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ABSTRACT

We study in detail the influence of different chemical potentials (baryon, charged, strange, and neu-
trino) on how and how fast a free gas of quarks in the zero-temperature limit reaches the conformal
limit. We discuss the influence of non-zero masses, the inclusion of leptons, and different constraints,
such as charge neutrality, zero-net strangeness, and fixed lepton fraction. We also investigate for the
first time how the symmetry energy of the system under some of these conditions approaches the
conformal limit. Finally, we briefly discuss what kind of corrections are expected from perturbative
QCD as one goes away from the conformal limit.

Keywords Conformal limit · Quark matter · Chemical potential · Symmetry energy

1 Introduction and Formalism

In the zero temperature limit, baryons start to overlap at a few times saturation density and, through some mechanism
that is not yet understood, quarks become effectively deconfined Baym et al. [2018]. In this work we discuss dense
matter in terms of baryon chemical potential µB , instead of baryon (number) density nB , as the former (together with
other chemical potentials, such as chargedµQ or strange µS) is the fixed or independent quantity in the grand canonical
ensemble. The correspondence between nB and µB is model dependent, but, at finite temperature, the µB at which
deconfinement takes place is expected to be even lower (see e.g., Alford et al. [2008]), which highlights the importance
of studying quark matter. We are particularly interested in understanding the conformal limit, the asymptotically high
µB at which matter can be described by a free (non-interacting) gas of massless quarks. For this reason, in the present
work, we focus on modelling quark matter only and for the time being restrict ourselves to the zero-temperature limit.

To describe the quarks, we make use of a free Fermi gas under different assumptions. To start, we describe them simply
by a massless gas, then introduce different non-zero quark masses, and vary independently the baryon, charged, and
strange chemical potentials. We further link the chemical potentials by imposing charge neutrality and/or zero net
strangeness. We also discuss the role played by leptons, discussing β equilibrium and the role played by neutrinos
(with chemical potential µν). We investigate large µB and differentµQ and µν , as these are important for astrophysical
scenarios, such as neutron stars and neutron-star mergers. On the other hand, we investigate the effects of µS , which
is important for discussions related to relativistic heavy-ion collisions and the early universe Letessier et al. [1995].

We also discuss the symmetry energy of quark matter for some of the constraints we study and investigate how it
changes as we approach the conformal limit. Several works have addressed the symmetry energy of quark matter
Chu and Chen [2014], Chen [2017], Wu et al. [2018], Thakur and Dhiman [2017]. This physical quantity is defined as
the difference of energy per baryon E/NB (or energy density per baryon density ε/nB) of fully isospin asymmetric
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matter δ = 1 and isospin-symmetric matter δ = 0:

Esym =
Eδ=1

NB
−

Eδ=0

NB
=

εδ=1

nB
−

εδ=0

nB
, (1)

where δ was originally defined for matter with neutrons and protons in terms of densities ni as

δ =
nn − np

nn + np
. (2)

In this case and also when one is considering up and down quarks, δ can also be written as

δ = −2YI = 1− 2YQ (non− strange matter) , (3)

with fractions Yi summing over i = baryons and/or quarks and defined in terms of particle isospin QIi and electric
charge Qi

YI =

∑

i QIini
∑

i ni
, YQ =

∑

i Qini
∑

i ni
, (4)

with baryon (number) density nB =
∑

ni, where the quark densities are divided by 3.

However, it is important to note that, as discussed in Ref. Aryal et al. [2020] and Appendix A of Ref. Yao et al. [2023],
in the presence of hyperons (or in our case strange quarks), Eq. (3) does not apply. For this reason, we restrain to the
discussion of symmetry energy for the 2-flavor case (with up and down quarks).

When leptons are included, we assume β equilibrium, in which case electrons and muons have chemical potential
µe = µµ = −µQ. In the special case that (electron and muon) neutrinos are trapped, µν is determined by fixing the
lepton fraction

Yl =

∑

lep nlep
∑

i ni
, (5)

usually hold equal to the canonical value 0.4, to simulate conditions created in supernova explosions
Burrows and Lattimer [1986].

