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Abstract

Ridge regression is an indispensable tool in big data econometrics but suf-
fers from bias issues affecting both statistical efficiency and scalability. We
introduce an iterative strategy to correct the bias effectively when the dimen-
sion p is less than the sample size n. For p > n, our method optimally reduces
the bias to a level unachievable through linear transformations of the response.
We employ a Ridge-Screening (RS) method to handle the remaining bias when
p > n, creating a reduced model suitable for bias-correction. Under certain
conditions, the selected model nests the true one, making RS a novel variable
selection approach. We establish the asymptotic properties and valid inferences
of our de-biased ridge estimators for both p < n and p > n, where p and n may
grow towards infinity, along with the number of iterations. Our method is val-
idated using simulated and real-world data examples, providing a closed-form
solution to bias challenges in ridge regression inferences.
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Regularization theory was one of the first signs of the existence of intelligent
inference.—Vladimir N. Vapnik (p.9, Vapnik (2013))

1 Introduction
Ridge regression, or more formally ℓ2-regularization estimation, is a fundamental tool
in econometrics, statistics, and machine learning with applications in various fields of
science, technology, engineering, mathematics, medicine, social sciences, and human-
ities. The idea of ℓ2-regularization appeared in the early 1940s for the stability of in-
verse problems; see Tikhonov (1943). It was first introduced to data analysis by Hoerl
(1959) and later formulated in Hoerl and Kennard (1970b,a) for providing a robust so-
lution to some of the persistent challenges encountered in traditional linear regression
techniques; see Hoerl (1985) for a nice review. Emerging as a fundamental technique
in predictive modeling, ridge regression addresses issues such as multicollinearity and
overfitting, which commonly afflict predictive models dealing with high-dimensional
data. Since its inception, ridge regression’s practical adoption persists due to its su-
perior performance over the least-squares estimator in various scenarios, evident in
applications across neuroscience, chemistry, biology, and economics; see Leonard et al.
(2023), Zahrt et al. (2019), Otwinowski and Plotkin (2014), Giannone et al. (2021),
and Abadie and Kasy (2019), among others, underscoring its empirical effectiveness.
From a shrinkage perspective, the ridge estimator also dominates the least-squares
solutions in the sense that its mean-squared errors (MSEs) can be smaller, which
provides a reasonable explanation on the empirical effectiveness of ridge estimators.
See Theobald (1974), Athey and Imbens (2019), Hastie (2020), Hansen (2022a), and
a comprehensive introduction to ridge regression in van Wieringen (2023).

The ridge estimator offers a closed-form expression that simplifies both theoretical
and empirical analyses. It aligns with the dense modeling techniques of Giannone
et al. (2021), which acknowledge the potential significance of all explanatory variables
for prediction. Empirical studies, such as those in Giannone et al. (2021), indicate
that dense models generally tend to outperform the sparse ones in out-of-sample
economic prediction performance. Similarly, Abadie and Kasy (2019) find that the
ridge estimators dominate the lasso and the pre-testing estimators in terms of the
risks when the effects of different predictors on the dependent variable are “smoothly
distributed”. These results suggest that ridge estimators indeed constitute a crucial
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tool in econometric modeling and economic forecasting, especially in the big data era.
However, as highlighted in Section 2.8 of Athey and Imbens (2019), constructing

valid confidence intervals remains a challenge for many regularized methods, includ-
ing ridge regression, even in asymptotic settings. This long-standing challenge in
ridge-type regression involves at least two critical aspects within a linear regression
framework: (a) performing hypothesis tests on specific linear combinations of the
regression coefficients using the ridge estimators; and (b) deriving confidence or pre-
diction intervals based on the ridge estimators in empirical applications. The primary
reason for these challenges is that the inherent bias of ridge estimators poses signifi-
cant challenges, compromising both statistical efficiency and scalability across various
applications. To date, the feasibility of conducting statistical inferences and hypothe-
sis testing on ridge-type estimators without imposing additional structural constraints
remains largely unexplored in the literature. This complexity arises from the ridge
estimator’s intrinsic bias, which complicates direct statistical inferences despite its el-
egant closed-form expression. As a result, research addressing the inference challenges
of ridge regression in high-dimensional settings is limited, leading to its widespread
application across disciplines without comprehensive theoretical investigations.

To the best of our knowledge, there are only a few works in the literature concern-
ing the bias and inference of ridge estimators under different scenarios. Under a sparse
structure, Shao and Deng (2012) proposed a threshold ridge regression method and
proved its consistency. The method therein actually estimates the projected coeffi-
cient vector rather than the true one in the linear model. Dobriban and Wager (2018)
derived the limit of the predictive risk of ridge regression and regularized discriminant
analysis in a dense random effects model. Bühlmann (2013) proposed to use the lasso
to correct the bias of ridge estimators. However, the estimation depends on the ex-
istence of an initial estimator which needs to be accurate enough. Zhang and Politis
(2022) adopted a similar approach as that in Shao and Deng (2012) and proposed a
threshold ridge regression and a bootstrap method to make inferences. However, the
method therein still estimates the projected coefficient vector rather than estimating
the true one, and the remaining bias may not be asymptotically negligible in general.

