
Maximizing Network Phylogenetic Diversity
Leo van Iersel # Ñ

TU Delft, The Netherlands

Mark Jones #Ñ

TU Delft, The Netherlands

Jannik Schestag #

Friedrich-Schiller-Universität Jena, Germany; TU Delft, The Netherlands

Celine Scornavacca #Ñ

ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France

Mathias Weller #

TU Berlin, Germany

Abstract
Network Phylogenetic Diversity (Network-PD) is a measure for the diversity of a set of species
based on a rooted phylogenetic network (with branch lengths and inheritance probabilities on the
reticulation edges) describing the evolution of those species. We consider the Max-Network-PD
problem: given such a network, find k species with maximum Network-PD score. We show that
this problem is fixed-parameter tractable (FPT) for binary networks, by describing an optimal
algorithm running in O(2r log(k)(n + r)) time, with n the total number of species in the network
and r its reticulation number. Furthermore, we show that Max-Network-PD is NP-hard for level-1
networks, proving that, unless P=NP, the FPT approach cannot be extended by using the level as
parameter instead of the reticulation number.

2012 ACM Subject Classification Applied computing → Computational biology; Theory of com-
putation → Fixed parameter tractability; Theory of computation → Problems, reductions and
completeness

Keywords and phrases phylogenetic diversity; phylogenetic networks; network phylogenetic diversity;
algorithms; computational complexity

Funding Leo van Iersel: Partially funded by Netherlands Organization for Scientific Research (NWO)
grant OCENW.KLEIN.125 and OCENW.M.21.306.
Mark Jones: Partially funded by Netherlands Organization for Scientific Research (NWO) grant
OCENW.KLEIN.125 and OCENW.M.21.306.
Celine Scornavacca: Partially funded by French Agence Nationale de la Recherche through the
CoCoAlSeq Project (ANR-19-CE45-0012).

1 Introduction

In a context where human activities are driving a sixth mass extinction [12], and while
waiting for a serious political response to this crisis [9], studying phylogenetic diversity (PD)
is definitely timely.

Indeed, when experiencing a widespread and rapid decline in Earth’s biodiversity, one
could wonder where to put our efforts in order to preserve a maximum amount of biodiversity,
given some temporal and economic constraints [15]. The concept of PD is an attempt at
answering this question. The concept has been introduced three decades ago and the seminal
paper establishing the notion [5] has been cited more than 5000 times. The underling idea is
simple: if we want to preserve as much biodiversity as possible within a group X of species
and we can rescue at most k species, then we should focus our effort on a size-k subset S ⊆ X

of species that showcase, overall, a wide range of features, that is, the distinct traits and

ar
X

iv
:2

40
5.

01
09

1v
1

 [
cs

.C
C

]
 2

 M
ay

 2
02

4

mailto:l.j.j.vanIersel@tudelft.nl
https://leovaniersel.wordpress.com/
https://orcid.org/0000-0001-7142-4706
mailto:m.e.l.jones@tudelft.nl
https://www.thenetworkcenter.nl/People/Postdocs/person/83/Dr-Mark-Jones
https://orcid.org/0000-0002-4091-7089
mailto:j.t.schestag@uni-jena.de
https://orcid.org/0000-0001-7767-2970
mailto:celine.scornavacca@umontpellier.fr
https://sites.google.com/view/celinescornavacca
https://orcid.org/0009-0004-0179-9771
mailto:mathias.weller@tu-berlin.de
https://orcid.org/0000-0002-9653-3690

2 Maximizing Network Phylogenetic Diversity

qualities covered by the species of S are maximum among all such subsets. This feature
diversity (FD) of S is often approximated using the PD of S, which is in turn defined as
follows: given a tree T representing the evolution of the species in X, the PD of S (in T) is
the sum of the branch lengths of the subtree connecting the root and the species in S. (Note
that approximating FD with PD may not be always appropriate, see [17].)

PD has been extensively used in the context of tree-like evolution, and, given a tree T

and an integer k, the best algorithm to find an optimal subset of k species maximizing PD
for T , is a fast and greedy one, which has the nice property of also being optimal [11, 14].

However, when the evolution of the species under interest is also shaped by reticulate
events such as hybrid speciation, lateral gene transfer or recombination, then the picture is no
longer as rosy. In the case of reticulate events, a single species may inherit genetic material
and, thus, features from multiple direct ancestors and its evolution should be represented by
a phylogenetic network [7] rather than a tree. Several ways of extending the notion of PD for
networks have been proposed [2, 16], one of which is called Network-PD. The optimization
problem linked to Network-PD, i.e. computing the maximum Network-PDN score over all
subsets of species of size at most k for a given phylogenetic network N , is named Max-
Network-PD. Bordewich et al. [2] proved that Max-Network-PD is NP-hard and cannot
be approximated in polynomial time with approximation ratio better than 1 − 1

e unless
P = NP ; furthermore, it remains NP-hard even for the restricted class of phylogenetic
networks called normal networks.

The contribution of this this paper is twofold. First, we present an algorithm for Max-
Network-PD parameterized by the reticulation number of the input network. Herein, we
leverage the greedy algorithm for PD on trees [11, 14] to efficiently process the subtree below
a reticulate event. Surprisingly, we show that this algorithm cannot be generalized to use the
“level” as parameter unless P=NP. The level of a network is a measure of its treelikeness, for-
mally defined in the next section, which can be smaller than the reticulation number. More pre-
cisely, we prove that Max-Network-PD is NP-hard even on level-1 networks (which are net-
works without overlapping cycles), thereby answering an open question of Bordewich et al. [2].

2 Preliminaries

For a positive integer n, we let [n] := {1, . . . , n}. Let [0, 1] := {x ∈ R : 0 ≤ x ≤ 1} and
(0, 1) := {x ∈ R : 0 < x < 1}. Let R>0 := {x ∈ R : x > 0} and similarly R≥0 := {x ∈ R :
x ≥ 0}. For a set Z and an integer k with k ≤ |Z|, we denote by

(
Z
k

)
the set of all subsets

of Z with exactly k elements. In this paper we will make use of both natural and binary
logarithms. We will write ln x to denote the logarithm of x to the base e, and log2 x to
denote the logarithm of x to the base 2.

Phylogenetics.

Given a set of taxa X, a phylogenetic network on X or X-network is a directed acyclic graph
N = (V, E) in which the leaves (vertices of indegree 1 and outdegree 0) are bijectively labelled
with elements from X, and in which there a single vertex of indegree 0 and outdegree 2
(the root), and in which all other vertices either have indegree 1 and outdegree at least 2
(the tree nodes) or indegree at least 2 and outdegree 1 (the reticulations). When X is clear
from context, we refer to an X-network simply as a network or phylogenetic network. A
phylogenetic tree T = (V, E) on X or X-tree is an X-network with no reticulations. A
network is binary if the maximum indegree and outdegree of any vertex is 2.

van Iersel et al. 3

The reticulation number of a network N is the sum of the in-degrees of all reticulations
minus the number of reticulations. If N is binary, then the reticulation number is exactly the
number of reticulations. The level of N is the maximum reticulation number of any maximal
subgraph with no cut-arcs (which are arcs whose deletion would disconnect the network).

For vertices u, v ∈ V , we say u is an ancestor of v and v is a descendant of u if there is a
directed path from u to v in N . If in addition u ̸= v, we say u is a strict ancestor of v (and
v a strict descendant of u). If e = uv is a directed edge in N , then we say that u is a parent
of v and v is a child of u. The set of offspring of e, denoted off(e), is the set of all x ∈ X

which are descendants of v. When v is a reticulation, we call the edge uv a reticulation edge.

Diversity.

We assume that each edge e in a network N = (V, E) has an associated weight ω(e), which
is a positive integer. These weights are used to represent some measure of difference between
two species. Given an X-tree T and a weight function ω : E → N, the phylogenetic diversity
PDT (Z) of any subset Z ⊆ X is given by PDT (Z) :=

∑
e| off(e)∩Z ̸=∅ ω(e). that is, PDT (Z)

is the total weight of all edges in T that are above some leaf in Z.
The phylogenetic diversity model assumes that features of interest appear along edges

of the tree with frequency proportional to the weight of that edge, and that any feature
belonging to one species is inherited by all its descendants. Thus, PDT (Z) corresponds to
the expected number of distinct features appearing in all species in Z.

