? remains the same, but we
need a suitable analogue of Mj. When we are working in Mg, we replace My, with the moduli space
of stable Jj-holomorphic spheres representing the class [{*} x S?] + [S? x {*}]. Denote this space
by M. Tt consists either of embedded J;-holomorphic spheres representing [{#} x S?] + [S? x {*}]
or of pairs of spheres connected by a nodal point, where the map on one sphere is an embedding
representing the class [{#} x S?], and the map on the other sphere is an embedding representing the
class [S? x {#}]. When we are working in M, we replace M}, with the moduli space of embedded
spheres representing the class [S? x {}]. Note that ; € M}, for each k and each i. The analogues
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of Lemma hold for the spaces M¢, and from here onwards the same argument goes through
without modification.

4. GLOBAL LE CALVEZ—YOCCOZ PROPERTY
The goal of this section is to prove Theorem [2l We prove the following equivalent result.

Theorem 5. Let H : R* — R be a smooth function. Then, for any so € Rc(H), there exists some
d5 > 0 and a full measure subset Q@ € R.(H) n (so — 05, S0 + I5) such that the following holds. Fix
any s € Q and set Y = H~1(s). Then any compact X y-invariant subset A €Y containing P(s) is
either equal to'Y or is not locally mazximal.

For the remainder of the section, fix a smooth function H : R* — R. Fix any sg € R.(H).
Assume without loss of generality that sy = 0; we reduce to this case by replacing H with H — so.
Set Y := H—1(0).

4.1. An existence result for almost cylinders. To state our result, we recall several definitions
and terms introduced in the previous section. We repeat the setup in and
We compactify to W = CP?, define a collar map ¢ : (—01,01) x Y — W, and define a pair (7, J) €
D((—61,01) x Y). Recall that, for any s € (—d1,61), (n°,J%) € D(Y) denotes the pullback of (7, J)
by the map y — (s,y). Recall the definition of J-almost cylinders from Now, we state a new
existence result for almost cylinders.

Proposition 4.1. There exists a constant 65 € (0,1) such that the following holds for any finite set
of points p € Y and any positive integer n = 1. There exists a subset Qp n, < (—0J5,95) of measure at
least (2 —2")d5, and for each s € Qp, a connected subset Z3,, < K((—1,1) x Y') with the following
properties:

(a) There exists some Ay, € Z3 . such that {0} x p < A,,.

p?n
(b) There exists some A, € Z3 . equal to (—1,1) x E,,, where E,, is a finite union of closed

p?n
orbits of R®.

(c) Each A€ 23, is a 1/n-almost cylinder with respect to the pair (n°,J*) € D(Y).

4.2. Proof of Theorem [5l We defer the proof of Proposition to We first use it to
complete the proof of Theorem

Proof. Fix any finite set of points p < Y and any n > 1, let Qp, ,, < (=65, J5) be the set from Propo-
sition [4.T) and, for any s € Qp , let Z5, , be the collection of almost-cylinders from Proposition

Define the set
Qp = U ﬂ Op.n S (=05, 05)-
=1n=l
The rest of the proof will take 3 steps.
Step 1: This step proves that Qp has full measure in (—ds,d5). Since | Qp,| = (2 —27")d5 for
each n, we have | (0, Qpn = (2 — 27¢71)85|. Taking the union over all ¢, we have | Qp | = 265.
Step 2: For any s € Qp, choose n; — o0 such that (i) s € Qp . for each j and (ii) there exists
= € Z;nj such that the sequence {Z;} converges. Let Z}, denote the set of subsequential limit
points of the sequence {Z;nj} as j — 0. Since Z, . is connected for each j, the set Z}, is connected
by (ii) and Lemma We claim that Z}, has the following properties:

(a) There exists some E € Z, such that {0} x p  E.
(b) There exists a compact subset A € P(s) such that (=1,1) x A e Z},.
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(c) Each Z € Zj is equal to (—1,1) x A, where A € K(Y) is a non-empty compact R*-invariant
set.
These properties follow from Proposition (afc), Lemma and Lemma
Step 3: This step finishes the proof. Fix a sequence of finite subsets p, = Y that converge to Y’
in the Hausdorff topology as £ — 0. Define Q := ﬂé Qpe' Since @ is a countable intersection of
full measure subsets, it has full measure itself. Fix any s € Q. After passing to a subsequence in £,
there exists Z¢ € Zj, for each ¢ such that the sequence {Z;} converges. Define Z* to be the set of

subsequential limit points of the sequence {Z}, }. By Lemma 2% is connected. Let Y < K(Y)
denote the image of Z° under the map E+— Z n {0} x Y. By Property (c) above and Lemma
the set Y° is connected. The set )* has the following properties, which follow from Properties (a—c)
above:

(a’) Y e V.

(b’) There exists a compact R*-invariant subset A < P(s) such that A € Y*.

(¢’) Each A € Y° is a non-empty compact R°-invariant set.

Fix s € Q and an R*-invariant set A containing P(s). We will show that if A # Y, then the set
A is not locally maximal. Let ) denote the image of }* under the map A’ — A U A’. The family
Y is connected by Lemma consists of R*-invariant sets by Property (c¢’), and contains both Y
and A by Properties (a’) and (b’). It follows that A is not locally maximal. O

4.3. Geometric setup. The geometric setup for this section mostly follows §3.3] However, we will
use a different neck stretching procedure. Instead of stretching the neck around the hypersurface Y
as in above, we simultaneously stretch the neck around each of the hypersurfaces H~!(s) for
small s. On a technical level, this only requires minor changes to the setup. The most significant
change is the replacement of the sequence {¢y} with a new sequence {¢y}.

4.3.1. Recollections from §3 We repeat the setup from §3.3 starting from and ending at
§2.6.9)
e In we defined an -tame almost-complex structure J on W and fixed J = */J; ; recall
alaso that J is n-adapted on (—0do, (52) xY.
e In 51 we defined deformations J¢,, agreeing with .J on the bundle £ = ker(ds) n ker()\)

which by Lemma 2.9 are tame if 1 — ¢ is supported in Us,.
o In § we defined stretched manifolds W, contalnlng long necks [—Lg, Ly] x Y, and

dlffeomorphlsms fo : W — Wy, Let Q¢, Ny = ()\¢,w¢) §¢, qu denote the pushforwards by
foof Q0= ()\ w), £, J, respectively.

The remainder of our setup consists of minor variations on §3.3.3 §2.6.7 and §3.3.4]

4.3.2. Adiabatic neck stretching. Choose a constant d4 € (0, 03/2), a constant d5 € (0, 64/2) and, for
each k > 445 ! a smooth function ¢y, : W — (0,1] with the following properties:

The function 1 — ggk is supported on Us,.

For any s € (—d3, J3), o1 is equal to a constant ak(s) on the hypersurface H~1(s).
For any s € (—d3,d3), we have qgk(s) = g’Z)\k(—s).

The integral L; — §°5, k(1) 1dt is at least 16k

ggk(s) = 65 k™! for every s e (—k~1, k1),
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We require the sequence {ggk} to converge in the C® topology as k — o0. The sequence {qgk}
is identical to the sequence {¢;} from § apart from the last property. This change gives a
different geometric convergence result, see Corollary [4.2| below.

We simplify the notation for the various geometric obJects associated with qSk Write Jk =J c@ﬂ

Define Ly, := Ly = S 5 qﬁk t)dt and define a function Dy(s) 1= = 53 gbk )~tdt — L. Then, write

Wk = W(; for the stretched manifolds and fk = fa 3 for the diffeomorphisms W — Wk Write

Qk = QA and Jk = J¢k Write @ Wk = W¢k, )\k = )\ng, Ne = (/\k,wk) Rk = R¢>k7 and fk = §¢k

Fix any k and any a such that [a—8,a+8] S [~ Ly, Ly]. Then, we define (3, Jk) e D([-8,8]xY)
to be the pair defined by restriction of (7, jk) to [a — 8,a + 8] x Y and then translation by —a.
The following convergence result is a consequence of Lemma

Corollary 4.2. Fiz any sequence {ay} such that aj, € (—k, k) for each k and the sequence {05k Lag}
converges to some s € [—d5,05]. Then, we have (7,* ,J #) — (n*, J*°) in D([-8,8] x Y).

Proof. Let sy, : [—8,8] — [—0d3, 03] denote the functions a — @;1(% + a). Observe that Cf,:l(a) =
S5k~ ta for any a € ( k,k). Then, given our assumptions on {ay}, the sequence {5} converges in
the C® topology to § = s. Now apply Lemma [2.11] Step 3 of its proof shows that the limiting pair
is (n®, J®). O

4.3.3. Adiabatic limit set. We introduce an adiabatic analogue of the stretched limit set from §

For any sequence {k;}, fix a closed, connected Riemann surface C’ and a Jk -holomorphic curve

uj CJ — ij. The adiabatic limit set X < K((=1,1) x Y) x (=05, 05) is the collection of pairs
(2, s) for which there exists a sequence {a;} such that

(i) (55163-_1% — S
(ii) A subsequence of the slices

o+ (%G5 (a5 = Laj + 1) x V) & (-1,1) x ¥
converges in £((—1,1) x Y to =.