In this paper, we introduce a systematic approach tailored specifically for mitigat-
ing the bias in ridge-type estimators for high-dimensional linear regression models.
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Leveraging the closed-form expression of the ridge estimators, the bias term can also
be established in an analytic form. Although the bias term involves the true parame-
ters which are unknown in practice, we found that replacing the true parameters with
the ridge estimators turns out to be an effective way to mitigate the bias. Therefore,
the proposed method employs an iterative bias-correction strategy, and the bias can
be reduced substantially when the number of iterations is sufficiently large. Notably,
it achieves complete bias correction if the covariate dimension p is smaller than the
sample size n, and can reduce considerable bias if p surpasses n. We show that our
bias-correction method is an optimal one in the sense that the bias can be completely
corrected (asymptotically) when p < n with a sufficient number of the proposed bias-
correction iterations, and the remaining bias of the de-biased ridge estimator when
p > n is unattainable through any linear transformations of the response vector.

To further combat the remaining bias in the de-biased ridge estimators when
p > n, we introduce a novel ridge-screening (RS) method for covariate selection prior
to applying our bias correction procedure. The RS approach constructs a restricted
model that inherently encompasses the true model as a subset. This is based on the
assumption that only a subset of the covariates holds significance in the linear model.
Specifically, we postulate that the number of significant covariates should be less
than the sample size, which can appropriately diverge relative to the dimension p and
sample size n. Crucially, we demonstrate that under certain mild conditions, the true
model is inherently nested within the selected one, establishing RS as a novel variable
selection approach that offers independent value beyond bias correction. Leveraging
this restricted model, our bias-correction procedure can be further applied to the
restricted model and effectively rectifies the bias in the resulting ridge estimators

The derivation of the methodology and theory is mainly based on a fixed de-
sign, which is similar to the setting in Hansen (2022b), and the results throughout
this paper are valid for random regressors by conditioning on the design matrix.
This paper rigorously establishes the asymptotic properties and provides valid infer-
ences of our estimators for both p < n and p > n under some relaxed and intuitive
conditions. Furthermore, we delve into the bias-variance trade-off of our de-biased
ridge estimators, examining its relationship with the number of iterations in the bias-
correction procedure. To validate our methodology, we provide empirical evidence
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using both simulated and real-world data. The prediction intervals constructed by
the proposed method are indeed satisfactory for forecasting the U.S. macroeconomic
series using factor-augmented regression. Moreover, the RS method can further en-
hance the coverage rates of these prediction intervals. These empirical validations
highlight the practical efficacy and adaptability of our approach across a wide range
of high-dimensional regression settings.

The contributions of this paper are multi-fold. First, the proposed bias-correction
method is simple and easy to implement. In fact, the proposed approach is a system-
atic procedure and the resulting de-biased estimator has a closed-form expression.
Second, the optimality of the proposed bias-correction procedure consists of two as-
pects: (a) it achieves complete bias correction when the covariate dimension p is
smaller than the sample size n; and (b) the remaining bias of the de-biased ridge esti-
mator in the scenario when p > n is unattainable through any linear transformations
of the response vector. These results distinguish our work from the existing ones that
only part of the bias can be corrected in most of the aforementioned literature. Third,
we also propose a novel variable selection procedure, namely the ridge-screening (RS)
method, which screens out some insignificant variables based on the de-biased ridge
estimator due to its optimality. Fourth, we also establish the asymptotic properties of
the de-biased ridge estimators in both scenarios when p < n and p > n, and it is shown
that the de-biased ridge estimators are asymptotically normal, which provides valid
inference methods for the ridge estimators. Fifth, we develop a procedure to construct
confidence and prediction intervals in ridge regressions using our proposed de-biased
estimators and associated inference methods. Finally, we establish the bias-variance
trade-off of our proposed approach both theoretically and through validation with
simulated data. It’s important to note that, unlike the scenario described in Section
2.8 of Athey and Imbens (2019) where many inference approaches for regularized ma-
chine learning methods compromise predictive performance, our proposed procedure
focuses on correcting the bias and rendering the estimators suitable for inferences,
without adversely affecting their predictive performance.

We highlight that the asymptotic framework adopted in this paper is slightly
different from traditional approaches in the literature. Typically, in conventional
frameworks, the asymptotic properties are established when the dimension and/or
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the sample size are approaching infinity. However, in our study, most of the asymp-
totic results are derived under a different scenario that the number of iterations in
the bias-correction procedure tends towards infinity for any given configuration of the
dimension p and the sample size n. This configuration can be sufficiently large to en-
compass the framework of big data analysis. One of the primary motivations behind
this choice is to demonstrate the validity of our proposed procedure by explicitly pro-
viding the exact bias and covariance terms of the de-biased estimators in this paper.
This approach is also reasonable because it reflects common scenarios encountered
in practical data analysis, where datasets often have fixed dimensions and sample
sizes. Without this setting, the dimensions of the bias and covariance terms of the
de-biased estimators would expand to infinity if we considered n and p approaching
infinity, making them challenging to formulate and describe theoretically. Moreover,
our asymptotic results remain valid as n and p approach infinity. This holds true so
long as we initially allow the number of iterations to increase towards infinity at a
moderate rate. In this asymptotic manner, we can symbolically retain the forms of
the bias and covariance terms for a growing configuration of (p, n). Therefore, it’s
important to emphasize that our chosen asymptotic framework does not undermine
the validity of the proposed bias-correction procedures.

