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SOME PROPERTIES OF EULER CAPITAL ALLOCATION

LARS HOLDEN

Abstract. The paper discusses capital allocation using the Euler formula and
focuses on the risk measures Value-at-Risk (VaR) and Expected shortfall (ES).
Some new results connected to this capital allocation is shown. Two examples
illustrate that capital allocation with VaR is not monotonous which may be
surprising since VaR is monotonous. A third example illustrates why the same
risk measure should be used in capital allocation as in the evaluation of the
total portfolio. We show how simulation may be used in order to estimate
the expected Return on risk adjusted capital in the commitment period of an
asset. Finally, we show how Markov chain Monte Carlo may be used in the
estimation of the capital allocation.

1. Introduction

The regulatory framework requires a quantification of the total risk in a corpo-
rate. Based on the quantification and a risk measure there is a requirement for an
economic capital that is able to absorb potential losses. The competition makes
it necessary for a financial corporate to ensure an efficient use of their economic
capital. As a part of improving the use of the economic capital, the capital that is
allocated to each asset is calculated. This makes it possible to evaluate each part
of the portfolio. This paper studies some properties of capital allocation assuming
that the stochastic properties of the different assets including their correlations are
known. Hence, we will not discuss how to estimate these distributions.

The two papers Artzner et al. [2] and [3] have initiated a large number of
papers giving a much better understanding of capital allocation. There seem to
be an agreement that capital should be allocated proportional with the partial
derivatives of the risk measure and use the Euler Theorem, see Tasche [12]. This was
first proposed by Litterman [7]. Denault [4] argues for the same capital allocation
using theory from cooperative games. Kalkbrener et al., [6] shows how axioms
assuming that the capital allocation is linear and diversifying lead to the same
capital allocation. Tasche [13] and [14] and Fischer [5] give an overview of the
argument for using Euler allocation.

A large number of authors, see e.g. Acerbie et al [1], argue that the risk measure
should be coherent. This includes for example expected shortfall (ES) but excludes
Value-at-Risk (VaR), the most used risk measure. VaR is used as a part of the Basel
II framework. VaR is not subadditive implying that there may be an additional
cost when adding two portfolios instead of a saving due to diversification. Several
authors argue that one should use ES which is the smallest measure that is law-
permitting dominating VaR, see Tasche [12].

We will contribute in this area with several different examples. First illustrating
that capital allocation using VaR is not monotonous. This may be surprising since
VaR is monotonous. It may be a larger problem than the missing subadditivity of
VaR in a regular use of VaR in capital allocation in corporate. This easily leads to
suboptimal performance of the management of the portfolio.
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2 L. HOLDEN

The regulatory framework may require that VaR is used for estimating the eco-
nomic capital needed for a portfolio. It may however be tempting to use ES for the
capital allocation of each asset since this is a coherent measure with better math-
ematical properties. We give an example illustrating that the same risk measure
should be used for the total portfolio and the capital allocation, else one easily gets
conflict of interest.

Each part of the portfolio may be a commitment for a longer period, and the
corporate will not always be able to end the part of the portfolio that is not cost
efficient based on the latest evaluations. Hence, a new investment should be evalu-
ated based on the expected capital requirement in the commitment period for the
investment, not only based on today’s portfolio. Capital allocation based on the
present portfolio is not optimal since the total portfolio may change during the
period where it is not possible to change the condition for a part of the portfolio.
The natural alternative is to simulate the portfolio and use the expected average
value of the economic capital for the commitment period of the new investment.
This is illustrated in an example.

The numerical calculations involved in a capital allocation may be very computer
intensive. Direct Monte Carlo simulation may not work since we need a large
number realizations to make a good evaluation of the tail behavior. Importance
sampling reduces the problem, see Kalkbrener et al. [6], but it may still be too
CPU requiring. We propose to use Markov chain Monte Carlo. Then we may focus
such that all realizations are used in the quantification. This is illustrated in an
example.

2. Model

In the following we use the terminology from Tasche [14]. Let the random vari-
able Xi denote the cash flow from asset i. A portfolio X consists of n different
assets

X =
n
∑

i=1

Xi.

