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REAL SPIN BORDISM AND ORIENTATIONS OF TOPOLOGICAL

K-THEORY

ZACHARY HALLADAY AND YIGAL KAMEL

Abstract. We construct a commutative orthogonal C2-ring spectrum, MSpinc

R
, along with

a C2-E∞-orientation MSpinc
R
→ KUR of Atiyah’s Real K-theory. Further, we define E∞-

maps MSpin → (MSpinc

R
)C2 and MUR → MSpinc

R
, which are used to recover the three

well-known orientations of topological K-theory, MSpinc → KU, MSpin → KO, and MUR →

KUR, from the map MSpinc
R

→ KUR. We also show that the integrality of the Â-genus

on spin manifolds provides an obstruction for the fixed points (MSpinc

R
)C2 to be equivalent

to MSpin, using the Mackey functor structure of π
∗
MSpinc

R
. In particular, the usual map

MSpin → MSpinc does not arise as the inclusion of fixed points for any C2-E∞-ring spectrum.
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1. Introduction

The main result of this paper refines all of the standard orientations of topological K-theory

to a single Real spin orientation, MSpinc
R → KUR = KR, of Atiyah’s Real K-theory.

Theorem 1.1 (Propositions 3.12, 3.13, 4.5, 5.1, and 6.13). There exists a map of C2-E∞-ring

spectra, MSpinc
R → KUR, satisfying the following properties.

(1) The underlying spectrum of MSpinc
R is MSpinc.

(2) There exists an E∞-map MSpin → (MSpinc
R)

C2 .

(3) There exists a C2-E∞-map MUR → MSpinc
R.

The three standard orientations, MSpinc → KU, MSpin → KO, and MUR → KUR, are

recovered as E∞-maps from the map MSpinc
R → KUR.

In analogy with Real bordism and Real K-theory, we use the name Real spin bordism to refer

to the C2-spectrum MSpinc
R. The Real spin orientation MSpinc

R → KUR recovers the standard

orientations of K-theory as follows. The Real orientation of KUR is obtained by precomposing
1
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2 ZACHARY HALLADAY AND YIGAL KAMEL

with MUR → MSpinc
R, the spin

c orientation of KU is obtained by taking underlying spectra,

and the spin orientation of KO is obtained as the composite

MSpin → (MSpinc
R)

C2 → KUC2
R ≃ KO .

We construct MSpinc
R as follows. Let Rp,q be the C2-representation Rp⊕Rq σ, where σ is

the sign representation. Then the complex Clifford algebra Cl(Rp,q) inherits a corresponding

conjugate-linear C2-action by the universal property of Clifford algebras. This action restricts

to Spinc(p, q) ⊂ Cl(Rp,q), and makes the usual representation, Spinc(p, q)× Rp,q → Rp,q, C2-

equivariant. Using an appropriate model of ESpinc(p, q), this induces a C2-action on the

Thom space, MSpinc(p, q), of the universal Spinc(p, q)-vector bundle with fiber Rp,q. We

define MSpinc
R as an orthogonal C2-spectrum whose value on the C2-representation Rp,q is

the C2-space MSpinc(p, q).

Remark 1.2. Complex conjugation on U(1) induces a C2-action on MSpinc(n), which de-

scribes the underlying spectrum of MSpinc
R with its induced C2-action. This spectrum with

C2-action can be promoted to a genuine C2-spectrum, (MSpinc
R)

h, called the cofree completion

of MSpinc
R. Using the completion map MSpinc

R → (MSpinc
R)

h and the fact that KUR ≃ KUh
R,

all of the results in this paper apply to (MSpinc
R)

h as well. The question of whether or not

MSpinc
R is equivalent to (MSpinc

R)
h amounts to knowing whether or not the fixed points

(MSpinc
R)

C2 is equivalent to the homotopy fixed points (MSpinc
R)

hC2 = ((MSpinc
R)

h)C2 , which

we do not investigate in this paper.

Given the facts that Spinc(n)C2 = Spin(n) and KUC2
R = KUhC2

R = KO, one might expect that

the C2-(homotopy) fixed points of MSpinc
R is equivalent to MSpin. The following theorem

says that no such equivalence can cover MSO.

Theorem 1.3. There does not exist a genuine C2-spectrum E satisfying all of the following

conditions.

(1) The homotopy groups of the underlying spectrum are Ee
∗
∼= MSpinc

∗;

(2) The homotopy groups of the C2-fixed points are EC2
∗

∼= MSpin∗;

(3) The C2-action on Ee
∗ is via a ring homomorphism on MSpinc

∗;

(4) The diagram

MSpin∗ MSpinc
∗

MSO∗

res

u∗ uc
∗

commutes, where u∗ and uc∗ are the forgetful maps that take the underlying oriented

bordism class, and res : MSpin∗
∼= EC2

∗ → Ee
∗
∼= MSpinc

∗ is induced by inclusion of

fixed points.

Since the maps MSpin → (MSpinc
R)

C2 and MSpin → (MSpinc
R)

hC2 from Theorem 1.1 factor

the usual map MSpin → MSpinc, Theorem 1.3 implies that neither map is an equivalence.

We do not know whether or not either (MSpinc
R)

C2 or (MSpinc
R)

hC2 is equivalent to MSpin,

but since Theorem 1.3 implies that the expected comparison map cannot be an equivalence,

there is no reason to expect that such an equivalence exists.
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Remark 1.4. In light of the maps MUR → MSpinc
R → KUR, it is natural to compare MSpinc

R

to what is known about the various types of fixed points of MUR and KUR. In particular, in

the case of Real bordism, the C2-(homotopy) fixed points MUC2
R = MUhC2

R is not equivalent

to MO, but the geometric fixed points, ΦC2 MUR, is. Despite this analogy, we know that

ΦC2 MSpinc
R 6≃ MSpin, since the functor ΦC2 is lax monoidal, and there does not exist a ring

map from MO to MSpin. We collect this information in a table in Figure 1.

type of C2-fixed points MUR MSpinc
R KUR

genuine ( )C2
✟
✟✟MO ? KO

homotopy ( )hC2
✟
✟✟MO ? KO

geometric ΦC2( ) MO ✘✘✘✘MSpin ✟
✟KO

Figure 1. Comparing the various types of fixed points of Real bordism, Real

spin bordism, and Real K-theory

Remark 1.5. Even though MUR and MSpinc
R are both Thom spectra built using the groups

U(n) and Spinc(n) with U(n)C2 = O(n) and Spinc(n)C2 = Spin(n), the analogy between them

breaks down for the following reason. The C2-action on U(n) determines the action on the

(Rn,n)th space of the Real bordism spectrum, while the C2-action on Spinc(n) determines the

action on the (Rn)th space of the Real spin bordism spectrum. The group that corresponds

to the (Rn,n)th space of MSpinc
R is Spinc(n, n), and Spinc(n, n)C2 6∼= Spin(n).

Lastly, we point out that the cohomological Thom classes that correspond to the Real spin

orientation of KR constructed in this paper were originally constructed by Atiyah in the form

of the following generalized Bott periodicity theorem.

Theorem 1.6 (Atiyah [1], Theorem 6.3). Let G → Spinc(p, q) be a C2-equivariant ho-

momorphism of groups with C2-action, and suppose p ≡ q mod 8. Then there is a class

u ∈ KUR,G(R
p,q), such that multiplication by u induces an isomorphism,

KUR,G(X) ∼= KUR,G(R
p,q ×X).

As in the case of Theorem 1.1, this theorem contains all of the classical Thom isomorphisms

as special cases. For example, letting G = Spin(8n) with trivial C2-action, (p, q) = (8n, 0),

and taking X to be the total space of a principal Spin(8n)-bundle, this recovers the Atiyah–

Bott–Shapiro Thom class in KO-theory for the spin vector bundle associated to X [2]. Sim-

ilarly, the KU-Thom classes for spinc vector bundles are obtained from the identity map

Spinc(8n) = Spinc(8n, 0), and the KUR-Thom classes for Real vector bundles are obtained

from the inclusion U(n) → Spinc(n, n).

1.1. Overview of the paper. In Section 2, we establish some terminology about Real

structures and review facts that we need about orthogonal C2-spectra. In Section 3, we

construct MSpinc
R as a commutative monoid object in the category of orthogonal C2-spectra.