The rest of the paper is organized as follows: Section 2 introduces the ridge
estimation and its bias-correction procedure in scenarios when p < n and p > n,
where a ridge-screening method is also introduced for variable selection. Following
this, Section 2 also presents the inference methodologies for the proposed de-biased
estimators. Section 3 examines the proposed approach’s finite-sample performance via
Monte-Carlo simulations. Section 4 provides an empirical application of the proposed
method, and Section 5 offers conclusive insights. All proofs and derivations for the
asymptotic results are available in an online Appendix.

Notation: We use the following notation. For a p × 1 vector u = (u1, ..., up)′,
∥u∥2 =

√∑p
i=1 |ui|2 is the ℓ1-norm and ∥u∥∞ = max1≤i≤p |ui| is the ℓ∞-norm. Ip

denotes the p × p identity matrix. For a matrix H, its operator norm is ∥H∥2 =√
λmax(H′H), where λmax(·) denotes the largest eigenvalue of a matrix, and ∥H∥min

is the square root of the minimum non-zero eigenvalue of HH′. |H| denotes the
absolute value of H elementwisely. The superscript ′ denotes the transpose of a
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vector or matrix. We also use the notation a ≍ b to denote a = O(b) and b = O(a)
or a and b have the same order.

2 Models and Methodology
2.1 High-dimensional Linear Regression
Let {(x1, y1), ..., (xn, yn)} be a given sample of centered observable data. We consider
the problem of estimating a p-dimensional vector β from the following linear model:

yi = x′
iβ + εi, i = 1, ..., n, (1)

where yi is a scalar response variable, xi is a p-dimensional covariate vector, and εi

is a random error term with mean zero and finite variance. Similar to the setting
in Hansen (2022b) and Ch. 29 of Hansen (2022a), we treat the n × p design matrix
X = (x1, ..., xn)′ consisting of p covariates as a fixed one. But the estimation results
throughout the paper remain valid for random regressors by conditioning on the
design matrix data X. Note that Model (1) can be expressed in vector form

y = Xβ + ε, (2)
where y = (y1, ..., yn)′ is an n-dimensional response vector, and ε = (ε1, ..., εn)′ is
an n-dimensional vector of errors with E(ε) = 0 and Cov(ε) = Σε, where Σε is a
diagonal matrix with positive and bounded diagonal elements. If p < n and X′X is
an invertible matrix, the least-squares estimator for β is

β̂lse = (X′X)−1X′Y. (3)
Note that the least-squares estimator β̂lse is only well-defined if (X′X)−1 exists. In
a high-dimensional setting, if the columns of the design matrix X are linearly de-
pendent, for example, this is obviously true when p > n, this collinearity among the
columns implies that X′X is singular, rendering β̂lse an invalid estimator. To make
the least-squares estimator in (3) a well-defined quantity, we modify the definition in
(3) as

β̂lse = (X′X)+X′Y, (4)

where (X′X)+ is the Moore-Penrose generalized inverse. It is not hard to see that the
estimator in (4) reduces to the one in (3) if p < n and X′X is invertible. Therefore, we
will denote the estimator in (4) as the least-squares solution throughout this article.
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2.2 Ridge Regression
The ridge regression estimator was first proposed by Hoerl (1959); see the review arti-
cle of Hoerl (1985). It essentially comprises of an ad-hoc fix to resolve the singularity
issue of X′X in the presence of many covariates. Suppose (X′X + λIp) is invertible
for a given λ > 0, the ridge estimator is defined as

β̂(λ) = (X′X + λIp)−1X′y, (5)
which simply replaces X′X by X′X + λIp with a tuning parameter λ > 0 in the
least-squares estimator of (3). From a regression point of view, the ridge estimator
can be obtained in the following way. Let y∗ = (y′, 0)′ and X∗ = (X′,

√
λIp)′ be

the augmented data, the ridge estimator is a solution to the following optimization
problem:

β̂(λ) = arg min
β∈Rp

{
∥y∗ −X∗β∥2

2

}
= arg min

β∈Rp

{
∥y−Xβ∥2

2 + λ∥β∥2
2

}
. (6)

From the expression of the ridge estimator for a given λ > 0, it is not hard to see
that

β̂(λ)→ β̂lse, as λ→ 0,

and
λβ̂(λ)→ X′y, as λ→∞,

which is the componentwise regression estimator if each covariate is standardized.
Therefore, a large λ would reduce the variance of the estimator, but the bias may
increase as λ grows.

In this paper, we only focus on a given λ > 0 and investigate the bias-correction
and inference issues for β̂(λ). For the purpose of comparisons with the proposed
approach, we first specify the initial bias of the ridge estimator of (5) in the following
theorem.

