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Abstract—The Monty Hall problem is notorious for its decep-
tive simplicity. Although today it is widely used as a provocative
thought experiment to introduce Bayesian thinking to students
of probability, in the not so distant past it was rejected by
established mathematicians. This essay provides some historical
background to the problem and explains why it is considered so
counter-intuitive to many. It is argued that the main barrier to
understanding the problem is the back-grounding of the concept
of dependence in probability theory as it is commonly taught. To
demonstrate this, a Bayesian solution is provided and augmented
with a probabilistic graphical model (PGM) inspired by the work
of Pearl (1988, 1998) [5][4]. Although the Bayesian approach
produces the correct answer, without a representation of the
dependency structure of events implied by the problem, the
salient fact that motivates the problem’s solution remains hidden.

Index Terms—probability, dependency, Bayesianism, proba-
bilistic graphical models

I. INTRODUCTION

Every student of probability has heard of the Monty Hall
problem. Notorious for its counter-intuitive solution, when
it was first posed in a letter to the editor in The American
Statistician (Selvin 1975: 67) [7] and later in Parade magazine
(vos Savant 2018 [1990]), its solution was rejected, often
vehemently, by a majority of respondents, many of whom
should have known better. Even Paul Erdős, one of the greatest
mathematicians of the twentieth century, was skeptical of its
solution. He changed his mind only after being shown the
correct answer through an empirical demonstration (Vazsonyi
2002: 5) [9]. Mathematicians are not fond of existence proofs.
Although introduced as an entertaining brainteaser, the prob-
lem has been more like the Riddle of the Sphinx, exposing
hubris as much as knowledge in those who seek to answer it.1

A. The Problem

For those not familiar with the problem, it goes like this.
Imagine you are a contestant on Let’s Make a Deal, a famous
American game show hosted by Monty Hall. In the event, the
host presents you with three closed doors—let’s call them A,
B, and C—and informs you that behind one of the doors is
a brand new car, while behind the two others are goats. You
really want the car, and if you can guess the door the car

1For good examples of hubris, in the form of severe mansplaining, see ”The
Time Everyone ‘Corrected’ the World’s Smartest Woman” (Crocket 2015) [1]
and ”Game Show Problem” (vos Savant 1991) [10].

is behind, you get to keep it. The host invites you to guess
which door contains the car and so you guess door A. At this
point, instead of letting you know if you guessed correctly, the
host, who knows where the car is, opens a door that you did
not guess, door B, which reveals a goat. The host then gives
you the opportunity to change your guess to the remaining
door, door C. The question is, should you stay with door A
or switch to door C?

Of course, there are many versions of the problem—Selvin’s
involves three boxes and a set of keys, for example—but they
are all essentially the same, although some are more confusing
than others. One point of confusion that is hard to eliminate,
pointed out by the The Angry Statistician, is the ambiguity
regarding the host’s modus operandi—does he reveal a door
and offer you to switch based on your choice? For example,
does he open a door and invite you to switch only when
you have guessed correctly the first time? Here, as with the
great majority of responses, we shall assume that he does not
do anything of the sort, and that his action to reveal a goat
happens either each time the game is played or randomly. This
is a big assumption, but it is not unreasonable. If we do not
make it, the problem becomes a trick question, as there is no
way to know if the host does this or not—although, as we
shall see, we can easily model this possibility.

B. The Solution

Now, the surprising solution to the question of whether you
should keep door A or switch to door C is that you should
switch. If you stick with door A, the probability of winning
the car is 1

3 . If you switch to door C, it is 2
3 .

This conclusion can be demonstrated both experimentally
and logically. Experimentally, it is easy to reproduce the
conditions of the game show in real life and tally the results
after a sufficient number of trials.2 Logically, the solution
can be demonstrated by describing the sample space of the
game—the list of all possible outcomes where the contestant
decides to switch—and then adding up the results associated
with each possibility (see Table I, based on Selvin’s original
letter).