The spaces we use to model MSpinc
R follow the definition of MSpinc in [7], except that we
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introduce (different) C2-actions. In section 4, we define the map MSpin → (MSpinc
R)

C2

and provide a general obstruction for such a map to be an equivalence by proving Theorem

1.3. This obstruction uses the integrality of the Â-genus on spin manifolds, together with

formal properties that the homotopy Mackey functor π∗MSpinc
R must satisfy. In section 5,

we construct the map MUR → MSpinc
R in the category of Real spectra ([5], [6]). To do this,

we use a model of MUR that is mostly derived from our model of MSpinc
R at the regular

representations. The desired map then follows from the fact that U(n) → Spinc(n, n) is

C2-equivariant. Most of the work in section 5 lies in showing that our definition of MUR

is actually equivalent to Real bordism, which we do by describing the C2-fixed points of

the Real vector bundle associated to a Real free U(n)-space (Lemma 5.8). In section 6, we

construct the map MSpinc
R → KUR in the category of orthogonal C2-spectra. Our model of

KUR follows the definition of KU in [7] in terms of spaces of graded ∗-homomorphisms of

C∗-algebras, except that we endow all relevant C∗-algebras with Real structures. We show

that our model of KUR represents Atiyah’s Real K-theory by showing that the associated

cohomology theory restricted to spaces with trivial C2-action is equivalent to KO.

1.2. Acknowledgements. There are several people we would like to thank for helping this

work come to fruition: Arun Debray, Cameron Krulewski, Natalia Pacheco-Tallaj, and Luuk

Stehouwer, for helping prove an earlier version of Corollary 4.7, which motivated our use of

a genus in the proof of Theorem 1.3; Hassan Abdallah, Mike Hill, Kiran Luecke, and Charles

Rezk, for helpful discussions relating to various aspects of this paper; and Dan Berwick-

Evans, Connor Grady, Cameron Krulewski, and Vesna Stojanoska, for helpful feedback on

an earlier draft. Finally, we would like to specially thank our advisors, Vesna Stojanoska and

Dan Berwick-Evans, respectively, for their many hours of guidance both before and during

the writing of this paper.

2. Preliminaries

First, we fix notation for the categories of spaces and G-spaces that we use in this paper. Let

T be the category of pointed, compactly generated, weak Hausdorff spaces enriched over itself,

and let T G be the T -enriched category of G-objects in T with equivariant maps. Lastly, let

TG be the T G-enriched category with the same objects as T G, but with TG(X, Y ) = T (X, Y )

which is made into a G-space by conjugation. Then we have T G(X, Y ) = TG(X, Y )
G.

2.1. Real structures. This section introduces what the word Real refers to in various con-

texts. In short, Real will always mean “equipped with a C2-action” when applied to objects,

and “respects C2-actions” when applied to morphisms. We use the word Real to restrict to the

context in which C is always endowed with its fixed C2-action given by complex conjugation.

For example, this forces Real structures on complex vector spaces to be conjugate-linear. We

often denote a Real structure (or C2-action) by x 7→ x̄, when it is clear which action we are

referring to.

Definition 2.1. The category of Real groups is the category of group objects in T C2 . If G

is a Real group, a Real G-space is a G-module object in T C2 . We will also call the objects

and morphisms of T C2 Real spaces and Real maps, respectively.
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Remark 2.2. Given a Real group G, a Real G-space is the same data as an object of T C2⋉G,

where C2 ⋉G is formed from the Real structure on G.

The following definition is more general than is needed here; we include it to indicate how

Real linear algebra over the complex numbers fits into a framework similar to the one above.

Definition 2.3. Let AbC2 be the symmetric monoidal category of C2-objects in abelian

groups under tensor product. A Real ring is a monoid object in AbC2 . If R is a Real ring, a

Real R-module is an R-module object in AbC2 .

Example 2.4. Complex conjugation gives C the structure of a Real ring. With this Real

structure, a Real C-module is a complex vector space together with a complex conjugate-

linear involution.

From this point on, the term Real vector space will mean Real C-module, where C is given the

fixed real structure of Example 2.4. Similarly, in any C-linear setting, such as C∗-algebras,

C is given this fixed Real structure.

Remark 2.5. LetX, Y ∈ TC2 . Recall that C2 acts on TC2(X, Y ) by conjugation, f(x) = f(x).

This turns AutTC2
(X) into a Real group and makes X into a Real AutTC2

(X)-space. In this

paper, we often use conjugation to define Real structures on spaces of specific kinds of

functions between Real spaces. In each case, the resulting action is well-defined. The main

observation is that in C-linear contexts, conjugation by C2 respects C-linearity while complex

conjugation of values does not.

Proposition 2.6. Let V,W be Real vector spaces. Then V ⊗W is a Real vector space via

v ⊗ w = v⊗w. If V,W are also Real G-spaces, on which G acts by linear maps, then V ⊗W

is a Real G-space via g · (v ⊗ w) = (gv)⊗ (gw).

Proof. We have g · (v ⊗ w) = gv ⊗ gw = g v ⊗ g w = g · (v ⊗ w). �

Proposition 2.7. Let V be a Real vector space. Then V ∼= V C2 ⊗ C as Real vector spaces,

where the Real structure on V C2 ⊗ C is given by complex conjugation on the second factor.

Proof. Define T : V → V C2 ⊗ C by T (v) = 1
2
(v + v)⊗ 1− ( i

2
(v − v))⊗ i. First, note that T

is well-defined, since (v + v), i(v − v) ∈ V C2 . Next, T is Real, since

T (v) =
1

2
(v + v)⊗ 1−

(
i

2
(v − v)

)
⊗ i

=
1

2
(v + v)⊗ 1 +

(
i

2
(v − v)

)
⊗ i

=
1

2
(v + v)⊗ 1− (

i

2
(v − v))⊗ i = T (v).

Lastly, T is an isomorphism, since T−1 : V C2 ⊗ C → V is given by T−1(v1 ⊗ 1 + v2 ⊗ i) =

v1 + iv2. �

The following proposition collects various routine facts that we use in this paper.
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Proposition 2.8. Let X be a Real G-space, let Y be a Real space, let Z be a Real right

G-space, and let ψ : H → G be a Real homomorphism.

(1) The action homomorphism ϕ : G→ AutTC2
(X) is Real.

(2) The Real space TC2(X, Y ) is a Real G-space via g · f = f ◦ g−1.

(3) Restriction by ψ makes X into a Real H-space.

(4) The space Z ×G X is a Real space via [z, x] = [z, x].

2.2. Equivariant orthogonal spectra. In this section, we recall some facts about C2-

spectra and fix our choice of model. For more details, we refer the reader to Hill, Hopkins,

and Ravenel [6] and [5], or Mandell and May [12]. Throughout, we work in the genuine

equivariant context. Our primary choice of model for this is the category of orthogonal

C2-spectra.

Given finite dimensional inner product spaces V,W , let O(V,W ) be the space of linear iso-

metric embeddings V → W , and let W − V be the vector bundle on O(V,W ) whose fiber

over ι : V → W is the orthogonal complement W − ιV . When V and W are orthogo-

nal C2-representations, O(V,W ) and W − V inherit compatible C2-actions. Let IC2 be the

T C2-enriched category whose objects are finite dimensional orthogonal C2-representation and

whose C2-space of morphisms is the Thom space

IC2(V,W ) = Thom(O(V,W ),W − V ).

Composition is then given by applying the Thom construction to the vector bundle map

(V3 − V2)× (V2 − V1) V3 − V1

O(V2, V3)×O(V1, V2) O(V1, V3).

Definition 2.9. An orthogonal C2-spectrum is a T C2-enriched functor

X : IC2 → TC2 .

Let SpC2 be the category of orthogonal C2-spectra and equivariant enriched natural trans-

formations between them. There is an adjunction,

Σ∞
C2

: T C2 ⇄ SpC2 : Ω∞
C2
,

where Σ∞
C2
X is the orthogonal C2-spectrum defined by V 7→ ΣVX . We let SC2 denote the C2-

sphere spectrum Σ∞
C2
S0. Let R ∈ IC2 denote the trivial 1-dimensional representation, σ ∈ IC2

be the 1-dimensional sign representation, and ρ = R⊕ σ be the regular C2-representation.

Definition 2.10. Given an orthogonal C2-spectrum X , a subgroup H ⊂ C2, and V ∈ IC2 ,

define the V th-stable H homotopy group to be

πH
V X = colim

n
πH
V ΩnρX(nρ).

This definition can be extended to virtual representations by defining

πH
V −WX = colim

n
πH
V ΩnρX(nρ+W ).
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Genuine equivariance endows these homotopy groups with the additional structure of a

Mackey functor πV−WX = π
( )
V−WX , as H varies.

