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Abstract. Although Sω (the group of all permutations of N) is size continuum,

both it and its closed subgroups can be presented as the set of paths through a

countable tree. The subgroups of Sω that can be presented this way with finite

branching trees are exactly the profinite ones. We use these tree presentations to

find upper bounds on the complexity of the existential theories of profinite sub-

groups of Sω , as well as to prove sharpness for these bounds. These complexity

results enable us to distinguish a simple subclass of profinite groups, those with

orbit independence, for which we find an upper bound on the complexity of the

entire first order theory.

Keywords: Computable structure theory · Permutation groups · Profinite groups

· Tree presentations.

1 Introduction

Traditional computable structure theory deals only with countable structures. As a re-

sult, it cannot be used to study most subgroups of Sω (the group of all permutations of

N). However, as described in Section 2, a large class of these subgroups (specifically the

closed subgroups) can be presented as the set of paths through a countable tree. We will

focus our attention on the subgroups that can be presented as the paths through a finite

branching tree (the compact subgroups), which are exactly the profinite ones. In [5] the

author uses such a presentation to study the absolute Galois group of Q, which is indeed

a profinite group that can be viewed as a subgroup of Sω after fixing an enumeration of

the algebraic closure of Q.

Much interest in profinite groups stems from their connection to Galois theory. As

shown in [8], every profinite group is the Galois group of some field extension. How-

ever, the purpose of this paper is to examine profinite groups simply as groups in their

own right. It can be difficult to get an effective handle on uncountable groups, but when

such a group acts on N by permutations we are given the opportunity to do so. Thus,

we restrict our attention to the profinite subgroups of Sω.

Effective notions for profinite groups within the context of Galois theory were ex-

amined in [4] and further in [3]. Following this work, effective notions for profinite

groups in general were studied in [7]. The authors of [3] and [7] define a profinite group

to be recursively profinite if it is isomorphic to the inverse limit of a uniformly com-

putable sequence of finite groups and surjective homomorphisms. As we will see in

Proposition 4, a profinite group P is recursively profinite if and only if it is isomorphic
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to a subgroup G of Sω such that TG (the tree that represents G) is computable. More

recently, effectively closed subgroups of Sω were examined in [2].

In Section 3, we use tree presentations to determine bounds on the complexity of

the existential theory of profinite subgroups of Sω. Note that since all elements of Sω

are functions from N → N, an existential sentence about a subgroup is a Σ1
1 statement.

However, we will see that the existential theory of any profinite subgroup G of Sω

is Σ0
2 relative to the degree of TG. Additionally, if G has orbit independence, then the

existential theory is Σ0
1 relative to the degree of TG. We will also show that these bounds

are sharp. Specifically, there exists a profinite G with orbit independence such that TG

is computable and the existential theory of G is Σ0
1 complete, and such a G without

orbit independence such that the existential theory is Σ0
2 complete. Last, we show that

the (entire) first order theory of a profinite G with orbit independence is ∆0
2 relative to

the degree of TG.

2 Tree Presentations

Definition 1. Let G be a subgroup of Sω. We define the tree TG to be the subtree of

N<ω containing all initial segments of elements of G. That is,

TG := {τ ∈ N<ω : (∃g ∈ G,n ∈ N)[τ = g(0)g(1) · · · g(n)]}

where m ∈ N is mapped to g(m) under g. We define the ordering of TG via initial

segments and write τ ⊏ σ if τ is an initial segment of σ.

It should be noted that TG will have no terminal nodes. That is, every element of TG is

an initial segment of another.

Definition 2. Let G be a subgroup of Sω. We define the degree of TG to be the join of

the Turing degrees of

– The domain of TG under some computable coding of N<ω in which ⊏ is decidable;

and

– A branching function Br : TG → N∪{∞} such that Br(τ) is equal to the number

of direct successors of τ in TG.

We denote the degree of TG as deg(TG).

We will focus on groups where TG is finite branching, in which case the range of Br
will be a subset of N. It should be noted that deg(TG) is not invariant under group

isomorphism in that it is possible to have G ∼= G′ with deg(TG) 6= deg(TG′).

Definition 3. Given a tree T ⊂ N<ω, we define [T ] to be the set of all paths through

T . We endow [T ] with the standard product topology in which the basic clopen sets are

those of the form {f ∈ Nω : τ ⊏ f} for some τ ∈ T .