In Table I, each row corresponds to a possible outcome of
the game, each of which has the same probability, 1

9 . If you

2You can find a collection of computer simulations to do this for you, in a
variety of languages, here: https://rosettacode.org/wiki/Monty Hall problem.
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Car
behind

Contestant
chooses

Monty Hall
opens

Contestant
switches to Result

A A B or C C or B L
A B C A W
A C B A W

B A C B W
B B A or C C or A L
B C A B W

C A B C W
C B A C W
C C A or B B or A L

TABLE I
SAMPLE SPACE, BASED ON COLVIN 2014.

add up the winning rows, you get 6
9 , or 2

3 ; the losing rows
add up to 3

9 , or 1
3 . Note that the first, middle, and last rows

actually define two outcomes each, but the probabilities of
each of these is half of 1

3 , or 1
6 , so the sums are the same. But

to point this out is to get ahead of ourselves.

C. The Response

These results, plain as they are, come as a surprise be-
cause they conflict with the obvious answer one arrives at
by applying what seem to be basic principles of probability
theory. In this approach, it does not matter if you switch, since
both remaining doors have the same probability of hiding
the car. The reasoning is as follows. In the first guess, the
contestant has three doors to choose from, and so, given
no other information about the situation, each door has a 1

3
chance of hiding the car. Once the host opens the second door,
though, there are only two doors left, and so, given no other
information about the situation, each door has a 1

2 chance of
hiding the car. The probability is simply a matter of evenly
dividing the probability over the number of available doors.
Yes, the probability of the remaining door is increased, but so
is that of the door first guessed, and so the contestant gains
nothing by switching.

The problem with this answer is contained in the assumption
that, after the host opens a door, there is no information to tip
the balance in favor of the two remaining doors. Actually,
there is new information available, but it is hard to see.
The reason is our entrenched bias in favor the independence
assumption—the idea that events are independent until proven
to be otherwise. In contrast to this assumption, the answer to
the Monty hall problem hinges precisely on understanding the
dependent relationship between two events—the initial choice
by the contestant, and the second choice prompted by the hosts
action.

In fairness, one can understand the resistance to accept
the correct explanation as given. After all, the logical and
empirical solutions are both merely inductive, not deductive,
as the second approach is. They arrive at the solution through
brute force, by generating a set of results and counting wins
and losses, and so are unsatisfying. Such approaches also
invite the nagging suspicion, unfounded as it may be, that
the generative mechanisms behind them are flawed in some

Car
behind

Contestant
chooses

Monty Hall
opens

Contestant
switches to Result

A A B C L
A A C B L
A B C A W
A C B A W

B A C B W
B B A C L
B B C A L
B C A B W

C A B C W
C B A C W
C C A B L
C C B A L

TABLE II
SAMPLE SPACE WITH EXPANDED POSSIBILITIES

Car
behind

Contestant
chooses

Monty Hall
opens

Contestant
switches to Result P

A A B C L 1
18

A A C B L 1
18

A B C A W 1
9

A C B A W 1
9

B A C B W 1
9

B B A C L 1
18

B B C A L 1
18

B C A B W 1
9

C A B C W 1
9

C B A C W 1
9

C C A B L 1
18

C C B A L 1
18

TABLE III
SAMPLE SPACE WITH PROBABILITIES

way, and may be producing the wrong results. Consider, for
example, if we represented the sample space in Table I by
breaking out the lines we collapsed—the first, middle, and
last lines, where the host has a choice of doors to open. If
we tally up the results with the assumption that each row in
the new table (Table II) has the same probability—an easy
mistake to make—we get an equal tally for wins and losses.

Of course, to correct this error, we just need to assign
probabilities to each event in the sample space, but this moves
us beyond the original simplicity of the inductive approach
and the clarity of its tabular demonstration. Table III begs for
a more formal approach that would eliminate its redundancy
and explain the values provided.

