
© 2024 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

Virtual Psychedelia

Jacob Yenney , Weichen Liu , Ying C. Wu ,

Fig. 1: A view from within a distorted Menger sponge fractal

Abstract—We present an approach to designing 3D Iterated Function Systems (IFS) within the Unity Editor and rendered to VR in
real-time. Objects are modeled as a hierarchical tree of primitive shapes and operators, editable using a graphical user interface
allowing artists to develop psychedelic scenes with little to no coding knowledge, and is easily extensible for more advanced users to
add their own primitive shapes and operators.

Index Terms—Implicit surfaces, Sphere tracing, Constructive solid geometry, Iterated function systems

1 INTRODUCTION

The system presented in this paper is a part of a larger project exploring
the therapeutic benefits of virtual psychedelic visual experiences. We
aimed to create a library of psychedelically styled VR scenes, capable
of eliciting the sensation of altered perception and feelings of awe
and self-transcendence classically associated with psychedelic agents
(5-HT2A receptor antagonists). To achieve this aim, we sought to
create immersive visualizations suitable for adaptive control by features
of a user’s real–time brain activity (measured noninvasively through
electroencephalography (EEG)). By eliciting patterns of brain activity
that typically occur during psychedelic experiences, it is hoped that
some of the phenomenology of these experiences will be reproduced as
well.

Designing a visualization that simulates hallucination, however, is
a non-trivial problem. It must prove sufficiently engaging to avoid
interference from mind wandering or boredom, while at the same time,

• Jacob Yenney, Weichen Liu, and Ying Wu are with UC, San Diego.
E-mail: {jyenney | wel008 | ycwu}@ucsd.edu

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

it must also be sufficiently detached from everyday patterns of meaning
in order to open the possibility for feelings of self-transcendence and
awe. Fractal-based visualizations are an ideal candidate for this purpose,
as they can be modulated by EEG dynamics, appear locally detailed to
keep the user’s attention, and can be made to appear infinite through
domain repetition. On the other hand, however, implementing fractal-
based scenes in VR can be challenging because existing software for
rendering various 3D fractals do not support VR or are not easily
adapted to our use case. Here we will focus on our work rendering
implicit surfaces to create fractal visualizations.

2 RENDERING

2.1 Background
Implicit surface rendering is a widely explored topic in computer graph-
ics, often characterized by its low memory footprint and visually simple
algorithm for rendering. A signed distance function (SDF) f : R3→ R,
returns the signed distance to the implicit surface it describes from
some point in space. The surface it describes lies along the points
{x ∈ R3| f (x) = 0}. To render such a surface, we can cast a ray from
our camera origin, o, through each pixel of the screen. We can query
the position in space along a ray at distance t using the parameterized
ray function r(t) = o+d ∗t where d is the ray direction. Then rendering
the surface can be done by finding the roots of f (r(t)) from t > 0 to
some maximum distance b < In f inity. If no root exists, this means

1

ar
X

iv
:2

40
5.

00
93

8v
1

 [
cs

.G
R

]
 2

 M
ay

 2
02

4

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/
https://orcid.org/0009-0002-7008-0694
https://orcid.org/0000-0002-8576-6130
https://orcid.org/0000-0002-9382-8805

the ray does not intersect with any surface in the scene. In this case,
the pixel can be discarded or colored by sampling a skybox texture
which is a technique used in both VR and traditional 3D rendering to
create an illusion of distant background scenery. Sphere tracing [4]
developed by John C. Hart is a common method for rendering such
surfaces. Also frequently referred to as raymarching, this method is
commonly used on Shadertoy, a website dedicated to creating various
scenes of impressive detail interactively using just a fragment shader.
Sphere tracing works by querying the SDF at the origin of the ray, and
traveling along the ray the distance returned. This is the maximum
distance guaranteed not to contain an intersection with the surface. This
is repeated until the distance falls below a minimum hit threshold or the
total distance traveled exceeds the desired maximum distance. Modern
methods such as Enhanced Sphere Tracing [5] and Segment Tracing [2]
have been developed with the aim of accelerating the processes by
stepping further than the distance queried to reduce the total number
of times the SDF needs to be computed. These methods, however, are
more complex to implement and require extra computation to deter-
mine a safe overstepping distance, resulting in minimal performance
increases for many cases.

Algorithm 1: Basic sphere tracing algorithm

t← min_t;
i← 0;
while i≤MAX_ST EPS do

d← map(o+d ∗ t);
if d ≤ min_t then

break ; /* Hit Scene */
end
t← t +d;
if t ≥ max_t then

break ; /* Missed Scene */
end

end

2.2 Implementation
Our end use case is real time virtual reality rendering where a consistent
high frame rate is essential for user comfort. We chose to implement
our renderer as a compute shader in Unity using sphere tracing for its
performance and simplicity. We additionally implemented the discon-
tinuity reduction and dynamic epsilon selection for shadow rays, as
described in Enhanced Sphere Tracing [5]. Furthermore, we split our
sphere tracing into two sections, a depth pass and coloring pass. The
depth pass is further split into several passes of increasing resolution,
each sampling the previous depth information to use as a starting point
– an optimization introduced by [7]. Afterwards, the coloring pass
samples this depth value and determines which object was hit. Lighting
is computed using the Blinn-Phong reflection model with soft shadows
computed using the method introduced in a GDC talk by Sebastian
Aaltonen [1].