Theorem 1. If y admits a linear structure as that in (2) with Eε = 0, then the bias
of the ridge estimator β̂(λ) in (5) is

bλ,0 = β − Eβ̂(λ) = λ(X′X + λIp)−1β, (7)
for any given λ > 0 such that (XX′ + λIp) is invertible.

Remark 1. The condition for the result in Theorem 1 to hold is the same as that for
linear regression models. If the design matrix X is random with either independent

8



and identically distributed (i.i.d.) or weakly dependent columns, we require E(ε|X) =
0, and then, the bias of the ridge estimator conditioning on X and a given λ > 0 is

bias[β̂(λ)|X] = β − E[β̂(λ)|X] = λ(X′X + λIp)−1β,

which is the same as that in (7). See also Ch. 29.6 in Hansen (2022a) for details.

From Theorem 1, the bias of the ridge estimator depends on the unknown true
parameter β. Therefore, it is fundamentally challenging to make any statistical in-
ference on the ridge estimator or to construct any confidence or prediction intervals
involving the ridge estimator. Consequently, it is important to seek an effective way
to correct or reduce the bias of a ridge estimator.

In the next section, we will tackle this issue by proposing an iterative procedure
to reduce the bias of the ridge estimators.

2.3 Bias-Correction
The discussion in this section is divided into two key parts depending on whether
X′X is invertible or singular. For simplicity, in line with the setting in Wang and
Leng (2016), we assume that X′X is invertible when p < n and singular when p > n

throughout this article1. This assumption is well-justified as we consider a fixed design
matrix X in this paper and X′X naturally maintains its invertibility when p < n.
Furthermore, in extreme cases where highly correlated variables are present within
X (in a random sense), we may implement specific transformations based on prior
knowledge or statistical methods such as the hierarchical clustering or the k-means
algorithm to mitigate these correlations prior to conducting ridge regression; see the
discussion in Section 4.1.2 of Fan and Lv (2008). Consequently, we only focus on the
bias-correction issue in this paper and rule out the case when some covariates in X
are highly correlated.

Note that the ridge estimator in (5) can be written as
β̂(λ) = β − λ(X′X + λIp)−1β + (X′X + λIp)−1X′ε. (8)

The bias-correction procedure is based on this expression and (7) in Theorem 1. The
rationale for the procedure is as follows. Since β in the bias term of (7) is unknown,
we first replace it by β̂(λ) defined in (5) and construct a first-step de-biased ridge

1An alternative framework is to consider the scenarios that p/n ∈ (0, 1) and p/n ∈ (1,∞),
a common setting in random matrix theory, which is also helpful in establishing the asymptotic
results if we further allow n, p→∞ later.
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estimator as
β̂c,1(λ) = β̂(λ) + λ(X′X + λIp)−1β̂(λ). (9)

Plugging β̂(λ) from (8) into (9), we obtain:
β̂c,1(λ) = β − λ2(X′X + λIp)−2β + (X′X + λIp)−1X′ε + λ(X′X + λIp)−2X′ε. (10)

Consequently, the bias term of β̂c,1(λ) is
bλ,1 = β − E(β̂c,1(λ)) = λ2(X′X + λIp)−2β. (11)

It’s apparent that the ℓ2-norm of the bias term bλ,1 produced by β̂c,1(λ) is smaller
than that of the initial bias bλ,0 in Theorem 1 under mild conditions, implying that the
bias bλ,0 has been partially corrected by β̂c,1(λ). To see this, we conduct a singular-
value decomposition on X or a spectral decomposition on X′X, and the effectiveness
of the bias-correction approach depends on two observations: (a) the eigenvalues of
λ(X′X + λIp)−1 are positive and strictly less than one; and (b) the eigenvalues of
λ2(X′X + λIp)−2 becomes smaller in the de-biased estimator of (10) compared to
those of λ(X′X + λIp)−1 in bλ,0.

Following the first step, we replace the unknown vector β in (11) by the ridge
estimator β̂(λ) again, leading us to construct a second-step de-biased estimator:

β̂c,2(λ) = β̂c,1(λ) + λ2(X′X + λIp)−2β̂(λ) = β̂(λ) +
2∑

j=1
λj(X′X + λIp)−jβ̂(λ). (12)

By a similar argument, the bias term of β̂c,2(λ) is
bλ,2 = β − E(β̂c,2(λ)) = λ3(X′X + λIp)−3β, (13)

where the eigenvalues of λ3(X′X + λIp)−3 are even smaller compared to those of
λ2(X′X+λIp)−2 in bλ,1. Consequently, we can show that the ℓ2-norm of the bias bλ,2

is smaller than that of bλ,1 under the same framework. We continue this procedure
and denote

β̂c,k(λ) = β̂(λ) +
k∑

j=1
λj(X′X + λIp)−jβ̂(λ) (14)

as a de-biased estimator at the k-th step, where we define β̂c,0(λ) = β̂(λ) for k = 0.
To characterize the effect of the bias correction, we make an assumption on the
singular-value decomposition (SVD) of X first.

Assumption 1. For p < n, X′X is invertible and the SVD of X is X = V1D1U′
1,

where U′
1U1 = V′

1V1 = Ip and D1 = diag(d1, ..., dp) with di > 0 for 1 ≤ i ≤ p.