Finally, we briefly discuss the effects of interactions in the case that they are week enough to be discussed pertur-
batively, i.e., using perturbative Quantum Chromodynamics, pQCD). At large temperatures and/or quark chemical
potentials, the strong coupling becomes small enough to allow an infinite number of terms to be approximated by a
finite number of terms to describe interactions Politzer [1973]. At zero temperature, pQCD corrections have been
calculated up to next-to-next-to-next-to-leading order (N3LO) Gorda et al. [2021a,b] with non-zero quark masses in-
cluded until next-to-next-to-leading order (N2LO) Kurkela et al. [2010], Graf et al. [2016], Gorda and Säppi [2022]
.

2 Results

We describe in detail the free Fermi gas formalism we use in this work (for quarks and leptons) in Appendix A. We
begin our discussion by ignoring the contribution of leptons to the thermodynamical quantities (later we include dif-
ferent possibilities and discuss them). In the figures that follow, the pressure P and baryon density nB are normalized
by respective values of a free gas with the same number of quark flavors included, but with quark masses mi = 0 and
µQ = µS = 0. Simple analytical equations for the pressure of all the massless cases discussed in this work are derived
in Appendix B. We start our discussion considering only one chemical potential, and then expand our discussion to
two and three chemical potentials.

2.1 One chemical potential µB

We start by comparing the quark mass effect on nB versus µB in the left upper panel of Fig. 1. Because in this
case µQ and µS are zero, all quarks present the same chemical potential µi = µu = µd = µs = 1

3µB . Due to our
normalization (thermodynamical quantities divided by the massless case with the respective number of flavors), all
massless cases have constant value 1. Nevertheless, this does not mean that they are the same (if not normalized). To
discuss the effect of quark masses, we start with 1 flavor with mass corresponding to the Particle Data Group (PDG
Workman and Others [2022]) mass of the up (m = 2.3 MeV) or down (m = 4.8 MeV) quarks, then we look at the
2-flavor case with PDG masses for both light quarks. After that, we look at 3-flavors and use first only non-zero mass
for the strange quark (with PDG value of m = 95 MeV) and then the PDG (from hereon “realistic”) masses for the 3
quarks.
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Figure 1: Baryon density (upper panel) and pressure (lower panel) of quarks with different number of flavors and
different masses normalized by the respective massless cases.
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We find that the introduction of realistic quark masses decreases the density for low µB , with the s-quark mass affecting
the density until larger µB (up to 621 MeV) than the two light quarks (up to 55 MeV). To calculate these thresholds,
we use throughout this paper the criteria of a deviation of 10% from the black line with value 1. For P versus µB ,
shown in the lower panel of Fig. 1, the lines are very similar in shape (to the ones in the upper panel of the figure).
The introduction of realistic quark masses decreases again P for low µB , with the s-quark mass affecting the pressure
until larger µB (up to 834 MeV) than the two light quarks (up to 77 MeV).

2.2 Two chemical potentials µB and µQ

Now, we abandon the unphysical 1-flavor case, and continue with 2- and 3-flavor cases. The 2-flavor case has recently
become more relevant for dense matter because it has been shown that the core of neutron stars can harbor 3-, as well
as 2-flavor quark matter Holdom et al. [2018]. For this case we add another (charged) chemical potential, breaking
some of the degeneracy in the quark chemical potentials: µup = 1

3µB + 2
3µQ, µdown = µstrange =

1
3µB − 1

3µQ. Once
more, we normalize thermodynamical quantities dividing by the respective values of the same quantity for a free gas
with the same number of quark flavors included, but with mi = 0, in addition to µQ = 0. Following this procedure,
we aim at determining how the conformal limit and its deviation depend on µQ.

When µQ is determined by charge neutrality, the results even for the massless case depend on the number of flavors. In
this case, only the 3-flavor case is coincidentally equal to the µQ = 0 case (see the explanation following Eqs. (34) to
(37) in Appendix B). For 2-flavor, this is not the case, and the pressure is lower than in the µQ = 0 case, establishing
a new lower conformal limit (see upper panel of Fig. 2). Expressions for the pressure for each particular chemical
potential case (always keeping mi = 0 for simplicity) can be found in Appendix B. Compare e.g., Eqs. (22) and (31).
When adding quark masses, µQ determined by charge neutrality lowers the pressure (in comparison to the respective
massless case and to the massless case with µQ = 0) such that it goes to the respective conformal limit at larger µB .
Using again the criteria of 10% deviations from the respective conformal limit, the s-quark mass affects pressure until
µB = 839 MeV and the two light quark masses until µB = 118 MeV.