4.4. Proof of Proposition Fix a finite set of points p < Y. Let m := #p denote the
cardinality of p.

4.4.1. Closed holomorphic curves with point constraints. Define point constraints wWqj; < Wk as
follows. Let a4 < [—k, k] denote a finite subset of 2d? + 1 equally spaced points:

Agp = {—ikd % |ie Zn[~d? d*}.
Choose points w+ € Wy and set Wq := a4 X pu{wy,w_}. Using Lemma and Proposi-
tion [3.6] above, we obtain the following analogue of Corollary [3.7]

Corollary 4.3. Fix any integer d = 1 and any k sufficiently large so that jk s ﬁk—tame. Then
there exists a closed, connected Riemann surface éd,k and a jk—holomorphic curve Uq, (/j’dk — Wk
such that (i) Ga(éd,k) = g(4md), (i) the class (Q’Zdﬁ)*[éd’k] is Poincaré dual to 4md[ﬁk] and (ii1)
Wak € Uap(Ca)-

9This coincides with the notation for jdw from the previous section, but the two almost-complex structures never
appear together so the ambiguity does not impact clarity.
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4.4.2. Construction of adiabatic limit sets. For each fixed d, let {44} denote the sequence of curves

from Corollary For any sequence k, let X 4(k) denote the adiabatic limit set of this sequence
{Ugx;}. The analogue of Lemma 3.5 holds for adiabatic limit sets, with the same proof.

Lemma 4.4. For any fized d > 1 and any sequence k = {k;}, there exists a subsequence k' < k

such that for any closed, connected interval J of positive length, the subset ﬂ@l(j) c /%d(k’) 18
connected.

4.4.3. Main technical proposition. The following proposition concerns the structure of i’d(k) when
d is large. It is analogous to Proposition

Proposition 4.5. Fix any integer n = 1. Then there exists a large integer d > 1, a sequence k,
and a subset Q < (—J5,05) of measure at least (2 —27""1)65 such that the followzng holds for any
se Q. Define J := [~065,05] N [s —d 2,5 +d2]. Then ﬂﬂgl(j) c )A(d(k) satisfies the following
properties:

(a) There exists (Z,5') € 7z (J) such that {0} x p < E.

(b) There exists (Z,5') € Tz (J) such that = = (—1,1) x A, where A €Y is a finite union of

closed orbits of R®.
(¢) For every (2,5') € mz ' (J), the set E is a 1/n-almost cylinder with respect to (n°, J*).
(d) The set mx'(J) is connected.

4.4.4. Proof of Proposition[/.1. We defer the proof of Proposition [£.5] to §4.5] We first use Propo-
sition and Lemma [£.4] to prove Proposition [

Proof. Fix n > 1 and some large d > 28”5;1/2. Let k be the sequence and let Q < (—J5,d5) be the
set of measure at least (2 —27""1)§5 produced by Proposition Define Qp ,, := (=65 +d 2,05 —

*2) N Q. Since d > 2%", it follows that Qp.n has measure at least (2 —27")d5. Fix any s € Qp p,
and let J = (—ds,5) denote the interval (s —d=2,s+d2). Set W := 1z (J) < X 4(k). The set W
is connected by Proposition (d) Define Z},,, < K((—1,1) x Y) to be equal to mc(W). The set
W is connected and my is continuous, so Z7, ,, is connected. Now, Proposition a—c) each follow
from Proposition 4.5 a—c).

4.5. Proof of Proposition [4.5] The proof of Proposition .5 follows a similar format to the proof
of Proposition [3.8]

4.5.1. Capped slices, accumulation, and blowup. We introduce several definitions and notations. Let
Rc (—05,05) denote the set of levels s such that, for each d and k, we have (i) d; 'ks is a regular
value of 4g ) and (ii) the subset (a o @gy) (55 1k5) does not contain any nodal points. Now, given
any closed interval Z < (—46,6) with endpomts in R we associate to it a capped slice Cd - Cd ks
defined as in but scaling Z by d; 'k instead of k. Define accumulation sets 8,,(d, ¢; k) and
S, (d,b;k) as follows. We say s € §w(d, e;k) if and only if there exists a sequence of intervals L;
satisfying the following properties:

(i) The sequence {L;} converges to {s} in KL(R);

(ii) We have limsup;_,, Séji ﬁ:‘lkj@kj > €.

M

Define s,,(d; k) := |J.-(5w(d, é; k). We say s € 5,(d, b; k) if it admits a sequence of intervals L;
satisfying the following properties:
(i) The sequence {L;} converges to {s} € I(R);
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(ii) There exists a sequence of irreducible components Zg ; < éﬁ%j such that
limsup x(Zg4,) < —b.
Jj—0
The following lemma bounds the sizes of the accumulation sets.

Lemma 4.6. There exists a positive constant c; = 1 such that the following holds for any d = 1,
b>1, e >0, and sequence k. There exists a subsequence k' < k such that

(4.1) #8,(d, e; k') < 4med, #8,(d, b; k') < 4m(csd + 4mb~1d?).

Proof. The lemma follows from repeating the proofs of Lemmas and [3.11] changing the notation,
and making a couple of other modifications that we list here. The constant cs replaces the constant
¢4 from Lemma It arises from an analogue of Lemma [3.12] with an identical proof. We replace
the uses of Corollary [3.7] with Corollary O

Lemma [4.6] has the following consequence.

Lemma 4.7. Fiz any d > 1 and any sequence k. Then, there exists a subsequence k' < k such that
S, (d; k') is countable.

We now introduce a new set that did not appear in §3.5 which tracks the levels sets on which

the integral of Z\\blows up. To ease some technical complications, our definition will use a smoothed
version of the A-integral. Define a smooth function r : [—2,2] — [0, 1] such that (i) » = 0 in a
neighborhood of —2, (ii) » = 1 in a neighborhood of 2, (iii) 7’(a) € [0,1] for each a € [-2,2],
and (iv) r(a) = a for a € [-1/2,1/2]. For any k and any s € (—85,65), define as := d5k~1s and

let rsf := r o, , denote the smooth function a — r(a — asy). For any d > 1, any k, and any
s € (=05, 05), define the surface
(4.2) Cs,d,k = (a o ﬁdk)_l(a&k — 4, Qs k + 4).

Define a smooth function
Eqx: (—05,05) — (0,00),

(4.3) s Hj 8%, (r" p(a)(da A ).
Cs.dk

For any d > 1, any sequence k = {k;}, and any constant A > 0, let 5)(d, 4; k) denote the set of
all s € (=05, d5) with the following property. For any sequence s; — s, we have

lijrgglf Bk a(s5) > A.
Define 8)(d; k) := () 4= Sx(d, A; k). This is a null set.
Lemma 4.8. For any d > 1 and any sequence k, the set S)(d; k) has zero Lebesque measure.
Lemma is proved from the following bound on 8, (d, 4; k).

Lemma 4.9. Fiz any d > 1, any sequence k = {k;}, and any A > 0. Then the set Sx(d, A; k) is
open and has Lebesgue measure at most 512A~ md.

Proof. The proof will take 3 steps.
Step 1: This step proves that that 5)(d, A; k) is open. For each j, let E; := Eaq ;2 Let

Gj=1{(s, Eqgr;a(s)) : se(=d5(1 - 2/@]1)755(1 - Qkfl))} c R?
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denote the graph of E;. Let G := limsup G; denote the set of limit points of the sequence of subsets
{G;}; this is a closed subset of R%. Then, a point s € (—J5,d5) lies in 8)(d, A; k) if and only if there
is no E € [0, A] such that (s, F) € G. Since G is closed, this is an open condition, and therefore
Sa(d, A; k) is open.

Step 2: This step proves the following claim. Fix any compact subset § € §)(d, A;k’). Then, we
claim that there exists some js > 1 such that if j > js, then Ej;(s) > A for every s € s. This is
equivalent to showing that G; ns x[0, A] is empty for sufficiently large j. Observe that G is disjoint
from s x[0, A]. Any limit point of the sequence of sets {G; n's x[0, A]} must lie in G s x[0, A]. It
follows that the sequence has no limit points. Thus, all but finitely many elements of are empty.
Step 3: This step completes the proof. For any open subset U < R, the Lebesgue measure |U| is
equal to the supremum of |K| over all compact subsets K < U. Therefore, it suffices to prove the
bound

(4.4) 8] < 2004 ' md

for any compact subset 8§ € 8)(d, A; k). Since § is compact, by Step 2 there exists some js = 1 such
that for any j > js and any s, we have E;(s) > A. It follows that

f Ug g, (7“;,% (a)da A Ag;) > A
Cs,d,k;
for any such s and j. Since 7, (a) € [0, 1] for every a, we deduce the bound

(4.5) 5y, (da A Jy,) > A

J‘(aoad,kj )7 (s k=255, +2))

Corollary and Lemma imply a global bound on the integral of da A ij for each j:

(4.6) 5y, (da A Xy,)) < 865 'mkjd.

J(aoﬁd,kj)_1((—’%/%))

Now, for each j, choose a maximal collection of points {sﬂ}zjf in 8 such that the intervals
(85— 45514:;1, 85+ 455]€;1) are pairwise disjoint. It follows from the maximality property that the
tripled intervals (s;,; — 1255kj_1, sji+ 1255kj_1) cover the set S. It follows that

By (4.5), we have
m]J

(4.8) 3, (da A X)) = Amy;.

i=1 »f(aoﬁd,kj)1((55_1]63-5]-,1'—2,55_1]%8]'71'+2))

The sets (a o Ugx) '((kjsj; — 4,kjs;j; +4)) are disjoint by construction. It follows from (4.6)
that the left-hand side of (4.8) is bounded above by 8md; 1kjd. After re-arranging, we have m;; <
8A™16: 'mk;d. Plug this into (&.7) to show [8| < 2004~ 'md, proving (4.4)). O

4.5.2. Controlled accumulation implies almost cylinders. Fix any d > 1 and any n > 1. Define
constants €q, := 22”5g Ymd=Y2 and b, = 22”+2m25g ! The following result is an analogue of

Proposition [3.13]



HIGH-DIMENSIONAL FAMILIES AND THREE-DIMENSIONAL ENERGY SURFACES 41

Proposition 4.10. For any integer n = 1, there exists some d, = 1 such that the following holds
for all d > d,, and any sequence k. Fiz any s € (—05,05) \ (8w (d, €4n) U Sy(d,by). Then, for any
(2, 5) € Xq(k), the set Z is a 1/n-almost cylinder with respect to (n°, J*).