Definition 2.11. A C2-Mackey Functor, M , consists of Abelian groups M(C2) and M(e),

together with group homomorphisms

(1)

M(C2)

M(e)

res tr

( )

satisfying:

(1) res(x) = res(x);

(2) tr(y) = tr(y);

(3) y = y;

(4) res(tr(y)) = y + y.

An isomorphism of C2-Mackey functors is a map of diagrams (1) such that each component

is an isomorphism.

Proposition 2.12. The category SpC2 together with weak equivalences given by π∗-isomorphisms

is a homotopical category1 which presents the genuine C2-stable homotopy category. This can

be refined to a model category however we will not need any specifics involving (co)fibrations.

Let SpBC2 denote the category of orthogonal spectra with C2-action (see [15]). Restricting

to the subcategory of trivial C2-representations in IC2 induces an equivalence of 1-categories

[5, Proposition A.19],

( )e : SpC2 → SpBC2 .

Definition 2.13. Let X be an orthogonal C2-spectrum. The image, Xe, under the map

( )e : SpC2 → SpBC2 is called the underlying spectrum of X .

Taking homotopy groups of the underlying spectrum recovers the trivial subgroup homotopy

groups of X , πe
∗(X) ∼= π∗(X

e), along with the induced C2-action. More care is required when

discussing the C2-homotopy groups πC2
∗ (X). The categorical fixed points functor

FC2 : SpC2 → Sp,

is given by

(FC2X)(n) = (X(Rn))C2 .

However, categorical fixed points does not preserve weak equivalences, as it can fail to cap-

ture the C2-homotopy groups of X . This can be fixed by taking an appropriate fibrant

replacement.

Definition 2.14. [15, p. 71] Let X be an orthogonal C2-spectrum. The C2-fixed points of

X is the orthogonal spectrum XC2 ∈ Sp given by (XC2)(n) = (ΩnσX(nρ))C2 .

1Recall that a homotopical category is a category with a class of weak equivalences satisfying the “two

out of six” property and containing all identity maps.
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Then we have πC2
∗ (X) ∼= π∗(X

C2) [15, Proposition 7.2]. Similarly, we could have modelled

Xe by

(Xe)(n) ∼= ΩnσX(nρ).

Levelwise inclusion of fixed points defines a map,

XC2 → Xe,

which upon taking homotopy groups induces the restriction map,

res : πC2
∗ (X) → πe

∗(X),

in the homotopy Mackey functor π∗X .

Remark 2.15. The categorical fixed points fit into a Quillen adjunction

TC2 : Sp⇄ SpC2 : FC2 ,

where the left adjoint comes from giving a spectrum the trivial C2-action and then passing

through the equivalence of 1-categories SpBC2 ≃ SpC2 . Deriving this adjunction allows us to

identify the cohomology theory represented by XC2 in terms of X .

Proposition 2.16. Let E∗ be the cohomology theory represented by XC2 , and let Y ∈ T .

Then viewing Y ∈ T C2 by giving it the trivial C2-action, from the above remark we have

En(Y ) ∼= [Σ∞
C2
Y,ΣnX ]C2 .

Now, we consider the multiplicative aspects of our model. Commutative ring structures in

the genuine equivariant setting is a rich subject and has been explored by Blumberg and

Hill [3], as well as by others. We will be interested in the complete N∞-algebras, also called

C2-E∞-ring spectra. The category of C2-E∞-ring spectra can be modeled using orthogonal

C2-spectra as follows. Day convolution equips SpC2 with the structure of a closed symmetric

monoidal category with monoidal unit given by SC2 . As discussed in [5, Section 2.1] and [3],

the category CAlg(SpC2) of commutative monoid objects in SpC2 models C2-E∞-ring spectra.

Further, by [14, Proposition 22.1] it follows that CAlg(SpC2) is equivalent to the category of

lax symmetric monoidal T C2-enriched functors IC2 → TC2 . This is the setting in which we

will address multiplicative questions.

Definition 2.17. A commutative orthogonal C2-ring spectrum is a lax symmetric monoidal

T C2-enriched functor IC2 → TC2 . A (C2-E∞-) map of commutative orthogonal C2-ring spectra

is a symmetric monoidal C2-equivariant enriched natural transformation.

As is discussed in [15, p. 77], the categorical and genuine fixed points are lax symmetric

monoidal functors. Thus, for a commutative orthogonal C2-ring spectrum X , the spectra

FC2X and XC2 inherit the structure of commutative monoids in Sp.

Proposition 2.18. There is a symmetric monoidal natural transformation,

FC2 → ( )C2 ,

from the categorical fixed points to the C2-fixed points.
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Such a natural transformation can be defined levelwise by letting

ι : Rn → nρ

be the inclusion of the trivial submodule inside of nρ, taking the composition

Snσ → IC2(R
n, nρ) → TC2(X(Rn), X(nρ)),

and then passing under adjunction to

X(Rn) → ΩnσX(nρ),

before finally taking fixed points.

3. The Real spin bordism spectrum

In this section, we construct MSpinc
R as a commutative monoid in orthogonal C2-spectra.

This mostly consists of equipping the constructions of Joachim in [7] with Real structures

and verifying C2-equivariance wherever it is relevant. The extra data comes from the Real

structures on the Clifford algebras Clp,q mentioned in Section 1, combined with the construc-

tions from Section 2.1.

Given an inner product space V , the Clifford algebra Cl(V ) is characterized by the following

universal property. For any linear map f : V → A to an R-algebra A such that2 f(v)2 = 〈v, v〉,

there is a unique extension to an algebra homomorphism f̃ in

V A

Cl(V ).

f

f̃

Let Cln = Cl(Rn), where Rn is given the standard inner product. The Clifford algebra is

a Z/2-graded algebra by specifying that V ⊂ Cl(V ) lies in the odd subspace. Accordingly,

the symbol ⊗ refers to the graded tensor product. In particular, the symmetry isomorphism

contains a sign,

V ⊗W
∼
−→W ⊗ V, v ⊗ w 7→ (−1)|v||w|w ⊗ v,

for v, w purely even or odd. With this symmetric monoidal structure, there is an isomorphism

Cl(V ⊕W ) ∼= Cl(V )⊗ Cl(W ). For V ∈ IC2 , the Clifford algebra Cl(V ) inherits an induced

C2-action by the universal property above, where C2 acts by algebra maps. We extend this

action to a Real structure on the complex Clifford algebra Cl(V ) := Cl(V )⊗ C by complex

conjugation on the C-factor and Proposition 2.6. Note that this C2-action on Cl(V ) preserves

the Z/2-grading (i.e. it is even), since it comes from an action on V . Lastly, fix the ∗-structure

on Cl(V ) to be the one generated by v∗ = v, for v ∈ V . Let Cln = Cl(Rn), where Rn is the

trivial C2-representation, and Clp,q = Cl(Rp,q), where Rp,q = Rp⊕Rq σ.

2see Remark 3.1
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Remark 3.1 (Clifford sign conventions). Sign conventions for Clifford algebras differ signifi-

cantly throughout the literature. The conventions we use are chosen to be easily comparable

to the ones in [7] and [9], whose results we use in this paper. Forgetting the Real structure,

the underlying complex C∗-algebra Cl(V ) agrees with the C∗-algebra denoted ClV in [7]. The

Real C∗-algebra Clp,q is isomorphic to the Real C∗-algebra denoted Cp,q in [9], as follows. Fix

generators v1, ..., vp, w1, ..., wq of Clp,q and ε1, ..., εp, e1, ..., eq of Cp,q, with

v2i = 1, w2
j = 1, ε2i = 1, e2j = −1,

vi = vi, wj = −wj , εi = εi, ej = ej ,

v∗i = vi, w∗
j = wj, ε∗i = εi, e∗j = −ej .

Then the homomorphism Clp,q → Cp,q defined by vi 7→ εi and wj 7→ iej is an isomorphism of

Real graded C∗-algebras.

Let L2(V ) be the L2-completion of the pre-Hilbert space of continuous functions V → C

with compact support. Remark 2.5 defines a Real structure on L2(V ), and Proposition 2.6

defines a Real structure on Cl(V )⊗ L2(V ). Here, we take L2(V ) to be Z/2-graded by even

and odd functions3. Then the induced Real structure on Cl(V ) ⊗ L2(V ) is also even. Let

B(Cl(V )⊗L2(V )) be the Real space of bounded operators on Cl(V )⊗L2(V ) equipped with

the strong ∗-topology and the Real structure from Remark 2.5.

Definition 3.2. Let UV ⊂ B(Cl(V ) ⊗ L2(V )) denote the graded unitary group of Cl(V ) ⊗

L2(V ), that is, the group consisting of unitary operators on Cl(V ) ⊗ L2(V ) that are either

grading preserving or grading reversing, and let Pinc(V ) ⊂ Cl(V ) be the group generated

under multiplication by unit vectors S(V ) ⊂ V and unit complex numbers U(1) ⊂ C.