Further, let EC(X) = ρ(X) denote the economic capital that is deemed necessary
by the regulator or corporate in order to handle a possible unfortunate development
of the portfolio. ρ(X) is a risk measure on the portfolio X ∈ V where V is the
set of real valued random variables. We may define ρ as VaR, ES, the standard
deviation multiplied with a constant or any other measure for the uncertainty. We
need to define some properties on risk measures. A risk measure is monotonous if
X,Y ∈ V and X ≤ Y almost everywhere implies

ρ(X) ≥ ρ(Y ),

subadditive if X,Y ∈ V implies

ρ(X + Y ) ≤ ρ(X) + ρ(Y ),

positive homogeneous if X ∈ V , h ∈ R, and h > 0 implies

ρ(hX) = hρ(X)

and translation invariant if X ∈ V and h ∈ R implies

ρ(X + h) = ρ(X)− h.

A risk measure is denoted coherent if it is monotonous, subadditive, positive ho-
mogeneous and translation invariant. In this paper we will assume the risk measure
is positive homogeneous but do not require the other properties above.
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In order to define the derivative of ρ we introduce the function

f(u) = ρ(

n
∑

i=1

uiXi)

where u = (u1, · · · , un). Assuming the risk measure is positive homogeneous, it
satisfies the Euler formula, see Tasche [12]

f(u) =

d
∑

i=1

ui

∂f

∂ui

(u)

where we assume the partial derivatives exists. This makes it natural to allocate
the capital

ρ(Xi, X) =
∂f

∂ui

(u1)

where u1 = (1, · · · , 1) to the asset Xi. This capital allocation is denoted Euler
allocation. We see immediately that this capital allocation is linear, e.g.

ρ(Xi +Xj , X) = ρ(Xi, X) + ρ(Xj , X)

and has the full allocation property, e.g.

ρ(X) =

n
∑

i=1

ρ(Xi, X).

Assuming ρ(X) is coherent, Denault [4] has proved using game theory, that Euler
allocation is the only allocation satisfying that we always have ρ(Xi, X) ≤ ρ(Xi).
Kalkbrener et al., [6], has proved a similar result using axioms. This is a critical
property closely connected to subadditivity. It states that an asset is allocated less
capital as part of a portfolio than alone. Tasche [11] and [14] give an overview of
the argument for this capital allocation.

Another measure on the portfolio is the Return on risk adjusted capital,

RORAC(X) =
EX

EC(X)
.

For each asset Xi in a portfolio X we define RORAC(Xi, X) = EXi/ρ(Xi, X). A
capital allocation is denoted RORAC compatible, see Tasche [11], if there exists
εi > 0 such that RORAC(Xi, X) > RORAC(X) implies

RORAC(X + hXi) > RORAC(X)

for all 0 < h < εi. The intuition is that if asset Xi has higher RORAC than the
entire portfolio, then increasing this asset in the portfolio increases the RORAC of
the portfolio. This is illustrated in Example 3.

Tasche [9] proves that Euler allocation is the only allocation that is RORAC
compatible. In the following two sections we will discuss Euler allocation for two
of the most popular risk measures.

3. Value-at-Risk, VaR

Defined the α-quantile qα as

qα(X) = inf{z ∈ R|P (X ≤ z) ≥ α}.

Then the risk measure VaR is defined as V aRα(X) = qα(−X). We typically have
α ≥ 0.99 implying that estimation of VaR only focus on one point in the tail. This
makes estimates for VaR much less stable than for example standard deviation.