It is clear that every element of G is represented as a path through TG. In particular,

the function i : G → [TG] defined by

i(g) = g(0)g(1) · · ·
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is an embedding. However, it is possible for there to be additional paths through TG

that do not correspond to any element of G in such a way. For example, consider the

group G generated by {(0 1), (2 3), (4 5), ...} where (nm) denotes the permutation that

swaps n and m and leaves everything else fixed. We see that G is countable but [TG]
is size continuum. The following proposition gives a simple topological condition for

when a group G corresponds nicely with [TG].

Proposition 1. Let G be a subgroup of Sω. The map i : G → [TG] is a bijection if and

only if i(G) is a closed subset of [TG]. ⊓⊔

We say that G is a closed group when i(G) is closed. Thus, the subgroups of Sω

that can be represented as the paths through this type of tree are exactly the closed ones.

Additionally, we say that G is a compact group if i(G) is compact.

Definition 4. A topological group is called profinite if it is isomorphic to the inverse

limit of an inverse system of discrete finite groups.

The following proposition yields a simple topological definition for profinite groups.

Proposition 2 (Folklore; see e.g. Theorem 3.7 from [6]). A topological group is profi-

nite if and only if it is Hausdorff, compact, and totally disconnected. ⊓⊔

Definition 5. Given a subgroup G of Sω and n ∈ N, we define the orbit of n under G
as

orbG(n) := {g(n) ∈ N : g ∈ G}.

The following proposition is also folklore, but we give a brief proof.

Proposition 3. Let G be a subgroup of Sω. The following are equivalent:

(1) G is compact,

(2) G is closed and all orbits under G are finite,

(3) G is profinite.

Proof. Suppose that G is compact . Since our topology is Hausdorff, we have that G is

closed. By Proposition 1, we have that i(G) = [TG]. Assume towards a contradiction

that there is some n ∈ N with orbG(n) infinite. Let {τi}i∈N be the (infinite) collection

of all elements of TG of length n + 1. Note that {{f : τi ⊏ f}}i∈N is an open cover

of [TG] = i(G) with no finite subcover, which contradicts that G is compact. Hence,

(1) =⇒ (2).
If G is closed and all orbits in G are finite, then it follows that G is compact as a

consequence of König’s lemma. Hence, (2) =⇒ (1).
The topology we have defined is Hausdorff and totally disconnected. If G is com-

pact, then G is also profinite by Proposition 2. Hence, (3) ⇐⇒ (1). ⊓⊔

We have that all profinite subgroups of Sω will have countably many orbits (all of

which are finite). We fix an enumeration of these orbits as follows:

Definition 6. Let G be a profinite subgroup of Sω. Define {OG,i}i∈N so that OG,0 =
orbG(0) and OG,n+1 is the orbit of the least natural number not in any OG,m with

m ≤ n.
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We can use these orbits to define finite approximations of G up to the first k ∈ N many

orbits.

Definition 7. Let G be a profinite subgroup of Sω. Given g ∈ G and k ∈ N, define

gk = g ↾
⋃

i≤k OG,i. Define

Gk := {gk : g ∈ G}.

We can also define the restriction of G to only the kth orbit.

Definition 8. Let G be a profinite subgroup of Sω. Define

Hk := {g ↾ OG,k : g ∈ G}.

Note that both Gk and Hk are finite groups for all k ∈ N. Additionally, they are both

uniformly computable given TG.

Definition 9. Let G be a profinite subgroup of Sω. We say that G has orbit indepen-

dence if it is isomorphic to the Cartesian product of all Hk. That is,

G ∼=
∏

k∈N

Hk.

For an example of a profinite subgroup that does not have orbit independence, con-

sider

G = {1G, (0 1)(2 3)}

where 1G denotes the identity permutation. Note that H0
∼= H1

∼= C2 (the cyclic group

on 2 elements) and Hn is trivial for all n > 1. Thus,
∏

Hk
∼= C2 ×C2 but G ∼= C2. As

we shall see, groups with orbit independence tend to be simpler to work with.

It should be noted that our definition for the degree of TG is compatible with the

notion of a recursively profinite group used by La Roche and Smith.

Definition 10 ([3,7]). A profinite group P is called recursively profinite if there exists a

uniformly computable sequence {Pn, πn}n∈N such that each Pn is a finite group, each

πn is a surjective homomorphism from Pn+1 to Pn, and P is isomorphic to the inverse

limit of the sequence.

Proposition 4. A profinite group P is recursively profinite if and only if it is isomorphic

to a subgroup G of Sω with TG computable.