Then the C2-actions on B(Cl(V ) ⊗ L2(V )) and Cl(V ) restrict to UV and Pinc(V ), re-

spectively, making them into Real groups. Since both C2-actions are grading preserv-

ing, they restrict to Real structures on the respective even subgroups, Ueven
V ⊂ UV and

Spinc(V ) ⊂ Pinc(V ). By Remark 2.5, the orthogonal group O(V ) is a Real group. Twisted

conjugation of Pinc(V ) on Cl(V ) restricts to a homomorphism ρV : Pinc(V ) → O(V ), defined

by ρV (g)(v) = (−1)|g|gvg−1.

Proposition 3.3. The homomorphism ρV is a Real homomorphism.

Proof. Let g ∈ Pinc(V ) and v ∈ V . Since the C2-action on Pinc(V ) is even, we have

ρV (g)(v) = ρV (g)(v) = (−1)|g|gvg−1 = (−1)|g|gvg−1 = (−1)|g|gvg−1 = ρV (g)(v).

�

Remark 2.5 also says that V is a Real O(V )-space, so Proposition 2.8 gives L2(V ) the structure

of a Real O(V )-space. By Propositions 2.8 and 3.3, L2(V ) becomes a Real Pinc(V )-space.

Left multiplication also makes Cl(V ) into a Real Pinc(V )-space, so Proposition 2.6 gives us

a Real Pinc(V )-action on Cl(V ) ⊗ L2(V ). Since Pinc(V ) acts on Cl(V ) ⊗ L2(V ) by unitary

3Here, even means f(−x) = f(x), and odd means f(−x) = −f(x).
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operators, we get an induced Real homomorphism (Proposition 2.8) iV : Pinc(V ) → UV .

Unwinding the definitions yields the formula,

iV (g)(v ⊗ f) = (gv)⊗ (f ◦ ρV (g)
−1),

as in [7]. This formula makes it clear that iV is even, so it restricts to a Real homomorphism

iV : Spinc(V ) → Ueven
V .

Thus, we get a Real Spinc(V )-action on Ueven
V by left multiplication.

Proposition 3.4. If V 6= 0, then the Spinc(V )-space Ueven
V is a model for the universal

Spinc(V )-principal bundle, ESpinc(V ).

Proof. Grading preserving unitary operators can be restricted to the even and odd subspaces

to obtain Ueven
V

∼= U((Cl(V )⊗L2(V ))even)×U((Cl(V )⊗L2(V ))odd), which is contractible by

Kuiper’s theorem [10]. The Spinc(V )-action on Ueven
V is free, since iV is injective. �

We will also use Ueven
V / Spinc(V ) to model BSpinc(V ). By Proposition 2.8, the associated

bundle γSpinc(V ) = Ueven
V ×Spinc(V )V inherits the structure of a Real space.

Definition 3.5. For V ∈ IC2 , define the Real space

MSpinc
R(V ) := Thom(γSpinc(V ))

to be the Thom space of the universal Spinc(V )-vector bundle, extending the Real structure

on γSpinc(V ) by fixing ∞.

In order to give MSpinc
R the structure of a C2-E∞-ring spectrum, we will realize it as a lax

symmetric monoidal functor on IC2 . To do this, we first note that given V,W ∈ IC2 , we get a

canonical (even) map TV,W : UV ×UW → UV⊕W , by taking the tensor product of operators,

since

(2)
Cl(V ⊕W )⊗ L2(V ⊕W ) ∼= (Cl(V )⊗ Cl(W ))⊗ (L2(V )⊗ L2(W ))

∼= (Cl(V )⊗ L2(V ))⊗ (Cl(W )⊗ L2(W )).

Similarly, given an isomorphism ι : V → W , we get an isomorphism ι̃ : Cl(V ) ⊗ L2(V ) →

Cl(W )⊗L2(W ), which induces a homomorphism Uι : UV → UW , defined by Uι(A) = ι̃Aι̃−1.

Furthermore, note that these assignments make U( ) into a functor with respect to isomor-

phisms. Similarly, T( , ) is a natural transformation.

Proposition 3.6. Given V,W ∈ IC2 of the same dimension, the map U: O(V,W ) →

Hom(UV ,UW ) defined above is C2-equivariant.

Proof. We have

Uι(A)(v ⊗ f) = Uι(A)(v ⊗ f)

= ι̃Aι̃−1(v ⊗ f)

= ι̃Aι̃
−1
(v ⊗ f)

= Uι(v ⊗ f).

�
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Now, let V,W ∈ IC2 , and n = dimW − dimV ≥ 0. We define the structure maps

IC2(V,W ) → TC2(MSpinc
R(V ),MSpinc

R(W )),

using the adjoint form

IC2(V,W ) ∧MSpinc
R(V )

σV,W

−−−→ MSpinc
R(W ),

by taking the Thomification of the vector bundle map

(W − V )× (Ueven
V ×Spinc(V )V ) Ueven

W ×Spinc(W )W

O(V,W )× BSpinc(V ) BSpinc(W ).

σ̃V,W

Informally, σ̃V,W is the map

((ι, w), [A, v]) ∈ (W − V )× (Ueven
V ×Spinc(V )V )

[TW−ιV,V (id, A), w + v] ∈ Ueven
W ×Spinc(W )W.

σ̃V,W

The issue with this formulation is that W − ιV is not an object of IC2 . In order to properly

define σ̃V,W , we make the C2-equivariant identification

W − V O(Rn⊕V,W )×O(n) R
n

O(V,W ) O(Rn⊕V,W )/O(n).

∼

∼

Definition 3.7. Define

σ̃V,W : (O(Rn⊕V,W )×O(n) R
n)× (Ueven

V ×Spinc(V )V ) → Ueven
W ×Spinc(W )W,

by

σ̃V,W ([ι, x], [A, v]) = [Uι(TRn,V (id, A)), ι(x+ v)].

Proposition 3.8. The map σ̃V,W is C2-equivariant.

Proof. We have

σV,W ([ι, x], [A, v]) = σV,W ([ι, x], [A, v]) = [Uι(TRn,V (id, A)), ι(x+ v)]

= [(Uι)(TRn,V (id, A)), ι(x+ v)]

= [Uι(TRn,V (id, A)), ι(x+ v)]

= [Uι(TRn,V (id, A)), ι(x) + ι(v)]

= σV,W ([ι, x], [A, v]).

�

Definition 3.9. Define σV,W : IC2(V,W )∧MSpinc
R(V ) → MSpinc

R(W ) as the Thomification

of σ̃V,W .
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To define the unit, note that Ueven
0 = ∗, so MSpinc

R(0) = S0.

Definition 3.10. Let η
MSpinc

R

0 : S0 → MSpinc
R(0) be the identity map on S0.

Definition 3.11. Let V,W ∈ IC2 . Define

µ
MSpinc

R

V,W : MSpinc
R(V ) ∧MSpinc

R(W ) → MSpinc
R(V ⊕W ),

as the Thomification of the map

(Ueven
V ×Spinc(V )V )× (Ueven

W ×Spinc(W )W ) → Ueven
V⊕W ×Spinc(V⊕W )(V ⊕W )

defined by ([A, v], [B,w]) 7→ [TV,W (A,B), v + w].

Note that µ
MSpinc

R

V,W is clearly C2-equivariant.

Proposition 3.12. The data (MSpinc
R, µ

MSpinc
R, η

MSpinc
R

0 ) defines a lax symmetric monoidal

enriched functor IC2 → TC2 , and hence, a C2-E∞-ring spectrum, MSpinc
R ∈ CAlg(SpC2).

Proof. Verifying functoriality of MSpinc
R is equivalent to showing that the following square

commutes

IC2(V2, V3) ∧ IC2(V1, V2) ∧MSpinc
R(V1) IC2(V2, V3) ∧MSpinc

R(V2)

IC2(V1, V3) ∧MSpinc
R(V1) MSpinc

R(V3).

id∧σV1,V2

σV2,V3

σV1,V3

This follows from the fact that both compositions are the Thomification of the same map of

bundles

(V3 − V2)× (V2 − V1)× (Ueven
V1

×Spinc(V1)V1) Ueven
V3

×Spinc(V3)V3

O(V2, V3)×O(V1, V2)× BSpinc(V1) BSpinc(V3),

φ

where φ takes

((ι2, v3), (ι1, v2), [A, v1]) ∈ (V3 − V2)× (V2 − V1)× (Ueven
V1

×Spinc(V1)V1)

to

[TV3−ι2ι1V1,V1(id, A), v3 + v2 + v1] ∈ Ueven
V3

×Spinc(V3)V3.