VaR is monotone, positive homogeneous, and translation invariant. But it is also
well-known that VaR is not subadditive since we may have

V aRα(X + Y ) > V aRα(X) + V aRα(Y ).
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This implies that VaR is not a coherent risk measure. VaR expresses the economical
capital necessary to ensure that the probability for a default is less than α. Hence,
VaR focuses only on one point in the cumulative distribution of X , the maximum
value z where P (X ≥ z) ≥ α. This property is not additive. This implies that if we
have two portfolios X and Y the capital requirement may be larger when we add
them together than if we keep them separate. This may be an argument for splitting
the portfolio and hence the corporate in two. This may seem counter-intuitive as
a risk measure and a not wanted property for the corporate for strategic reasons.
There are several papers stating that risk measures that are not coherent should
not be used. Artzner et al. [3] give three examples with discrete random variables,
one illustrating that the measure is not subadditive, another illustrating that VaR
fails to recognize concentration of risk and fails to encourage a reasonable allocation
of risk between agents. Tasche [10] gives an example with two independent Pareto
distributions that does not satisfy subadditivity. Acerbi et al, [1], writes “ ..if
a measure is not coherent we just choose not to call it a risk measure at all”,
particular due to the missing subadditive property and since there exists coherent
risk measures with satisfactory properties.

The Euler allocation for VaR is

(1) V aRα(Xi, X) = −E{Xi|X = −V aRα(X)}

under some smoothness assumptions, see Tasche [9]. Kalkbrener et al. [6] report
that capital allocation with VaR may require larger economic capital to an asset
then the lowest possible outcome of the variable. But then the capital allocation
is using covariance instead of Euler allocation. This will not happen with Euler
capital allocation as is seen from (1). It is much easier to perform capital allocation
using correlation than Euler allocation. In Section 7 we show how calculation of
capital allocation using Euler allocation may be performed efficiently with Markov
chain Monte Carlo methods.

VaR satisfies the following monotonicity property: If P (X ≤ z) ≥ P (Y ≤ z) for
all values of z ∈ R then V aRα(X) ≥ V aRα(Y ). However, Euler capital allocation
with VaR does not satisfy the same monotonicity e.g. we may have V aRα(X,X +
Y ) ≤ V aRα(Y,X + Y ). This may be surprising. Missing this property may be
more important than missing subadditivity when considering whether the capital
allocation inside a corporate is fair or not. To the authors knowledge, this property
is not proved earlier. This property is due to the fact that VaR focuses on only one
point in the distribution.

We give two examples that Euler capital allocation with VaR is not monotonous.
The first example has two independent discrete variables and the second example
has stochastic variables that are continuous and dependent.

Example 1 Let X1 and X2 be two independent stochastic variables where

P (X1 = 0) = P (X2 = 0) = 0.9925

and

P (X1 = −200) = P (X2 = −100) = 0.0075.

Then

V aR0.99(X1) = V aR0.99(X2) = 0

V aR0.99(X1 +X2) = 100

V aR0.99(X1, X1 +X2) = 0

V aR0.99(X2, X1 +X2) = 100
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Hence, the assetX2 gets allocated all the risk even thoughX1 ≤ X2. This may seem
surprising and the example is analysed more thoroughly by introducing weights
(u1, u2) for the two assets, e.g.

X(u1, u2) = u1X1 + u2X2.

Then we have

V aR0.99(X(u1, 1)) = 100u1 for 0 ≥ u1 ≥ 2

V aR0.99(X(1, u2)) = 100 for u2 ≥ 0.5.

We see that the risk for the portfolio is sensitive to weight u1 but not u2 in the in-
teresting region close to (u1, u2) = (1, 1), hence it makes sense to reduce the weight
of X1 instead of X2 if the regulatory requirement is based on V aR0.99(X). This
also illustrates that it is possible to cheat in the system. The person responsible
for asset X1 may reduce the capital allocated to this asset if he promises to give a
value of 100 to charity if X1 = −100. This makes the distribution of X1 and X2

equal implying that they get the same capital allocation.

Example 2 Let X = 3X1 + X2 where X1 is symmetric around 0 and X2 is
given as

X2 =

{

−X1 if X1 ≤ 0
−2X1 if X1 > 0.

This implies that X2 has the same upside as X1, but the downside is not as good
considered as a univariate variable. But X2 has good diversification properties in
the portfolio. The portfolio X has the same marginal distribution as X2,

X =

{

2X1 if X1 ≤ 0
X1 if X1 > 0.

Then V aRα(X2, X) < 0 < V aRα(X1, X) even though P (X1 ≤ z) ≤ P (X2 ≤ z) all
z ∈ R.