II. THE BAYESIAN APPROACH

Because of the importance of grasping the dependency
between events in the correct answer, a Bayesian approach
is often employed to provide a formal solution. Unlike clas-
sical probability theory, Bayesian probability foregrounds the
relationship between events through the concept of conditional
probability.
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A. The Standard Solution

In its canonical form, which is easily derived from the
axioms of probability, the theorem looks like this:

P (H|e) = P (H)P (e|H)

P (e)

In this formulation, H is the hypothesis and e the evidence.
The formula is used when we want to know how probable
an hypothesis is for explaining, or accounting for, the known
existence of some evidence, and when we know, or can provide
good estimates of, things on the right side of the formula. A
common example of an hypothesis and evidence is a disease,
such as small pox, and a symptom, such as red spots on the
skin. Traditionally, the terms of this formula are given names:
P (H|e) is called the posterior probability of H (given e),
P (H) is the prior probability of H , P (e|H) is the likelihood
of e (given H), and P (e) is the marginal probability of e.3

When applied to the Monty Hall problem, the Bayesian
approach proceeds by plugging in the proper values to the
theorem and then computing the results. In our example, the
two possible locations of the car—behind doors A and C—are
considered to be hypotheses (the only two possible), while the
door opened by the host, door B, is the evidence. So, if we
let CarA and CarC stand for the hypotheses that the car is
behind doors A and C respectively, and also let HostB stand
for the host’s revelation that door B contains a goat, we get
the following equations to solve:

Switch : P (CarC |HostB) =
P (CarC)P (HostB |CarC)

P (HostB)

and

Keep : P (CarA|HostB) =
P (CarA)P (HostB |CarA)

P (HostB)

The first formula corresponds to the decision to switch doors
and reads: the probability that the car is behind door C, in the
case where the host opened door B (and the contestant guessed
door A), is equal to the probability that the car is behind door
C in any case, times the probability that the host would open
door B in the case that the car is behind door C—remember,
he knows where the car is—divided by the probability that
the host would open door B in any case. (Here, I have used
the phrase “in the case that” instead of the usual “given that,”
or the more obscure “conditioned on,” to clarify the logic.)
The second formula represents the contestant’s decision to turn
down the host’s offer to switch, and defines the probability that
the car is behind door A, the original choice.

Now, since we want to compare the two hypotheses, we
can apply the odds ratio version of Bayes’ rule, eliminating
the need to calculate the marginal P (HostB):

3Here it is not necessary to go into depth about Bayes’ theorem, other than
to show how it can be applied to the Monty Hall problem. For a lucid and
concise introduction to the subject, see James Stone’s Bayes’ Rule: A Tutorial
Introduction to Bayesian Analysis (2013) [8].

P (CarC)P (HostB |CarC)

P (CarA)P (HostB |CarA)

To calculate the value of this expression, we just need to
calculate the values of each probability within it. These are as
follows. First, we know the prior probabilities

P (CarA) = P (CarC) =
1

3

since the probability that the car is behind any door, without
taking into account any information provided by the host’s
opening of a door, is 1

3 . Since the two priors are the same, we
can remove them and just worry about the ratio of likelihoods:

P (HostB |CarC)

P (HostB |CarA)

Now, to calculate these, we have to do a little close reading
of our problem. In effect, these likelihoods concern the choices
available to the host based on his knowledge of both the
location of the car and the door guessed by the contestant.
In other words, it is in the likelihoods where we may observe
the information that is conveyed by the host in making his
decision.

Earlier we noted that the incorrect deduction of the answer
using basic probability theory is wrong because it assumes
that the event HostB is independent of either CarC or CarA,
i.e. it assumed that P (HostB |CarC) = P (HostB |CarA) =
P (HostB). In fact, the host’s decision regarding which door
to open is highly dependent on which door the contestant has
chosen. In the case where the contestant guesses correctly—the
case of CarA—the host has two choices of door to open, and
so P (HostB |CarA) is 1

2 , since he could have also opened
door C. However, in the case where the contestant guessed
incorrectly—the case of CarC—the host has only one choice,
and so P (HostB |CarC) is 1. Given this, we get the following
ratios:

P (HostB |CarC)

P (HostB |CarA)
=

1

0.5
=

2

1
=

W

L

Thus, we see that if the contestant switches and chooses car
C, the odds of winning are 2 : 1, i.e. winning by switching
has a probability of 2

3 .