Proof. The proposition follows from repeating the proof of Proposition [3.13]| and changing the no-
tation. Corollary is used instead of Corollary O

4.5.3. No blowup implies closed orbits. The following proposition has no analogue in It asserts
that, at any level lying outside the blowup set and w-accumulation set, the adiabatic limit set
contains a union of closed orbits. The statement and proof are inspired by [FH22| Proposition 3.9].

Proposition 4.11. For any d > 1, any sequence k, and any s ¢ S)(d; k) U 8, (d; k), there exists
(2,5) € X4(k) such that == (—1,1) x A, where A is a finite union of closed orbits of R*.

We prove Proposition [£.11] using a more technical and general result, Proposition [£.12] below.
This result is formulated using the language of currents and geometric convergence. For any s, a
closed R®-orbit set is a finite collection O = {(v;, m;)} of pairs (v;, m;) where ~; is a closed orbit
of R® and m; is a positive integer. The orbit set O is naturally a 1-current on Y. A 1l-current on
Y is a continuous linear functional on the space of smooth 1-forms on Y. The pairing of O with
a smooth 1-form « is defined to be O(a) := >, m; S% a. Consider two orbit sets O and O’ to be
equivalent if they are equivalent as 1-currents.

We also work with 2-currents on Z x Y, where Z < R is any connected interval. These are
continuous linear functionals on the space of compactly supported 2-forms on Y. For example, any
closed R*-orbit set O defines a 2-dimensional current Z x O on Z xY’; the pairing with a smooth
2-form g is defined by

T 0)(B) = Ymi | 5.

The support supp(C) € Z xY of a 2-current C is the complement of the largest open set U
such that C(3) = 0 for any 3 compactly supported in U. A sequence of 2-currents {C;} on Z xY
geometrically converges to a 2-current C if and only if i) C;(8) — C(B) for any compactly supported
2-form 8 and ii) supp(C;) n K — supp(C) n K in K(K) for any compact subset K < Z xY.

For each d, k, and s € (=5, J5), we define a 2-current C, g, on (—2,2) x Y by the formula

Coap(B) = f (ry 0 i) 5.
Cs.dk

Now, we state our technical proposition.

Proposition 4.12. Fiz any d > 1, any sequence k = {k;}, and any s ¢ 8,,(d; k). Fiz any sequence
sj — s such that liminf;_, Ed’kj)\(sj) < . Then, there exists a closed R®-orbit set O such that

the sequence of currents {C5j7d7kj} has a subsquence converging geometrically to (—2,2) x O.

We explain why Proposition implies Proposition

Proof of Proposition[{.11. Since s ¢ 8)(d; k), there exists a sequence s; — s such that liminf; o, Eg; (s5) <
. By Proposition [£.12] after passing to a subsequence, there exists a closed R*-orbit set O such

that Cs; ax; — (—2,2) x O. For each j, we write a; := as; k; and Cj := Cg; q; for brevity. For each

7, the slices

Sj,

Ej = Tay (ad,k(éd’k) N (aj - 17aj + 1) X Y)
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are equal to supp(C;) n(—1,1) x Y. We claim that =; — (—1, 1) x O, which implies the proposition.
First, we prove limsup Z; < (—1,1) x O. Fix any point z € limsup Z;. Then, any neighborhood of
z intersects infinitely many Z;. This implies that any neighborhood of z intersects infinitely many
of the sets supp(C;) n[—1,1] x Y, so by geometric convergence it follows that z € [—1,1] x O. Since
z e (—1,1)xY, it follows that z € (—1,1) xO. Second, we prove (—1,1)xO < liminf =;. Choose any
point z € (—1,1) x O. By geometric convergence, we have [—1,1] x O = limsupp(C;) n[—-1,1] x Y,
so any neighborhood of z intersects all but finitely many of the sets supp(Cj) n [—1,1] x Y. It
follows that any neighborhood of z intersects all but finitely many of the Z;, so z € liminf5;. [

The proof of Proposition relies on the compactness properties of .J-holomorphic currents and
some arguments from [Pra23al, §5]. We discuss a special class of J-holomorphic currents, similar to
the J-holomorphic currents from ECH [Hut14], §3.1], and state some key results. We refer the reader
to [DW21] or to [Pra23al §5] for a more detailed and general exposition. Given an open interval
T and a pair (7,.J) € D(Z xY), a J-holomorphic current is a finite collection C = {(u;,n;)} where
each Cj; is an irreducible, non-compact Riemann surface without boundary, each u; : C; — Z xY is
a proper J-holomorphic curve, and each n; is a positive integer. The collection C defines a 2-current
by the formula

C(B) := Zzlnz L‘i u; B

For example, taking (7, J) = (n®, J®) and O = {(v,m;)} to be a closed R*-orbit set, the 2-current
I x O = {(Z x~;,m;)} is J*°-holomorphic. The currents Cs g4 defined above form another class of
examples: they are jgs’k -holomorphic currents. Consider two J-holomorphic currents C and C’ to
be equivalent if they are equivalent as 2-currents. The area of a J-holomorphic current is

Areag(C) := anf dvol,x; = anf uf(da A X+ @) € [0, 00].

Taubes [Tau98|] proved that a sequence of holomorphic currents with bounded area in a 4-manifold
has a geometrically convergent subsequence.

Proposition 4.13 ([Tau98, Proposition 3.3]). Fiz a finite constant ¢ > 0. Fizx an open interval T
and a convergent sequence (M, Ji) — (7,J) € D(T xY). For each k, let Cy be a Jy-holomorphic
current on I xY such that Areag, (Ci) < c. Then, after passing to a subsequence, the sequence {Cj}
geometrically converges to a J-holomorphic current C such that Areag(C) < c.

Proof. Repeat the proof in [Tau98, Proposition 3.3] to extract a subsequence that geometrically
converges to a J-holomorphic current C = {(u; : C; — Z xY,n;)}. By the lower semicontinuity of
mass [Pra23al Lemma 5.5], we have the area bound Areag(C) < limsup;,_,., Areag, (C). O

The next lemma asserts that holomorphic currents with zero action are cylinders over closed orbit
sets.

Lemma 4.14. Fiz an open interval T and any s € [—33,03]. If C is a J*°-holomorphic current on
I XY such that (1) C(6 - w®) = 0 for any compactly supported function 6 : T xY — [0,00) and (i)
Areays (C) < o0, then there exists a closed R*-orbit set O such that C =T x O.

Proof. The lemma follows from the arguments in [Pra23al Lemmas 5.27, 5.28, 5.29]. O

The key to Proposition is the following estimate, which controls the area of Cs 4 by the
action and by the integral Eq; x(s).
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Lemma 4.15. There exists a constant cg = 1 such that the following bound holds for any d, k, and
NS (—55, (55).‘

Areae, (Cs,an) < c6(Ear(s) + J Uy 1,0%)-
Cs.dk

Proof. Let R < (asy — 2,asx + 2) denote the set of regular values of a o ugy in the interval
(ask —2,ask + 2). By the co-area formula [FH23, Lemma 4.13], we have

(4.9) Eqp(s) = f r(t — s 1) (J a;kxk)dt.
R (ao’ljd,k)fl(t)

Let £ € R denote the subset of ¢ such that r'(t — asx) > 1/2. Then £ is non-empty and open.
Write | €| for its Lebesgue measure. Note that | €| does not depend on s or k. Define

L:= infj a% e
teR J(aotiq ) =1 (t) o

It follows from (£.9) that Eqx »(s) > $L| £ |. Re-arrange this bound to show L < 2| & |7 Eq A (s).
Using the area bound from Proposition and Remark we find

(4.10)

Area e (Coa) < Arengs 5 (Coar) < oL + f 500) < (2 €[ Eags + J % ,0n)
k ’ Cs,d,k Cs,d,k

for some s-, d-, and k-independent constant ¢, > 1. The second inequality uses Proposition
and Remark The third inequality uses the bound on L. By (4.10)), the lemma holds with
c6 = ¢ -max(2|E |71, 1), O

We now prove Proposition

Proof of Proposition[{.12 Fix d, k, and s; — s as in the statement of the proposition. We simplify
our notation as follows. For each j, write a;j := as; k;, Cj := Cs, d ;s Cj := Cs, dk,;» and Ej 1= Eg ., x.
Write uj 1= Ug;, wj = CDZ;, and g; := LZ]\Z; for each j. Recall that liminf;_,co Eq; A(sj) < 00. Since
s ¢ 8,(d; k), we have lim;_, Sc]- u;»‘@kj = 0. Combine these two bounds with Lemma We
deduce that liminf; . Areay, (C;) < co.

By Proposition and Corollary after passing to a subsequence, the currents C; geometri-
cally converge to a J®-holomorphic current C with finite area. Next, we prove that C(6w®) = 0 for

any compactly supported smooth function 6 : (—2,2) x Y — [0,00). Using the triangle inequality
and Corollary we have

|C(6w?®)| = jli_)ngo |Cj(0w?)| < limsup [ C;(0w;)| + limsup Areag, (C;) - [0(w; — w?)]g,

J—0 Jj—®©

< limsup |C;(0w;)| < limsupf u;@; = 0.
J—0 j—00 Cj

Since C has zero action and finite area, the proposition follows from Lemma [4.14 O

4.5.4. Completing the proof. We prove Proposition [4.5 using Lemma [£.4] Lemma Lemma
Lemma Proposition and Proposition

Proof of Proposition[[.5. Fix any n > 1. By Lemma[£.4] Lemmal[4.6, and Lemma [£.7] there exists a
sequence k = {k;} such that (i) the bounds (4.1) are satisfied for € = €49, and b = by, (ii) s, (d; k)
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is countable for any d > 1, and (iii) for any d and any closed, connected interval J of positive
length, the set 75" (J) /'%d(k) is connected. Set Xg := i’d(k) for any d > 1.