Initially defined only for trees, a number of extensions of the definition to phylogenetic
networks have been recently proposed [2, 16]. In this paper we focus Network-PDN (defined
below), which allows the case that reticulations may not inherit all of the features from
every parent. This is modeled via an inheritance probability p(e) ∈ [0, 1] on each reticulation
edge e = uv. Here p(e) represents the expected proportion of features present in u are also
present in v; or equivalently, p(e) is the probability that a feature in u is inherited by v.
Non-reticulation edges can be considered as having inheritance probability 1.

For a subset of taxa Z ⊆ X, the measure Network-PDN (Z) represents the expected
number of distinct features appearing in taxa in Z [2]. For each evolutionary branch uv, this
measure is obtained by multiplying the number ω(uv) of features developed on the branch uv

(which is assumed to be proportional to the length of the branch) with the probability γp
Z(uv)

that a random feature appearing in u or developed on uv will survive when preserving Z.
Formally, we define γp

Z(uv) as follows:

▶ Definition 2.1. Given a network N = (V, E) with edge weights ω : E → N, probabilities
p : E → [0, 1] and a set of taxa Z ⊆ X, we define γp

Z : E → [0, 1] recursively for each
edge uv ∈ E as follows:

If v is a leaf, then γp
Z(uv) := p(uv) if v ∈ Z, and γp

Z(uv) = 0 otherwise.
(Intuition: the features of v survive if and only if v is preserved by Z)
In most of the paper, with the notable exception of Section 3, p(uv) = 1 if v is a leaf.
If v is a reticulation with outgoing arc vx, then γp

Z(uv) = p(uv) · γp
Z(vx).

(Intuition: v’s features are a mixture of features of its parents and the features of u have
a certain probability p(uv) of being included in this mix and, thereby, survive in preserved
descendants of x)
If v is a tree node with children xi, then γp

Z(uv) = 1 −
∏

i(1 − γp
Z(vxi)). In the special

case that v has two children, this is equivalent to γp
Z(vx) + γp

Z(vy) − γp
Z(vx) · γp

Z(vy).
(Intuition: to lose a feature of v, it has to be lost in both children x and y of v, which are
assumed to be independent events, since both copies of the feature develop independently)

4 Maximizing Network Phylogenetic Diversity

When clear from the context, we will omit the superscript p. Further, we only consider values
of p on edges incoming to leaves or reticulations, so we may restrict the domain of p to those
edges. We can now define the measure Network-PDp

N (Z) for a subset of taxa Z as follows:
Network-PDp

N (Z) =
∑

e∈E ω(e) · γp
Z(e).

Observe that γp
Z(e) and Network-PDN (Z) are monotone on Z, that is, γp

Z′(e) ≤ γp
Z(e)

and Network-PDp
N (Z ′) ≤ Network-PDp

N (Z) for all Z ′ ⊆ Z ⊆ X. We can now formally define
the main problem studied in this paper:

Max-Network-PD
Input: a phylogenetic network N = (V, E) on X with edge weights ω : E → N,
inheritance probabilities p : E → [0, 1], and integers k, D ∈ N
Question: Is there some Z ⊆ X with |Z| ≤ k and Network-PDN (Z) ≥ D?

Note that, if p(e) = 1 for all edges e incoming to leaves (all "preservation projects" succeed
with probability 1) and a node v has no reticulation descendants, then γZ(uv) = 1 if
off(e) ∩ Z ̸= ∅, and otherwise γZ(uv) = 0 (see Lemma 3.1). In this setting, Network-PDN
coincides with PDN if N is a tree. This holds even if all leaves are weighted and the total
weight of Z must not exceed k.

Throughout the paper, we assume that integers are encoded in binary and that rational
numbers of the form p/q (with p and q coprime integers) are encoded using binary encodings
of p and q. See Appendix A for details.

3 A Branching Algorithm

We solve a generalization of Max-Network-PD, where (a) each leaf ℓ is assigned a
cost c(ℓ) ∈ {0, 1}, (b) the leaf-edges may have inheritance probability p(vℓ) ≤ 1 (as well as
the reticulation edges), with the condition that p(vℓ) = 1 if c(ℓ) = 1, and (c) we look for
a subset Z of leaves with total cost at most k (instead of cardinality k). We refer to this
problem as 0/1-cost Max-Network-PD and we use p(ℓ) instead of p(vℓ) whenever ℓ is a
leaf with a unique parent v.

In the following, let I := (N , ω, p, c, k, D) be an instance for 0/1-cost Max-Network-
PD, let r be a lowest reticulation in N with outgoing edge rx. Our algorithm “guesses”
whether or not any cost-1 leaf below r is in a solution Z. If not, then we remove all cost-1
leaves below r and use reduction rules to (a) turn the resulting subtree into a single leaf
below r and (b) turn r into two new cost-0 leaves with inheritance probabilities according
to γZ(rx). If some (unknown) cost-1 leaf below r is in a solution, we show that such a leaf
can be picked greedily. Then, we decrement k, set the cost of that leaf to zero, and use the
knowledge that γZ(rx) = 1 to remove r from the network.

Note that our reduction and branching rules may create nodes with high out-degree, even
if the input network is binary. However, the algorithm used to solve the resulting non-binary
tree can deal with such polytomies [10].

Reduction.

Let r be a lowest reticulation in N and let Er be the set of edges below r. The following
reduction rules simplify I by getting rid of cost-0 leaves below r. Note that each rule assumes
that I is reduced with respect to the previous rules.

▶ Reduction Rule 1. Let uv ∈ Er such that v has a single child w. Then, contract v onto u

and set ω(uw) := ω(uv) + ω(vw), p(uw) = p(vw).

van Iersel et al. 5

Correctness of Reduction Rule 1. Let I ′ =: (N ′, ω′, p′, c, k, D′) be the result of applying
Reduction Rule 1 to I. Clearly, we have γp′

Z (e) = γp
Z(e) for any edge e below w and all

Z. So by construction γp′

Z (uw) = γp
Z(vw). Observe that p(uv) = 1 since v is not a leaf

and r is the lowest reticulation in N ; thus, γp
Z(uv) = γp

Z(vw) = γp′

Z (uw). This implies that
γp′

Z (e) = γp
Z(e) for all Z and any e ∈ E \ {uv, vw}. So Network-PDN − Network-PDN ′ =

γp
Z(uv)·ω(uv)+γp

Z(vw)·ω(vw)−γp′

Z (uw)·w(uw) = γp
Z(uv)·(w(uv)+w(vw)−w(uw)) = 0. ◀

▶ Reduction Rule 2. Let vℓ ∈ Er such that ℓ is a leaf, v ̸= r, and p(vℓ) = 0. Then, remove ℓ.

Correctness of Reduction Rule 2. Let u be the unique parent of v, and let vi denote the
non-ℓ children of v. Then γp

Z(uv) = 1 − (1 − γp
Z(vℓ))

∏
i(1 − γp

Z(uvi)) before removing ℓ and
γp

Z(uv) = 1 −
∏

i(1 − γp
Z(uvi)) after. Since γp

Z(vℓ) = 0 for all Z, the value of γp
Z(uv) does

not change after removing ℓ, and so neither does the score of Z. ◀

▶ Reduction Rule 3. Let the unique child x of r be a leaf with cost c(x) = 0. Then, for
each parent zi of r, add a new leaf ℓzi to zi with c(ℓzi) := 0 and p(ℓzi) := p(zir) · p(rx) and
ω(zℓzi

) := ω(zir). Finally, remove r and x and decrease D by p(rx) · ω(rx).

Correctness sketch of Reduction Rule 3. As x has cost 0 and γp
Z is monotone on Z, every

maximal solution for I contains x. Likewise, every maximal solution for the modified instance
I ′ contains all ℓzi . Then, one can verify that maximal solutions for I collect exactly the
score of rx more than maximal solutions for I ′ and this score is p(rx) · ω(rx). ◀

▶ Reduction Rule 4. Let x be the unique child of r, let Q be the set of cost-0 leaves below r,
and let Ex := Er \ {rx}. Then,

(1) for each uv ∈ Ex, multiply ω(uv) by 1 − γp
Q(uv),

(2) for each ℓ ∈ Q, set p(ℓ) := 0,
(3) reduce D by

∑
e∈Ex

γp
Q(e) · ω(e), and

(4) add a new cost-0 leaf ℓ∗ as a child of x with ω(xℓ∗) = 0 and p(ℓ∗) = γp
Q(rx).

To prove the correctness of Reduction Rule 4, we use the following lemma.

▶ Lemma 3.1. Let e = uv be an edge in N such that all descendants of v (including v) are
tree nodes and let Z be any leaf set of N . Then, γp

Z(e) = 1 −
∏

ℓ∈off(e)∩Z(1 − p(ℓ)).