B. Limitations of the Approach

The advantage of the Bayesian approach is that it arrives
at the correct answer by means of deduction and is there-
fore more satisfying mathematically. It also has the virtue
of demonstrating the utility of Bayes’ theorem, which has
until relatively recently been the object of great suspicion by
traditional statisticians (see McGrayne 2011) [2]. However,
the problem with this approach is that, like the other methods
described here, it hides the logic of the solution to the
problem behind the artifacts of an algebraic process. To use
an idiom from journalism, such solutions bury the lede, the
most important part of the story, which is that Monty Hall is
constrained by a specific set of rules to such a degree that

3



he can be replaced by a machine, a fact already implied by
our ability to simulate the game programmatically. In each
formulation of the correct solution, these rules are alluded to—
as by the middle column of the table to the first solution and
in the calculation of the likelihood in the Bayesian one—but
they are never made explicit. This is a shame because, once
this description is given, it’s not only easy to understand the
solution intuitively, it is possible to see that there are other
solutions as well.

III. DEPENDENCY STRUCTURES

The Monty Hall Problem is hard because the most important
element of its solution, the dependency structure that con-
strains the host’s actions, is never foregrounded and given its
proper place. In the variant retellings and clarifications of the
problem, the role of the host has remained Oz-like, a man
behind a curtain whose projected image is much larger and
frightening than his real person. As a result, the solution to
the problem has often been explained as if the host’s intentions
and motives somehow matter. They do not—at least as long
as we make the reasonable assumption that the problem is
being posed in good faith, and not playing on the ambiguity
we noted earlier, regarding the host’s action to reveal a door
with a goat.

A. Two Scenarios

Let’s pull back the curtain and scrutinize the Bayesian
solution to clarify the role of the host. To do this, we may sum-
marize the results of the Bayesian approach in the following
way.4 Although the full sample space of the problem contains
every combination of choices by the host in placing the car and
revealing a goat, and contestant in guessing and then switching
or not, there are actually only two relevant scenarios of the
game, and these depend entirely on a comparison of where
the car is placed at the outset and what the contestant guessed
first. Both of these facts the host knows and must consider in
making his decision of which door to open.

The first scenario is that the contestant guesses correctly the
first time. The second is that the contestant guesses incorrectly
the first time.

The first scenario has a probability of 1
3 , while the second

has a probability of 2
3 , since there are two incorrect doors and

one correct door to choose from. Obviously, if the contestant
is right and switches, she will lose. But, if the contestant is
wrong and switches, she will win. In this scenario, if a door is
revealed to be empty, the other door is the only one remaining
and so must have the car—the host has no choice but to reveal
the door that does not hide the car. Therefore, the contestant

4The description provided here is very close to that provided by Leonard
Mlodinow in The Drunkard’s Walk (2009) [3].

has a 2
3 chance of winning if they switch. So, she should

switch.5

Again, the host’s decision about which door to reveal
depends on the outcomes of two prior events—the placing
of the car and the contestant’s first guess. The two possible
combinations of these events determine the entire outcome.

In the application of Bayes’ theorem this salient fact is not
obvious. It is back-grounded by the formula and appears only
in our verbal discussion of the two likelihoods, where we
go off-line, as it were, to determine the probabilities of the
host’s decision in each case. To be sure, the formula does
lead us to that discussion and, of course, it does produce the
correct solution. But by itself it does not provide an answer
that satisfies our desire for a solution that fully explains the
why behind the answer.

A complete and satisfying representation of the problem
would include a description of all the relevant events along
with a description of how each event depends on the others,
to the extent that they do. In describing these dependencies,
it would include information not simply about which events
influence others, but specifically how they do, to the extent
that this information is available.

B. Probabilistic Graphic Models

Fortunately, we have a tool for doing precisely this: prob-
abilistic graphical models, or PGMs (see Pearl 1988, 1998)
[5][4]. A PGM is a kind of graph, or network, that contains
a set of vertices, or nodes, each representing a possible
event (a so-called random variable), and a set of edges, or
links, representing the dependency relationships between these
events. Such graphs provide an intuitive, visual method for
understanding and manipulating relationships between events
that are often obscured by algebraic or tabular representations.
PGMs come in a variety of forms, such as Bayesian (so-called
“belief”) networks, and are similar to other kinds of graphical
models, such as decision graphs and factor graphs. Here I will
combine these to produce a clear representation of the essential
structure of the problem.