Naturality of µMSpinc
R is equivalent to commutativity of

(IC2(V1,W1) ∧MSpinc
R(V1)) ∧ (IC2(V2,W2) ∧MSpinc

R(V2)) MSpinc
R(W1) ∧MSpinc

R(W2)

(IC2(V1,W1) ∧ IC2(V2,W2)) ∧ (MSpinc
R(V1) ∧MSpinc

R(V2))

IC2(V1 ⊕ V2,W1 ⊕W2) ∧MSpinc
R(V1 ⊕ V2) MSpinc

R(W1 ⊕W2).
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Going around the top and then the right is the Thomification of the map

(W1−V1)×(W2−V2)×(Ueven
V1

×Spinc(V1)V1)×(Ueven
V2

×Spinc(V2)V2) → Ueven
W1⊕W2

×Spinc(W1⊕W2)(W1⊕W2),

given by

((ι1, w1), (ι2, w2), [A, v1], [B, v2]) 7→ [TW1,W2(TW1−ι1V1(id, A), TW2−ι2V2(id, B)), w1+v1+w2+v2].

While going around the left and then the bottom is the Thomification of the map

(W1−V1)×(W2−V2)×(Ueven
V1

×Spinc(V1)V1)×(Ueven
V2

×Spinc(V2)V2) → Ueven
W1⊕W2

×Spinc(W1⊕W2)(W1⊕W2),

given by

((ι1, w1), (ι2, w2), [A, v1], [B, v2]) 7→ [TW1⊕W2−ι1⊕ι2(V1⊕V2),V1⊕V2(id, TV1,V2(A,B)), w1+w2+v1+v2].

These two maps are equal by naturality of T . The associativity, unitality, and symmetry

conditions are all clear directly by the constructions. Thus, MSpinc
R is a lax symmetric

monoidal functor.

�

Proposition 3.13. The underlying spectrum of MSpinc
R is MSpinc.

Proof. We compare our construction to the one in Section 6 of [7]. Since the underlying

spectrum is defined by restricting to trivial C2-representations we suppose that V is a trivial

C2-representation. The following two maps of short exact sequences

1 Spinc(V ) Pinc(V ) Z/2 1

1 Ueven
V UV Z/2 1

iV iV =

and

1 U(1) Pinc(V ) O(V ) 1

1 U(1) UV PUV 1

= iV jV

allow us to identify γSpinc(V ) = Ueven
V ×Spinc(V )V ∼= PUV ×O(V )V , which shows that the un-

derlying space MSpinc
R(V ) is the same as the one denoted by MSpinc

V in [7]. Using this

identification, we get a map

kV : O(V )×O(V ) V
jV ×O(V )idV
−−−−−−−→ PUV ×O(V )V

∼
−→ Ueven

V ×Spinc(V )V.

The map η̃V : SV → MSpinc
R(V ) obtained by taking the Thom construction of kV is the

V -component of the lax monoidal natural transformation S → MSpinc playing the role of

the unit of the ring spectrum defined in [7]. In our model, the V -component of the ring

spectrum unit η
MSpinc

R

V : SV → MSpinc
R(V ) is obtained by combining the structure maps of
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Definition 3.9 with the functor unit ηMSpinc
R : S0 → MSpinc

R(0) from Definition 3.10. Specif-

ically, η
MSpinc

R

V is the Thomification of σ̃0,V : O(Rn, V ) ×O(n) R
n → Ueven

V ×Spinc(V )V , defined

above by σ̃0,V ([ι, x]) = [id, ι(x)]. Fixing a specific isomorphism ϕ : Rn ∼
−→ V , the diagram

O(Rn, V )×O(n) R
n Ueven

V ×Spinc(V )V

O(V )×O(V ) V PUV ×O(V )V,

σ̃0,V

ϕ̃

jV ×O(V )idV

∼=

where ϕ̃([ι, x]) = [ιϕ−1, ϕ(x)], commutes, since

(jV ×O(V ) idV )([ιϕ
−1, ϕ(x)]) = [jV (ιϕ

−1), ϕ(x)] = [id, (ιϕ−1)ϕ(x)] = [id, ι(x)].

Thus, η
MSpinc

R

V = η̃V . It is also evident that the multiplication maps are the same as those in

[7]. Thus, (MSpinc
R)

e = MSpinc. �

Remark 3.14. Another way to organize the data of a commutative orthogonal ring spectrum

is via the formalism of I -FSP’s [13]. This is the language that Joachim [7] uses; however, it

is not hard to see that our constructions agree with his when the models are compared.

4. The fixed points of MSpinc
R

Recall that the inclusion Spin(n) →֒ Spinc(n) factors through an isomorphism with the C2-

fixed points of Spinc(n) = Spinc(n, 0). In light of this, one might hope that the usual map

MSpin
u
−→ MSpinc witnesses MSpin as the C2-(homotopy) fixed points of MSpinc

R.

Spin(n) Spinc(n) MSpin MSpinc

 

Spinc(n)C2 . (MSpinc
R)

C2

∼=

u

ũ

In this section, we show that u does factor through ũ : MSpin → (MSpinc
R)

C2 as above, but

that ũ cannot be an equivalence (Corollary 4.7).

Lemma 4.1. For V ∈ IC2 with dimV ≥ 1, the space (Ueven
V )C2 is contractible.

Proof. Restricting a grading preserving operator to the even and odd subspaces yields,

(Ueven
V )C2 ∼= U(H0

V )
C2 ×U(H1

V )
C2 ,

where H0
V ,H

1
V are the even and odd parts of Cl(V ) ⊗ L2(V ), respectively, and U(H)C2 is

the group of Real unitary operators on the Real Hilbert space H. Since H ∼= HC2 ⊗C

(Proposition 2.7), U(H)C2 can be identified with the orthogonal group O(HC2) of the real

Hilbert space HC2 . By the real version of Kuiper’s theorem [10], O(HC2) is contractible,

which implies (Ueven
V )C2 is contractible. �

Definition 4.2. Let MSpin(n) := Thom((Ueven
Rn )C2 ×Spin(n) R

n), where Spin(n) is identified

with Spinc(n)C2 .
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Proposition 4.3. The spaces MSpin(n) form an orthogonal spectrum, with the usual struc-

ture maps, equivalent to MSpin.

Proof. By Lemma 4.1, the space (Ueven
Rn )C2 is contractible with a free Spin(n)-action, and thus

is a model for ESpin(n). From there, this is a standard Thom spectrum construction. For

example, one can follow the same steps taken in Section 3 with the obvious modifications. �

Definition 4.4. Let ũ(n) : MSpin(n) → MSpinc
R(R

n) be the Thomification of the composite

(Ueven
Rn )C2 ×Spin(n) R

n → Ueven
Rn ×Spin(n) R

n → Ueven
Rn ×Spinc(n)R

n .

induced by the inclusions (Ueven
Rn )C2 →֒ Ueven

Rn and Spin(n) →֒ Spinc(n).

By construction, the image of ũ(n) is contained in the C2-fixed points of MSpinc
R(R

n).

Proposition 4.5. The maps ũ(n) define a map of commutative orthogonal ring spectra

ũ : MSpin → (MSpinc
R)

C2 .

Proof. The maps ũ(n) define a symmetric monoidal natural transformation between commu-

tative monoids in Sp from MSpin to the categorical fixed points FC2 MSpinc
R. By Proposition

2.18, this induces a symmetric monoidal natural transformation to (MSpinc
R)

C2 . �

We now show that ũ is not an equivalence by proving Theorem 1.3.

4.1. Proof of Theorem 1.3. Suppose E is a genuine C2-spectrum satisfying conditions (1)-

(4) of Theorem 1.3. Under the isomorphisms in (1) and (2), the homotopy Mackey functor

π∗E consists of the data

MSpin∗ MSpinc
∗

res

tr

( ) ,

where ( ) is the C2-action in (3). Given any class α ∈ MSpinc
∗, the Mackey functor structure

(Definition 2.11) implies that the equation,

α + α = res(tr(α)),

holds. Then the commutative diagram in (4) implies that for any α ∈ MSpinc
∗, the oriented

bordism class uc∗(α+ α) must have a spin manifold as a representative. Thus, it is sufficient

to show there is some α ∈ MSpinc
∗ for which u

c
∗(α+α) has no spin representative. Recall the

Â-genus (see e.g. [11]),

MSpin∗ Z

MSO∗ Q,

Â

u∗

Â

and consider the class

γ = [CP2] ∈ MSpinc
4 .