Proof. We prove the claim by induction on the length of a longest path from v to a leaf.
In the induction base, v is a leaf and, thus, γp

Z(e) = 1 −
∏

ℓ∈off(e)∩Z(1 − p(ℓ)) since this is
1 − (1 − p(v)) = p(v) if v ∈ Z and 0 otherwise. For the induction step, let v be a tree node
with children xi and assume the claim is true for each edge vxi. Then,

γp
Z(e) Def. 2.1= 1 −

∏
i

(
1 − γp

Z(vxi)
) IH= 1 −

∏
i

(
1 −

(
1 −

∏
ℓ∈off(vxi)∩Z

(1 − p(ℓ))
))

= 1 −
∏

i

(∏
ℓ∈off(vxi)∩Z

(1 − p(ℓ))
)

= 1 −
∏

ℓ∈off(e)∩Z

(1 − p(ℓ)) ◀

Correctness of Reduction Rule 4. Let I ′ =: (N , ω′, p′, c, k, D′) be the result of applying
Reduction Rule 4 to I and let Q′ := Q ∪ {ℓ∗}. We assume all solutions Z to be maxi-
mal, implying that they contain all cost-0 leaves. Note that generality is not lost since
Network-PDp

N (Z) is monotone on Z. Let Z and Z ′ be any subsets of leaves of N and N ′,
respectively, with Q ⊆ Z and Z ′ = Z ∪ {ℓ∗}. We show that Z is a solution for I if and only
if Z ′ is a solution for I ′.

6 Maximizing Network Phylogenetic Diversity

We consider the contribution of each edge to the diversity score of Z in N and the
diversity score of Z ′ in N ′. If Z (and, thus, also Z ′) contains a cost-1 leaf ℓ below r,
then p(ℓ) = 1 and, by Lemma 3.1, we have γp

Z(rx) = 1 = γp′

Z′(rx). Otherwise, γp
Z(rx) =

γp
Q(rx) = p′(ℓ∗) = γp′

{ℓ∗}(rx) = γp′

Z′(rx). In both cases, γp
Z(e) = γp′

Z′(e) for all e ∈ E \ Er

since these values only depend on the values of the edges below e. Further, note that
ω(xℓ∗)·γp′

Z′(xℓ∗) = ω(xℓ∗)·p(ℓ∗) = 0. Thus, it remains to consider the edges in Ex := Er\{rx}.
For any such edge e ∈ Ex, we observe

γp
Z(e) Lemma 3.1= 1 −

∏
ℓ∈off(e)∩Z

(1 − p(ℓ)) = 1 −
∏

ℓ∈off(e)∩Q

(1 − p(ℓ)) ·
∏

ℓ∈off(e)∩Z\Q

(1 − p(ℓ))

and, since p(ℓ) = 1 for all ℓ ∈ Z \ Q by convention stated in the problem definition, we have

γp
Z(e) =


1 −

∏
ℓ∈off(e)∩Q

(1 − p(ℓ))

︸ ︷︷ ︸
γp

Q
(e)

if off(e) ∩ Z ⊆ Q

1 otherwise

and the same holds for p′ and Z ′ instead of p and Z since the leaves below e in N are exactly
the leaves below e in N ′ (ℓ∗ cannot be below e in N ′ since e ∈ Ex). Now, since p′(ℓ) = 0 for
all ℓ ∈ Q by construction, we have

γp′

Z′(e) =
{

0 if off(e) ∩ Z ⊆ Q

1 otherwise

implying γp
Z(e) = γp′

Z′(e) · (1 − γp
Q(e)) + γp

Q(e). Then,∑
e∈E

γp
Z(e) · ω(e) −

∑
e∈E∪{xℓ∗}

γp′

Z′(e) · ω′(e) =
∑

e∈Ex

(γp
Z(e) · ω(e) − γp′

Z′(e) · ω′(e))

Def’n ω′

=
∑

e∈Ex

(
γp

Z(e) − γp′

Z′(e) · (1 − γp
Q(e))

)
· ω(e)

=
∑

e∈Ex

γp
Q(e) · ω(e) = D − D′

Thus,
∑

e∈E γp
Z(e) · ω(e) ≥ D if and only if

∑
e∈E γp′

Z (e) · ω(e) ≥ D′. ◀

Branching.

Observe that, if no reduction rule applies to N , then the subtree below any lowest reticulation r

has at least one cost-1 leaf and at most one cost-0 leaf. An important part of the correctness
of our branching algorithm is that solutions may be assumed to pick cost-1 leaves “greedily”,
that is, if a solution choses any cost-1 leaf below r, then there is also a solution choosing a
“heaviest” cost-1 leaf below r instead.

▶ Lemma 3.2. Let r be a lowest reticulation in N and let a be a cost-1 leaf below r in N
maximizing the weight of the r-a-path. Let Z be any set of leaves of N containing a cost-1
leaf below r. Then, there is a set Z∗ of leaves of N with the same cost as Z with a ∈ Z∗ and
Network-PDp

N (Z∗) ≥ Network-PDp
N (Z).

van Iersel et al. 7

r

ρ

x

r

ρ

x

r

ρ

x

⇝ ⇝

0 0 0 0
1 1 1 0

1 0 1 0

ℓ
0

ℓ
0

Figure 1 Example for Branching Rule 1 with I0 (“do not select a cost-1 leaf below r”) on the
left and I1 (“select a cost-1 leaf below r”) on the right. Black leaves have inheritence probability
one. Costs are written below the leaves. Note that the budget for I1 is k − 1 and that applying
Reduction Rule 4 may change the target diversity.

Proof. Suppose that a /∈ Z as otherwise, the claim is trivial. Let b ∈ Z be a cost-1 leaf
below r such that u := LCA(a, b) is lowest possible (has maximal (unweighted) distance
from r), and let Z∗ := (Z \ {b}) ∪ {a}. Let qa and qb be the unique paths from u to a

and b, respectively, and note that ω(qa) ≥ ω(qb) by choice of a. Furthermore, for each
edge uv on qa, we know that Z contains no leaf below v (by maximality of the r-u-path).
Since both a and b are cost-1 leaves, we have p(a) = p(b) = 1 by convention stated in the
problem definition, implying that γp

Z(eb) = γp
Z∗(ea) = 1 for all edges ea on qa and eb on

qb. Thus, Network-PDp
N (Z∗) − Network-PDp

N (Z) =
∑

e∈E γp
Z∗(e)ω(e) −

∑
e∈E γp

Z(e)ω(e) =
ω(qa) − ω(qb) ≥ 0. ◀

Now, we can present and prove the correctness of our main branching rule, solving
0/1-cost Max-Network-PD in O∗(

(|R|
k

)
) time, where R is the set of reticulations in the

input network and k is the budget.

▶ Branching Rule 1 (See Figure 1). Let ρ be the root of N , Let r be a lowest reticulation in
N whose unique child x is not a 0-cost leaf. Let Q be the set of cost-0 leaves below r. Then,
1. create the instance I0 := (N0, ω0, p0, c0, k, D) by

(a) setting p0(t) := 0 for all cost-1 leaves t below r,
(b) replacing rx with ρx, setting ω0(ρx) := ω(rx) and,
(c) adding a new leaf ℓ to r with p0(ℓ) := γp

Q(rx) and c0(ℓ) := ω0(rℓ) := 0, and
2. create the instance I1 := (N1, ω1, p1, c1, k − 1, D) by

(a) finding a cost-1 leaf a below r maximizing the weight of the r-a-path and setting
c1(a) := 0,

(b) replacing rx with ρx, setting ω1(ρx) := ω(rx) and
(c) adding a new leaf ℓ to r with p1(ℓ) := 1 and c1(ℓ) := ω1(rℓ) := 0.