Visually, we may represent the random variables that con-
stitute the Monty Hall problem, and their dependent relation-
ships, as a PGM in Figure 1. In this diagram we adopt the
conventions of a decision graph, using squares to represent
decisions, circles to represent purely chance events, and the
triangle to represent a utility function that is also the end
of the story. In addition, we use shaded nodes to represent
those enacted by the host and unshaded nodes to represent
those of the contestant. The sequence represented by this graph
consists of the following events, in order of their occurrence,

5Put more formally, when the contestant makes her first guess, we know that
the door she guesses has a 1

3
chance of being correct. It therefore follows that

the other two doors, considered together, have a 2
3

chance of being correct—in
other words, if P (CarA) = 1

3
then P (¬CarA) = 2

3
, and since ¬CarA =

CarB∥CarC , then P (CarB∥CarC) = 2
3

. Now, when the host opens door
B, P (CarA) is still 1

3
and thus P (CarB∥CarC) is still 2

3
, but since now

we know that P (CarB) = 0, it follows that P (CarC) = 2
3

.

4



each associated with a function and set of outcomes described
below:

S: The strategy employed by the contestant.
X: The door behind which the car has been placed.
G1: The door guessed first by the contestant.
H: The door revealed by the host.
G2: The door guessed second by the contestant. May be
same as G1.
R: The result of the contestant’s second guess.

The nodes in this graph are essentially the columns in our
first table, with the addition of the random variable S, which
will stand for the strategy adopted by the contestant. This event
is rarely, if ever, mentioned in the telling of the problem,
but it is helpful in illuminating its overall structure. The
contestant actually has three possible strategies—(1) she may
keep her first guess, or (2) she may switch to the door offered
by the host after he reveals a goat, or—and this is rarely
mentioned but actually assumed by the incorrect solution—(3)
she may randomly choose, say by flipping a coin, whether
to switch or not. Thus, we can define S as having three
outcomes: {keep, switch, flip}. (Note that these values are
actually segments of a continuous weight value applied to the
switching (or keeping) strategy, where 0 means keep and 1
means switch). What’s interesting about this event is that it
actually precedes the game—in fact, the function refers to what
you are doing right now by reading this essay and following
its argument, and any time the problem is discussed. We are
figuring out which strategy to choose and returning a value as
our answer.

As an aside, we could also model the policy of the host with
another random variable, say P , on which H would depend.
This would reflect the host’s role as either ‘good host’ or ‘bad
host,’ or as some intermediate state. The good host wants the
contestant to win, and so would always show the goat when the
contestant has guessed incorrectly, and would never show the
goat when the contestant guesses correctly. The bad host would
do the opposite. Like S, the outcomes of P may be represented
as three states, {good, bad, neutral}, even though they form
a continuous weighting factor between 0 and 1 applied to the
strategy of being a good host. However, we do not include
this event in our model because, again, its existence would
undermine the integrity of the question.

C. Elements of the graph

Let’s go over each of the elements of the graph diagram.
We will assume that the doors mentioned in each event are
elements of the set D = {A,B,C} and that each random
variable has access to it; so, we don’t represent D as a node.
Also, we’ll use uppercase letters to stand for the random vari-
ables, and their lowercase variants to stand for their outcomes
in a specific trial, or play of the game. Finally, in each case
we will describe the function along with its possible outcomes
and associated probabilities using tables. These tables describe
“local probabilities”—the probability of each outcome from a
function considered relative to the total set of outcomes for
that random variable.

A B C

.33 .33 .33

TABLE IV
OUTCOMES FOR X

A B C

.33 .33 .33

TABLE V
OUTCOMES FOR G1

The first random variable X is the selection of the door
behind which the car has been placed, and by implication, it
entails the doors behind which the goats have been placed.
We assume that the selection is a purely random event, so its
function and possible outcomes are those in Table IV.

X() : x ∈ D

The second random variable G1 is the door the contestant
first guesses. It too is a purely random event, since the
contestant has no information to go on. So, its function and
outcomes are an equiprobable distribution over D (see Table
V).