3 SCENE CONSTRUCTION

3.1 Primitives and Operators
Designing a psychedelic scene in our system consists of creating a
base shape using constructive solid geometry (CSG) primitives and
operators (see Fig. 2), then defining a sequence of rotations and folds
to apply to create an IFS from the base shape. Inigo Quilez, founder of
Shadertoy, has published a comprehensive article on his personal site
about signed distance functions (SDFs) for a wide range of basic 3D
shapes as well as methods for combining these primitives using boolean
operations and smooth blending operators [6]. We utilized the primitive
shapes, such as spheres, boxes and tori, and operators described in
this articles as a starting point for the ones supported by our renderer.
These primitive shapes can then be blended together using boolean and
smooth operators to create new, composite shapes. Génevaux et al. [3]
demonstrate creating a tree of primitives and operators to generate

Fig. 2: Diagram of a model tree. Nodes are primitive shapes, edges are
the operators used to compose the primitives

Fig. 3: Structuring objects in Unity’s scene hierarchy creates model tree
used by the renderer

terrain features. Models in our system create a similar tree of primitive
shapes, selecting an operator for each to blend with its parent, as well
as a list of operators to apply to the primitive itself. Our approach
differs in that all nodes, not just leaf nodes represent primitives, and
operators composing primitives are represented in the edges (Fig. 2).
This tree is then encoded into a Matrix4x4 buffer passed to the sphere
tracer for rendering. To turn a simple CSG model into an interesting
fractal shape, we apply a series of folds, scaling, and rotations to shape.
The tiled shape, and sequence of transformations creates an iterated
function system fractal (Fig. 5) which can be animated by modifying
the shape or transforming the sequence.

3.2 GUI
We utilized Unity’s Scene Hierarchy within the editor to give designers
a Graphical User Interface (GUI) to model scenes. The Scene Hier-
archy in the Unity Editor provides developers with a tree view of any
objects in the scene. Each game object can have any number of C#
scripts attached to them, referred to as Components. Each primitive
shape supported by our renderer is paired with a C# component class
which can be added to the objects in the hierarchy, to build up a scene.
When an object is selected in the hierarchy users can view and modify
variables of the components attached to that object. The component
classes for our primitives reveal the unique arguments to their specific
SDF and the changes are displayed immediately within the editor’s
game view. See Fig. 3 for an example scene layout. On the left is
the tree of objects, on the right shows the parameters for the selected
sphere. Adjusting the lighting and materials of the scene can be done

2

© 2024 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

(a) Render of model described by Fig. 2 (b) result of reordering box frame and sphere in Fig. 2

Fig. 4: Example renders of Fig. 2 demonstrating the effect of ordering in
tree structure.

by selecting the root of the scene. Additionally, users may input a set
of transformations on the root of the scene to create a IFS fractal from
their tile.

3.3 Data Transfer

The renderer is implemented on the GPU in an HLSL compute shader,
thus we need some way to pass the scene information stored on the
CPU to this shader. The general algorithm for rendering a scene is
shown in algorithm 1. What changes from scene to scene is the map
function, which returns the signed distance to the nearest point in
the scene. To make our rendering shader reusable across different
scenes in our application, we needed a way to call our raymarching
kernel with different mapping functions, which would allow us to
adapt the shader to various scene configurations. Originally these
mapping functions were written by hand between the scenes with the
raymarching kernel needing to be copied between scenes. To improve
upon this we wrote a script to automatically write the HLSL code for
the mapping function after parsing the scene tree in the editor. To
create the mapping function, we performed a depth-first search (DFS)
traversal of the scene tree, starting from the root node. As the traversal
progressed, we generated code to call the SDFs corresponding to each
primitive encountered. When returning from each recursive call, we
applied the operators to combine the distance values appropriately
based on the tree structure. Any arguments for primitives and operators
defined in the scene tree are stored in a float buffer and passed to the
shader each frame. This allows us to modify or animate the primitives
in real-time without recompilation. However any restructure to the
scene tree would require regenerating the HLSL code and compiling
the shader. This method was effective when rendering, but the constant
recompilation was cumbersome and also is not supported at runtime
out of the box by Unity, as the shader compiler is not built with the
player. In the end, we chose to encode the tree traversal in a buffer of
Matrix4x4’s passed to the shader. The mapping function then consists
of a mechanism for looping through these Matrices. The entries in
the matrix are the arguments for the SDF, with a space reserved to
store an ID which is used in a switch statement to call the correct
SDF for the object. If the ID is negative, the matrix is interpreted as
traversing back up the tree and the absolute value is used in a similar
switch statement to call to the composition operators. With our set
of 30 primitives and 6 operators the performance difference between
hardcoding the sequence of operators and looping through the switch
statements did not create any noticeable impact and allowed the scene
hierarchy to be modified at runtime without any code recompilation
required. To streamline the process of extending the editor, we created
automated scripts. These scripts simultaneously add primitives and
operators to both the renderer and the editor, reducing the amount of
manual work required. Advanced users can add functions to the file of
primitives or operators respectively and a script is then used to generate
the corresponding C# classes to add the new primitives to the editor
and and the HLSL code needed to link the C# class