For any d, let Qg,, denote the set of s € (—J5, d5) such that the interval (s —d =2, s+d?) does not
intersect S, (d, €4,2n; k) or 8,(d, ba,; k). We will show that, when d is sufficiently large, Qg ,, satisfies
the assertions of the proposition. The proof will take 5 steps.

Step 1: This step shows that Qg , has measure at least (2 —27")d5 when d is sufficiently large.
Let ¢5 > 1 denote the constant from Lemma It follows from that

#(8,(d, €q.0n) U 8y (d, ban)) < (274" + O(d™V/?))d5d2.

It follows that, when d is sufficiently large, the complement of Qg, has measure at most
2—4ntls. < 277155 This implies that Q4 has measure at least (2 — 277 1) g5,
Step 2: Fix any s € Qg,, and define the interval J = (s — d ™2, s + d~2). This step shows that J
satisfies Proposition (a). Recall that the curves g, satisfy point constraints on the levels ag
from The set 95k~ - agy is, for any k, a set of 2d* + 1 equally spaced points in (=5, 5).
Therefore, any interval of length 2d~2 must contain at least one of these points. Proposition [4.5(a)
follows.
Step 3: This step shows that J satisfies Proposition (b) By Property (ii) of the sequence k
and Lemma the set 8,,(d; k) U 8)\(d; k) has Lebesgue measure zero. It follows that J intersects
the complement of this set. Then Proposition (b) follows from Proposition m
Step 4: This step shows that J satisfies Proposition (c) when d is sufficiently large. Any s’ € J
satisfies [ — s| < d~2. As s’ — s, we have convergence (n*,J*) — (n°, J®). It follows that if d is
sufficiently large, for any s’ € J and any = that is a 1/2n-almost cylinder with respect to (*, J*),
we have that = is a 1/n-almost cylinder with respect to (n®, J°). By construction, J does not
intersect 8,,(d, €q,2n; k) or 8,(d, ban; k). By Proposition if we take d sufficiently large, then for
s € J and any (Z,s') € Xy, we have that = is a 1/2n-almost cylinder with respect to (n*,J%).
Therefore, Z is a 1/n-almost cylinder with respect to (°, J*). This proves Proposition [4.5{c).
Step 5: This step shows that 7 satisfies Proposition [4.5(d). This follows from Property (iii) of k
because J has positive length. O

4.6. Other 4-manifolds. Let M be any symplectic 4-manifold that embeds into a closed symplectic
4-manifold W such that b* = 1 and the symplectic form € has rational cohomology class. Theorem
holds for any smooth function H : M — R. To generalize the proof to this case, we replace
Proposition [3.6] with the more general Proposition

D. QUANTITATIVE ALMOST-EXISTENCE

In this section, we prove Theorems [3|and [d] The proof of Theorem [3| relies heavily on the ideas,
language, and results in §4 The proof of Theorem [4 requires no additional background of a reader
who is willing to accept Theorem [2] as true.

5.1. Proof of Theorem We prove Theorem [3] by proving the following equivalent result.

Theorem 6. Let H : R* — R be a smooth function. Then for any so € R.(H), there exists some
05 > 0 and a full measure subset Q € R.(H) n (so — J5, So + 05) such that, for any s € Q, the level
set H=1(s) contains at least two closed X p-orbits.

For the remainder of the section, we fix a smooth function H : R* — R and sy € R.(H). Assume
without loss of generality that sy = 0 by replacing H with H — sq. Set Y := H~'(0). Assume for
the sake of contradiction that Theorem [0] is false. We will begin with some geometric setup.
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5.1.1. Recollections from {4 We repeat the geometric setup from §4.3] Notation will often be used
without any reminders.

5.1.2. Fizing a primitive. The symplectic form €2 is exact on W \ D. Fix a smooth 1-form v such

that dv coincides with Q to W \ D. Define v := ¢*v. Observe that dv = Q.
For any s € [—01,01], define a 1-form v° on Y to be the pullback of 7 by the map y — (s,y).
Define a 1-form 7° on [—8,8] x Y to be the unique 1-form such that 7°(d,) = 0 and such that v*

restricts to v on each level set {a} x Y. For any k, define 1y := (fk)*y We have dpj, = ), for
every k. A convergence lemma similar to Corollary @ holds for v. Fix any k and any a such that
[a—8,a+8] < [—Ly, Li]. Let » i be the restriction of 7 7 to [-8,8] x Y.

Lemma 5.1. Fiz any sequence {ay} such that aj, € (—k, k) for each k and such that 65k ‘a — s.
Then, we have D* — °.

Proof. The proof is similar to Steps 2 and 3 of the proof of Lemma Write 7y, := 0% for each
k. Define a smooth, form-valued function 7* on [—8, 8] by defining 7*(a) to be the pullback of 7
by y — (a,y). To show 7 — D*, it suffices to show

(5.1) vy > v, (0,) — 0,
in the C® topology. In the first assertion of , we regard v® as a constant form-valued function

n [—8,8]. The convergence 7} — v® follows from an explicit computation. Consider the smooth
functions 8 : [—8,8] — [—d3, 03] defined by a — @;l(ak +a). Since &5 'kay — s, the sequence
{8k} C®-converges to the constant function 5(a) = s. We compute 7} (a) = v**(@ for each a. Since
s — 5, we have ) = v* o s, —» v* 05 = v°, proving the first item in .

Next, we verify the second assertion. The map ﬁ_l : Wi — W restricts on (—k, k) x Y to the

map (a,y) — (dsk~a,y). Therefore, on (—k, k) x Y, we have (fkjl)*((?a) = 05k~ 10s. Thus, we have

(5.2) (0a) = D((7ay © fr, )e(0a)) = 65k~ D(0s).
The second assertion of (|5.1)) follows from (/5.2]). O

5.1.3. The bad subset. The assumption that Theorem [f] is false implies that a positive measure
subset of levels contain at most one closed orbit. After some modifications, this subset satisfies
several other properties. Lemma below contains all of this. To state the lemma, we introduce
some additional notation.

Recall the constant 05 defined in Recall that every s € (—ds,d5) is a regular value of
H. For any integer i, let T; < (—J5,05) denote the set of s such that H~!(s) contains exactly i
closed orbits. For any s € T, let ¥5 < H~!(s) denote the unique closed orbit. Define functions
ex: 71 — R sending s — Sryg X and e, : T1 — R sending s — S,vyg v. Now, we state and prove the
promised lemma. ‘ ‘

Lemma 5.2. Then there ezists a compact subset Bs S (—05,05) with positive Lebesgue measure
such that:

(a) For each s € B3, the hypersurface H~'(s) contains exactly one closed orbit.

(b) The function ey is continuous on Bs.
(c) The function e, s continuous on Bs.

Proof of Lemma[5.3. The proof of the lemma will take 4 steps.
Step 1: Let By := To N T1 denote the set of levels s for which H _1(5) contains at most one closed
orbit.
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This step proves that By is measurable. Observe that By is measurable if and only if the comple-
ment [ J;, 7 is measurable. For any integer £ > 1, let Sy denote the set of levels s € [d5, d5] such
that H~!(s) contains two closed orbits that (i) have X py-period at most ¢ and (ii) have Hausdorff
distance at least £~! with respect to the Euclidean metric. The set Sy is compact. We have

U 7Ti=JSen(=65,6).

122 =1
Therefore, | J;5, T is measurable.
Step 2: By assumption, By has positive outer Lebesgue measure. This step refines By to satisfy
Property (a) of the lemma. By the almost-existence theorem [HZ8T, [Rab87, [Str90], there exists a
full measure subset Qy < (—Js, d5) such that s ¢ Tom The intersection By := By n Qg has positive
Lebesgue measure and is contained in 7T7.
Step 3: This step refines By to satisfy Property (b) of the lemma. We claim that ey is lower
semicontinuous on B;. Fix any convergent sequence s — s. Any subsequence of the closed orbits
¥, either has no limit or converges to a cover of §,. Therefore,

ex(s) = f X< liminff X = liminf e(sg).
5 k—0o0 ,7% k—0o0

Since ey is lower semicontinuous, it is measurable. By Lusin’s theorem, ey is continuous on a
compact subset Bs By of positive Lebesgue measure.
Step 4: This step refines By to satisfy Property (c) of the lemma. Define functions e} := max(0, e,)
and e;, := min(0,e,) on By. We claim that e} is lower semicontinuous and that e, is upper
semicontinuous. Choose a convergent sequence s — s. Since ey is continuous on Ba, the orbits s,
have uniformly bounded Xp-period. After passing to a subsequence, they converge to a cover of
¥s. Our claim follows. Then, by Lusin’s theorem, there exists a compact subset Bs € Bs of positive
Lebesgue measure on which both e and e, are continuous. Therefore, e, = e + e, is continuous

on Bs. The subset Bj satisfies Properties (a—c). O

5.1.4. Closed curves with point constraints. Repeat the construction from Thus, we have a
family {44} of holomorphic curves for d > 1, k > 1. We make only one modification. We replace
the point constraints W with finite subsets Wg, < Wj. We will specify w4, when we complete
the proof of Theorem @ None of the intermediate results below depend on the choice of W .