Correctness of Branching Rule 1. Let P denote the set of cost-1 leaves below r in I and
recall that Q contains all cost-0 leaves below r in I, and that c(Q) = c0(Q) = 0. We show
that I has a solution Z if and only if I0 or I1 has a solution. Without loss of generality,
we may assume solutions to be maximal, that is, they contain all cost-0 leaves. For any
leaf-set Z containing all cost-0 leaves in I and any leaf-set Zi containing all cost-0 leaves in

8 Maximizing Network Phylogenetic Diversity

Ii for some i ∈ {0, 1}, we then have

γpi

Zi
(ρx) =

{
γp

Q(rx) if i = 0
1 if i = 1

= pi(ℓ) = γpi

Zi
(rℓ) and γp

Z(rx) =
{

γp
Q(rx) if Z ∩ P = ∅

1 if Z ∩ P ̸= ∅
(1)

so, under the condition Z ∩ P = ∅ ⇐⇒ i = 0, we have γpi

Zi
(ρx) = γp

Z(rx) and, thus,

γpi

Zi
(ρx) · ωi(ρx)︸ ︷︷ ︸

=ω(rx)

+γpi

Zi
(rℓ) · ωi(rℓ)︸ ︷︷ ︸

=0

(1)= γp
Z(rx) · ω(rx). (2)

▷ Claim 3.3. Let Z be a leaf-set in N , let Z ′ := Z ∪ {ℓ}, and let i := sgn(|Z ∩ P |). Then,
Z is a solution for I if and only if Z ′ is a solution for Ii.

Proof. Note that Z ∩ P = ∅ ⇐⇒ i = 0 is satisfied. In the following, we compare the value
of Z in I and the value of Z ′ in Ii.

First, consider any arc e in N that is not below r. Since, by (1), we have γp
Z(rx) = γpi

Z′(rℓ),
and since p(ℓ′) = p0(ℓ′) for any leaf ℓ′ ̸= ℓ, we inductively infer that γpi

Z′(e) = γp
Z(e) as these

values only depend on the values of the edges below e.
Second, by (2), the contribution of the arc rx to the value of the solution Z for I equals

the contribution of ρx and rℓ to the value of the solution Z ′ for Ii.
It remains to compare the contributions of the arcs e below x in N . In the following,

consider such an arc e. If i = 0, then Z avoids P and so does Z ′, so p(ℓ′) = p0(ℓ′) for all
ℓ′ ∈ off(e) ∩ Z = off(e) ∩ Z ′. If i = 1, then p(ℓ′) = p1(ℓ′) for all leaves in off(e). Thus, by
Lemma 3.1,

γpi

Z′(e) = 1 −
∏

ℓ′∈off(e)∩Z′

(1 − pi(ℓ′)) = 1 −
∏

ℓ′∈off(e)∩Z

(1 − p(ℓ′)) = γp
Z(e).

Thus, we conclude that Z and Z ′ score exactly the same in I and I ′, respectively.
Finally, we show that c(Z) = ci(Z ′) − i. If i = 0, then this holds since c0(ℓ) = 0.

If i = 1 then Z intersects P and, by Lemma 3.2, we can assume that Z contains a. Then,
since c(a) = 1 and c1(ℓ) = c1(a) = 0, we have c1(Z ′) = c(Z) − 1. ◁

Now, we can prove the promised equivalence. First, if Z is a solution for I, then
Z ′ := Z ∪ {ℓ} is a solution for Ii with i = sgn(|Z ∩ P |). Second, if Z0 is a solution for I0,
then Z ′

0 := Z0 \ P is also a solution for I0 since p0(ℓ′) = 0 for all ℓ′ ∈ P and, by Claim 3.3,
Z := Z ′

0 \ {ℓ} is a solution for I. Third, if Z1 is a solution for I1 then we can assume a ∈ Z1
since c1(a) = 0 so, for Z := Z1 \ {ℓ}, we have Z ∩ P ̸= ∅, thereby satisfying the conditions of
Claim 3.3. Thus, Z is a solution for I. ◀

We can now solve 0/1-cost Max-Network-PD as follows. If k = 0, then monotonicity
of Network-PDp

N (Z) in Z implies that "taking" all cost-0 leaves in N is optimal. Otherwise,
we repeatedly find a lowest reticulation r in N , apply all reduction rules and, if r survives,
branch into two instances using Branching Rule 1. Note that, in each new instance, r has
a leaf child with cost 0. Thus, Reduction Rule 3 will apply and remove r before another
branching occurs. If no branching or reduction rules apply, then N is a tree. In this tree, a
slight variation of Reduction Rule 4 can be used to remove all cost-0 leaves, so all remaining
leaves have cost 1 and, therefore (by convention), inheritance probability 1. Such an instance
can be solved in O(n log k) time [10]. Note that the budget k is decreased for one of the
two branches and |R| is reduced in each branch, so no more than

(|R|
k

)
branches need to be

van Iersel et al. 9

explored. Finally, with careful bookkeeping the reduction and branching can be implemented
to run in O(|E|) = O(n + r) amortized time in total.

▶ Theorem 3.4. On binary, n-leaf networks with r reticulations, 0/1-cost Max-Network-
PD and Max-Network-PD can be solved in O(

∑min{k,r}
i=0

(
r
i

)
· log k · (n + r)) ⊆ O(2r ·

log k · (n + r)) time, where k is the budget.1

Theorem 3.4 shows that Max-Network-PD is fixed-parameter tractable with respect to
the number of reticulations. In light of this, one might expect that Max-Network-PD is
also fixed-parameter tractable with respect to the "level" (maximum number of reticulations
in any biconnected component ("blob") of the network, since many tractability results for
the reticulation number also extend to the level by applying the algorithm separately to
each blob, with minimal adjustment, in such a way that the problem parameterized by level
reduces to the problem parameterized by reticulation number. Unfortunately, this approach
does not work for Max-Network-PD– for a given blob, it may be better to pay some
diversity score within the blob in order to increase γp

Z(e) for the incoming edge of that blob.
This trade-off means that we need to consider many possible solutions for each blob. Indeed,
we will see in the next section that Max-Network-PD is NP-hard even on level-1 networks.

4 NP-hardness Results

Complementing the positive result of the previous section, we now show that Max-Network-
PD is NP-hard on level-1 networks, answering an open question in the literature [2, Section 9].
On our way to showing this hardness result, we also show NP-hardness of the following
problem, answering an open question of Komusiewicz and Schestag [8]:

unit-cost-NAP
Input: a tree T = (V, E) with leaves L, edge weights ω : E → N, success
probabilities p : L → [0, 1], and some k, D ∈ N
Question: Is there some Z ⊆ L with |Z| ≤ k and

∑
e∈E γ′

Z(e) · ω(e) ≥ D, where
γ′

Z(e) := (1 −
∏

x∈off(e)∩Z(1 − p(x)))?

Note that γ′
Z(e) corresponds to the probability that at least one taxa in off(e) survives,

under the assumption that every taxa x ∈ Z survives independently with probability p(x),
and every taxa in x ∈ L \ Z does not survive. Thus, unit-cost-NAP can be viewed as the
problem of maximizing the expected phylogenetic diversity on a tree, where each species we
choose to save has a certain probability of surviving.

Subset Product.

The first part of the hardness proof shows that the following problem is NP-hard.
Subset Product
Input: a multiset of positive integers {v1, v2, . . . , vm}, integers M, k ∈ N
Question: Is there any S ⊆ [m] with |S| = k such that

∏
i∈S vi = M?

We note the definition of Subset Product is slightly different here from the formulation
that appears in e.g. Garey and Johnson [6]. In particular we assume that the size k of the
set S is given and that all integers are positive. This makes the subsequent NP-hardness
reductions in this paper slightly simpler.

1 Note that this running time degenerates to o(2r · n) if k ≤ r/3

10 Maximizing Network Phylogenetic Diversity

The NP-hardness of Subset Product is not a new result. It was stated by Garey
and Johnson [6] without a full proof (the authors indicate that the problem is NP-hard by
reduction from Exact Cover by 3-Sets (X3C), citing "Yao, private communication") and
a full proof appears in [4] and we reproved it for our slightly adapted variant in the appendix.

▶ Lemma 4.1 ([4]). There is a polynomial-time reduction from X3C to Subset Product.

Since X3C is NP-hard [6], the NP-hardness of Subset Product follows immediately.

Penalty Sum.

Komusiewicz and Schestag [8, Theorems 5.3 & 5.4] showed that unit-cost-NAP is NP-hard
if the following problem is:

Penalty Sum
Input: a set of tuples {ti = (ai, bi) | i ∈ [m], ai ∈ Q+ ∪ {0}, bi ∈ (0, 1)}, integers
k, Q, and a number D ∈ Q+
Question: Is there some S ⊆ [m] with |S| = k such that

∑
i∈S ai −Q ·

∏
i∈S bi ≥ D?

We set out to show Penalty Sum NP-hard by reducing Subset Product to it. To
communicate the main ideas of this reduction, we first describe a simple transformation that
turns an instance of Subset Product into an equivalent ‘instance’ of Penalty Sum, but one
in which the numbers involved are irrational (and as such, cannot be produced in polynomial
time). We then show how this transformation can be turned into a polynomial-time reduction
by replacing the irrational numbers with suitably chosen rationals.