Nevertheless, one issue about this approach should be noted: we are comparing very small values of µQ with very
large values of µB . See the middle panel of Fig. 2 for a comparison. This is particularly the case for 3-flavors
of quarks, and (except for extremely low µB) this behavior is independent of the quark masses. For small values
of µB , both for 2 and 3-flavors, the dependence of µQ and µB can be predicted in fair agreement with Eq. (30).
For this reason, next, we add a fixed charged chemical potential to study how it affects the conformal limit, which
translates into an increase in pressure (see e.g., the different lines for 3-flavor quark matter with realistic masses in
the lower panel of Fig. 2), specially at low values of µB . For massless quarks and µQ = −20 MeV, the pressure is
always above the conformal limit for µQ = 0, independently of the number of flavors. Once the quark masses are
finite, the pressure decreases, specially in the 3-flavor case. For larger absolute values of µQ, the pressure becomes
larger, even going above the conformal case (with and without µQ). For example, for the 3-flavor case with realistic
quark masses and µQ = −50 MeV, the pressure deviates 10% (of the µQ = 0 conformal limit) at µB = 698 MeV
and for µQ = −100 MeV at µB = 415 MeV (the latter one from above). Finally, there is one important remark
regarding the behavior of the normalized pressure: in the lower panel of Fig. 2, it is shown that this physical quantity
decreases for small values of µB; however, this behavior doesn’t mean that the pressure itself (not normalized) is not
a monotonically increasing function of µB . Here, we must remember that our normalization is carried out by dividing
the thermodynamical quantities (such as pressure) by the massless case with the respective number of flavors, and the
free Fermi pressure of this system of massless quarks used for normalization scales as µ4

B; therefore, in those ranges of
µB where P for massive quarks increases at a lower rate than µ4

B , the normalized pressure decreases without implying
any thermodynamical inconsistency.

2.3 Three chemical potentials µB , µQ, and µS or µν

Going further, we can add another (strange) chemical potential and constrain it, e.g., to strangeness neutrality. The
issue is that at zero temperature strangeness neutrality means that there are no strange quarks, and the 3-flavor reduces
to the 2-flavor case. For this reason, we fixed µS instead to specific values. µS breaks the degeneracy in the remaining
quark chemical potentials: µup = 1

3µB + 2
3µQ, µdown = 1

3µB − 1
3µQ, µstrange =

1
3µB − 1

3µQ + µS . Once more, we
normalize thermodynamical quantities dividing by the respective values of the same quantity for a free gas with the
same number of quark flavors included, but with mi = 0, in addition to µQ = 0.

Fixing µS increases the pressure, similar to fixing µQ. Compare, for example, the massless 3-flavor case in the upper
panel in Fig. 3 and lower panel in Fig. 2 and note that the pressure for a given µB is now much higher. When quark
masses are added, the similarity disappears, because µS only affects the strange quarks, which do not appear for low
values of µB , unless the µS value is larger than the strange quark mass, which corresponds to our case of µS = 100
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Figure 2: Pressure (upper panel) and charged chemical potential (middle panel) of quarks with 2 chemical potentials
normalized by the respective massless case with one chemical potential, µB . The charged chemical potential is de-
termined by charge neutrality. For massless 3-flavor quarks, the cases with and without µQ coincide. Lower panel:
Pressure of quarks with 2 chemical potentials, being µQ fixed to different values, normalized by the respective mass-
less case with one chemical potential, µB .
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Figure 3: Pressure and charged chemical potential of quarks with 2 or 3 chemical potentials, including the strange
chemical potential, normalized by the respective massless case (with one chemical potential, µB). The charged chem-
ical potential is either zero (upper panel), determined by charge neutrality (middle panel), or fixed (lower panel). For
massless 3-flavor quarks, the cases with charge neutrality and without µQ coincide.
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MeV. For µS = 50 and µS = 100 MeV, the 10% deviation from the conformal limit takes place at µB = 1743 and
µB = 4227 MeV, respectively (both from above).