Proof. Suppose that P ∼= G with TG computable. Defining νn : Gn+1 → Gn (with

Gn as in definition 8) so that νn(gn+1) = gn, we get that {Gn, νn}n∈N is a uniformly

computable sequence as required in definition 10 whose inverse limit is isomorphic to

P .

For the other direction, suppose that {Pn, πn}n∈N is as in definition 10. For each

n ∈ N, let Nn be a natural number such that Pn is isomorphic to a subgroup of SNn

(the group of permutations of {0, ..., Nn − 1}). Define f0 : P0 → SN0
such that f0

is a group embedding. Given fn, define fn+1 : Pn+1 → SNn+1
such that fn+1 is
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a group embedding and “respects” πn+1 in the sense that if πn+1(pn+1) = pn, then

fn+1(pn+1) ↾ Nn = fn(pn). Define G to be the set of g ∈ Sω such that for all n ∈ N,

there exists a p ∈ Pn with fn(p) = g ↾ Nn. We have that G ∼= P and that TG is exactly

the set

{

τ ∈ N<ω : (∃n ∈ N, p ∈ Pn,m < Nn) [τ = fn(p)(0)fn(p)(1) · · · fn(p)(m)]
}

.

It is clear that the domain and branching function of TG are computable, hence we have

that TG is computable. ⊓⊔

3 Complexity of Theories

We now consider the complexity of the existential theory of a profinite subgroup of Sω.

To do so, we must first establish a few lemmas.

Definition 11. A positive formula is a first order formula that can be expressed with-

out the use of any negation symbols. A negative formula is the negation of a positive

formula.

Lemma 1. Let G be a profinite subgroup of Sω and let α+ be a positive formula in the

language of groups. If k < l, then

Gl |= α+(ḡl) =⇒ Gk |= α+(ḡk)

for any ḡ ∈ G<ω .

Proof. If α+ is quantifier free, than it is expressible as a disjunction of conjunctions of

atomic formulas. Recall that an atomic formula in the language of groups is equivalent

to the statement that some word is equal to the identity. If Gl |= α+(ḡl), then one of the

disjuncts must hold which just means that some collection of words W1(ḡl), ...,Wn(ḡl)
over the alphabet {x, x−1 : x ∈ ḡl} are all equal to 1Gl

. Since each element of ḡk is an

initial segment of an element of ḡl, we must also have that W1(ḡk) = · · · = Wn(ḡk) =
1Gk

and so Gk |= α+(ḡk).
Now suppose that the result holds for all Σn and Πn formulas. If α+ is Σn+1, then

we have α+ ≡ ∃x̄β+ where β+ is a Πn positive formula. If Gl |= (∃x̄)β+(ḡl, x̄) then

there exists some h̄ ∈ G<ω such that Gl |= β+(ḡl, h̄l). Since the result holds of Πn

formulas, we get that Gk |= β+(ḡk, h̄k) and so Gk |= α+(ḡk).
If α+ is Πn+1, then we have α+ ≡ ∀x̄β+ where β+ is Σn. If Gl |= (∀x̄)β+(ḡl, x̄)

then Gl |= β+(ḡl, h̄l) for all h̄ ∈ G<ω. Again, since the result holds for all Σn formulas

we have that Gk |= β+(ḡk, h̄k) and so Gk |= α+(ḡk). ⊓⊔

Corollary 1. Let G, k and l be as in the previous Lemma. If α− is a negative formula,

then

Gk |= α−(ḡk) =⇒ Gl |= α−(ḡl)

for any ḡ ∈ G<ω . ⊓⊔

Lemma 2. Let G be a profinite subgroup of Sω. If α is quantifier free, then G |= α(ḡ)
if and only if Gk |= α(ḡk) for all sufficiently large k ∈ N.
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Proof. For the base case, let α be atomic. We have that α(x̄) ≡ W (x̄) = 1 where

W (x̄) is a word over {x, x−1 : x ∈ x̄} and 1 is the group identity symbol. Clearly,

if W (ḡ) = 1G then W (ḡk) = 1Gk
for all k. On the other hand, if W (ḡk) = 1Gk

for

sufficiently large k then we have by the previous lemma that W (ḡk) = 1Gk
for all

k ∈ N. Thus given any n ∈ N and a large enough l such that n ∈ dom(ḡl), we have that

W (ḡl) maps n to n. Hence, W (ḡ) = 1G.

Negative Step: Let α ≡ ¬β with β atomic. Suppose G |= ¬β(ḡ). This gives that there

is a k such that Gk |= ¬β(ḡk). By the previous lemma, we must have that Gl |= ¬β(ḡl)
for all l ≥ k and thus for all sufficiently large l.