Finally, we reduce unit-cost-NAP to Max-Network-PD on level-1 networks, showing
that this restriction of Max-Network-PD is also NP-hard.

4.1 Hardness of Penalty Sum
The reduction from Subset Product to Penalty Sum can be informally described as
follows: For an instance ({v1, . . . vm}, M, k′) of Subset Product and a big integer A, we
let ai be (a rational close to) A − ln vi and let bi := 1/vi, for each i ∈ [n]. Let Q := M , let
k := k′, and let D be (a rational close to) kA − ln Q − 1.

Note that we cannot set ai := A − ln vi or D := kA − ln Q − 1 exactly, because in general
these numbers are irrational and cannot be calculated exactly in finite time (nor stored in
finite space). Towards showing the correctness of the reduction, we temporarily forget about
the need for rational numbers, and consider how the function

∑
i∈S ai − Q ·

∏
i∈S bi behaves

when we drop the ‘(a rational close to)’ qualifiers from the descriptions above. In particular
we will show that the function reaches its theoretical maximum exactly when S is a solution
to the Subset Product instance.

4.1.1 Reduction with irrational numbers
▶ Construction 1. Let ({v1, . . . vm}, M, k) be an instance of Subset Product. Let us
define the following (not necessarily rational) numbers.

Let A := ⌈maxi∈[m](ln vi)⌉ + 1;
Let a∗

i := A − ln vi for each i ∈ [m];
Let bi := 1/vi for each i ∈ [m];
Let Q := M ;
Let D∗ := kA − ln Q − 1.

van Iersel et al. 11

Finally, output the instance ({(a∗
i , bi) : i ∈ [m]}, k, Q, D∗) of Penalty Sum.

We note the purpose of A in Construction 1 is simply to ensure that a∗
i > 0 for each i ∈ [m],

as is required by the formulation of Penalty Sum. Now, let f∗ :
([m]

k

)
→ R be defined by

f∗(S) :=
∑
i∈S

a∗
i − Q ·

∏
i∈S

bi.

▶ Lemma 4.2. For any S ∈
([m]

k

)
:

1. f∗(S) ≤ D∗, and
2. f∗(S) = D∗ if and only if

∏
i∈S vi = Q.

Proof. First, observe that given |S| = k, the function f∗(S) can be written as

f∗(S) = kA −
∑
i∈S

ln vi − Q/
∏
i∈S

vi = kA − ln
(∏

i∈S

vi

)
− Q/

∏
i∈S

vi

Letting xS :=
∏

i∈S vi, we therefore have f∗(S) = kA − ln xS − Qx−1
S . Let g∗ : R>0 → R

be defined by g∗(x) := kA − ln x − Qx−1 and note that f∗(S) = g∗(xS) for any S ∈
([m]

k

)
.

Recall that g∗(x) has a critical point at x′ when dg∗

dx (x′) = 0. Since dg∗

dx = −x−1 + Qx−2,
this occurs exactly when x′−1 = Qx′−2, i.e. when x′ = Q. Moreover, for Q > x > 0, we have
Qx−1 > 1, implying

dg∗

dx
= −x−1 + Qx−2 > −x−1 + x−1 = 0.

On the other hand, for x > Q > 0, we have Qx−1 < 1, implying

dg∗

dx
= −x−1 + Qx−2 < −x−1 + x−1 = 0.

It follows that g∗(x) is strictly increasing on the range 0 < x < Q and strictly decreasing on
the range x > Q. Thus, g∗(x) has a unique maximum on the range x > 0, and this maximum
is achieved at x = Q. In particular, for all S ∈

([m]
k

)
, we have

f∗(S) = g∗(xS) ≤ g∗(Q) = kA − ln Q − 1 = D∗. (3)

With equality if and only if xS =
∏

i∈S vi = Q. ◀

The above result implies that, abusing terminology slightly, ({(a∗
i , bi) | i ∈ [m]}, k, Q, D∗)

is a yes-instance of ‘Penalty Sum’ if and only if ({v1, . . . vm}, M, k′) is a yes-instance of
Subset Product.

We are now ready to fully describe the polynomial-time reduction from Subset Product
to Penalty Sum, showing how we can adapt the ideas above to work for rational ai and D.

4.1.2 Reduction with rational numbers
Let ({v1, . . . vm}, M, k′) be an instance of Subset Product, and let a∗

i , bi, Q, k, D∗ be
defined as previously. Then by Lemma 4.2, f∗(S) =

∑
i∈S a∗

i − Q ·
∏

i∈S bi ≥ D∗ if and only
if

∏
i∈S vi = Q = M for any S ∈

([m]
k

)
.

Our task now is to show how to replace a∗
i and D∗ with rationals ai and D, in such

a way that the same property holds (i.e. that
∑

i∈S ai − Q ·
∏

i∈S bi ≥ D if and only if∏
i∈S vi = M), and such that the instance ({(ai, bi) | i ∈ [m]}, k, Q, D) can be constructed

12 Maximizing Network Phylogenetic Diversity

in polynomial time. The key idea is to find rational numbers which can be encoded in
polynomially many bits, but that are close enough to their respective irrationals that the
difference between f∗(S) and f(S) (and between D∗ and D) is guaranteed to be small. To
this end, let us fix a positive integer H to be defined later, and we will require all ai, bi, D to
be a multiple of 2−H . This ensures that the denominator part of any of these rationals can
be encoded using O(H) bits.

Given any x ∈ R and a positive integer H, let ⌊x⌋H := rx/2H , where rx is the largest inte-
ger such that rx/2H ≤ x. For example ⌊π⌋3 = 3.125 = 25/23, because 25/23 < π < 26/23 (one
may think of ⌊x⌋H as the number derived from the binary representation of x by deleting all
digits more than H positions after the binary point. Thus, as the binary expression of π begins
11.00100 10000 11111. . . , the binary expression of ⌊π⌋3 is 11.001). Similarly, let ⌈x⌉H :=
sx/2H , where sx is the smallest integer such that x ≤ sx/2H . Finally, let δ := 1/2H .

▶ Observation 4.3. Let x ∈ R. Then, x − δ < ⌊x⌋H ≤ x ≤ ⌈x⌉H < x + δ.

We can now describe the reduction from Subset Product to Penalty Sum.

▶ Construction 2. Let ({v1, . . . vm}, M, k) be an instance of Subset Product.

Let A := ⌈maxi∈[m](ln vi)⌉ + 1;
Let ai := ⌈a∗

i ⌉H = ⌈A − ln vi⌉H for each i ∈ [m];
Let bi := 1/vi for each i ∈ [m];
Let Q := M ;
Let D := ⌊D∗⌋H = ⌊kA − ln Q − 1⌋H .

Finally, output the instance I := ({(ai, bi) | i ∈ [m]}, k, Q, D) of Penalty Sum.

In the following, we show that the two instances are equivalent. To this end, let f :
([m]

k

)
→ R

be defined by

f(S) :=
∑
i∈S

ai − Q ·
∏
i∈S

bi.

Note that f is the same as the function f∗ defined previously, but with each a∗
i replaced by

ai. Then, I is a yes-instance of Penalty Sum if and only if there is some S ∈
([m]

k

)
such

that f(S) ≥ D. The next lemma shows the close relation between f∗ and f (and between D∗

and D), which will be used in both directions to show the equivalence between yes-instances
of Subset Product and Penalty Sum.

▶ Lemma 4.4. Let S ∈
([m]

k

)
. Then, f∗(S) ≤ f(S) < f∗(S) + kδ and D∗ − δ < D ≤ D∗.

Proof. Observe that f(S) − f∗(S) =
∑

i∈S(ai − a∗
i) and |S| = k. Then, by Observation 4.3,

we have 0 ≤ ai − a∗
i < δ for all i ∈ [m]. Thus, 0 ≤ f(S) − f∗(S) < kδ, from which the first

claim follows. The second claim follows immediately from Observation 4.3 and the fact that
D = ⌊D∗⌋H . ◀

▶ Corollary 4.5. Let S ∈
([m]

k

)
such that

∏
i∈S vi = Q. Then, f(S) ≥ D.