We know that Â(uc∗(γ)) = −1/8 ([11]). By the discussion above, the class γ + γ must be in

the image of MSpin4. Then Â(u
c
∗(γ + γ)) =: n ∈ Z, so

Â(uc∗(γ)) =
1

8
+ n.
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Now consider the class

α = γ2 ∈ MSpinc
8 .

By multiplicativity of both the C2-action and Â, we see that

Â(uc∗(α + α)) =
1

64
+

1

64
+

2n

8
+ n2 =

8n + 1

32
+ n2,

which is not an integer, since 32 never divides 8n + 1. Thus, α + α is not in the image of

res : MSpin∗ → MSpinc
∗, which is a contradiction. This completes the proof of Theorem 1.3.

Remark 4.6. As can be seen from the proof, condition (4) in Theorem 1.3 can be loosened

to just requiring that the map res : MSpin∗ → MSpinc
∗ preserves the Â-genus.

Corollary 4.7. If there is an equivalence MSpin
∼
−→ (MSpinc

R)
C2 , then the composite,

MSpin
∼
−→ (MSpinc

R)
C2 → MSpinc,

does not take a spin manifold to its underlying spinc manifold on homotopy groups. It follows

that ũ of Proposition 4.5 is not an equivalence.

Remark 4.8. Recall that the geometric fixed points of Real bordism is unoriented bordism,

ΦC2 MUR ≃ MO. In analogy, one might expect an equivalence between ΦC2 MSpinc
R and

MSpin, but Proposition 5.1 (below) implies that such an equivalence would induce a ring

map MO → MSpin (by lax monoidality of ΦC2), which doesn’t exist. Similarly, MSpin 6≃

ΦC2((MSpinc
R)

h).

5. A Real orientation of Real spin bordism

In this section, we show that the complex orientation of MSpinc can be refined to a Real

orientation of MSpinc
R.

Proposition 5.1. There is a map of C2-E∞-ring spectra MUR → MSpinc
R, where MUR

denotes the Real bordism spectrum. Thus, MSpinc
R is Real oriented.

The next two subsections are dedicated to proving Proposition 5.1.

5.1. Real spectra. We begin by briefly recalling another model for C2-spectra which will be

convenient for constructing the Real orientation. This model is not needed anywhere else in

this paper. For all details, we refer the reader to the appendix of Hill, Hopkins, and Ravenel

[5, Section B.12] or Schwede [15, Chapter 2]. Since a C2-spectrum is determined by its values

on multiples of a regular representation, we can instead define C2-spectra by indexing over

this smaller sequence of representations. This idea is made precise as follows. Define a T C2-

enriched category IR with objects Rn =: n, and with the C2-mapping space IR(n,m) defined

as the Thom space of the difference bundle associated to the complexifications,

IR(n,m) = Thom(U(Cn,Cm);Cm−Cn),

with C2-action given by complex conjugation.

Definition 5.2. The category of Real spectra, SpR, is the category of T C2-enriched functors

IR → TC2 .
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Given X ∈ SpR, k ∈ Z, and a subgroup H ⊂ C2, define the homotopy group

πH
k (X) = colim

n
πH
k+nρ(X(n)).

Define a weak equivalence between Real spectra to be a map which induces an isomorphism

on homotopy groups. This homotopical category structure can be refined to a model category

[6]. Define a T C2-enriched functor i : IR → IC2 by

n 7→ nρ = Rn ⊗ρ,

and the natural inclusion on mapping C2-spaces.

Proposition 5.3. [5, Proposition B.226] There is a Quillen equivalence,

i! : SpR ⇄ SpC2 : i∗,

given by left Kan extension along i and precomposition by i respectively.

The left adjoint is also strongly symmetric monoidal, so we also get a Quillen equivalence

between categories of commutative monoids [5, Proposition B.248],

i! : CAlg(SpR)⇄ CAlg(SpC2) : i∗.

Because of this Quillen equivalence, C2-E∞-ring maps can be modelled by lax symmetric

monoidal natural transformations between lax symmetric monoidal functors out of IR.

5.1.1. MUR and Real orientations. As is discussed in [5, Section B.12] and [15, Chapter 2],

the most natural way to construct MUR as a C2-E∞-ring spectrum is by constructing it as

a commutative monoid object in Real spectra and then applying the Quillen equivalence

above. This can be done by equipping the spaces MU(n) with the complex conjugation

actions, which defines an object MUR ∈ CAlg(SpR). As in [5, Definition B.251], MUR is

then defined as a commutative orthogonal C2-ring spectrum by applying i! to a cofibrant

replacement of MUR in CAlg(SpR).

Remark 5.4. For X ∈ CAlg(SpC2), Real E∞-orientations of X are represented by commu-

tative ring maps MUR → X . By the Quillen equivalence in Proposition 5.3, it is equivalent

to consider lax symmetric monoidal natural transformations MUR → i∗(X) in SpR, where

i∗(X) is the Real spectrum obtained from X by restricting to regular representations.

5.2. MSpinc
R is Real oriented. Recall that the homomorphism ι× det : U(n) → SO(2n)×

U(1) lifts to a homomorphism ϕ(n) : U(n) → Spinc(2n). Since ι is injective, ϕ(n) is also

injective. Furthermore, observe that ϕ(n) is actually a Real homomorphism of Real groups

ϕ(n) : U(n) → Spinc(nρ). By Proposition 3.4, the U(n)-space Ueven
nρ is a model for EU(n) as

a Real U(n)-space. The associated bundle γU(n) = Ueven
nρ ×U(n) C

n then also inherits a Real

structure and the identity map on Ueven
nρ ×Cn = Ueven

nρ ×(nρ) descends to a Real map of Real

vector bundles γϕ(n) : γU(n) → γSpinc(nρ).

Definition 5.5. Define MU ′
R(n) to be the Thom space of γU(n), with its induced Real

structure, and let Mϕ(n) : MU ′
R(n) → MSpinc

R(nρ) be the Thomification of γϕ(n).
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Proposition 5.6. The Real spaces MU ′
R(n) (with the usual structure maps) define a lax

symmetric monoidal enriched functor MU ′
R : IR → TC2 , and thus, MU ′

R ∈ CAlg(SpR).

Proof. This is a standard Thom spectrum construction, which is analogous to the construc-

tion in Section 3. �

Proposition 5.7. The maps Mϕ(n) define a map of commutative monoids

Mϕ : MU ′
R → i∗ MSpinc

R

in SpR.

Proof. This follows from another standard Thom spectrum argument, using the fact that the

squares,

U(n) Spinc(nρ) U(n)×U(m) Spinc(nρ)× Spinc(mρ)

and

U(n+ 1) Spinc((n+ 1)ρ) U(n +m) Spinc((n+m)ρ),

commute. �

The last step we need in order to show that MSpinc
R is Real oriented is to show that MU ′

R

is equivalent to MUR. By construction, we know that the space MU ′
R(n) is equivalent

to MU(n). However, it is not obvious that the C2-action we constructed on MU ′
R(n) is

equivalent to the complex conjugation action on MU(n). The rest of this section is devoted

to showing that our construction does model MU with complex conjugation.

Lemma 5.8. IfX and Y are (right and left, respectively) Real U(n)-spaces, with U(n) acting

freely on X , then the C2-fixed points of X ×U(n) Y is given by the space

(X ×U(n) Y )
C2 ∼= XC2 ×O(n) Y

C2 .

Proof. Define the map

φ : XC2 ×O(n) Y
C2 → (X ×U(n) Y )C2 ,

to be the one induced by the inclusions XC2 →֒ X and Y C2 →֒ Y . That is, we have that

φ([x, y]O(n)) = [x, y]U(n). Here the notation [x, y]G is referring to the class represented by

(x, y) in X ×G Y . First, we show injectivity. Suppose φ([x0, y0]O(n)) = φ([x1, y1]O(n)). Then

there exists U ∈ U(n), such that

(x0, y0) = (x1U
∗, Uy1).

But since x0, x1 are fixed by C2 we get

x1U
∗ = x0 = x0,= x1U

∗
= x1U

∗
.

Thus, since G acts freely on X , we must have that U = U . So U ∈ O(n) and

[x0, y0]O(n) = [x1, y1]O(n).
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Next, we show surjectivity. Let [x, y]U(n) ∈ (X ×U(n) Y )
C2 . Then there exists U ∈ U(n) such

that

(x, y) = (xU∗, Uy).