The situation is very different in the two cases. In Example 1 it is tempting to
deviate from Euler capital allocation by moving capital between the involved assets
in order to maintain monotonicity. In Example 2 it is important to not change the
Euler capital allocation in order to honor the increased diversification.

4. Expected shortfall, ES

ES is defined as

ESα(X) = −E{X |X ≤ −V aRα(X)}.

Acerbi et al, [1] prove that

ESα(X) =
1

1− α

∫ 1

α

V aRτ (X)dτ.

ES is a coherent risk measure. Further, it is proved that Euler allocation gives

ESα(Xi, X) = −E{Xi|X ≤ −V aRα(X)}

assuming sufficient smoothness. Since ES takes the average of VaR for α ≤ τ ≤ 1
we have ESα(X) ≤ V aRα(X). It is also proved the ES is the smallest risk measure
that is law invariant where ρ(X) ≤ V aRα(X). This makes ES a good alternative
to VaR. The property law invariant is that if X,Y ∈ V and P (X ≤ z) = P (Y ≤ z)
for all z ∈ R then ρ(X) = ρ(Y ). Since ES focuses on the entire tail and not only a
quantile, it may require more realizations in a Monte Carlo estimation than VaR.
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Figure 1. RORAC for the porfolio (line) and the assets uX1 (dotted)
and (1− u)X1 (dashed) with Euler capital allocation using VaR.

5. Combining ES and VaR

Since ES is coherent while VaR is not, many authors recommend to use ES
instead of VaR. We will discuss under the assumption that the regulator requires
the use of VaR for setting the economic capital whether to use VaR or ES in the
capital allocation. Since VaR is not subadditive some authors seem to recommend
to use ES for capital allocation. The missing monotonicity property strengthen
this argument. However, we will argue that this is not necessarily a good choice.
It is correct that VaR may lead to examples where we do not get subadditivity
and therefore there may be arguments for splitting the portfolio in several parts.
However, most practitioners report a 30% diversification effect indicating that the
missing subadditivity property is mainly academic. The following example shows
that combining VaR as a risk measure for the portfolio and ES in the capital
allocation, may give conflict of interest. This is avoided if VaR or ES is used both
as a risk measure for the portfolio and in the capital allocation. This indicates
that if VaR is used as risk measure, then VaR should also be used in the capital
allocation.

Example 3 Let Xi = 0.5− IiYi for i = 1, 2 where Ii is an indicator and Yi is a
Pareto distributed variable with density

f(y) =
γi
bi
(
y

bi
+ 1)−γi−1

where y > 0. The indicator Ii = 1 with probability 0.1 and else Ii = 0. We have
chosen the variables γ1 = 5 and γ2 = 1.7 and bi such that E{Xi} = 0.2 for i = 1, 2.
We study the portfolio X = uX1 + (1− u)X2 for 0 ≤ u ≤ 1 and compare RORAC
with Euler capital allocation using VaR and ES as risk measure (Figures 1 and 2),
and when VaR is used as risk measure for the portfolio while

ρV aR−ES(Xi, X) = ESα(Xi, X)V aRα(X)/ESα(X)

is used in the capital allocation ( Figure 3). The figures show RORAC for the port-
folio and the two assets uX1 and (1− u)X1 as a function of u for the different risk
measures and capital allocation methods. When we use Euler capital allocation with
VaR or ES we get an optimal portfolio for u = 0.3 and u = 0.7 respectively where
both assets and the total portfolio have the same RORAC. That the assets have
the same RORAC in the optimum as the total portfolio follows from the RORAC
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Figure 2. RORAC for the porfolio (line) and the assets uX1 (dotted)
and (1− u)X1 (dashed) with Euler capital allocation using ES.
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Figure 3. RORAC for the porfolio (line) and the assets uX1 (dotted)
and (1−u)X1 (dashed) with VaR as risk measure and ρV aR−ES(Xi, X)
used in the capital allocation.

compatibility of Euler capital allocation. In these two cases RORAC is increasing
for the assets when the asset gets less weight in the portfolio. When ρV aR−ES is
used for the capital allocation the performance is more complex. The diversifica-
tion effect is not as expected and the two assets have very different RORAC at the
optimal diversification. If we require that the two assets have approximately the
same RORAC then the total portfolio is far from optimal. If we reduce the weight
of the asset with lowest RORAC, we may reduces the RORAC of the total portfolio.
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Table 1. RORAC for a new investment depending on the other investment.