Now suppose that Gk |= ¬β(ḡk) for sufficiently large k. There must only be finitely

many k such that Gk |= β(ḡk). Thus, from the base case, we have that G |= ¬β(ḡ).

Conjunctive/Disjunctive Step: If the statement holds for β1 and β2, then it is clear that

it holds for β1 & β2 as well. If the statement holds for β1 or for β2, then it is clear that

it holds for β1 ∨ β2 as well. ⊓⊔

Lemma 3. Every atomic sentence in the language of groups is true in every group.

Proof. Every such sentence has the form

1n = 1m

with n,m ∈ Z. ⊓⊔

The following lemma gives an example of the power of orbit independence.

Lemma 4. Let G be a profinite subgroup of Sω with orbit independence. Let α be an

existential sentence in the language of groups. We have that G |= α if and only if

Gk |= α for some k ∈ N.

Proof. We have that α ≡ ∃x̄β where β is a quantifier free formula. If G |= α then there

is some ḡ ∈ G<ω such that G |= β(ḡ). Thus, Lemma 2 gives that there is a k with

Gk |= β(ḡk) and so Gk |= α.

Now suppose that Gk |= α. We have that for some γ̄ ∈ G<ω
k , Gk |= β(γ̄). Define

an embedding f : Gk → G such that f(γ) ↾ dom(γ) = γ and f(γ) is just the identity

on all orbits OG,l with l > k. Note that since G has orbit independence, we will in fact

have that f(γ) ∈ G.

Note that

β(x̄) ≡
∨

i

∧

j

β+
i,j(x̄)& β−

i,j(x̄)

where each β+ is atomic and each β− negated atomic. Since Gk |= β(γ̄), there is some

i such that Gk |=
∧

j β
+
i,j(γ̄)& β−

i,j(γ̄). It is clear that any negated atomic formula that

holds of γ̄ in Gk will also hold of f(γ̄) in G. Thus if G 2 α, there would have to be

some j such that G 2 β+
i,j(f(γ̄)). However since we are assuming Gk |= β+

i,j(γ̄), there

would have to be some l > k such that Hl |= ¬β+
i,j(f(γ̄) ↾ OG,l). Since γ̄ is just the

identity on all orbits OG,l with l > k, we would have Hl |= ¬β+
i,j(1̄). The formula

β+
i,j(1̄) is an atomic sentence in the language of groups, and so by Lemma 3 we get that

Hl |= β+
i,j(1̄). Hence, we must have that G |= α. ⊓⊔
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Theorem 1. Let G be a profinite subgroup of Sω with orbit independence. The existen-

tial theory of G is Σ0
1 relative to deg(TG).

Proof. Let α be an existential sentence. By the previous lemma, G |= α if and only if

(∃k)[Gk |= α]

which is Σ0
1 relative to deg(TG). ⊓⊔

The following proposition gives that the above theorem is sharp.

Proposition 5. There exists a profinite subgroup G of Sω with orbit independence such

that TG is computable and the existential theory of G is Σ0
1 complete.

Proof. By the previous theorem, we need only build a G with TG computable such that

the existential theory codes ∅′. Define the formula αn for all n ∈ N by

αn := (∃x)[x 6= 1& xpn = 1]

where 1 is the identity element and {pn}n∈N is the sequence of all primes. We build G
such that G |= αn if and only if n ∈ ∅′.

Construction

Stage 0: Define OG,0 = {0} and define H0 to be the trivial group.

Stage s: Let Ns ∈ N be the least not in any OG,i with i < s. Find the least e ≤ s such

that Φe,s(e) ↓ and Gs−1 |= ¬αe. If no such e exists, define OG,s = {Ns} and Hs to be

the trivial group. If there is such an e, define OG,s = {Ns, Ns + 1, ..., Ns + pe − 1}
and define Hs to be cyclic on OG,s.

Verification Since each Gs is computable, it is clear that the tree TG is computable.

If n /∈ ∅′, then no Hs will be of size pn. Thus, no element has order pn, which gives

G |= ¬αn. If n ∈ ∅′, then there will come a stage t in which n is the least such that

Φn,t(e) ↓ and there is currently no Hs of size pn. We will then make Ht cyclic and of

size pn which will assure that G |= αn. ⊓⊔

Theorem 2. Let G be any profinite subgroup of Sω (not necessarily with orbit inde-

pendence). The existential theory of G is Σ0
2 relative to deg(TG).