Now we consider the case in which additionally µQ 6= 0, determined to reproduce charge neutrality (middle panel of
Fig. 3). For massless 3-flavor quarks, the cases with charge neutrality and without µQ coincide. When masses are
introduced, the curves are still very similar (to the upper panel for the µQ = 0 case), except at very small µB , where
the quark masses are comparable to both µB and µQ. For µS = 50 and µS = 100 MeV, the 10% deviation from the
conformal limit takes place at µB = 1743 and µB = 4227 MeV, respectively (both from above). When a fixed value
of µQ is used, it increases the pressure further, specifically at low µB (see lower panel of Fig. 3). For µQ = µS = 50
and µQ = µS = 100 MeV, the 10% deviation from the conformal limit takes place at µB = 2070 and µB = 4723
MeV, respectively (both from above).

Next, we investigate the effects of having much larger values of µQ and µS , comparable to µB , for 3 flavors of quarks
in the upper panel of Fig. 4. As expected, the changes due to the additional chemical potentials take place at much
lower µB (notice the different scale in the y-axis of the figure) and practically all the curves are above the one chemical
potential (µB) conformal limit. An exception is the case with large (negative) µQ (and µS = 0) because, according to
Eqs. 6 and 10, quarks can only exist after a given µB = 381 MeV, at which the momentum ki and P become finite
(see Eq. 33 for the massless case). In this case, the pressure differs from the one chemical potential conformal limit by
more than 10% until µB = 10 583 MeV. In the case of large µS , quarks can exist at any µB and the pressure differs
from the one chemical potential conformal limit by more than 10% until µB = 44 237 MeV. When we combine large
µS and (absolute value of) µQ, the pressure differs from the one chemical potential conformal limit by more than 10%
until µB = 48 897 MeV. In this case, the curve in the upper panel of Fig. 4 begins only at µB = 1000 MeV. This can
be understood once more from Eqs. 6 and 10. The same effect can also be seen (although more subtle) in the bottom
panel of Fig. 2, where the fixed µQ cases start at µB = −µQ.

Finally, we investigate changes due to the inclusion of a free gas of leptons (electrons and muons) in β equilibrium
(and participating in the fulfillment of charge neutrality). As it can be seen in the lower panel of Fig. 4, the inclusion
of leptons doesn’t change the pressure. The picture changes though when lepton number is fixed. In this case, which
also includes neutrinos, the pressure is considerably higher because the large amount of negative leptons forces the
appearance of a large amount of up quarks, changing considerably the quark composition of the system. The grey full
line shows a kink for µB ∼ 400 MeV, when the muons appear. Note that the difference in massless versus massive
quarks is still very pronounced when Yl is fixed.

2.4 Symmetry energy

As already discussed, we calculate the symmetry energy only for the 2-flavor case, for which it was originally defined.
We fix nB in this case (instead of µB as we have been doing) because the symmetry energy is defined for a given nB ,
but limit the x-axis to approximately the corresponding range from the previous figures. Fig. 5 shows that the curves
are a monotonically increasing function of density. The light quark masses don’t affect the results. Notice that the
latter statement applies to every thermodynamical quantity that is not normalized by the respective conformal limit
(and does not include derivatives). Numerically, we define δ = 0 as the 2-flavor µQ = 0 case (corresponding to the
2-flavor lines in Fig. 1) and δ = 1 as the 2-flavor YQ = 0 case (with µQ 6= 0 corresponding to the 2-flavor lines in the
top and middle panels of Fig. 2).

3 Discussion and Conclusions

Perturbative corrections to a free gas of quarks due to interactions always bring down the pressure to lower values.
Although these corrections have been calculated to higher orders for massless and massive (strange) quarks, they
cannot accurately be carried out to low baryon chemical potentials µB (or, interchangeably, low baryon densities nB

in the zero-temperature limit). For example, for the relevant regime of densities inside neutron stars, µB ≤ 1500 MeV,
pQCD predicts that the pressure is lower than 80% of the free gas value (see for example Fig. 1 of Ref. Graf et al.
[2016]) but with a very large band going all the way to P = 0.