5.1.5. Computation of e, using holomorphic curves. We prove a technical lemma, Lemmal5.4] below,
computing e, using the curves {ugq}.

We need some additional notation regarding closed orbits. Fix s € B3. Recall that ¥, deontes the
unique closed orbit of Xy in H~!(s). Define 45 = Y to be the projection to Y of the closed loop
17 1(¥s) = {s} x Y. Note that 75 is the unique closed orbit of the vector field R,. For any integer
m = 1, we let m7, denote the closed R*-orbit set {(7s,m)}.

We also recall some notation from . For each d, s, k, write a,) = 55_116‘8, Csar = (ao
Uar) *((ask —2,ask +2)), and Cs 4 for the 2-current defined by

Csar(B) = f (Tag, © Ua k)™ p.

Cs.dk

We also recall the function r : [-2,2] — [0, 1] and the function
Eipa(s) = Csar(r'(a)da A :\k)

10T his can be deduced using adiabatic neck stretching of holomorphic spheres, following [FH22] or
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The following result is a consequence of Proposition

Corollary 5.3. Fiz any d > 1, any sequence of point constraints {Wqy}, and any sequence k.
Then, for any countable subset

s < Bs \ (8a(d; k) U s, (d; k))

there exists a subsequence k' = {k;} such that the following holds. For each s € s, there exists some
integer m > 1 such that the sequence {Csq,} geometrically converges to (—2,2) -m ;.

Proof. Label the elements of s as {sy}¢>1. Applying Proposition successively for each ¢ gives
the following result. There exists a sequence {k‘}y>; of nested subsequences

..ck’cklck

such that the following holds for each ¢ > 1. Expanding k’ = {k‘f }, there exists a closed Rt-orbit
set Oy such that {C, ;4 ¢} converges geometrically to (—2,2) x Oy as £ — c0. The set Oy must equal
» 7

{(4s,, m¢)} for some my > 1 because 7, is the only closed orbit of R, A diagonal subsequence k'
then satisfies the conditions of the corollary. O

The next lemma computes e, (s) using the holomorphic curves {tg}.

Lemma 5.4. Fiz any collection of point constraints {Wqy}. Fiz any s € Bs. Suppose that there
exists d > 1, a sequence s; — s, and a sequence k = {k;} such that the currents {Cs; ax,} geomet-
rically converge to (—2,2) x m -7, as j — . Then, there ezists a sequence of real numbers {a;}

with the following properties.
(a) a; is a regular value of a o gy, for every j.
(b) aj € (as, r; — 2,as;k; +2) for every j.
(¢) We have
lim Uy g Uk, = m - ey(s).
J=% Jaotig ;) May)
Proof of Lemma 5.4 The proof will take 4 steps.
Step 1: This step fixes several items of notation and then reduces the lemma to another claim. For
eachg', write a; 1= as; k;, Cj := Cs; ak;, and Cj 1= Cs; g ;. Write v; := ’V\Z;, Aj = )\Z;, wWj = wkj',,
and (2; := dv;. Finally, define u; := 74, 0 ﬁdch- The lemma is equivalent to the claim that there
exists a sequence of real numbers {a@;} such that

(a) @; is a regular value of a o u; for every j.
(b) a; € (—2,2) for every j.
(c) We have
lim uiv; =m-ey(s).
I Haou;) =1 (@)
To see why, observe that {d;} satisfies (a,b,c) above if and only if the sequence {a; := @; + asy;}
satisfies Lemma a,b,c).
Step 2: This step recovers m - e,(s) as a limit of {C;(5°)} for some fixed test form 3°. Define a
compactly supported 2-form ° := r’(a)da A 7°. By the geometric convergence C; — (—2,2) x m7s,
we have

653 Jim €5(5°) mf(mws r'(a)da n 7* = m( ﬁ (a)da) ( J V)

Fs
=m(r(2) —r(—=2))ey,(s) = m-e,(s).
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The last identity follows because r(2) = 1 and r(—2) = 0.
Step 3: For each j, write 7; := ()\;,®;), J; := fgj, and g; for the metric associated to (1, J;).
Then, define 8 := 7’(a)da A ;. This step shows that
(5.4) lim C;(8°) = lim C;(5;).
j—®© j—®©
We prove ([5.4) using the geometric convergence of {C;}, Corollary and Lemma We have
lim C;(8° — ;)

Jj—0

(5'5) ®( 08 : —s - / 3 —
_ L (B — B;) < limsup [7° — 55, C; (' (a)(da A ; + ).

Vi J—=®©

The inequality uses the identity u}(da A Aj + @;) = dvolx g;- BY Corollary the Riemannian
J
metrics g; converge in the C* topology. By Lemma we have

(5.6) Jim 77 = 7jflg; = 0.
We have
limsup C;(r'(a)(da A Aj + @;))
j—o0
(5.7) < limsupCj(r'(a)(da A A° + w®))
: P

+limsup([A* = Ajlg, + |w® — @jll5,) C; (" (a)(da A A;j + ;).

j—o0

By Corollary we have |A* — Ajz, — 0 and |w® — @, — 0. It follows from this and the
geometric convergence of {C;} that the left-hand side of (5.7) is finite. Combined with (5.6, the

right-hand side of ([5.5) must equal 0. This proves (5.4)).
Step 4: This step completes the proof of the lemma. Choose some a € (0,2) very close to 2 such

that:

(i) For each j, @ and —a are regular values of a o u;.
(ii) r(a) =1 and r(—a) = 0.
(iii) 7'(a) = 0 for any a such that |a| > a.

It follows from (iii) that
(5.8) f uji By = C;(B;)
(aou;) =1 ([-a.al)

for each j. Using Stokes’ theorem and (ii), we compute
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We now control the second term on the right-hand side of (5.9)). Let x : (—=2,2) — [0, 1] be a
compactly supported smooth function such that x(a) = 1 whenever |a| < @. Then, we have

lim sup

J—0 f(aow)l([—aﬁ])
(5.10) < limsup C;(x(a)r(a)$2y)

J—©

< limsup Cj(x(a)r(a)w®) + limsup |w® — Q|5 limsup C;(x(a)(da A Aj + @;)) = 0.
j—0 J—0 j—w
The last line uses three facts. First, it uses the geometric convergence of {C;}. Second, it

uses the convergence |w® — €[5, — 0, which follows from Lemma Third, it uses the bound
limsup;_,, C;(x(a)(da A Aj+@;)) < oo, which follows from an identical argument to the one proving

that the left-hand side of (5.7)) is finite. Now, putting (5.3)), (5.4), (5.8)), (5.9)), and (5.10) together,

we have

lim uiv; =m-e,(s).
I=% J(aou;) =1 (@)
Therefore, the sequence {aG;}, where @; := @ for each j, satisfies each of the conditions (a—c) from
Step 1. O

5.1.6. Positive lower bound on e,. We refine B3 so that e, is positive. The proof uses Lemma [5.4
and Stokes’ theorem.

Lemma 5.5. There exists a compact subset By S Bs of positive Lebesgue measure and a constant
cr = 1 such that e, (s) = c; ' for every s € By,

Proof. Fix arbitrary point constraints {w ;}. The proof will take 2 steps.
Step 1: This step shows that, for any sequence k and any s € B3 \ (8x(1;k) U S,(1;k), we have
eys(s) > 0.

By Proposition there exists a subsequence k' = {k;} and a sequence s; — s such that the
currents {Cs, 1x;} geometrically converge to (—2,2) x m#ys for some integer m > 1. By Lemma
there exists a sequence of regular values {a;} of a oy, such that

(5.11) lim Uy g, Uk, = m- ey(s).
=% Jaotiy ) ~1(ay)

For each j, set I'; := (aoamj)*l(aj) c CA‘ij. The submanifold I'; separates éd,kj into two halves
¥+ intersecting W and W_, respectively. It follows from Stokes’ theorem that

(5.12) J 5 g, O, = J a7y, Q, > 0.

r; 5,

By (5.11)) and (5.12]), we have e, (s) > 0.
Step 2: This step finishes the proof. By Lemma [£.7) and Lemma [4.8] there exists a sequence k

such that the set S)(1;k) U 8, (1; k) has Lebesgue measure zero. Choose a compact subset By <
Bs \ (Sx(1;k) us,(1;k)) of positive Lebesgue measure. By Step 1, e, is positive on B4. The lemma
follows because By is compact and e, is continuous (Lemma [5.2{c)). O
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5.1.7. Restrictions on accumulation and blowup. Recall the adiabatic limit sets {/'/E'd(k)} from
Recall the sets 8,(d; k) and §)(d; k) from Let Bs < By be the full measure subset of points
with Lebesgue density 1. The following lemma proves that, after passing to a subsequence, the set
Su(d; k) n Bs has O(d) points. This is quite strong since the set 8,,(d; k) could itself be infinite.

Lemma 5.6. There exists a constant cg = 1 such that the following holds for any d = 1, any point
constraints {Wq}, and any sequence k. There exists a subsequence k' < k such that

#(gw(d; k/) N B5> < cgd.
The next lemma asserts that A-integrals do not blow up if there is no w-accumulation.

Lemma 5.7. Fiz any d > 1, any point constraints {Wq}, and any sequence k = {k;}. Then, for
any s € Bs that does not lie in 8,(d; k), we have

lim inf Ed,kj,)\(3> < Q0.