New investment Other investment
X1 X2

X1 0.030 0.033
X2 0.071 0.044

6. Changes in the portfolio

Assume we already have a portfolio X and consider to expand the portfolio with
Xn+1. Then we should base the evaluation on the capital allocation

(2) ρ(Xn+1, X +Xn+1).

Euler capital allocation does not encourage new investments Xn+1 where

ρ(X,X +Xn+1)− ρ(X)

is large, hence contributes to a reduction in the capital allocated to the rest of the
portfolio. There are capital allocation methods that takes these other properties
into account. But Tasche [12] proves that for continuous differentiable, subadditive
and positive homogeneous risk measures then Euler allocation gives

ρ(Xn+1, X +Xn+1) ≥ ρ(X +Xn+1)− ρ(X).

Hence if each asset only gets allocated the additional increase in the total portfolio,
then the sum of the capital allocated to each asset may not add up to the capital
required for the entire portfolio and the sum will never be above. In some cases it
may be fair that the last asset, Xn+1, gets allocated only the marginal increase and
all the other assets get allocated capital assuming that Xn+1 is not present. But
then it is necessary to argue that this particular asset is different from the rest and
deserves a special treatment.

In a one-period framework, as pointed out by Fischer [5], where we at time t = 0
can evaluate the entire portfolio X and we are not allowed to do any changes before
t = T and the variables X and Xn+1 denote the values at time t = T , then it is
natural to base the evaluation on (2). Euler capital allocation is only based on the
risk as it is evaluated today. The typical situation is often very different. It does not
consider that a large part of the portfolio may be invested a long time ago, under
different economic conditions and that the corporate may not be in the position to
remove part of the portfolio that is not beneficial any more. The present decision
is whether to include a new investment in the portfolio. Let Xt and Xn+1,t denote
the portfolio and the new investment at time t and assume the new investment is
a commitment from t = 0 to t = T. Then it is natural to base the decision on the
capital allocation

1

T

∫ T

t=0

E{ρ(Xn+1,t, Xt +Xn+1,t)}dt.

In order to evaluate this expression it is necessary to evaluate the future properties
of the portfolio and the new investment. This is typically done by simulation. The
following schematic example shows how this may be done.

Example 4 Let the portfolio be X = Z1 + Z2 where one of the Zj is renewed
each year for a period of two years. Each of the variables Zj may be of the two
types Xi, i = 1, 2 as defined in Example 3. When we make the investment for a
two years period we know the portfolio for the first year, but for the second year
the other part of the portfolio is with equal probability equal to X1 or X2. Table 1
shows RORAC for the four cases. If the new investment is of type X2 and the other
investment that is lasting for one more year is also of type X2, then the RORAC
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Table 2. Average RORAC for a two years period for a new investment
depending on the old investment in the portfolio

New investment Old investment
X1 X2

X1 0.031 0.032
X2 0.064 0.051

for the new investment the first year is 0.044. For the second year will the other
investment be of type X1 or X2 with equal probability leading to a RORAC equal
0.071 or 0.044 with equal probability. This implies that the expected average annual
RORAC for the new investment is equal to (0.044+(0.044+0.071)/2)/2=0.51. By
a similar method we may calculate the numbers shown in Table 2. This table may
be used in the evaluation of a new investment based on whether the new and the
old investment is of type X1 or X2.

7. Calculation of capital allocation

The easiest method to calculate the Euler capital allocation based on the stochas-
tic properties of the portfolio and a risk measure is to use Monte Carlo simulation.
Then it is generated a large number of realizations and the risk measure is calculated
by evaluating the realizations empirically. If VaR or ES is used as risk measure with
a high value α, we will only use a small part of the simulated values. This makes
the simulation inefficient. This may be considerably improved by using importance
sampling, see e.g. Kalkbrener et al. [6] or Tasche [13]. If we use Markov chain
Monte Carlo (MCMC) it is possible to improve the sampling even more. See Meyn
and Tweedie [8] for a thorough introduction to MCMC. In the following example we
illustrate how capital allocation may be calculated using Monte Carlo simulation,
Importance sampling and MCMC. We give complete algorithms for each type. It
is outside the scope of this paper to discuss the different alternatives within each
class in detail.