In this work, we have investigated the equation of state of a free gas of quarks focusing on how the conformal limit is
reached when different chemical potentials are varied and different constraints (e.g. , for laboratory vs. astrophysics)
are considered. This is done by using combinations of 1, 2, or 3 chemical potentials out of the 4 we consider, each
related to a possible conserved quantity: baryon number B (µB), electric charge (µQ), strangeness (µS), and lep-
ton number (µν). We have also derived expressions for massless quarks under different conditions to illustrate our
discussion.
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Figure 4: Upper panel: Pressure of quarks with 2 or 3 large chemical potentials, normalized by the respective massless
case with one chemical potential, µB . Lower panel: Pressure of quarks and leptons with 2 or 3 chemical potentials,
normalized by the respective massless case with one chemical potential, µB . For β-equilibrium with leptons, µQ is
determined by charge neutrality. When neutrinos are present, their chemical potential µν is determined by fixing the
lepton fraction, Yl.
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We have studied the effects of using different quark masses (including PDG values), number of flavors, and different
ways to fix the various chemical potentials considered. The latter procedure implies enforcing charge neutrality and,
when leptons were included, β equilibrium. When leptons (electrons, muons, and their respective neutrinos) are
present, the pressure in not altered. An exception is the case in which the lepton fraction is fixed. For different cases,
we have quantified the deviation from the one-chemical potential (massless) conformal limit by verifying at which µB

the pressure deviates by more than 10%. This value varied from µB = 77 to 48 897 MeV. This shows that one must
be careful about making statements concerning comparisons with "the" conformal limit. Finally, we have shown that
the conformal limit of the symmetry energy is monotonically increasing and does not depend on quark masses.

Acknowledgements

We acknowledge support from the National Science Foundation under grants PHY1748621, MUSES OAC2103680,
and NP3M PHY-2116686. C. B. acknowledges support from the Kent State University SURE program. This work
was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Grant No.
312032/2023-4 (R.L.S.F.) and is also part of the project Instituto Nacional de Ciência e Tecnologia - Física Nuclear e
Aplicações (INCT - FNA), Grant No. 464898/2014-5 (R.L.S.F.).

A Appendix: General Expressions

For each quark flavor i, we can write

µi =
1

3
µB +QiµQ +QSi

µS , (6)

where 1/3 has been used as the baryon number and Qi and QSi
are the electric charge and strangeness of each quark.

µB , µQ, and µS are the baryon, charged, and strange independent chemical potentials of the system. In our formalism,
the isospin chemical potential µI = µQ Aryal et al. [2020].

The general expressions for (number) density, energy density and pressure of a relativistic free Fermi gas of particles
i using thee natural system of units are

ni =
gi
2π2

∫ ∞

0

dki k
2
i (fi+ − fi−), (7)

εi =
gi
2π2

∫ ∞

0

dkiEik
2
i (fi+ + fi−), (8)
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Pi =
1

3

gi
2π2

∫ ∞

0

dki
k4i
Ei

(fi+ + fi−), (9)

where gi = 6 is the spin and color degeneracy factor, ki is the momentum,

Ei =
√

k2i +m2
i ≥ 0, (10)

is the energy of the state, mi the mass, f± the distribution function of particles and antiparticles fi± = (e(Ei∓µi)/T +
1)−1, with µi being the particle chemical potential, and T the temperature.

In the T = 0 limit, antiparticles provide no contribution, f− = 0, and f+ = 1 up to the Fermi momentum, ki = kFi
,

Ei = µi and the integrals for the above thermodynamic quantities are evaluable analytically

ni =
gi
6π2

k3Fi
, (11)

εi =
gi
2π2

[

(

1

8
m2

i kFi
+

1

4
k3Fi

)

√

m2
i + k2Fi

−
1

8
m4

i ln
kFi

+
√

m2
i + k2Fi

mi

]

, (12)

Pi =
1

3

gi
2π2

[

(

1

4
k3Fi

−
3

8
m2

i kFi

)

√

m2
i + k2Fi

+
3

8
m4

i ln
kFi

+
√

m2
i + k2Fi

mi

]

. (13)

B Appendix: Massless Quarks

For the massless particle case, the expressions above further reduce to

ni =
gi
6π2

k3Fi
=

gi
6π2

µ3
i , (14)

εi =
gi
8π2

k4Fi
=

gi
8π2

µ4
i , (15)

Pi =
1

3

gi
8π2

k4Fi
=

1

3

gi
8π2

µ4
i , (16)

reproducing εi = 3Pi.