J—00
5.1.8. Deriving a contradiction. We defer the proofs of Lemmas and and first give the proof
of Theorem Let cg = 1 be the constant from Lemma Fixd > cg. Fixaset w = {wd’i}fil W
as follows. Choose a subset {sd7i}fi1 C Bs. Then, for each i, let wg; be any point in H~'(sq;) that
does not lie on ¥s, ;. For each k, define point constraints Wq := <’I\>k(w)

We use Lemmas [5.6] and to prove the following claim. We claim that there exists d > 1 and

i € {1,...,d*} such that the hypersurface H !(sq;) contains a closed orbit passing through the
point wg;. By construction, there are no closed orbits passing through wg;. Therefore, once the
claim is established, we arrive at a contradiction.

Proof of claim. By Lemma and the inclusion {s;;} < Bs, there exists a sequence k = {k;}
such that 8, (d; k) n {sé}ﬁl contains cgd < d? points. Thus, there exists i € {1,...,d?} such that
Sdi ¢ Sw(d; k). Let y € Y be such that ¢(sg;,y) = wa;. Let R := R*@i denote the Hamiltonian vector
field of n®¢i. Recall that R is conjugated by the map ¢(sq;, —) to a reparameterization of X on the
hypersurface H‘l(sdﬂ-). By Lemma we have liminf; o0 Egk;A(8q4,i) < 00.. By Proposition
setting a; := o5 1kjsd,i, a subsequence of the slices

7oy + (Bt (Cary) 0 [a; = 1/2,05 +1/2] x V)

converges in the Hausdorff topology to [—1/2,1/2] x ~, where v < Y is a closed orbit of R. Each
slice contains (0,y), so v contains y. Thus, ¢(s4,7) is a closed orbit of Xy passing through wg;. O

5.1.9. Proof of Lemmal[5.6. The argument proving Lemma is technical and has no analogue in
prior works, so we provide a sketch. Suppose there is positive accumulation of action at a level
s € Bs. By Stokes’ theorem, for large k, the v-integrals on the level sets of 44, will make a positive
jump at s. As k — o0, the v-integrals cluster near a discrete set with gap at least ¢7/2, where c7 is
the constant from Lemma We use this to prove that the positive jump has size at least c7/2,
so at least ¢7/2 action must accumulate at s. By Lemma it follows that there are only O(d)
points where action accumulates. We now provide a detailed proof.

Proof. Let ¢7 be the constant from Lemma [5.5] Define c¢g := 8c7. Assume for the sake of contra-
diction that for any subsequence k' < k, we have #(S,(d; k') n Bs) > cgd. The proof will take 6
steps.

Step 1: This step finds a well-behaved subsequence of k. By Lemma [£.7] and Lemma 48] there
exists a subsequence k! such that 8y (d; k') U8, (d; k') has Lebesgue measure 0. Choose a countable
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dense subset s  Bs \ (8x(d, k') U 8,(d; k')) as follows. Let {U;} denote the collection of open

intervals in R that have rational endpoints and intersect Bs. Since each point in Bs has Lebesgue
density 1, U; intersects Bs if and only if U; intersects Bs \ (8x(d, k') U8,,(d; k')). Choose a point

si € Ui n (Bs \ (8x(d k') uBu(di k)

for each 7 and let s be the collection of all s;. Note that the sets U; n Bs form a countable basis of
relatively open sets for Bs, so s is dense in Bs.

By Corollary there exists a further subsequence k? < k! such that for each s € s, the currents
{Cs dk} ez geometrically converge to (—2,2) x my7y, for some mg > 1. Next, set N := |cgd| + 1.
After passing to at most N successive subsequences of k2, there exists a subsequence k’ = {k;j} of
k? and a set of N distinct levels s1, ..., sy in Bs with the following property. There exists a positive
constant € € (0,1) and, for each ¢, a sequence of intervals {L;; = [s;i—,S;i+]} converging to s;,
such that

(5.13) lim sup j%‘ Uy g, Wx; > 0.
j—>OO Cd ‘;C’Z vy
)
We simplify the notation. For each j, write u;j := lg;, 6'“ = 6’5%, vji= Dy, and Q; := ﬁkj.
By Lemma and ([5.13)), there exists € € (0, 1) such that, for each 7, we have

(5.14) limsupf uj€; > e.

j—0 é]z

Step 2: This step proves that, for each ¢, there exists a pair s; + € s such that:
(i) S5, — < 8 < Si,+3
(i) Jew(si—) — ev(si+)| < e(derd) ™.

We also require

(iii) the intervals [s; _, s; +] are pairwise disjoint.

By Lemma e, is continuous on Bs. Therefore, there exists > 0 such that the intervals
(s; — d,s; + 0) are pairwise disjoint and, for any ¢ and any pair sy € (s; — d,s; + ) N Bs, we have
lev(s4) — eu(s_)] < €(4crd) 2. Since s has Lebesgue density 1 in Bs and Bs has positive Lebesgue
measure, there exist open intervals U, < (s;,s; +9) and U_ < (s; — 6, s;) with rational endpoints
such that Uy both intersect Bs. Choose s; + € snU; and s; — e snU_.

Step 3: This step recalls how to compute e, (s; +) using Lemma Apply Lemma to s; 4+ and
si,—. There exists two sequences {a;;+} and {a;;_} such that:

(a) @i+ and a;j; — are regular values of a o u; for every j.

(b) @i+ € (as; &, — 2,05, , k; +2) and a;; — € (as, _x; — 2,05, _x, +2) for every j.

(c) There exists positive integers m; + and m; — such that

lim u;‘yj =m;ey(si+), lim u;fy =m; _e,(si_).
I=% J(aou;) = (aj,i,+) 1720 J(aou;) = (a5,i,-)

We simplify our notation as follows. Recall that s;; + denote the endpoints of £;;. For each ¢
and each j, define a;; — := &5 'kjs;j;— and aj,; + := 05 'kjs;i+. We have (ao uj)(CA’”) C laji— —
2,a;; + + 2] for each j and 4. Since s;; — s; and s;; - — s;, it follows that [a;; - — 2,a;;+ + 2]
lies inside [as, _ x; + 2, as,  k; — 2] for sufficiently large j. It follows from Property (b) above that
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aj;——2,aj; ++2| lies mside |a;; —, a;j; + | tor suificiently large 7. Apply this to obtain the following
ji——2,a;; ++2] lies inside [a;; —,a; ] for sufficiently 1 j. Apply this to obtain the followi
symplectic area bound:.

lim supj uiQ; < limsup uj €

. ~ J
j—o0

Cji J—® J;aouj)l([ﬁj,i,—aﬁj,i,+])
(5.15) = lim sup <f u;-‘vj — f u;%’)
J—® (aou;)=(@y,i,+) (aou;)=*(ay,i,—)

= mj ey (i) — mi—ey(si-)

The second line uses Stokes’ theorem. The third line uses Property (c) above.
Step 4: This step proves that m; + > m; _ + 1 for each i. First, we prove
(5.16) m; + < 4crd, m; — < 4crd.

Observe that
(5.17) mi+ey(si+) = lim ujv; < limsup J‘A uj§Y; < 4d.

7790 Haou;) =1 (@j5,+) j—w JCqp,

The first inequality follows from Stokes’ theorem. The second follows from Corollary Plug
the bound e, (s; +) = ¢;' into (5.17). Re-arrange to obtain the first bound in (5.16). The second

bound in follows from an identical argument. By and , we have
(mi+ —mi)ey(si+) +mi—(ev(si+) — ev(si—)) = mien(sit) —mi—ey(si—) = €.
Apply to bound the left-hand side from above. We have
(my+ —my—)ey(si+) +4dcrdley(si+) —ev(si—)| = e

Since |e,(si+) — ey (si—)] < (4c7d) e and e, (s;+) > 0 (Lemma [5.5), the bound m; 4 —m; — > 0
follows. Since both of m; + are integers, we have m; + > m; _ + 1.
Step 5: This step shows that, for any 4, we have the bound

(5.18) liminff utQ; > erl/2.
I=0 Jaouy) =1 ([ag,i,—»84,i,+])
We have
(5.19) mi ey (siy) —mi—ey(si—) = eu(si—) —miylen(sit) — en(si—)|
' > it —myplen(siy) —eu(si—)| = e t/2.

The first inequality uses Lemma and the bound m; + > m; — + 1 from Step 4. The second
inequality uses Lemma The third inequality uses and the bound |e,(s;+) —ey(si—)| <
(4c7d)~2. Now follows from and (5.19).

Step 6: This step completes the proof. By Property (iii) in Step 2, the intervals [a;; —,a;; +] are
pairwise disjoint for sufficiently large fixed j. Sum over all ¢ and apply Corollary We
have
N N
Neztj2 < Z lim inf uiQy < liminfz
i=1

I=0 Haouy) 1 ([@4,4,—85,1,41) IO Haouy) = ([@,6,—d5,4,4 1)

(5.20)
< liminf JA u; € < 4d.
J—=®© Cd,kj

The second inequality follows from Fatou’s lemma. Recall from Step 1 that N > 8cyd. Therefore,
(5.20) implies 4d < 4d. This is the desired contradiction. O
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5.1.10. Proof of Lemma . Here is a sketch of the proof. For any s € Bs not in 8, (d; k), we
consider limit points of sequences {Eyx; A(sj)} where s; — s. After passing to a subsequence, at
least one limit point exists. The set of limit points is discrete, since they are A-integrals over iterates
of ¥s. After passing to a subsequence, the set of limit points is connected. It follows from these
observations that no sequence {Fgy; x(s;)} can diverge. We now give a detailed proof.