G1() : g1 ∈ D

The third random variable H is the door selected by the
host. Unlike the first two, it is not entirely random and depends
on both x and g1 as inputs. In the language of decision graphs,
it is a decision, as opposed to the first two, which are chance
events. H can be specified as a set function:

H(x, g1) : h ∈ D − {x ∪ g1}

This function succinctly describes the action of the host in
revealing a door. It returns one member of the set produced
by subtracting from the total set of doors, D, the set formed by
the union of the door hiding the car and the door guessed by
the contestant. When c and g1 are identical, the result will be
two doors to choose from, and H returns a random selection
among them; when they are different, H can return only one
value. Note that it does not matter if the host is biased in
his selection of a door in the case when he has a choice, as
either will have a goat behind it. In fact, we could replace the
random function with a fixed rule, to choose the first element
of the set, and we would get the same result. The outcomes
are represented in Table VI.

The fourth random variable G2 is the contestant’s second
guess. It is also a decision, and it depends on the results of
three inputs, G1, H , and S. The function G2 looks like this:

G2(g1, h, s) :

 s = switch : g2 ∈ D − {h ∪ g1}
s = keep : g2 = g1
s = flip : g2 ∈ D − h

5



Fig. 1. A graphical model of the Monty Hall Problem

x g1 A B C

A A 0 .5 .5
A B 0 0 1
A C 0 1 0

B A 0 0 1
B B .5 0 .5
B C 1 0 0

C A 0 1 0
C B 1 0 0
C C .5 .5 0

TABLE VI
OUTCOMES OF H GIVEN c AND g1

g1 h A B C

A B 0 0 1
A C 0 1 0

B A 0 0 1
B C 1 0 0

C A 0 1 0
C B 1 0 0

TABLE VII
OUTCOMES FOR G2 , GIVEN THE “SWITCH” STRATEGY, g1 , AND h

The first case is a set function similar to that of H , applied
to the values produced by X and G1. In the second case we
simply to keep the value produced by G1. In the third case,
we randomly choose between the two values provided by the
previous cases. We can represent the outcomes as three tables
(VII, VIII, and IX), one for each strategy.

The final random variable R is the result of the game,
which simply compares the results of g2 and x for equality
and returns a value of true or false, which stand for winning
and losing respectively. In the language of decision graphs,
this is a utility function with outcomes represented in Table X
and the following form:

g1 h A B C

A B 1 0 0
A C 1 0 0

B A 0 1 0
B C 0 1 0

C A 0 0 1
C B 0 0 1

TABLE VIII
OUTCOMES FOR G2 , GIVEN THE “KEEP” STRATEGY, g1 , AND h

g1 h A B C

A B .5 0 .5
A C .5 .5 0

B A 0 .5 .5
B C .5 .5 0

C A 0 .5 .5
C B .5 0 .5

TABLE IX
OUTCOMES FOR G2 , GIVEN THE “FLIP” STRATEGY, g1 , AND h

R(x, g2) : r = x ≡ g2

D. Modeling Strategy

Note that we have not described a function for the random
variable S, nor have we associated its outcomes with any
probabilities. This is because, unlike the other functions, S
entails a complex set of conditions and functions that, as
mentioned above, include this essay and any discourse relating
to the problem. It is effectively a black box for the purposes
of our representation. Moreover, its outcome is a normative
fact, not a descriptive one—we are deciding upon a rule that
will govern the behavior of any future contestant.

One immediate advantage to the preceding graphical repre-
sentation is that it focuses our attention on the two decision

6



x g2 T F

A A 1 0
A B 0 1
A C 0 1

B A 0 1
B B 1 0
B C 0 1

C A 0 1
C B 0 1
C C 1 0

TABLE X
OUTCOMES FOR R, GIVEN x AND g2

events, H and G2, which are essential to providing an intuitive
understanding of the problem. To describe these is, in effect, to
understand the problem. As we have seen, there are two salient
facts to consider in this regard. First, the host is constrained
to the point of essentially giving away the answer two thirds
of the time. Second, the contestant may employ at least three
strategies in making her decision to switch or not. Implicitly,
the nature of the problem is to infer the structure of H in
order to establish a rule for G2.