Assumption 1 is intuitive for a fixed design X with a large and fixed configuration
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of (p, n). For example, the eigenvalues of X′X are of order n if the entries of X
are independent copies of a random variable with zero mean, unit variance, and
finite fourth moment if p/n ∈ (0, 1); see the Bai-Yin’s law in Bai and Yin (1993).
Consequently, the eigenvalues of λ(X′X + λIp)−1 are strictly less than one, which
ensures that our iterative procedure can substantially reduce the bias. In fact, we
have the following theorem on the de-biased ridge estimator in (14).

Theorem 2. If p < n and X′X is invertible. Under Assumption 1, the bias of the
de-biased ridge estimator β̂c,k(λ) defined in (14) is

bλ,k = β − E(β̂c,k(λ)) = λk+1(X′X + λIp)−(k+1)β. (15)
Furthermore, for any configuration of (p, n) with ∥β∥2 < Cn,p <∞, if the number of
iterations k satisfies max1≤j≤p Cn,p( λ

d2
j +λ

)k+1 → 0, we have
bλ,k → 0, as k →∞.

Remark 2. (i) We observe that the assumptions required for Theorem 2 are quite
minimal. We only need the fundamental assumptions inherent to linear regression
models, ensuring that the bias term can be asymptotically eliminated with a sufficient
number of iterations.
(ii) The requirement for the ℓ2-norm of β to be finite stems from the expectation of the
response having a limited number of significant covariates in linear regression models.
Without this restriction, as the number of covariates grows, each coefficient’s con-
tribution might become sufficiently small, allowing the response’s variance to remain
finite. It’s important to highlight that the condition for the number of iterations k can
still be met even if ∥β∥2 →∞ at a polynomial rate. This is because ( λ

d2
j +λ

)k+1 decays
exponentially, given that | λ

d2
j +λ
| < 1 for 1 ≤ j ≤ p. Thus, the number of iterations k

can be selected to scale logarithmically with the dimension p.
(iii) As discussed in the Introduction section, the asymptotic results in Theorem 2 are
established for any given (p, n) as k → ∞. This approach is also reasonable because
it reflects common scenarios encountered in practical data analysis, where datasets
often have fixed dimensions and sample sizes. As a matter of fact, if Assumption 1
holds for increasing p and n with p < n, the results remain applicable when k → ∞
first, followed by n, p→∞. In addition, under the framework in Bai and Yin (1993)
that d2

i ≍ n, the asymptotic results hold simultaneously as n, p, k →∞ if p/n ∈ (0, 1)
and the penalty parameter λ ≍ n because max1≤j≤p | λ

d2
j +λ
| < 1 still hold in this setting.
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(iv) Although the convergence in Theorem 1 is based on a given λ > 0, it can be readily
shown that

sup
λ∈[λ1,λ2]

∥bλ,k∥2 → 0, as k →∞, for 0 < λ1 ≤ λ2 <∞,

implying that the convergence to zero is uniformly for a range of λ. Similar argument
also applies to the asymptotic results in Theorem 3-5 below.

Theorem 2 implies that we can completely correct the bias term incurred by the
ridge estimator β̂(λ) if p < n so long as we conduct a sufficient number of iterations.
This result is particularly useful for empirical data analysis when n and p are given.

To investigate the performance of the de-biased estimator β̂c,k(λ) when p > n

under which X′X is a singular matrix, we first perform a singular-value-decomposition
on X. Suppose the true rank of X is rank(X) = p∗ ≤ min(p, n) = n, where we can
simply set p∗ = n since we deal with a given and fixed configuration of (p, n) without
including highly correlated covariates. However, the results in Theorem 3 still hold
for p∗ < n. By abuse of notation, there exist semi-orthogonal matrices V1 ∈ Rn×p∗

and U1 ∈ Rp×p∗ , and a diagonal matrix D1 = diag(d1, ..., dp∗) with d1 ≥ ... ≥ dp∗ > 0
such that

X = V1D1U′
1 and X′X = U1D2

1U′
1. (16)

Since X′X + λIp is symmetric and invertible, there also exists an orthogonal comple-
ment matrix U2 ∈ Rp×(p−p∗) of U1 such that

X′X + λIp = UDU′, where U = [U1, U2] and D = diag(D2
1 + λIp∗ , λIp−p∗). (17)

We formulate the above description in Assumption 2 below.

Assumption 2. Rank(X)= p∗ ≤ min(p, n) = n if p > n, and the design matrix X
has a SVD X = V1D1U′

1 such that X′X + λIp = UDU′, where D, D1, U, U1, V1,
and U2 are defined as those in (16) and (17).

Then, we have the following theorem.