Note that, in the case of massless free quarks, we can also write µi = ki. Therefore, we can write the chemical
potential for each quark flavor using Eq. (6)

µu =
1

3
µB +

2

3
µQ = ku , (17)

µd =
1

3
µB −

1

3
µQ = kd , (18)

µs =
1

3
µB −

1

3
µQ + µS = ks . (19)

We use the convention that both the strangeness and µS are positive. Alternatively, one could use both as negative
without changing the results. Eqs. 17, and 18 are equal if µQ = 0. Eqs. 17, 18, and 19 are equal if µQ = 0 and µS = 0.
The density and pressure of each quark flavor can be written further as

ni =
µ3
i

π2
=

k3i
π2

, (20)

Pi =
µ4
i

4π2
=

k4i
4π2

. (21)

Next, we discuss the pressure for specific conditions concerning number of flavors and chemical potential constraints
(not including leptons):

• 2-flavor, µQ = 0

P = Pu + Pd = 2Pu =
2µ4

u

4π2
=

µ4
B

162π2
=

µ4
B

1598.88
. (22)
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• 3-flavor, µQ = 0, µS = 0

P = Pu + Pd + Ps = 3Pu =
3µ4

u

4π2
=

µ4
B

108π2
=

µ4
B

1065.92
. (23)

• 2-flavor, µQ fixed

P = Pu + Pd =
1

4π2

(

µ4
u + µ4

d

)

=
1

4π2

[

(

1

3
µB +

2

3
µQ

)4

+

(

1

3
µB −

1

3
µQ

)4
]

=
1

4π2

(

µ4
B

81
+

4µ3
B

27

2µQ

3
+

6µ2
B

9

4µ2
Q

9
+

4µB

3

8µ3
Q

27
+

16µ4
Q

81

+
µ4
B

81
−

4µ3
B

27

µQ

3
+

6µ2
B

9

µ2
Q

9
−

4µB

3

µ3
Q

27
+

µ4
Q

81

)

=
1

324π2

[

2µ4
B + 4µ3

BµQ + 30µ2
Bµ

2
Q + 28µBµ

3
Q + 17µ4

Q

]

. (24)

• 2-flavor, µQ from charge neutrality

Starting from
∑

i Qini = 0
2

3
nu −

1

3
nd = 0 , (25)

2

3

µ3
u

π2
−

1

3

µ3
d

π2
= 0 , (26)

2µ3
u = µ3

d , (27)

2

(

1

3
µB +

2

3
µQ

)3

=

(

1

3
µB −

1

3
µQ

)3

, (28)

2
1
3
1

3
µB −

1

3
µB = −2

1
3
2

3
µQ −

1

3
µQ , (29)

µQ =
−
(

2
1
3 − 1

)

µB

2
4
3 + 1

= −0.07 µB . (30)

We can then use Eqs. 27 and 30 to calculate the pressure

P = Pu + Pd =
1

4π2

(

µ4
u + µ4

d

)

=
1

4π2

(

µ4
u + 2

4
3µ4

u

)

=
1

4π2

(

1 + 2
4
3

)

µ4
u =

1

4π2

(

1 + 2
4
3

)

(

1

3
µB +

2

3
µQ

)4

=
1

4π2

(

1 + 2
4
3

)

[

1

3
µB −

2

3

(

2
1
3 − 1

2
4
3 + 1

µB

)]4

=
1

4π2

(

1 + 2
4
3

)

[

2
4
3 + 1− 2

4
3 + 2

3(2
4
3 + 1)

]4

µ4
B

=
1

4π2(2
4
3 + 1)3

µ4
B =

µ4
B

1721.59
. (31)

• 3-flavor, µQ fixed, µS = 0

P = Pu + Pd + Ps =
1

4π2
(µ4

u + µ4
d + µ4

s) =
1

4π2
(µ4

u + 2µ4
d) , (32)