Let us now consider the three strategies available to the
contestant. We have seen that a strategy to keep results in
winning 1

3 of the time, whereas the strategy to switch results
in winning 2

3 of the time. We have also noted that there is
another strategy—to flip, or randomly choose whether to
switch or not. (One may imagine the contestant flipping a
coin here.) To determine the result of this strategy, and to
demonstrate the value of the PGM approach, we generate a
set of decision trees from our graph, which may be interpreted
as a generative model, and the functions just described.

Figures 2, 3, and 4 show the generated trees fore each of
the strategies. In each case, the tree is restricted to the case
where the car is behind door A, since the results are identical
for each placement of the car. In addition, the rectangles stand
for the specific outcomes and local probabilities of each event
function, which are given in the column names. Finally, the
results of each outcome are computed by the product of the
ancestors of each. For example, the probability for the first
outcome in the first diagram, AACA, can be computed as
1.0× 0.33× 0.5× 1.0 = 0.165.

Table XI shows a summary of the results of each strategy.
A surprising outcome from this exercise is that it demonstrates
the sense in which the incorrect solution may be viewed as
correct. We see that the odds of winning really are 50 : 50
if the contestant behaves randomly when choosing among
the two closed doors. But this is not how the answer is
typically, if ever, given. Instead, the potential randomness of
the contestant’s behavior is objectified and projected onto the
structure of the game itself. Call it misplaced randomness.

IV. CONCLUSION

PGMs, as representations of the dependency structure of
events in the problem, provide a useful means of clarifying the

Fig. 2. Decision tree for keeping strategy

Fig. 3. Decision tree for switching strategy

logic of the Monty Hall problem. They help us make sense of
why the solution to the puzzle strikes us as hard to believe in
the first place: the difficulty resides from the fact that although
each successful approach is able to marshal the relevant data
into an inductive format or deductive formula that produces
the correct result, none of them formally represent the salient
structure that actually generates the result. By isolating and
connecting the elementary random variables that compose the
problem, and by requiring us to specify the actual functions
that generate the outcomes of each random variable, we see
that the solution follows from the latent structure of these
functions. We end up realizing that the correct answer to
the problem is not so much that the contestant will win 2

3
of the time by switching, so much as that the car is behind
the remaining door 2

3 of the time. We have discovered an
objective condition to which one’s behavior should adapt.
Strategy follows structure.

A larger lesson is that the problem strikes us as hard because
we tend to frame probability problems primarily in terms of
independence relations, and to consider structural relations, i.e.
dependencies, as secondary. Only after some coaxing do we
overcome this bias. Although many are quick to attribute this
bias to a just-so story about human evolution, a more plausible
explanation for it is our schooling and culture. The default
mode of teaching probability is to cover independence first and
dependence, in the form of conditional probability, second.
This makes sense from the perspective of starting with the
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Fig. 4. Decision tree for flipping strategy

s W L

keep .33 .66
switch .66 .33
flip .50 .50

TABLE XI
SUMMARY OF RESULTS FOR EACH STRATEGY

simpler case, since it’s easier to teach how to compute the joint
probability of independent events p(x, y) = p(x)p(y) than
dependent ones p(x, y) = p(x)p(y|x). In the first case, you
don’t have to explain what ”y given x” means. But simplicity
comes at the cost of understanding, since the independent
version is a special case of the dependent one. Foregrounding
the former obscures the fact that the dependent case is the prior
case—that, in fact, joint probability presupposes conditional
probability. We miss the opportunity to show that the idea of
a condition is essentially that of relationship, an element of a
model that is implied by and motivates the algebraic formulae
that we foreground in our teaching.

As Pearl argued long ago (1988) [5], independence buys us
a great deal computationally, since it allows us to calculate
reasonably accurate answers for a variety of complex prob-
lems. But it does so at the cost of semantic coherency—the
idea that a solution should not only fit the probabilistic patterns
observed in data but also align with meaningful and plausible
relationships in the real world. In the case of the Monty Hall
problem, what makes it hard is that the relationships that
constitute the game—the dependency structure between events
that can be modeled by a PGM—are rarely made explicit. The
result is that although we may grasp the logic of the math and
come around to accepting the correct solution, we may still

g1 ≡ x s = switch p(g1, s)