Theorem 3. If p > n and X′X is singular, but X′X + λIp is invertible for a given
λ > 0. Under Assumption 2, the bias term bλ,k of β̂c,k(λ) is the same as (15) in
Theorem 2. If the number of iterations k satisfies max1≤j≤p∗ Cn,p( λ

d2
j +λ

)k+1 → 0 where
the constant Cn,p is the same as that in Theorem 2, we have

bλ,k → U2U′
2β, as k →∞,

where U2 is defined in (17).
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Remark 3. (i) The requirement for the number of iterations k is the same as that
in Theorem 2, and therefore, we omit the illustrations to save space.
(ii) The bias term in Theorem 3 corroborates the assertion in Shao and Deng (2012)
that ridge regression primarily estimates U1U′

1β rather than β.
(iii) Similar to Theorem 2, the asymptotic results in Theorem 3 are established for
any given configuration of (p, n) as k →∞, because we can explicitly specify the bias
term U2U′

2β for fixed p and n. If we additionally allow n, p → ∞, the result in
Theorem 3 can be reformulated as

bλ,k −U2U′
2β → 0, as n, p, k →∞,

so long as max1≤j≤p∗ Cn,p( λ
d2

j +λ
)k+1 → 0 and dj > 0 for 1 ≤ j ≤ p∗, where p∗ is the

rank of X.
(iv) It’s possible that the rank of X is p∗ < p in the case of p < n. In such situ-
ations, we can obtain similar results as those outlined in Theorem 3. The approach
to handling this scenario is similar to that for p > n, and therefore, we omit further
discussion on this and focus on the previously mentioned setting.

A key insight from Theorem 3 is that there is a remaining bias term U2U′
2β

that cannot be corrected by the proposed method. This is understandable since the
projection of β on the singular directions U2 is not captured in Model (2) according
to the singular-value-decomposition of X in (16). If the vector β belongs to the space
spanned by the columns of U1, there will be no need to correct the bias since U′

2β = 0.
Otherwise, it is challenging to make such a correction for the bias in Theorem 3. As a
matter of fact, we have the following theorem regarding the bias term in Theorem 3.

Theorem 4. Under the conditions in Theorem 3, there is no linear transformation
matrix S ∈ Rp×n such that E[Sy] = U2U′

2β.

We focus on linear transformations of the data in Theorem 4 because the least-
squares estimator and the ridge estimator are all linear combinations of the data y.
Theorem 4 indicates that the remaining bias term U2U′

2β is unattainable through any
linear transformation of the data y, showing that the proposed approach does its best
to correct the bias. The results in Theorems 2–4 also indicate that our bias-correction
method is an optimal one for any given (p, n).

Simulation results (e.g., Figure 6) in Section 3 suggest that the uncorrectable bias
U2U′

2β can be significant even when the number of nonzero elements in β is small.
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This underscores that any method that only corrects part of the bias may lead to
poor inference performance.

2.4 Ridge Screening
To further address the uncorrectable bias term identified in Theorem 3 and ensure
valid statistical inferences when p > n, additional structures must be imposed on the
parameters or covariates. Without these additional structures, as demonstrated in
Theorem 4, the bias-correction becomes challenging. In the subsequent analysis, we
will use C or c to denote a generic constant, the specific value of which may vary
across different contexts.

In this section, we propose a ridge-screening approach to select the significant
variables in Model (2). It is feasible for both scenarios when p < n and p > n.
Therefore, it can also be treated as a new variable selection approach especially
useful in a high-dimensional setting, which is of independent interest to statisticians,
econometricians, and data scientists. We only focus on the scenario when p > n

and XX′ is singular in such a situation. Note that the reason for the remaining
bias term in Theorem 3 that cannot be corrected is that some projection directions
of the coefficients β are not captured in Model (2). For example, this is the case
when some parameters in β are redundant if certain covariates in X are strongly
correlated. Therefore, it is reasonable to make an assumption that some covariates
in X are not useful in the linear regression (2), and hence, they can be dropped first
before establishing valid ridge estimators. To embrace the sparsity assumption in
high-dimensional data analysis, we assume the true parameter vector β belongs to
the following submodel class

M0 = {1 ≤ i ≤ p, |βi| is not zero}, (18)
where we assume its cardinality |M0| = s∗ < min(p, n). It is obvious that we require
s∗ < p∗, which is the rank of X defined in Assumption 2. This cardinality assumption
is natural and it reflects the idea that many coefficient parameters are relatively small
among the p-dimensional vector β. We treat them as zero elements only for ease of
exploitation. According to the results in Theorem 2 and Theorem 3, we can see that

Eβ̂c,k(λ) = β − bλ,k = β −U2U′
2β + o(1), (19)

as k →∞ for a given λ > 0.
It is intuitive to expect that the components of β̂c,k(λ) corresponding to positions
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in the submodelM0 will be greater than those at positions inMc
0, the complement set

ofM0. This is due to the following reason: Assuming the number of nonzero elements
in β is finite or relatively small compared to p, then the ℓ2-norm of the p-dimensional
dense vector U2U′

2β is also of finite or relatively small order. Consequently, the
magnitude of each projected coordinate in U2U′

2β is of a smaller order compared to
the nonzero elements in β on average. Therefore, we propose a Ridge-Screening (RS)
method that selects the submodel class
Mk(λ∗) = {1 ≤ i ≤ p : |β̂c,k,i(λ∗)| are among the largest n∗ of all |β̂c,k,i(λ∗)|’s}2,

(20)
where β̂c,k(λ∗) = (β̂c,k,1(λ∗), ..., β̂c,k,p(λ∗))′ and we use a different penalty λ∗ > 0 to
distinguish it from the one utilized in the subsequent step. The ranking method to
derive the submodel in (20) is similar to the approach presented in Section 2.2 of
Fan and Lv (2008). However, the method in Fan and Lv (2008) is based on marginal
correlations between the response and the features, while (20) is a utilization of a de-
biased estimator, which is more proximate to the true parameter than the conventional
ridge estimator in Eq. (5) of Fan and Lv (2008). Furthermore, our methodology is
not constrained by a specific choice of λ∗, and it can be chosen by an information
criterion or a cross-validation method as discussed at the end of Section 2.4.