(a) An example tile used to create IFS Fig. 5b

(b) Iterated Function System produced from tile Fig. 5a

Fig. 5: Example of a base Tile folded and rotated to create an iterated
function system fractal

3

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

4 RELATED AND FUTURE WORK

While many other applications exist for the purpose of creating and
editing various fractals, our implementation within the Unity Game
Engine yields several unique advantages. For instance, developers can
write additional scripts to control and transform the fractals automati-
cally to have full control over animations. Integrating our scene editor
through the scene hierarchy allows designers to put together a sphere
traced scene directly in the editor without writing any code. In addition
it allows experienced Unity developers to more easily integrate the
renderer with their usual workflow. The code used for rendering the
fractals is also exposed to users of the package and thus can be altered
or optimized for one’s specific use case. Despite these advantages,
there are still many cases where other applications may be favored over
ours. For instance Mandelbulber 3D exposes many more parameters for
transforming the fractals within their GUI. The application, Fractal Lab,
provides similar functionality but within a web application, giving it the
advantage of portability. Both of these software require recompilation
between altering the fractals and viewing the changes. Another similar
software is IFS Builder 3D, which requires the user to design the fractal
by editing a text file and recompiling the view. Our solution boasts
the advantage of displaying design changes in real time as they are
specified in the GUI, giving the user a more intuitive understanding of
the changes they are making. Future work to our system would involve
exploring options to improve the render speed, as well as to implement
texturing and global illumination to improve the render quality which
is our biggest weakness compared to other available software.

REFERENCES

[1] S. Aaltonen. Gpu-based clay simulation and ray-tracing tech
in claybook. https://www.gdcvault.com/play/1025316/
Advanced-Graphics-Techniques-Tutorial-GPU. Accessed:
2024-04-30. 2

[2] E. Galin, E. Guérin, A. Paris, and A. Peytavie. Segment tracing using local
lipschitz bounds. Computer Graphics Forum, 2020. doi: 10.1111/cgf.13951
2

[3] J.-D. Génevaux, E. Galin, A. Peytavie, E. Guérin, C. Briquet, F. Grosbellet,
and B. Benes. Terrain Modelling from Feature Primitives. Computer
Graphics Forum, 34(6):198–210, May 2015. doi: 10.1111/cgf.12530 2

[4] J. C. Hart. Sphere tracing: A geometric method for the antialiased ray
tracing of implicit surfaces. The Visual Computer, 12:527–545, Dec. 1996.
doi: 10.1007/s003710050084 2

[5] B. Keinert, H. Schäfer, J. Korndörfer, U. Ganse, and M. Stamminger. En-
hanced sphere tracing. In Smart Tools and Applications in Graphics, 2014.
doi: 10.2312/stag.20141233 2

[6] I. Quilez. Distance functions. https://iquilezles.org/articles/
distfunctions/. Accessed: 2024-04-30. 2

[7] Seven/Fulcrum. Rendering mandelbox fractals faster with cone marching.
http://www.fulcrum-demo.org/wp-content/uploads/2012/04/
Cone_Marching_Mandelbox_by_Seven_Fulcrum_LongVersion.pdf,
2012. Accesed: 2024-04-30. 2

4

https://www.gdcvault.com/play/1025316/Advanced-Graphics-Techniques-Tutorial-GPU
https://www.gdcvault.com/play/1025316/Advanced-Graphics-Techniques-Tutorial-GPU
https://doi.org/10.1111/cgf.13951
https://doi.org/10.1111/cgf.12530
https://doi.org/10.1007/s003710050084
https://doi.org/10.2312/stag.20141233
https://iquilezles.org/articles/distfunctions/
https://iquilezles.org/articles/distfunctions/
http://www.fulcrum-demo.org/wp-content/uploads/2012/04/Cone_Marching_Mandelbox_by_Seven_Fulcrum_LongVersion.pdf
http://www.fulcrum-demo.org/wp-content/uploads/2012/04/Cone_Marching_Mandelbox_by_Seven_Fulcrum_LongVersion.pdf

	Introduction
	Rendering
	Background
	Implementation

	Scene Construction
	Primitives and Operators
	GUI
	Data Transfer

	Related and Future Work