1 0 1
3

1 1 0
0 0 0
0 1 2

3

SUM 1

TABLE XII
JOINT PROBABILITIES OF SCENARIOS AND STRATEGIES

wonder why the math works. By representing the problem as
a structured series of events, this difficulty is removed.6

V. ADDENDUM

I owe to my colleague Pete Alonzi (UVA School of Data
Science) the most elegant solution to the problem. In this ap-
proach, a sample space is generated from the two scenarios—
whether the initial guess g1 is correct—and two strategies—
keep or switch. Their combination yields four disjoint and
exhaustive events, each of which may be assigned a joint
probability which must sum to one.

Referring to Table XII, the probabilities are deduced in the
following way. The probability that the contestant is correct
the first time and does not switch is obviously 1

3 , since this is
just the probability of guessing correctly the first time. Now,
it is also obvious that the probability of guessing correctly
the first time and switching is 0. Similarly, the probability of
guessing incorrectly the first time and not switching is 0. This
leaves 2

3 for the final event, of being incorrect and switching—
the event in question—since the sum of the probabilities of all
the events must be 1.

This solution is highly compact and requires very few
assumptions. The main assumption is in the sample space
selection—instead of focusing on the specific events in the
game play, it focuses on the two scenarios identified earlier in
this paper, which essentially group the more primitive events
in Table I. The trick to grasping this solution is in accepting
that these scenarios are in fact events.

With respect to the thesis of this paper, that the Monty
Hall problem is hard because of the fore-grounding of the
independence assumption, Alonzi’s solution has the virtue of
by-passing the issue by focusing on the deduction of joint
probabilities. However, it does suffer from a certain opacity
precisely due to its simplicity. Although its logic is ironclad,
its connection to the specifics of the game remain unclear.
For example, it seems to be unconnected to such parameters
as how many doors the game involves. In fact, the solution
appears to generalize over any number of doors.

To explore how it generalizes, consider the joint proba-
bilities when we adjust the number of doors |D| to 4 as
shown in Table XIII. We find that the event of being incorrect
and switching also has a higher probability 3

4 than the other
events. But the question becomes, what are we in fact selecting

6For a computational representation of the model presented here, see the
GitHub repo https://github.com/ontoligent/montyhall.
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g1 ≡ x s = switch p(g1, s; |D| = 4)

1 0 1
4

1 1 0
0 0 0
0 1 3

4

SUM 1

TABLE XIII
JOINT PROBABILITIES OF SCENARIOS AND STRATEGIES FOR 4 DOORS

Fig. 5. Probability difference of switching vs keeping as n increases

in this event when |D| > 3? The probability in this case
refers to any one of the remaining two doors. To compute
the probability of just one of these doors, however, requires
the introduction of a conditional probability: the probability
of one of the doors having the car given the event, i.e.
p(g2|g1 ≡ x, s = switch; |D| = 4). This turns out to be
3
4 × 1

2 = 3
8 . This value is > 1

4 or, perhaps more clearly, 2
8 .

Now, we can generalize this formula and see that no matter
how many doors there are in the game, the decision to switch
will always be greater than not switching, although as |D|
increases, the difference will become less significant. If we let
n stand for |D|, we get the following formula for the (0, 1)
event:

n− 1

n
× 1

n− 2

Which reduces to:

n− 1

n2 − 2n

This value will always be > 1
n , although the difference

between the choices declines precipitously as n increases (see
Figure 5).

When we apply the general formula back to our specific
case, we find:

3− 1

32 − 2× 3
=

2

9− 6
=

2

3

Alonzi’s solution elegantly illustrates the power of a prob-
abilistic solution coupled with a judiciously selected sample
space. By choosing the right sample space, the solution be-
comes both clear and simple, by-passing the need to apply the
more complex Bayesian formula. Perhaps the same principle
applies to math as was expressed by Rob Pike many years ago
for programming (1989) [6]:

Data dominates. If you’ve chosen the right data
structures and organized things well, the algorithms
will almost always be self-evident. Data structures,
not algorithms, are central to programming.

If we think of data structures more broadly to include
dependency structures, then the thesis of this essay may be
considered a contribution to this school of thought.
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