Proof. D
Lem. 4.4

≤ D∗ Lem. 4.2 (2)= f∗(S)
Lem. 4.4

≤ f(S). ◀

We now have that ({v1, . . . vm}, M, k′) being a yes-instance of Subset Product implies
I being a yes-instance of Penalty Sum. To show the converse, we show for all S ∈

([m]
k

)
that

∏
i∈S vi = Q′ ≠ Q implies f(S) < D. Since f(S) < f∗(S) + kδ and D∗ − δ < D, it is

sufficient to show that f∗(S) + kδ ≤ D∗ − δ, that is (k + 1)δ ≤ D∗ − f∗(S). To do this, we
first establish a lower bound on D∗ − f∗(S′) in terms of Q, using the following technical
lemma, whose proof is deferred to the appendix.

van Iersel et al. 13

▶ Lemma 4.6. Let Q, Q′ ∈ N+ with Q ≥ 2 and Q ̸= Q′. Then, ln Q′−ln Q+Q/Q′−1 > Q−4.

We explicitly note that we use the natural logarithm. For other logarithms, say log2, this
lemma is not true. For example for Q = 2 and Q′ = 1 we have log2(1) − log2(2) + 2/1 − 1 =
0 − 1 + 2 − 1 = 0 < 2−4.

▶ Corollary 4.7. Suppose
∏

i∈S vi = Q′ ≠ Q for some Q ≥ 2 and S ∈
([m]

k

)
. Then

D∗ − f∗(S) > Q−4.

Proof. Recall that D∗ = kA − ln Q − 1 and that f∗(S) = kA − ln(
∏

i∈S vi) − Q/(
∏

i∈S vi) =
kA − ln Q′ − Q/Q′. Then D∗ − f∗(S) = ln Q′ − ln Q + Q/Q′ − 1. It follows from Lemma 4.6
that D∗ − f∗(S) > Q−4. ◀

Given the above we can now fix a suitable value for H. Given that we wanted D∗−f∗(S) ≥
(k + 1)δ = (k+1)

2H when
∏

i∈S ̸= Q, and assuming without loss of generality that k < Q, it is
sufficient to set H = 5⌈log2 Q⌉.

▶ Corollary 4.8. Let H = 5⌈log2 Q⌉ and δ = (1/2H). Then for ({(ai, bi) | i ∈ [m]}, k, Q, D)
constructed as above, it holds that Q−4 ≥ (k + 1)δ.

Proof. W.l.o.g. we may assume k < Q. Then, (k + 1)δ ≤ Q/2H ≤ Q/Q5 = Q−4. ◀

We now have all necessary pieces to reduce Subset Product to Penalty Sum.

▶ Theorem 4.9. Penalty Sum is NP-hard.

Proof. Given an instance ({v1, . . . vm}, M, k′) of Subset Product, let Q := M , H :=
5⌈log2 Q⌉, and δ := (1/2H). Construct A, ai, bi, k, D as described above, that is: A :=
⌈maxi∈[m](ln vi)⌉ + 1; ai := ⌈a∗

i ⌉H = ⌈A − ln vi⌉H for each i ∈ [m]; bi := 1/vi for each
i ∈ [m]; k := k′; D := ⌊D∗⌋H = ⌊kA − ln Q − 1⌋H . Let ({(ai, bi) | i ∈ [m]}, k, Q, D) be the
resulting instance of Penalty Sum.

We first show that ({(ai, bi) | i ∈ [m]}, k, Q, D) is a yes-instance of Penalty Sum if
and only if ({v1, . . . vm}, M, k′) is a yes-instance of Subset Product. Suppose first that
({v1, . . . vm}, M, k′) is a yes-instance of Subset Product. Then there is some S ∈

([m]
k

)
such

that
∏

i∈S vi = M = Q. Then by Corollary 4.5, f(S) ≥ D and so ({(ai, bi) | i ∈ [m]}, k, Q, D)
is a yes-instance of Penalty Sum.

Conversely, suppose that ({(ai, bi) | i ∈ [m]}, k, Q, D) is a yes-instance of Penalty Sum.
Then there is some S ∈

([m]
k

)
such that f(S) ≥ D. By Lemma 4.4 and Corollary 4.8, we have

that f∗(S) > f(S) − kδ ≥ D − kδ > D∗ − (k + 1)δ ≥ D∗ − Q−4. Thus D∗ − f∗(S) ≤ Q−4,
which by Corollary 4.7 implies that

∏
i∈S vi = Q, and so ({v1, . . . vm}, M, k′) is a yes-instance

of Subset Product.
It remains to show that the reduction takes polynomial time. For this, it is sufficient to

show that the rationals A, k, D and ai, bi for i ∈ [m] can all be calculated in polynomial time.
Observe that A = ⌈maxi∈[m](ln vi)⌉ is the unique integer such that eA > maxi∈[m] vi > eA−1.
Since ln vi < log2 vi, we have 1 ≤ A ≤ ⌈maxi∈[m] log2 vi⌉ and so we can find A in polynomial
time by checking all integers in this range.

For each i ∈ [m], ai = ⌈A − ln vi⌉H = ri/2H , where ri is the minimum integer such
that A − ln vi ≤ ri/2H . Thus, we can compute ri by checking eA−ri/2H ≤ vi with ri =
2H · (A − ⌈ln vi⌉H), setting ri to its successor if the inequality is not satisfied. Thus we
can construct ai in polynomial time, and ai can be represented in O(log2 r + H) bits. The
construction of D can be handled in a similar way.

For each i ∈ [m], rational bi = 1/vi can be represented in O(log2 vi) bits (recall that we
represent 1/vi with binary representations of the integers 1 and vi) and takes O(log2 vi) time
to construct. Q and k are taken directly from the instance ({v1, . . . vm}, M, k′). ◀

14 Maximizing Network Phylogenetic Diversity

QM2

q/2

q/(2 − q)

ℓ

v1
ℓ

v2
ℓ

ℓ−

ℓ∗

Figure 2 Illustration of the leaf-gadget. Omitted edge-weights are 1 and q(ℓ) is abbreviated to q.

4.2 Hardness of Network-Diversity
Finally, reducing from unit-cost-NAP, we show the following main result.

▶ Theorem 4.10. Max-Network-PD is NP-hard even if the input network has level 1 and
the distance between the root and each leaf is 4.

Proof. Because Penalty Sum is NP-hard, we know that unit-cost-NAP is NP-hard on trees
of height 2 [8]. Let T be an L-tree of height 2 for some L and let an instance I = (T , ω, q, k, D)
of unit-cost-NAP be given.

We define a leaf-gadget which is illustrated in Figure 2. Let ℓ ∈ L be a leaf with success-
probability q(ℓ). Add four vertices v1

ℓ , v2
ℓ , ℓ∗, ℓ− and edges ℓv1

ℓ , ℓv2
ℓ , v1

ℓ v2
ℓ , v1

ℓ ℓ−, and v2
ℓ ℓ∗.

The only reticulation in this gadget is v2
ℓ with incoming edges ℓv2

ℓ and v1
ℓ v2

ℓ . We set the
inheritance probabilities p(ℓv2

ℓ) := q(ℓ)/(2 − q(ℓ)) and p(v1
ℓ v2

ℓ) := q(ℓ)/2 which are both
in [0, 1] because q(ℓ) ∈ [0, 1].

Let N be the network which results from replacing each leaf of T with the corresponding
leaf-gadget. The leaves of N are L′ := {ℓ∗, ℓ− | ℓ ∈ L}. Let d denote the largest denominator
in a success-probability q(ℓ) of a leaf ℓ of T , so that every q(ℓ) is expressible as c′/d′ for some
pair of integers c, d such that d′ ≤ d. Let M and Q be large integers, such that M is bigger
than PDT (L) ≥ |L| ≥ k, and Q · D and Q · d−k are both bigger than 3.

Observe that the number of bits necessary to write M and Q is polynomial in the size
of I. We set the weight of edges e ∈ E(T) in N to ω′(e) = kQ · ω(e). For each ℓ ∈ L we
set ω′(v2

ℓ ℓ∗) := Q · M2 and ω′(e) := 1 for e ∈ {ℓv1
ℓ , ℓv2

ℓ , v1
ℓ v2

ℓ , v1
ℓ ℓ−}.

Finally let I ′ := (N , ω′, p, k, D′ := kQ(M2 + D)) be an instance of Max-Network-PD.
Each leaf-gadget is a level-1 network. As the leaf-gadgets are connected by a tree, N is a
level-1 network. Recall that the height of the tree T is 2, and as such the distance between
the root and each leaf in in N is 4.