Proof. Assume for the sake of contradiction that for any subsequence k/ C k, there exists some
s € Bs, such that s ¢ S,,(d; k') and such that {E) 44 (s)}rew diverges. The proof will take 3 steps.
Step 1: This step is very similar to Step 1 of the proof of Lemma We find a well-behaved
subsequence of k. By Lemma and Lemma there exists a subsequence k! such that 8y (d; kl) U
8. (d; k1) has Lebesgue measure 0. Choose a countable dense subset s € Bs \ (8x(d, k') Us,(d; k')).
By Corollary there exists a subsequence k' = {k;} of k! such that for each s € s, the currents
{Cs,a.k,;} geometrically converge to (—2,2) x m - Js for some m > 1.
Step 2: By assumption, there exists some s € 8)(d; k') n Bs that does not lie in 8,,(d; k). For each
J, write Ej := Eq, x. This step shows that there exists a sequence s; — s such that

liminf E;(s;) < oo.
j—a0

For each s’ € s, the currents C s'.d,k; converge geometrically as j — o0 to a current (—2,2) x m7y
for some integer m > 1. It follows that lim; .o, E;(s") = mex(s).
The same argument proving shows that m < 4cyd. By Lemma (b), there exists a
constant cg > 1 such that ey < cg. It follows that
lim E;(s') < 4ereod
j—00
for any s’ € s. Since s is dense in (—ds, d5), there exists a sequence s; — s such that liminf; o, E;(s;) <
4C7ng.
Step 2: This step proves that, for any s € Bs and any sequence s; — s, any limit point of the
sequence {F;(s;)} lies in the set Z -e)(s) < R. Let E be any such limit point. Fix a subsequence {j}
such that Ej,(s;,) — E. To simplify notation, write s} := sj,, kj := kj,, aj := Q) ks Cp = Cypd k)

@y
K,
shows that after passing to a subsequence, Cj; — (—2,2) x m - ¥, for some integer m > 1. The claim
then follows from a computation:

E = lim Ej,(s;) = lim Cy(r'(a)da A \y) = lim Cy(r'(a)da n X®)
{—00 £—00 {—0

and Cj := Cop k- Write uj 1= Tg s, Ay := AJ, and wy 1= Gy Since s ¢ 8,(d; k'), Proposition |4.12

= m(J: r'(a))e,\(s) =m-ey(s).

The third equality requires two facts to prove. First, since s ¢ S,,(d; k'), Lemma implies that
Area(Cy) is uniformly bounded. Second, we have X, — A* by Corollary The fourth equality
uses the convergence Cj; — (—2,2) x m¥s.

Step 3: This step completes the proof. By Step 1, there exists some F € R and a sequence
s; — s such that liminf; ., F;(s;) < E. After passing to a subsequence in j, we may assume that
limsup;_,q, Ej(s;) < £+ 1. Choose some E' > E + 1 such that E' ¢ Z-ex(s). By assumption,
lim;_,o Ej(s) = 0. We have E;(s) > E' > E;(s;) for each sufficiently large j. By the intermediate
value theorem, for each sufficiently large 7, there exists s’ such that |s’—s| < |s;—s| and Ej(s}) = E'.

Therefore, s — s and lim;_,o, E;(s;) = E'. This contradicts Step 2. O
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5.2. Proof of Theorem To prove Theorem [ we recall some known dynamical properties of
C*-generic Hamiltonians H : R* — R. Let v < H~'(s) be a closed orbit of Xy. Choosing a
point x € . The linearized flow of Xy defines a linear operator P, : T R* — T, R*. The orbit
7 is hyperbolic if P, has a real eigenvalue with norm not equal to 1. It is elliptic if P, has an
eigenvalue of norm 1 that is not a root of unity. These properties do not depend on the choice of
x € . An elliptic orbit v = H~1(s) is Moser stable if it has nondegenerate Birkhoff normal form;
see Appendix [Bf for details. A deep theorem of Moser [Mos62] implies that a Moser stable elliptic
orbit is accumulated by an infinite sequence of closed orbits in H~!(s). Now, we prove Theorem
using Theorem 2}

Proof of Theorem[] Let Q. < R.(H) denote set of all levels s such that any closed orbit v —
H~(s) is either (i) hyperbolic or (ii) elliptic and Moser stable. By the assumptions of the theorem,
Q. has full Lebesgue measure in R.(H). Let H < R.(H) denote the set of all s such that every
closed orbit in H~!(s) is hyperbolic. Let £ € R.(H) denote the set of s such that H~!(s) contains
a Moser stable elliptic closed orbit. Let A € R.(H) denote the set of s such that H~!(s) contains
infinitely many closed orbits. Our goal is to show that A has full Lebesgue measure in R.(H). A
Moser stable orbit is accumulated by an infinite sequence of closed orbits, so

(5.21) Ec A

By Theorem [2| there exists a full measure subset Q1 € R.(H) such that for any s € Qj, the set
P(s) is either equal to H~!(s) or not locally maximal. In particular, if s € Q1 and H~!(s) contains
finitely many closed orbits, then at least one has to be non-hyperbolic. It follows that

(5.22) OinHCA.

Recall that @, < £ UH. By and , we have
(5.23) Q1N C(Qiné)u(QinH)< A.

Thus, the set Q := Q1 N Qy is a subset of R.(H) with full Lebesgue measure, in which every
corresponding level set has infinitely many closed orbits. O

5.3. Other 4-manifolds. Consider a smooth function H : M — R where M is a symplectic 4-
manifold. Assume that M symplectically embeds into a closed symplectic 4-manifold W with b* = 1
and rational symplectic form €.

5.3.1. Almost-existence of two closed orbits. Theorem [3| extends to this situation provided that (i)
the symplectic form on M is exact and (ii) for any s € R.(H), at least one component of M\ H~!(s)
has compact closure. It follows, for example, that Theoremextends to the cases Ml € {T*S?, T*T?}.
As explained in the results of §4 go through for H. However, the proofs of Lemmas and
rely on the facts that (i) R? is an exact symplectic manifold and (ii) each compact regular level
set of H bounds a compact domain.

5.3.2. Generic almost-existence of infinitely many closed orbits. Theorem [4] generalizes to this sit-
uation without any exactness assumptions. This is because the theorem follows directly from
Theorem 2} Lemma holds for any symplectic 4-manifold, so Corollary generalizes as well.

APPENDIX A. EXISTENCE RESULTS FOR CLOSED CURVES

This appendix contains a proof of Proposition [3.6] It also discusses a version that holds for many
other closed symplectic 4-manifolds with b* = 1, such as S? x S?. The results follow from combining
some known results about Taubes’ Gromov invariant.
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A.1. Taubes’ Gromov invariant. Let W be a closed symplectic 4-manifold with symplectic form
Q. Let J be any (2-tame almost-complex structure. A J-holomorphic cycle in W is a finite set of
pairs C = {(ui,n;)}. Each u; is a somewhere injective J-holomorphic map C; — W from a closed,
irreducible Riemann surface C; without any nodal points. Each n; is a positive integer. The support
of C is the set

supp(C) := Uuz(C’z) cW.

The homology class of C is the class [C] := >, m;(u;)«[C;] € H*(W;Z). Taubes’ Gromov invariant,
constructed in [Tau96], is an integer-valued function

Gr(W,—): Ho(W:Z) @ A(W) - Z

defined by counting J-holomorphic cycles satisfying incidence conditions. Fix A € H?(X;Z). Define
the index
I(A) :={ce(W),A)+ A- A€ Z.

The index I(A) is an even integer. If I(A) < 0, we define Gr(W,A) = 0. If I(A) > 0, then
Gr(W, A) is defined as follows. We denote by D(A) the set of triples (J, w,I') where J is a smooth
-tame almost-complex structure, w € W/ (/2 ig a set of T (A)/2—k points in W, and T is a collection
of . Then, Gr(W, A) is a count of J-holomorphic cycles C such that [C] = A and w < supp(C),
where (J,w) is chosen from a Baire-generic subset of D(A). The definition of the count and the
proof that it is independent of choices are quite subtle. We will only use the following consequence.

Proposition A.1. Fiz A € Hy(W;Z) and assume that Gr(W, A) # 0. Then there exists a Baire-
generic subset Dy < D(A) such that the following holds for any (J,w) € Dy. There exists a
J-holomorphic cycle C = {(ui,n;)} such that:

(a) [C] = 4.

(b) w < supp(C).

(c) For each i, let A; be the class (u;)«[Ci]. Then we have 0 < I(A;) < I(A).

(d) For each i, the image u;(C;) contains exactly 1(A;)/2 points from w.

Proof. The proposition follows from the definition of Gr(W, A); see the list [Tau96l (1.4)]. O

A.2. Improved existence for positive classes. Let W be a closed symplectic 4-manifold with
symplectic form ) as above. We will deduce an improved version of Propositions when A
has certain strong positivity properties, that we now discuss. Let & < Ho(W;Z) denote the set
of B € Hy(W;Z) such that B - B = —1 and, for any {-tame almost-complex structure J, there
exists an embedded J-holomorphic sphere S © W representing B. For any A € Hyo(W;Z), define
g(A) == 1(A - A—(c1(W), A)) + 1. Let P = H(W;Z) denote the set of all classes A € Ha(W;Z)
satisfying the following conditions:

e A-A>0.
I(A) >0 and g(A) = 0.
], A4) > 0.
A-B>=0forall Be€&.
Now, we state the improved existence result.

Proposition A.2. Fiz A€ P < Hy(W;Z) and assume that Gr(W, A) # 0. There exists a Baire-
generic subset D1 < D(A) such that the following holds for any (J,w) € D1. There exists a closed,
embedded J-holomorphic surface C < W such that (i) G(C) = g(A), (ii) [C] = A and (iii) w < C.