Example 5 Let

Xj =

n
∑

i=1

Xj
i

denote realization number j of the portfolio. Assume

Xj
i = ai − exp(Y j

i )

where Y j
i ∼ N(µi, σ

2
i ) and all Y j

i are uncorrelated in order to simplify the notation.

Let X(j) denote the Xj sorted such that

X(1) ≤ X(2) ≤ · · · ≤ X(n)

andX
(j)
i is the realization for asset i that correspond toX(j). Assume nα = (1−α)n

is an integer such that −X(nα) is a reasonable estimator for V aRα(X). Let b be
an integer such that b ≤ nα.

The Monte Carlo simulation algorithm below gives n realizations of X . From
these realizations we find the estimators V aRα,MC(X) for V aRα(X) and V aRα,MC(Xi, X)
for V aRα(Xi, X).

(1) For j = 1, 2, · · · ,m

(a) Set Xj =
∑n

i=1(ai − exp(Y j
i ))

(2) Sort to find X(1), · · · , X(m), and the corresponding X
(j)
i

(3) Set V aRα,MC(X) = −X(nα)

(4) Set V aRα,MC(Xi, X) = − 1
2b+1X

(nα)
∑b

j=−b

X
(nα+j)
i

X(nα+j)
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In order to make good estimates for the capital allocation, it is necessary with
many realizations estimating this, hence b large. On the other hand it is necessary
with n large such that the 2b+1 realizationsX(nα−b), · · · , X(nα+b) all are sufficiently
close to the quantile V aRα(X). The storage problem may be solved by only storing
realizations in an interval d1 ≤ Xj ≤ d2 surrounding V aRα(X).

Only a small portion of the realizations is in the interesting interval. This may
be improved by importance sampling. Here is a very simply importance sampling
algorithm where Y j

i,IS ∼ N(µi,IS , σ
2
i,IS). Define φµ,σ2(y) as the density in the

N(µ, σ2) distribution and pj the importance sampling weight for each realization.
Further, define p(j) as the values of pj sorted according to the size of Xj and scaled
such that 0 = p(0) < p(1) < · · · < p(m) = 1 and p(j+1) − p(j) = cpk where pk is the
corresponding value before the sorting. Define nα,IS such that p(nα,IS) is closest to
(1−α)n. We may then define the importance sampler estimators V aRα,IS(X) and
V aRα,IS(Xi, X) by the algorithm:

(1) For j = 1, 2, · · · ,m

(a) Set Xj =
∑n

i=1(ai − exp(Y j
i ))

(b) Set pj =
∏n

i=1

φ
µi,σ

2
i
(Y i

j )

φ
µi,IS ,σ2

i,IS
(Y i

j )

(2) Sort to find X(1), · · · , X(m), and the corresponding X
(j)
i and p(j).

(3) Set V aRα,MC(X) = −X(nα,IS).

(4) Set V aRα,MC(Xi, X) = − 1
2b+1X

(nα,IS)
∑bIS

j=−bIS

X
(nα,IS+j)

i

X(nα+j)
.

Still, only a small part of the realizations are used in the estimation and none of
these are exactly such that X = V aRα(X). By using Markov chain Monte Carlo
MCMC it is possible to make all realizations equal to X = V aRα(X) and such that
all realizations may be used in the capital allocation. Assume V aRα(X) is found
by another algorithm, for example one of the two algorithms described above. It
is necessary with significant larger n in order to find the capital allocation than
VaR hence it make sense to use on of the other algorithms for this. Then the
MCMC estimator for the capital allocation V aRα,MCMC(Xi, X) may be found by
the following algorithm:

(1) Let X0 be any realization satisfying X0 = V aRα(X).
(2) Let k1 ≤ n be any index
(3) For j = 1, 2, · · · ,m ∗ n