Before showing that I and I ′ are equivalent, we show that γp
Z(e) = q(ℓ) in the case

that ℓ∗ ∈ Z but ℓ− ̸∈ Z. Indeed because ℓ− ̸∈ Z, we conclude that γp
Z(ℓv2

ℓ) = p(ℓv2
ℓ) =

q(ℓ)/(2 − q(ℓ)) and γp
Z(ℓv1

ℓ) = γp
Z(v1

ℓ v2
ℓ) = p(v1

ℓ v2
ℓ) = q(ℓ)/2. Subsequently,

γp
Z(e) = 1−(1−γp

Z(ℓv1
ℓ))(1−γp

Z(ℓv2
ℓ)) = 1− 2 − q(ℓ)

2 · 2 − 2q(ℓ)
2 − q(ℓ) = 1− 2 − 2q(ℓ)

2 = q(ℓ). (4)

"⇒": Suppose that I is a yes-instance of unit-cost-NAP and that S ⊆ L is a solution
of I, that is |S| ≤ k and PDT (S) ≥ D. Let S′ := {ℓ∗ | ℓ ∈ S} be a subset of L′. Clearly
|S′| = |S| ≤ k. Because T does not contain reticulation edges and γp

Z(e) = q(ℓ) with e being
the edge incoming at ℓ, we conclude that

Network-PDN (S′) ≥ kQ · PDT (S) + k · ω′(v2
ℓ ℓ∗) ≥ kQ · (D + M2) = D′

hence, S′ is a solution of I ′.

van Iersel et al. 15

"⇐": Let S′ be a solution of I ′. Let S− = S ∩ {ℓ− | ℓ ∈ L} and S∗ = S ∩ {ℓ∗ | ℓ ∈ L}.
Towards a contradiction, assume S− ̸= ∅. Then however, using 3 < Q · D,

Network-PDN (S′) ≤
∑

ℓ−∈S−

(ω′(v1
ℓ ℓ−) + ω′(ℓv1

ℓ)) + |S∗|(QM2 + 3) +
∑

e∈E(T)

ω′(e)

≤ 2|S−| + |S∗|(QM2 + 3) + kQM

≤ 2 + (k − 1)(QM2 + 3) + kQM

< kQM2 − QM2 + kQM + 3k

< k(QM2 + 3) < k(QM2 + QD) = D′

contradicts that S′ is a solution. Therefore, we conclude that S′ ⊆ {ℓ∗ | ℓ ∈ L} and |S′| = k.
Define S := {ℓ | ℓ∗ ∈ S′}. Subsequently, with (4) we conclude

kQ(M2 + D) = D′ ≤ Network-PDN (S′)

= k · QM2 +
∑
ℓ∈S

(
q(ℓ)

2 + q(ℓ)
2 + q(ℓ)

2 − q(ℓ)︸ ︷︷ ︸
≤3

)
+ kQ · PDT (S).

It follows that PDT (S) ≥ 1
kQ · (kQ(M + D) − kQM − 3k) = D − 3/Q.

It remains to show that PDT (S) cannot take any values in the range [D − 3/Q, D),
i.e. that PDT (S) ≥ D − 3/Q implies that PDT (S) ≥ D. To this end, let cℓ, dℓ be
the unique positive integers such that q(ℓ) = cℓ/dℓ for each leaf ℓ in T . Then q(ℓ) is a
multiple of 1/dℓ by construction, as is (1 − q(ℓ)). It follows that for any edge e in T ,
γ′

S(e) = (1 −
∏

ℓ∈off(e)∩S(1 − q(ℓ))) is a multiple of 1/(
∏

ℓ∈S dℓ). As all edge weights are
integers, we also have that PDT (S) is a multiple of 1/(

∏
ℓ∈S dℓ). It follows that either

PDT (S) ≥ D or D − PDT (S) ≥ 1/(
∏

ℓ∈S dℓ). As dℓ ≤ d for any ℓ, this difference is at least
d−k > 3/Q. It follows that if PDT (S) ≥ D − 3/Q then in fact PDT (S) ≥ D.

We conclude PDT (S) ≥ D. Hence with |S| = |S′| ≤ k we conclude that S is a solution of
I. Thus, I is a yes-instance of unit-cost-NAP. ◀

5 Discussion

In this paper, we have studied Max-Network-PD from a theoretical point of view. These
results do have some practical implications. In particular, they show that we can only hope to
solve Max-Network-PD efficiently for evolutionary histories that are reasonably tree-like
in the sense that the number of reticulate events is small. For this case, we present an
algorithm that is theoretically efficient. How well it works in practice is still to be evaluated.

Some open questions on the theoretical front remain. First of all, can Max-Network-PD
be solved in pseudo-polynomial time on level-1 networks? Secondly, is Max-Network-PD
polynomial time solvable on level-1 networks if we require the network to be ultrametric, i.e.
when all root-leaf paths have the same length? Finally, is Max-Network-PD W[1]-hard
when the parameter is the number of species k to save plus the level of the network?

From a practical point-of-view however, the most important task is to assess which
variants of phylogenetic diversity on networks (see [16]) are biologically most relevant. This
could of course depend on the type of species considered and in particular on the type of
reticulate evolutionary events. Even if the maximization problem cannot be solved efficiently,
having a good measure of phylogenetic diversity can still have great practical use by measuring
how diverse a given set of species is.

16 REFERENCES

References

1 A. O. L. Atkin and D. J. Bernstein. Prime sieves using binary quadratic forms. Mathe-
matics of Computation, 73:1023–1030, January 2004.

2 Magnus Bordewich, Charles Semple, and Kristina Wicke. On the Complexity of optimising
variants of Phylogenetic Diversity on Phylogenetic Networks. Theoretical Computer
Science, 917:66–80, 2022.

3 Pierre Dusart. The kth prime is greater than k(ln k + ln ln k - 1) for k ≥ 2. Mathematics
of Computation, 68(225):411–415, 1999. URL http://www.jstor.org/stable/2585122.

4 Moret B M E. The theory of computation. Addison-Wesley, 1997.
5 Daniel P Faith. Conservation evaluation and phylogenetic diversity. Biological conserva-

tion, 61(1):1–10, 1992.
6 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman, 1979. ISBN 0-7167-1044-7.
7 Daniel H Huson, Regula Rupp, and Celine Scornavacca. Phylogenetic networks: concepts,

algorithms and applications. Cambridge University Press, 2010.
8 Christian Komusiewicz and Jannik Schestag. A Multivariate Complexity Analysis of

the Generalized Noah’s Ark Problem. In Cologne-Twente Workshop on Graphs and
Combinatorial Optimization, pages 109–121. Springer, 2023.

9 Joseph J Merz, Phoebe Barnard, William E Rees, Dane Smith, Mat Maroni, Christopher J
Rhodes, Julia H Dederer, Nandita Bajaj, Michael K Joy, Thomas Wiedmann, and Rory
Sutherland. World scientists’ warning: The behavioural crisis driving ecological overshoot.
Science Progress, 106(3), 2023. URL https://doi.org/10.1177/00368504231201372.

10 Bui Quang Minh, Steffen Klaere, and Arndt von Haeseler. Phylogenetic Diversity
within Seconds. Systematic Biology, 55(5):769–773, 10 2006. ISSN 1063-5157. doi:
10.1080/10635150600981604. URL https://doi.org/10.1080/10635150600981604.

11 Fabio Pardi and Nick Goldman. Species choice for comparative genomics: being greedy
works. PLoS Genetics, 1(6):e71, 2005. URL https://doi.org/10.1371/journal.pgen.
0010071.

12 William J. Ripple, Christopher Wolf, Thomas M. Newsome, Mauro Galetti, Mohammed
Alamgir, Eileen Crist, Mahmoud I. Mahmoud, William F. Laurance, and 364 scientist
signatories from 184 countries 15. World Scientists’ Warning to Humanity: A Second
Notice. BioScience, 67(12):1026–1028, 11 2017. ISSN 0006-3568. URL https://doi.
org/10.1093/biosci/bix125.

13 Barkley Rosser. Explicit bounds for some functions of prime numbers. American Journal
of Mathematics, 63(1):211–232, 1941. URL http://www.jstor.org/stable/2371291.

14 Mike Steel. Phylogenetic diversity and the greedy algorithm. Systematic Biology, 54(4):
527–529, 2005.

15 Martin L Weitzman. The Noah’s ark problem. Econometrica, pages 1279–1298, 1998.
16 Kristina Wicke and Mareike Fischer. Phylogenetic diversity and biodiversity indices on

phylogenetic networks. Mathematical Biosciences, 298:80–90, 2018.
17 Kristina Wicke, Arne Mooers, and Mike Steel. Formal links between feature diversity

and phylogenetic diversity. Systematic Biology, 70(3):480–490, 2021.