In practice, we may select n∗ < min(p, n) = n in (20) through cross-validation
along with λ∗ because the actual design matrix with n∗ columns of covariates is no
longer singular in such cases. Additionally, we can show that the model with n∗ co-
variates asymptotically encompasses the submodelM0 in (18) under mild conditions,
i.e., the true submodel M0 in (18) is nested within the one with n∗ covariates.

Now, we restrict the design matrix to the submodel classMk(λ∗) and denote the
restricted design as XMk

∈ Rn×n∗ , and the new ridge estimator is
β̂Mk

(λ) = (X′
Mk

XMk
+ λIn∗)−1X′

Mk
y, (21)

where n∗ < n, and λ can be different from the λ∗ used in the ridge screening approach
in (20). When λ∗ and n∗ are optimally selected using the method outlined at the end
of Section 2.4 below, we can set λ = λ∗ because it is optimal for the restricted ridge

2We clarify the notation used here. For p > n, s∗ is the number of nonzero elements in β, p∗

denotes the rank of X, and n∗ is the number of covariates selected by the RS method. Obviously,
we require that s∗ < n∗ ≤ p∗ ≤ min(p, n) = n for p > n. We can also simply set p∗ = n since we
deal with a fixed design.
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estimator with a given set of n∗ significant variables. We observe that the eigenvalues
of X′

Mk
XMk

are strictly greater than zero for a given configuration of (p, n). This
essentially reduces the scenario to the case when p < n in Section 2.3. Consequently,
we can employ the bias-correction procedure detailed in Section 2.3 over l iterations
to obtain a de-biased estimator:

β̂Mk,l(λ) = β̂Mk
(λ) +

l∑
j=1

λj(X′
Mk

XMk
+ λIn∗)−jβ̂Mk

(λ). (22)

To establish the asymptotic properties of the RS method and the de-biased estimator
for the restricted one in (22), we make a few intuitive assumptions first.

Assumption 3. The nonzero singular values of X in (16) are of order
√

n and the
penalty parameters λ∗ ≍ λ ≍ n.

Assumption 4. For any submatrix XMk
of X with dimension n∗ < n, all the eigen-

values of X′
Mk

XMk
, denoted as d2

Mk,j for 1 ≤ j ≤ n∗, are of order n.

Assumption 5. For i ∈ M0 defined in (18), mini∈M0 |βi| ≥ C1n
−τ for some 0 <

τ < n, and the magnitude of the i-th projected coordinate |(U2U′
2β)i| ≤ C2|βi| for

C2 < 1, and ∥β∥2
2 ≤ C3s

∗, where s∗ is the number of nonzero elements in β.

Assumption 6. Assume ε is a sub-Gaussian random variable in the sense that
P (|v′ε| ≥ x) ≤ C exp(−x2),

for any ∥v∥2
2 = c∗ > 0 which is a finite positive constant.

Assumptions 3-4 are natural conditions about the orders of the singular values of
X ∈ Rn×p and XMk

, and the penalty parameter λ∗ (or λ) is comparable to the mag-
nitude of d2

j (or d2
Mk,j). Similar to the illustrations for Assumption 1, the magnitude

in Assumption 3-4 can be easily verified if the entries of X are independent copies of
a random variable with zero mean, unit variance, and finite fourth moment under the
setting p/n ∈ (1,∞); see Bai and Yin (1993). In fact, the orders specified in Assump-
tions 3-4 are only employed to establish the validity of the ridge-screening method
in Theorem 5 below, and they are not the only ones capable of achieving this, so
long as the rates can be properly controlled in the proof of Theorem 5. For any fixed
(p, n) which can be large, the efficacy of the bias-correction method and the inference
methods in Section 2.5 below remain valid so long as the nonzero singular values and
the penalty parameters are strictly greater than zero. Assumption 5 indicates that
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the minimum nonzero element in β cannot be too small, and the norm of the i-th
projected coordinate (U2U′

2β)i is bounded by the magnitude of its original coordinate
|βi| (up to a small constant). This is actually a reasonable and intuitive assumption.
For instance, in Assumption 5, if ∥β∥2 ≤ C

√
s∗ (at most) because there are only s∗

nonzero elements in β, then ∥U1U′
1β∥2 = Op(

√
s∗), but it is a p-dimensional vector,

meaning that the magnitude of each (U1U′
1β)i is of order

√
s∗/p on average. We

may postulate that
√

s∗/p = o(n−τ ) in such a case and Assumption 5 is even slightly
weaker than this situation as we can allow that the projected coordinate to be of
the same order as that of the original one. Assumption 6 is a general condition that
includes Gaussian distributions as a special case.