Observe that from x = xU∗, we obtain

x = xU∗ = xU∗ = xUT ,

by taking conjugates. However, if we instead acted by U on both sides of x = xU∗, we would

obtain xU = x. By freeness of the action of U(n) on X , we must have that U = UT , so

U is symmetric. Then we may choose an S ∈ U(n) such that S2 = U and ST = S. This

can be done by diagonalizing U and choosing a square root for each eigenvalue of U [17,

Theorem 5.12]. Now consider the element

(w, z) = (xS∗, Sy).

By construction, we have that

[w, z]U(n) = [x, y]U(n).

Observe that both w and z are fixed points, since

w = xS∗ = xS∗ = xS = xU∗S = xS∗ = w,

and

z = Sy = Sy = S∗y = S∗Uy = Sy = z.

It follows that [x, y]U(n) is in the image of φ. Continuity of the inverse is then immediate

from the fact that open sets in both the source and the target can be represented by the set

of orbits of an open set in XC2 × Y C2 . �

Proposition 5.9. There is a weak equivalence in CAlg(SpR),

MU ′
R ≃ MUR.

Proof. By construction, we know that we have a nonequivariant homotopy equivalence

MU ′
R(n) ≃ MU(n) = MUR(n),

but we need to verify that the C2-action that we have defined on MU ′
R(n) is equivalent

to complex conjugation. Recall that complex conjugation on the universal complex vector

bundle γn = EU(n)×U(n)C
n over BU(n) defines a universal n-dimensional Real vector bundle

[4]. Then the Real bundle Ueven
nρ ×U(n)C

n → Ueven
nρ /U(n), induces a map of Real vector

bundles which fits into a pullback diagram of C2-spaces

(3)

Ueven
nρ ×U(n)C

n EU(n)×U(n) C
n

Ueven
nρ /U(n) BU(n).

We define

θ : MU ′
R → MUR,

by letting

θn : MU ′
R(n) → MUR(n),
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be the C2-equivariant map given by Thomification of the map of total spaces,

βn : Ueven
nρ ×U(n)C

n → EU(n)×U(n) C
n,

in our map of Real vector bundles. We will verify that θn is an equivalence of C2-spaces.

To do this, we first observe that θn is an equivalence on underlying spaces. Since βn fits

into the pullback diagram of complex vector bundles (3), the map on base spaces must be a

homotopy equivalence, since this pullback square classifies that Ueven
nρ ×U(n) C

n is a model for

the universal n-dimensional complex vector bundle. Thus, the map on Thom spaces must

also be an equivalence. On fixed points, we use Lemma 5.8 (once on the total space and once

on the base space) to observe that the real vector bundle

(Ueven
nρ ×U(n) C

n)C2 → (Ueven
nρ /U(n))C2 ,

can be identified with

(Ueven
nρ )C2 ×O(n) R

n → (Ueven
nρ )C2/O(n).

Then using the fact that taking fixed points preserves pullback squares, we see that βC2
n fits

into a pullback square giving a map of real vector bundles

(Ueven
nρ )C2 ×O(n) R

n EO(n)×O(n) R
n

(Ueven
nρ )C2/O(n) BO(n).

By Lemma 4.1, (Ueven
nρ )C2 is a contractible space with a free O(n)-action, so this pull-

back square classifies the universal real vector bundle on the model of BO(n) given by

(Ueven
nρ )C2/O(n). Thus, the map on Thom spaces, θC2

n , is an equivalence. We conclude that

θn is an equivalence of C2-spaces for every n. Monoidality and naturality of this construction

are clear, so the maps θn give an equivalence

θ : MU ′
R ≃ MUR

in CAlg(SpR). �

This completes the proof of Proposition 5.1.

6. A Real spin orientation of Real K-theory

In this section, we refine the Atiyah–Bott–Shapiro spinc orientation of KU ([2], [7]) to a

C2-E∞-map from MSpinc
R to Atiyah’s Real K-theory. By Proposition 4.5, this recovers the

Atiyah–Bott–Shapiro spin orientation of KO as an E∞-map as well. We start by adapting

the construction of KU in [7] (for trivial G) to a model for Real K-theory as a C2-E∞-ring

spectrum, KUR. Due to the adaptability of Kasparov’s KK-theory to the setting of Real

C∗-algebras, our modifications consist of equipping all relevant C∗-algebras with appropriate

Real structures. Following [7], we implicitly use the formalism of IC2-FSP’s [13] for ease of

comparison of our constructions.
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Let s = C0(R) be the Z/2-graded C∗-algebra of continuous functions R → C vanishing at

infinity, graded by even and odd functions. We equip s with a Real structure defined by

complex conjugation on values.

Proposition 6.1. The C∗-algebra s is generated by the functions a, b ∈ s defined by

a(t) =
1

1 + t2
and b(t) =

t

1 + t2
.

Given a Z/2-graded Hilbert space H, let K(H) denote the Z/2-graded C∗-algebra of compact

operators on H. For V ∈ IC2 , let KV = K(L2(V )). Then Remark 2.5 gives KV a Real

structure, and Proposition 2.6 gives Cl(V ) ⊗ KV a Real structure. If A,B are any Real

Z/2-graded C∗-algebras, then Remark 2.5 also makes the space of even ∗-homomorphisms

C∗
gr(A,B) into a Real space.

Definition 6.2. For V ∈ IC2 , define the Real space

KUR(V ) := C∗
gr(s,Cl(V )⊗KV ).

Remark 6.3. For Hilbert spaces H1,H2, there is a canonical isomorphism

(4) K(H1)⊗K(H2) ∼= K(H1⊗H2).

Combining this with the isomorphism Cl(V )
∼
−→ K(Cl(V )) given by Clifford multiplication,

yields a canonical isomorphism

(5) K(Cl(V )⊗ L2(V )) ∼= Cl(V )⊗KV .

Each of the isomorphisms above respect the Real structures obtained from the constructions

in Section 2.1, so the isomorphism in (5) respects the Real structures as well. Hence, we may

identify the Real spaces KUR(V ) = C∗
gr(s,K(Cl(V )⊗ L2(V ))).

To construct the multiplication maps µKUR

V,W , notice that there is a coassociative and cocom-

mutative comultiplication on s,

∆: s = C0(R)
∆̃
−→ C0(R

2)
m−1

−−→ C0(R)⊗ C0(R) = s⊗ s,

where ∆̃(a)(x, y) =
1

1 + x2 + y2
, ∆̃(b)(x, y) =

x+ y

1 + x2 + y2
, and m(f ⊗ g)(x, y) = f(x)g(y).

If we endow C0(R
2) with the Real structure given by complex conjugation on values, then it

is clear that ∆ is Real.

Definition 6.4. Given Real Z/2-graded C∗-algebras A,B, define the Real map

⋆ : C∗
gr(s, A) ∧ C

∗
gr(s, B) → C∗

gr(s, A⊗ B)

to be the composite of Real maps

C∗
gr(s, A) ∧ C

∗
gr(s, B)

⊗
−→ C∗

gr(s⊗ s, A⊗ B)
∆∗

−→ C∗
gr(s, A⊗B).

Definition 6.5. Let V,W ∈ IC2 . Define the Real map

µKUR

V,W : KUR(V ) ∧KUR(W ) → KUR(V ⊕W ),

via the ⋆ in Definition 6.4 with A = K(Cl(V )⊗ L2(V )) and B = K(Cl(W )⊗ L2(W )), where

we use the identifications in (5), (4), and (2).
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Next, we will define the unit, ηKUR, using functional calculus.

Definition 6.6. For V ∈ IC2 , define fcV : V → C∗
gr(s,Cl(V )), as follows: for v ∈ V ,

fcV (v)(a) =
1

1 + |v|2
and fcV (v)(b) =

v

1 + |v|2
.

Proposition 6.7. The map fcV is C2-equivariant.

Proof. On generators,

fcV (v)(a) = fcV (v)(a) = fcV (v)(a) = fcV (v)(a) = fcV (v)(a),

and

fcV (v)(b) = fcV (v)(b) = fcV (v)(b) =
v

1 + |v|2
=

v

1 + |v|2
= fcV (v)(b).

�

Since fcV (v) → 0 as v → ∞, we get an induced C2-equivariant map

βV : SV → C∗
gr(s,Cl(V ))

of Real spaces. Let P
e−|·|2 ∈ KV be the projection on the Gaussian e−|·|2 ∈ L2(V ).

Definition 6.8. Define pV ∈ C∗
gr(s,KV ) by

pV (f) = f(0)P
e−|·|2 ,

i.e. the composite

s
eval0−−→ C

P
e−|·|2

−−−−→ KV .