The proof relies on the following lemma.
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Lemma A.3. Fiz A € P. There exists a Baire-generic subset Dy € D(A) such that the following
holds for any (J,w) € Dy. Let C = {(u;,ni)} be a J-holomorphic current such that [C] = A and
w < supp(C). Then, C satisfies the following additional restrictions:
(a) For each i, let A; denote the class represented by u;. Then I(A;) = 0.
(b) We have Y, niI(A;) < I(A).
(c) We have Y, niI(A;) = I(A) if and only if C = {(C, 1)}, where C < W is a closed, embedded
J-holomorphic surface of genus g(A).

Proof. This is proved by Taubes [Taulll Proposition 3.4]. O

We prove Proposition by combining Proposition and Lemma

Proof of Proposition[A.2 Define D; < D(A) to be the intersection of the subsets Dy and Dj from
Proposition and Lemma By Proposition there exists a J-holomorphic cycle C =
{(ui,n;)} such that:

(a) [C] = A.

(b) w < supp(C).

(c) Write A; = u;(C;) for each i. Then for each i, we have 0 < I(4;) < I(A).

(d) For each i, the image u;(C;) contains exactly I(A;)/2 points from w.

Combining (d) with Lemma [A.3|(a,b), we have

I(A) < Y I(A) < Y nid (Ay) < I(A).

Therefore, we have I(A) = >, n;I(A;). The proposition now follows from Lemma c). O

Combining Proposition [A22| with the Gromov compactness theorem, we obtain an existence result
for all (J,w).

Corollary A.4. Fiz any A € P such that Gr(W, A) # 0 and any finite subset w ¢ W of size at
most I(A)/2. Then, for any Q-tame almost-complex structure J, there exists a closed, connected
Riemann surface C and a J-holomorphic curve u : C — W such that (i) Go(C) = g(A), (i)
ux[C] = A and (iii) w < u(C).

A.3. Closed curves in CP?. We prove Proposition using Corollary

Proof of Proposition[3.6. Let A e H,(CP?;Z) denote the Poincaré dual of 2. Then A is represented
by an embedded holomorphic sphere D  CP? of self intersection 1. Given Corollary it suffices
to show that, for any integer e > 1, we have eA € P and Gr(CP?,eA) # 0. The former claim follows
from the computatations eA - eA = €2, I(eA) = e + 3e, g(eA) = (e — 1)(e — 2)/2, (Q,eA) = e,
and the fact that CP? is positive-definite and contains no surfaces of negative self-intersection. The
computation Gr(CP?,eA) # 0 can be done by explicitly counting .J-curves for an integrable J (see
for example [Edt22, Theorem B.3]). O

A.4. Closed curves in closed symplectic 4-manifolds with v* = 1. Corollary yields
existence results for symplectic 4-manifolds besides CP?,

Proposition A.5. Let W be any closed symplectic 4-manifold such that b™ = 1 and the symplectic
form Q has rational cohomology class. Let A € Hy(W;Q) denote the Poincaré dual of [Q?]. Fix any
positive integer e > 1+ [(c1(W), A)|/(A- A) such that eA € Hy(W;Z). Fiz any set w < W such that

#w<e2(A-A) +eley (W), A — 1.
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Then, for any Q-tame almost-complex structure J, there exists a closed, connected Riemann
surface C' and a J-holomorphic curve u: C — W such that (i) Go(C) = §(e?(A-A)—elcr (W), A)) +
1, (i) ux[C] = €A and (iii) w < u(C).

Proof. Let A € Ho(W;Q) denote the Poincaré dual of €2 and let e be any positive integer larger
than 1 + [{c1(W), A)|/(A - A) such that eA € Ho(W;Z). The proof of the proposition will take 3
steps.

Step 1: This step shows that, for any integer e > 1 + |[(c1(W), A)|/(A[[ A), we have A € P. Note
that A- A > 0. Using the lower bound on e, we have

I(eA) = elc1 (W), A) + e2(A- A) > e({c1 (W), A) + [{c1 (W), A)| > 0
and
g(eA) = %(—e<01(W),A> +e2(A-A)+1> g(—<cl(W),A> + [{e1 (W), A)]) +1 = 0.

Since A is dual to [2], we have (Q,eA) > 0. Since A is dual to [§2], it must pair positively with
any J-holomorphic sphere. Thus, we have verified all the necessary conditions and conclude that
eAeP.

Step 2: This step proves the proposition with the additional assumption that either (i) b (W) # 2
or (ii) the cup product on H'(W;Z) is nonzero. We claim that Gr(W,eA) # 0. The claim is proved
as follows. In [LL99], Li-Liu showed that Taubes’ “SW = Gr” theorem extends to the b™ = 1 case,
so Gr(W, eA) is equal to a corresponding Seiberg—Witten invariant. It follows from a result of the
same authors, namely [LLO1, Lemma 3.3], that this Seiberg—Witten invariant does not vanish. Now
the proposition follows from Corollary [A.4]

Step 3: This step explains how to prove the proposition in the exceptional case where b; = 2 and
the cup product on H'(W;Z) is zero. Choose a pair of disjoint curves 7; and yo whose homology
classes generate Hi(W;Z)/ Torsion. In this case, as explained in [Taul7, Proposition 1.1], a slightly
weaker version of Proposition holds. For a generic choice of .J', a generic choice of I(eA)/2 — 1
points w’, and small perturbations 7] and ~4 of the chosen loops, there exists an embedded J'-
holomorphic surface C' < W such that (i) G(C) = g(A), (i) [C] = A4, (iii) w' < C and (iv) C
intersects 1 and 4. The proposition follows from taking J" — J and w' — w and applying the
Gromov compactness theorem. O

APPENDIX B. GENERIC 4-DIMENSIONAL HAMILTONIANS
The goal of this appendix is to sketch a proof of the following lemma.

Lemma B.1. There exists a Baire-generic subset G < C®(R*) such that the following holds. For
any H € G, there exists a full measure subset Q. < R.(H) such that for each s € Qx, every closed
orbit v = H=Y(s) is either (i) hyperbolic or (i) elliptic and Moser stable.

Lemma follows from Takens’ [Tak70] perturbation theorem for Hamiltonians. We explain
Moser stability, then explain Takens’ result, then give the proof.

B.1. Moser stability. We discuss Moser’s work in [Mos62]. Fix any area-preserving diffeomor-
phism ¢ of the 2-disk such that, near 0, we have a Birkhoff normal form

o(r,0) = (r,0 + ag + aqr) + O(TQ)

where (7, 6) denote polar coordinates. Assume that the Birkhoff normal form is nondegenerate, i.e.
« is irrational and a; # 0. Thus, ¢ is, up to higher order terms, an integrable monotone twist map
of the disk. The higher order terms, however, significantly affect the dynamics. Nevertheless, Moser
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proved that some integrability survives; the origin is accumulated by a positive measure family of
smooth ¢-invariant circles. Since o # 0, there must exist an infinite sequence of invariant circles
accumulating at 0, with pairwise distinct rotation numbers. Thus, the Poincaré-Birkhoff theorem
implies that 0 is accumulated by periodic points of ¢.

Fix any H € C*(R*) and any s € R. For any elliptic closed orbit v ¢ H~'(s) and any transverse
2-disk D = H~!(s), the Poincaré return map is conjugate near 0 to a Birkhoff normal form as
above. We say ~v is Moser stable if the Birkhoff normal form is nondegenerate.

B.2. Takens’ theorem. Takens [Tak70] proved a powerful jet perturbation theorem for Poincaré
return maps of closed orbits of Hamiltonians, generalizing a result for 1-jets by Robinson [Rob70].
For any n > 1, let J"(n) denote the set of r-jets at 0 of smooth symplectic diffeomorphisms of R*"
that fix 0 € R?". We say a subset Q — J"(n) is invariant if cQo~' = @ for all ¢ € J"(n). The
following lemma is a consequence of Takens’ results.

Lemma B.2 ([Tak70, Theorem A]). Fizn > 1, r > 1, T > 0, and any finite collection Q1,...,Qn
of invariant real analytic subvarieties of J"(n). Then, there erists a Baire-generic subset G, <
C*(R?*™) such that each H € Gy has the following property. For any closed orbit v of Xpg with
minimal period < T, there exists a neighborhood U of v in which all but finitely many closed orbits
of minimal period < T have Poincaré return maps whose r-jet at 0 does not lie in Uf\il Q;.

Let us give an informal explanation of how Lemma follows from Taken’s results. For generic
H, the closed orbits live in smooth 1-parameter families. Therefore, we cannot expect every r-jet
of every closed orbit in a 1-parameter family to avoid the subvarieties ();. However, Takens proved
that, for generic H, each 1-parameter family of r-jets will intersect each @Q); transversely. Therefore,
all but finitely many r-jets in each family will avoid UZ]\L 1 Qi

B.3. Moser stability is generic. We sketch a proof of Lemma

Proof. There exists a countable collection of invariant real analytic subvarieties {Q;} < J?(2) such
that the following holds. If v is a closed orbit of X such that the 2-jet of the Poincaré map avoids
each Q;, then ~ is either (i) hyperbolic or (ii) elliptic and Moser stable.

Fix any N > 1 and let Oy < R.(H) denote the set of all levels s such that, for each closed orbit
v < H7(s) of minimal period < N, the 2-jet of its Poincaré return map avoids Q1,...,Qn. By
Lemma there exists a Baire-generic subset Gy such that if H € G, then only a discrete set of
closed orbits have 2-jets intersecting Uf\i 1 Qi It follows that if H € Gy, then the complement of
Oy in R.(H) is discrete. Therefore, if H € Gy, the set Qn has full Lebesgue measure in R.(H).

Define Gy := (\y>1 9n. If H € Gy, then Q4 :=(|y>; Qn has full Lebesgue measure in R.(H).
For any s € Q,, every closed orbit v = H~!(s) is either (i) hyperbolic or (ii) elliptic and Moser
stable. O
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