A A note about binary representation of rational numbers

As most of the problems here involve rational numbers as part of the input, it is worth
drawing attention to how those numbers are represented, in particular how they affect the

http://www.jstor.org/stable/2585122
https://doi.org/10.1177/00368504231201372
https://doi.org/10.1080/10635150600981604
https://doi.org/10.1371/journal.pgen.0010071
https://doi.org/10.1371/journal.pgen.0010071
https://doi.org/10.1093/biosci/bix125
https://doi.org/10.1093/biosci/bix125
http://www.jstor.org/stable/2371291

REFERENCES 17

input size of an instance. As is standard, we assume that postitive integers are represented
in binary (so that, for instance, the numbers 3, 4 and 5 are written as 11, 100 and 101
respectively). Thus the number of bits required to represent the integer n is O(log2(n)).
In the case of rational numbers, we assume throughout that a rational p/q (with p and q

coprime integers) can be represented by binary representations of p and q. Thus for example,
the number 3/5 may be written as 11/101. It follows that p/q can be represented using
O(log2(p) + log2(q)) bits.

For rational numbers which are a multiple of a power of 2, (such as 1/8 = 2−3, or
5/8 = 5 · 2−3), we can write the number by extending the binary representation ’past the
decimal point’, so that e.g. 1/8 would be written as 0.001 and 5/8 as 0.101. There is also
the ’floating point’ representation, where the number is expressed as an integer t times 2
to some integer c, and the numbers t and c are expressed in binary. Thus for example 5/8
would be written as 101 × 2-11. Both of these methods of representing rationals have the
drawback that they cannot represent rationals that are not a multiple of a power of 2. The
number 1/3, for instance, cannot be expressed exactly under either method.

This distinction becomes important in Section 4.1, where our reduction from Subset
Product to Penalty Sum produces rational numbers that are not multiples of a power of 2.
Do our hardness results for Penalty Sum, unit-cost-NAP and Max-Network-PD still
hold when one insists on a different method of representing rationals? This is an interesting
question, and we make no attempt to answer it.

B Omitted Proofs

To prove Lemma 4.1, we reduce the following problem to Subset Product.
Exact Cover by 3-Sets (X3C)
Input: a set X with |X| = 3n, a collection C of subsets of X with |C| = 3 for every
C ∈ C
Question: Is there a collection C′ ⊆ C such that each element of x appears in
exactly one set of C′?

Proof of Lemma 4.1. Let (X := {x1, . . . , x3n}, C := {C1, . . . , Cm}) be an instance of X3C.
Let p1, . . . , p3n be the first 3n prime numbers, so that we may associate each xj ∈ X with a
unique prime number pj . For each set Ci = {xa, xb, xc}, let vi := pa · pb · pc, that is, vi is the
product of the three primes associated with the elements of Ci. Now let M :=

∏3n
j=1 pj , i.e.

M is the product of the prime numbers p1, . . . , p3n. Finally let k = n. This completes the
construction of an instance ({v1, . . . vm}, M, k) of Subset Product.

Now observe that if
∏

i∈S vi = M for some S ⊆ [m], then by uniqueness of prime
factorization, every prime number p1, . . . , pm must appear exactly once across the prime
factorizations of all numbers in {vi : i ∈ S}. It follows by construction that the collection of
subsets C′ := {Ci : i ∈ S} contains each element of X exactly once. Thus if ({v1, . . . vm}, M, k)
is a yes-instance of Subset Product then (X, C) is a yes-instance of X3C. Conversely, if
(X, C) is a yes-instance of X3C with solution C′, then we can define S := {i ∈ [m] : Ci ∈ C′}.
Since every element of X appears in exactly one Ci ∈ C′ and |Ci| = 3 for all i ∈ [m], we have
that |C′| = |X|/3 = n = k, and

∏
i∈S vi = p1, · · · · · p3n = M . Thus ({v1, . . . vm}, M, k) is a

yes-instance of Subset Product.
It remains to show that the construction of ({v1, . . . vm}, M, k) from (X, C) takes polyno-

mial time. In particular, we need to show that each of the primes p1, . . . p3n (and thus the
product M) can be constructed in polynomial time. This can be shown using two results
from number theory: pj < j(ln j + ln ln j) for j ≥ 6, [3, 13] and the set of all prime numbers

18 REFERENCES

in [Z] can be computed in time O(Z/ ln ln Z) [1]. Combining these, we have that the first 3n

prime numbers can be generated in time O(n ln n/ ln ln n).
Given the prime numbers p1, . . . , p3n, it is clear that the numbers {vi : i ∈ [m]} can also

be computed in polynomial time. The number M , being the product of 3n numbers each less
than 3n(ln 3n + ln ln 3n), can also be computed in time polynomial in n (though M itself is
not polynomial in n). It follows that ({v1, . . . vm}, M, k) can be constructed in polynomial
time. ◀

Proof of Lemma 4.6. We first show that it is enough to consider the cases Q′ = Q + 1 and
Q′ = Q − 1. Fix an integer Q ∈ N+ with Q ≥ 2. Consider the function hQ : R>0 → R given
by

hQ(x) = ln x − ln Q + Q/x − 1.

So our aim is to show that hQ(Q′) ≥ Q−4. Similar to the proof of Lemma 4.2, we can
observe that

dhQ

dx
= x−1 − Qx−2 = 1

x

(
1 − Q

x

)
is less than 0 when x < Q, exactly 0 when x = Q, and greater than 0 when x > Q. It
follows that on the range x > 0, the function hQ has a unique minimum at x = Q, and
is decreasing on the range x < Q and increasing on the range x > Q. Thus in particular
hQ(Q′) ≥ hQ(Q − 1) if Q′ ≤ Q − 1 and hQ(Q′) ≥ hQ(Q + 1) if Q′ ≥ Q + 1. Since either
Q′ ≤ Q − 1 or Q′ ≥ Q + 1 for any integer Q′ ≠ Q, it remains to show that hQ(Q − 1) > Q−4

and hQ(Q + 1) > Q−4.
To show hQ(Q − 1) > Q−4 for any Q ∈ N≥2: Let λ : R>0 → R be the function given by

λ(Q) = hQ(Q − 1) − Q−4

= ln(Q − 1) − ln Q + Q/(Q − 1) − 1 − Q−4

= ln(Q − 1) − ln Q + 1/(Q − 1) − Q−4.

Then
dλ

dQ
= (Q − 1)−1 − Q−1 + (Q − 1)−2 + 4Q−5

> (Q − 1)−2 + 4Q−5

> 0.

It follows that λ is a (strictly) increasing function. Since λ(2) = 0 − ln 2 + 1 − 1/16 ≈
0.244 > 0, it follows that λ(Q) > 0 for all Q ≥ 2, and thus hQ(Q − 1) > Q−4.

To show that hQ(Q + 1) > Q−4 for all Q ∈ N≥2: First observe that if Q = 2, then
hQ(Q + 1) = ln(3) − ln(2) + 2/3 − 1 ≈ 0.0721 > 0.0625 = 2−4 and so the claim is true. For
Q ≥ 3, observe that hQ(Q + 1) = ln(Q + 1) − ln Q + Q

Q+1 − 1 = ln(Q+1
Q) − 1

Q+1 . We use the
Mercator series for the natural logarithm:

ln
(

Q + 1
Q

)
= ln(1 + 1

Q
) =

∞∑
k=1

(−1)k+1

kQk
= 1

Q
− 1

2Q2 + 1
3Q3 − 1

4Q4 + . . .

Since 1
kQk − 1

(k+1)Qk+1 > 0 for all k > 0, we can omit all but the first two terms to get

ln
(

Q + 1
Q

)
>

1
Q

− 1
2Q2

= 2Q − 1
2Q2 .

REFERENCES 19

Then

ln
(

Q + 1
Q

)
− 1

Q + 1 >
2Q − 1

2Q2 − 1
Q + 1

= (2Q − 1)(Q + 1) − 2Q2

2Q2(Q + 1)

= 2Q2 + Q − 1 − 2Q2

2Q2(Q + 1)

= Q − 1
2Q2(Q + 1)

≥ 1
Q2(Q + 1)

>
1

Q4

where the last two inequalities use Q ≥ 3. ◀

	1 Introduction
	2 Preliminaries
	3 A Branching Algorithm
	4 NP-hardness Results
	4.1 Hardness of Penalty Sum
	4.1.1 Reduction with irrational numbers
	4.1.2 Reduction with rational numbers

	4.2 Hardness of Network-Diversity

	5 Discussion
	A A note about binary representation of rational numbers
	B Omitted Proofs