(a) Find index k2 ≤ n and k1 6= k2 uniformly

(b) Find Ỹ j+1
k2

∼ N(µk2 , σ
2
k2
) and corr(Ỹ j+1

k2
, Y j

k2
) constant

(c) Set X̃j
k2

= (ak2 − exp(Y j
k2
))

(d) Set X̃j
k1

= Xj
k1

+Xj
k2

− X̃j
k2

(e) Set Ỹ j
k1

= log(ak1 − X̃j
k1
)

(f) Set pj = φµi,σ
2
i
(Ỹ i

j )/φµi,σ
2
i
(Y i

j )

(g) Set Xj+1 = X̃j+1 with probability min{1, pj} and else set Xj+1 = Xj .
(h) Set k1 = k2

(4) Set V aRα,MCMC(Xi, X) = − 1
m

∑m

j=1 X
jn
i .

The MCMC algorithm generates a chain of realizations Xj that are according to
the distribution we want to study. But the first realizations in the chain are not from
the distribution (a burn-in period) and realizationsXj and Xj+k are dependent but
the dependence decreases geometrically in k. Table 3 shows the number of numerical
operations for the different algorithms. Notice that the number of operations is
considerably smaller for MCMC in the capital allocation per realization.
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Table 3. Number of numerical operations (additions, multiplications,
exponential, logarithm ) per realization in the three algorithms

MC IS MCMC
V aR(X) 3n 6n -

V aR(Xi, X) 3n/(2b+ 1) 6n/(2bIS + 1) 9

Table 4. Estimate for the VaR and the capital allocation using the
three algorithms. The standard deviation of the estimates are given en
parenthesis.

MC IS MCMC
m 1.000.000 1.000.000 100.000
b 1.600 20.000 -

V aR0.99(X) 6.33 6.38 -
V aR0.99(X1, X) 0.038 (0.018) 0.042 (0.016) 0.038 (0.027)
V aR0.99(X31, X) 0.064 (0.021) 0.065 (0.016) 0.066 (0.029)
V aR0.99(X61, X) 0.109 (0.019) 0.108 (0.021) 0.109 (0.026)

We have tested the three algorithm in an example with n = 90 assets with the
following parameters: σi = 0.5 and E{Xi} = 0.2 for all i while the assets are
divided into three groups with 30 assets in each group where µi = 0.44/0.45/0.47
respectively. The parameters ai are determined from the other parameters. Table
4 shows the estimate for V aR0.99(X) and the capital allocation V aR0.99(Xi, X) for
the portfolio for the three different algorithms. By having 30 equal assets in the
portfolio, it is possible to estimate the precision of the different estimates.

In importance sampling we have used µi,IS = µi + 0.2 resulting in about 10
times as many realizations in an interval close to V aR0.99(X) as in Monte Carlo
simulation. This implies that importance sampling may give an improvement with a
factor 10 compared to Monte Carlo simulation. In MCMC we have used correlation
equal to 0.3 when proposing a new Ỹ j+1

k2
value leading to an acceptance ratio at 0.57

and that realizations with Xj andXj+5 are almost independent. There is almost no
burn-in in this MCMC algorithm. Importance sampling gives 2b=40.000 samples
from m= 1 mill. MCMC gives 100.000 samples using about 10 % of the number of
operations. This indicates that that MCMC may give an improvement with a factor
100 compared to Monte Carlo simulation. In the test, we have not performed any
optimization of the algorithm and parameters. Hence, it is reasonable to assume
that it is possible to improve both importance sampling and MCMC even further.

8. Concluding remarks

In this paper we have given an overview over capital allocation using the Euler
formula. We have contributed to the research showing that:

• Euler capital allocation with VaR is not monotone even though VaR is
monotone. This is shown in both an example with independent discrete
variables and with continuous correlated variables.

• The same risk measure should be used for the portfolio and in the capital
allocation.

• Simulation may be used in estimating the expected RORAC over the com-
mitment period of an asset.

• Markov chain Monte Carlo may be used in the estimation of the capital
allocation.
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