Note that pV is invariant with respect to the Real structure of C∗
gr(s,KV ). Then βV and pV

can be combined to obtain a Real map

ηKUR

V : SV → KUR(V ),

defined as the composite

SV ∼= SV ∧ S0 βV ∧pV−−−−→ C∗
gr(s,Cl(V )) ∧ C∗

gr(s,KV )
⋆
−→ C∗

gr(s,Cl(V )⊗KV ) = KUR(V ).

Proposition 6.9. The data (KUR(V ), µ
KUR , ηKUR) define a commutative orthogonal C2-ring

spectrum, KUR, with underlying spectrum KU.

Proof. Nonequivariantly, all of our constructions agree with those of [7], so the only additional

content here is the fact that µKUR

V,W and ηKUR

V are C2-equivariant, for V,W ∈ IC2 . This was

shown above as each map was constructed. �

Proposition 6.10. The C2-spectrum KUR represents Atiyah’s Real K-theory.

Proof. Since we know that the underlying spectrum of KUR is KU it is sufficient to show

that the C2-fixed points of KUR is KO. Let X ∈ T ⊂ T C2 , and set Sp,q = SRp,q

. By Lemma

5.8 of [7], there is a homeomorphism of spaces,
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TC2(S
p,q ∧X,KUR(R

p+n,q)) = TC2(S
p,q ∧X,C∗

gr(s,Clp+n,q ⊗KRp+n,q))

∼= C∗
gr(s, C0(S

p,q ∧X)⊗ Clp+n,q ⊗KRp+n,q)

∼= C∗
gr(s, C0(X)⊗ C0(S

p,q)⊗ Clp,q ⊗Cln ⊗KRp+n,q),

which is also clearly C2-equivariant. Recall that the category of Real C∗-algebras is equivalent

to the category of real C∗-algebras via fixed points in one direction and complexification in

the other [8]. Thus, taking fixed points yields

T C2(Sp,q ∧X,KUR(R
p+n,q)) ∼= C∗

gr(s, C0(X)⊗ C0(S
p,q)⊗ Clp,q ⊗Cln ⊗KRp+n,q)C2

∼= C∗
gr(s

C2 , C0(X)C2 ⊗ C0(S
p,q)C2 ⊗ (Clp,q)

C2 ⊗ Cln⊗(KRp+n,q)C2).

Let KKO denote Kasparov’s real KK-functor and let KKR denote Kasparov’s “Real” KK-

functor [9]. By the real version of the main theorem in [16], we have

π0C
∗
gr(s

C2 , A⊗ (KRp+n,q)C2) ∼= KKO(A),

so taking homotopy classes, we get

[Sp,q ∧X,KUR(R
p+n,q)]C2

∼= KKO(C0(X)C2 ⊗ C0(S
p,q)C2 ⊗ (Clp,q)

C2 ⊗ Cln)

∼= KKR(C0(X)⊗ C0(S
p,q)⊗ Clp,q ⊗Cln),

using the equivalence of real C∗-algebras and Real C∗-algebras. By Kasparaov’s Real Bott

periodicity [9],

KKR(A) ∼= KKR(C0(S
V )⊗ Cl(V )⊗ A),

we have
KKR(C0(X)⊗ C0(S

p,q)⊗ Clp,q ⊗Cln) ∼= KKR(C0(X)⊗ Cln)

∼= KKO(C0(X)C2 ⊗ Cln).

Now, we use the fact that the constructions in [7], when applied to real C∗-algebras, represent

KO-theory, i.e. the spaces KO(n) := C∗
gr(s

C2 ,Cln⊗(KRn)C2) form a spectrum (in a way

analogous to how we defined KUR) representing KO. Since C2 acts trivially on X , C0(X)C2

is the algebra of real-valued continuous functions on X , so

KKO(C0(X)C2 ⊗ Cln) ∼= [X,C∗
gr(s

C2 ,Cln⊗(KRn)C2)]

∼= [X,KO(n)].

By putting the above isomorphisms together and taking a colimit, we find that

KU∗
R(X) ∼= KO∗(X),

for all X with trivial C2-action. By Proposition 2.16, this implies (KUR)
C2 ≃ KO, which

completes the proof. �

We proceed to construct the Real spin orientation of KUR. In the following definition, we

use the identification in Remark 6.3 to view ηKUR

V as a map SV → C∗
gr(s,K(Cl(V )⊗ L2(V )).

Definition 6.11. Define α̃V : Ueven
V ×V → C∗

gr(s,K(Cl(V )⊗ L2(V )) by

α̃V (A, v) = (−1)|A|AηKUR

V (v)A−1.



REAL SPIN BORDISM AND ORIENTATIONS OF TOPOLOGICAL K-THEORY 25

Proposition 6.12. The map α̃V in Definition 6.11 induces a C2-equivariant map

αV : MSpinc
R(V ) → KUR(V )

Proof. Let (A, v) ∈ Ueven
V ×V, g ∈ Spinc(V ), and s ∈ s. Then

α̃V (Ag
−1, gv)(s) = (−1)|A·g−1|(A · g−1)ηKUR

V (g · v)(s)(A · g−1)−1

= (−1)|A|AiV (g
−1)ηKUR

V (ρV (g)v)(s)iV (g)A
−1

= (−1)|A|AiV (g
−1)ηKUR

V ((−1)|g|gvg−1)(s)iV (g)A
−1.

Now let w ⊗ f ∈ Cl(V )⊗ L2(V ). For s = a ∈ s,

iV (g
−1)ηKUR

V (gvg−1)(a)iV (g)(w ⊗ f) = iV (g
−1)ηKUR

V (gvg−1)(a)(gw ⊗ f ◦ ρV (g)
−1)

= iV (g
−1)

(
1

1 + |gvg−1|2
gw

)
⊗ P

e−|·|2 (f ◦ ρV (g)
−1)

= g−1

(
1

1 + |v|2
gw

)
⊗ P

e−|·|2 (f ◦ ρV (g)
−1 ◦ ρV (g))

=

(
1

1 + |v|2
w

)
⊗ P

e−|·|2 (f) = ηKUR

V (v)(a)(w ⊗ f).

So α̃V (Ag
−1, gv)(a) = α̃V (A, v)(a). For s = b ∈ s,

iV (g
−1)ηKUR

V (gvg−1)(b)iV (g)(w ⊗ f) = iV (g
−1)

(
gvg−1

1 + |gvg−1|2
gw

)
⊗ P

e−|·|2 (f ◦ ρV (g)
−1)

= g−1

(
gvg−1

1 + |v|2
gw

)
⊗ P

e−|·|2 (f ◦ ρV (g)
−1 ◦ ρV (g))

=

(
v

1 + |v|2
w

)
⊗ P

e−|·|2 (f) = ηKUR

V (v)(b)(w ⊗ f).

Thus, α̃V (Ag
−1, gv) = α̃V (A, v), which means αV is well-defined on Ueven

V ×Spinc(V )V . We can

extend αV to ∞ by 0, since ηKUR

V (∞) = 0; thus, αV : MSpinc
R(V ) → KUR(V ) is well-defined.

For C2-equivariance, we note that ηKUR

V is C2-equivariant, so we see that

α([A, v]) = (−1)|A|AηKUR

V (v)A
−1

= (−1)|A|AηKUR

V (v)A
−1

= αV ([A, v]),

for [A, v] ∈ MSpinc
R(V ). �

Proposition 6.13. The maps αV define a map of commutative orthogonal C2-ring spectra,

α : MSpinc
R → KUR .

Proof. By the previous proposition we showed that each component, αV , is equivariant. It

only remains to check naturality and monoidality, but these follow from Joachim [7], since

our constructions are identical to his on underlying spaces. �

It is shown in [7] that on underlying spectra, α refines the Atiyah–Bott–Shapiro spinc orien-

tation of KU [2].
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Corollary 6.14. Taking C2-fixed points, the map α above induces a map of E∞-ring spectra,

MSpin → KO,

refining the Atiyah–Bott–Shapiro spin orientation of KO [2].

Proof. The map follows from Proposition 6.13, Proposition 4.5, and (KUR)
C2 ≃ KO. To

see that it does indeed refine the Atiyah–Bott–Shapiro orientation, recall that the KO-

cohomology class associated to a map MSpin(n) → KUR(R
n) arises by taking fixed points

(= “real points”) in the category of Real C∗-algebras (see the proof of Proposition 6.10).

The result then follows from the proof in [7], together with the observation that the spinc

Atiyah–Bott–Shapiro Thom class associated to a spin vector bundle is the complexification

of its spin Thom class. �

This completes the proof of Theorem 1.1.
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