Proof. Suppose α = ∃x̄β with β quantifier free. By Lemma 2, given ḡ ∈ G<ω we have

that G |= β(ḡ) if and only if Gk |= β(ḡk) for all but finitely many k ∈ N. Let Tβ be the

subset of TG defined by

Tβ := {τ ∈ TG : Gl(τ) |= β(τ))}

where l(τ) is defined as the natural number such that τ ∈ Gl(τ). Note that Tβ is com-

putable given TG. We have that G |= α if and only if

(∃τ̄ ∈ T<ω
G )(∀k ≥ l(τ̄))





∨

σ̄∈G<ω

k



τ̄ ⊑ σ̄&
∧

τ̄⊑ρ̄⊑σ̄

ρ̄ ∈ Tβ
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which is Σ0
2 relative to deg(TG) (recall that deg(TG) computes the branching function

TG, and can thus compute the elements of each Gk). ⊓⊔

The following proposition gives that the above theorem is sharp.

Proposition 6. There exists a profinite subgroup G of Sω (without orbit independence)

with TG computable such that the existential theory of G is Σ0
2 complete.

Proof. Recall that the set Fin = {e ∈ N : |We| < ∞} (where We is the domain of Φe,

the eth Turing program) is Σ0
2 complete. Let {pn}n∈N be the sequence of all primes.

Given n ∈ N, define the formula

αn := (∃x)[x 6= 1& xpn = 1].

We construct G so that

G |= αn ⇐⇒ n ∈ Fin.

This, along with Lemma 2, ensures that the existential theory of G is Σ0
2 complete.

We construct G in stages, defining Gs at stage s of the construction. At stages of

the form s = 〈n,m〉, we work toward making sure that G will model αn just if Wn is

finite. Specifically, if |Wn,m+1| > |Wn,m| then we make sure that if g ∈ Gs−1 with

g 6= 1Gs−1
, then any g′ ∈ Gs with g ⊏ g′ has g′pn 6= 1Gs

. We also create a new

element not equal to 1Gs
that is of order pn. If Wn,m+1 = Wn,m, then we define Hs to

be the trivial group (thus if g ⊏ g′ with g ∈ Gs−1 and g′ ∈ Gs, then g′pn = 1Gs
if and

only if gpn = 1Gs−1
).

Construction Define a bijection 〈〉 : N2 → N such that 0 = 〈0, 0〉 and 〈n,m〉 <
〈n,m + 1〉 for all n,m ∈ N. Define l0 = 0. For all s > 0, define ls to be the least

natural number not in OG,s−1.

Stage 0 = 〈0, 0〉: Define OG,0 = {0, 1} and H0 = G0 = {(0)(1), (0 1)}.

Stage s = 〈n, 0〉 with n > 0: Define OG,s = {ls, ls +1, ..., ls + pn − 1}. Define Hs to

be the cyclic group on OG,s. Define Gs = {g⌢h : g ∈ Gs−1, h ∈ Hs}.

Stage s = 〈n,m〉 with m > 0: Check if |Wn,m| > |Wn,m−1|.

– If no, then define OG,s = {ls} and Gs = {g⌢(ls) : g ∈ Gs−1}. Note, this gives

that Hs is the trivial group.
– If yes, then take N so that this is the N th time that |Wn,x| > |Wn,x−1|. That is,

define

N = 1 + |{x ∈ N : 0 < x < m& |Wn,x| > |Wn,x−1|}|.

Define OG,s = {ls, ls +1, ..., ls + pN+1
n − 1} and define Hs to be the cyclic group

on OG,s. Define t to be the stage that we had added an orbit of size pNn . We define

Gs = {g⌢i hi : 0 ≤ i < pNn & hi ∈ Hs & gi ∈ Gs−1 with gi(lt)−lt ≡ hi(ls)−ls mod pNn }.

For example, suppose we are at stage 1 = 〈0, 1〉. If W0,1 = W0,0 = ∅, then we will

have

G1 = {(0)(1)(2), (0 1)(2)}.

If W0,1 6= ∅, then we will have

G1 = {(0)(1)(2)(3)(4)(5), (0)(1)(2 4)(3 5), (0 1)(2 3 4 5), (0 1)(2 5 4 3)}.



Complexities of Theories of Profinite Subgroups of Sω via Tree Presentations 9

Verification Since each Gs is computable, it is clear that the tree TG is computable.

Thus we need only show that G |= αn if and only if n ∈ Fin.