11



because µd = µs are equal, resulting in

P =
1

4π2

[

(

1

3
µB +

2

3
µQ

)4

+ 2

(

1

3
µB −

1

3
µQ

)4
]

=
1

4π2

(

µ4
B

81
+

4µ3
B

27

2µQ

3
+

6µ2
B

9

4µ2
Q

9
+

4µB

3

8µ3
Q

27
+

16µ4
Q

81

+ 2
µ4
B

81
− 2

4µ3
B

27

µQ

3
+ 2

6µ2
B

9

µ2
Q

9
− 2

4µB

3

µ3
Q

27
+ 2

µ4
Q

81

)

=
1

324π2

(

3µ4
B + 36µ2

Bµ
2
Q + 24µBµ

3
Q + 18µ4

Q

)

. (33)

• 3-flavor, µQ from charge neutrality, µS = 0

Starting again from
∑

iQini = 0
2

3
nu −

1

3
nd −

1

3
ns = 0 , (34)

2

3

(

µ3
u

π2

)

−
1

3

(

µ3
d

π2

)

1

3
−

(

µ3
s

π2

)

= 0 , (35)

2µ3
u − µ3

d − µ3
s = 0 , (36)

but, since in this case µd = µs, we have:
µ3
u = µ3

d , (37)

which implies (from Eqs. 17 and 18) µQ = 0 and reproduces the 3-flavor case with µQ = 0, µS = 0.

• 3-flavor, zero net strangeness

Starting from
∑

QSi
ni = 0, at T = 0 this implies ns = 0, no matter if µQ = 0 or µQ 6= 0. As a consequence, this

case reproduces the respective 2-flavor case.

• 3-flavor, µQ fixed, µS fixed

P = Pu + Pd + Ps =
1

4π2
(µ4

u + µ4
d + µ4

s)

=
1

4π2

[

(

1

3
µB +

2

3
µQ

)4

+

(

1

3
µB −

1

3
µQ

)4

+

(

1

3
µB −

1

3
µQ + µS

)4
]

. (38)

Using the result from Eq. 33

P =
1

324π2

(

3µ4
B + 36µ2

Bµ
2
Q + 24µBµ

3
Q + 18µ4

Q

)

+
1

4π2

(

µ4
S −

4

27
µ3
QµS −

4

3
µQµ

3
S +

4

3
µBµ

3
S +

4

27
µ3
BµS

+
6

9
µ2
Qµ

2
S +

6

9
µ2
Bµ

2
S −

12

27
µ2
BµQµS +

12

27
µBµ

2
QµS −

12

9
µBµQµ

2
S

)

. (39)

• 3-flavor µQ = 0, µS fixed

Using Eq. 39 with µQ = 0

P =
1

π2

(

1

108
µ4
B +

µ4
S

4
+

1

3
µBµ

3
s +

1

27
µ3
BµS +

1

6
µ2
Bµ

2
S

)

. (40)
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• 3-flavor, µQ from charge neutrality, µS fixed

Starting from
∑

Qini = 0
2

3
nu −

1

3
nd −

1

3
ns = 0 , (41)

2µ3
u − µ3

d − µ3
s = 0 , (42)

2

(

1

3
µB +

2

3
µQ

)3

−

(

1

3
µB −

1

3
µQ

)3

−

(

1

3
µB −

1

3
µQ + µS

)3

= 0 , (43)

2µ3
B

27
+

12µ2
BµQ

27
+

24µBµ
2
Q

27
+

16µ3
Q

27
−

2µ3
B

27
+

6µ2
BµQ

27
−

6µBµ
2
Q

27

+
2µ3

Q

27
− µ3

S −
3µ2

BµS

9
+

6µBµQµS

9
−

3µ2
QµS

9
−

3µBµ
2
S

3
+

3

3
µQµ

2
S = 0 , (44)

2µ2
BµQ

3
+

2µBµ
2
Q

3
+

2µ3
Q

3
− µ3

S −
µ2
BµS

3
+

2µBµQµS

3
−

µ2
QµS

3
− µBµ

2
S + µQµ

2
S = 0 . (45)

In the above expression, we still need to isolate µQ and replace in Eq. 39.
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