Lemma 5. Let s = 〈n,m〉 with |Wn,m| > |Wn,m−1|. If g ∈ Gs with gpn = 1Gs
, then

g ↾ ls = 1Gs−1
.

Proof (of Lemma 5). Let N and t be defined as they were at stage s = 〈n,m〉 of the

construction. Note that (g⌢i hi)
pn = 1Gs

if and only if hpn

i = 1Hs
and gpn

i = 1Gs−1
.

Since hpn

i = 1Hs
, we must have that hi(ls) ≡ 0 mod pNn . This gives that gi(lt) = lt,

and so gi is the identity permutation when restricted to OG,t. Similarly, we will get that

gi is the identity permutation on OG,r for all r of the form r = 〈n, x〉. In order for

gpn

i = 1Gs−1
, we must also have that gi is the identity permutation on OG,r for all r

that are not of the form 〈n, x〉 as all of these OG,r will either be of size 1, or of a size

not divisible by pn. Hence, we get that gi = g ↾ ls = 1Gs−1
. ⊓⊔

If n /∈ Fin, then there will be infinitely many stages s of the form s = 〈n,m〉 with

|Wn,m| > |Wn,m−1|. Let g ∈ G. If gpn = 1, then by Lemma 5 we have gs−1 = g ↾

ls−1 = 1Gs−1
for each such s. However, if g ∈ G was a witness to αn then we would

have by Lemma 2 that Gk |= gk 6= 1Gk
& gpn

k = 1Gk
(where gk = g ↾ lk) for all but

finitely many k, which is a contradiction. Hence, there is no witness to αn in G and so

G |= ¬αn.

Now suppose that n ∈ Fin. We have that there is a least natural number m such

that Wn gains no new elements after stage m. This gives that for s = 〈n,m〉, |Hs| is a

multiple of pn, but no Hx with x > s will have |Hx| divisible by pn. Note that by our

instructions, there will be an element g ∈ Gs that is not the identity, but is of order pn.

Since we will never have |Wn,x| > Wn,x−1 for any x > s, we will have that there is an

element of G that is equal to g on Gs, and is equal to the identity on all orbits higher

than that of Gs. This element will be a witness to αn. ⊓⊔

So far we have only considered existential theories. We conclude by now expanding

to entire first order theories for subgroups with orbit independence, which we show to

be ∆0
2 relative to deg(TG) as a consequence of the following theorem of Feferman and

Vaught.

Theorem 3 (Theorem 6.6 from [1]). Given any first order L-sentence φ, we can com-

pute n ∈ N such that for every family {Ai : i ∈ I} of L-structures there exists J ⊆ I
with |J | ≤ n such that if

∏

i∈I Ai |= φ, then
∏

i∈J′ Ai |= φ for all J ′ with J ⊆ J ′ ⊆ I .

⊓⊔

Corollary 2. Let G be a profinite subgroup of Sω with orbit independence. Let α be any

first order sentence in the language of groups. We have G |= α if and only if Gk |= α
for all sufficiently large k ∈ N.

Proof. Since G has orbit independence, we have that G ∼=
∏

i∈N
Hi. If G |= α, then

Corollary 3 gives that there is some finite J ⊂ N such that if J ′ ⊇ J , then
∏

i∈J′ Hi |=
α. Thus, for all k ≥ max(J) we have Gk |= α. For the other direction note that if

G 2 α, then G |= ¬α and so the same reasoning gives that Gk |= ¬α for sufficiently

large k. ⊓⊔
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Theorem 4. Let G be a profinite subgroup of Sω with orbit independence. The first

order theory of G is ∆0
2 relative to deg(TG).

Proof. Let Th(G) denote the first order theory of G. By Corollary 2 we have that α ∈
Th(G) if and only if

(∃l)(∀k > l)[Gk |= α]

which is Σ0
2 relative to deg(TG). On the other hand, we have α /∈ Th(G) if and only if

(∃l)(∀k > l)[Gk |= ¬α]

which is Σ0
2 relative to deg(TG). Hence, both Th(G) and its complement areΣ0

2 relative

to deg(TG) and so Th(G) is ∆0
2 relative to deg(TG). ⊓⊔

This draws a strong distinction between the complexity of theories of profinite

groups with and without orbit independence. Note that by the proof of Proposition 6

it is possible for just the existential theory of G to be Σ0
2 complete relative to deg(TG)

when G does not have orbit independence. However, the entire first order theory of G
will be ∆0

2 relative to deg(TG) when G has orbit independence.
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