We have the following theorem regarding the de-biased estimator in (22) after the
ridge-screening.

Theorem 5. Let Assumptions 1-6 hold.
(i) Assuming the true parameter β belongs to the submodelM0 in (18). If log(p)

n1−2τ → 0,
the number of iterations k in the first stage satisfies max1≤j≤p∗ s∗( λ∗

d2
j +λ∗ )k+1 → 0, and

n∗, the number of selected elements in (20), satisfies that n∗ ≥ s∗ when p < n, and
n∗

Cn−2τ s∗ + Cn2τ−2p log(p) →∞ (as n, p→∞) when p > n,

we have
P (M0 ⊂Mk(λ∗))→ 1, as k →∞,

where we use ⊂ in the sense that Mk(λ∗) may contain more parameters than M0.
(ii) Conditioning on the event of {M0 ⊂Mk(λ∗)}, for a properly chosen λ > 0, the
bias of the de-biased and restricted ridge estimator β̂Mk,l(λ) is

bλ,k,l = βMk
− E(β̂Mk,l(λ)) = λl+1(X′

Mk
XMk

+ λIn∗)−(l+1)βMk
, (23)

where βMk
∈ Rn∗ is the true value of β restricted on the submodelMk. That is, βMk

consists of the nonzero elements in β and some zero ones associated with their original
indexes inMk\M0. If the number of iterations l satisfies max1≤j≤n∗ s∗( λ

d2
Mk,j+λ

)l+1 →
0, we have

bλ,k,l → 0, as k, l→∞.

Remark 4. (i) Theorem 5 implies that the ridge-screening method is applicable in
both p < n and p > n scenarios. Remarkably, there’s no need to specify s∗, which is
the number of nonzero elements in the true β. For p < n, we can simply set p∗ = p as
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Assumption 2 and choose n∗ = p variables which consists of all the covariates. For p >

n, we may choose n∗ ≍ n under the assumption that s∗/n→ 0 and p log(p)/n3−2τ → 0
in an asymptotic sense, which is reasonable because s∗ is often small and we can adopt
p/n = c ∈ (1,∞) in the setting of random matrix theory.
(ii) Theorem 5 establishes that our proposed method from Section 2.3 can completely
correct the bias of the restricted ridge estimators, which is particularly helpful when
p > n. This, in conjunction with the results of Theorem 2, confirms the versatility of
our bias-correction approaches in addressing both scenarios where p < n and p > n.
(iii) For p > n, our discoveries from Theorems 4-5 underscore the significance of
initially reducing all covariates to n∗ significant ones, where n∗ < min(p, n). This
reduction, combined with the proposed bias-correction procedure for the restricted ridge
estimators, enables subsequent valid statistical inferences using the de-biased ridge
estimators, as detailed in Section 2.5 below.

To conclude this subsection, we provide a summary of the pseudo-code for the
proposed bias-correction procedures in Algorithm 1 and Algorithm 2, corresponding
to the scenarios of p < n and p > n, respectively. For the convergence criterion in
Algorithm 1, we can choose a small threshold η > 0, say η = 10−2, and the convergence
of the algorithm is determined by checking whether the following inequality hold:

∥β̂c,k(λ)− β̂c,k−1(λ)∥2 ≤ η. (24)
It’s important to note that the convergence is guaranteed because the sequence Ak :=∑k

j=1 λj(X′X + λIp)−j converges, as demonstrated in the proof of Theorem 2 in the
Appendix. Additionally, we emphasize that the number of iterations is typically not
large, as only a logarithmic order of the dimension is required to ensure convergence,
as discussed in Remark 2.

Finally, we briefly discuss the methods for selecting the unknown parameters in
Algorithms 1-2 of the proposed approaches. Firstly, the sole unknown parameter in
Algorithm 1 is λ. Throughout this paper, we assume λ to be given, as our focus is
mainly on the bias-correction issue for ridge estimators. Empirically, one can employ
the widely-accepted information criteria (e.g., AIC or BIC) or utilize cross-validation
methods to determine an appropriate λ. For a comprehensive understanding, readers
are referred to Section 1.8 of van Wieringen (2023). Secondly, in the ridge-screening
method of Algorithm 2 when p > n, the parameters (λ∗, n∗) are unknown. Here, one
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can employ the aforementioned information criteria or cross-validation methods, as
discussed in Sections 1.8.1-1.8.3 of van Wieringen (2023), to simultaneously determine
(λ∗, n∗). This can be achieved by selecting a candidate for λ∗ and then determining the
optimal n∗ such that the pair (λ∗, n∗) minimizes the information criterion or yields the
best prediction performance on test sets using the restricted ridge estimator β̂Mk

(λ∗).
The final choice of (λ∗, n∗) can be determined by evaluating the performance across
each grid point of the penalty parameters. After identifying the significant variables
through the RS method, the parameter λ used in bias-correction is equal to λ∗, as
λ∗ represents the optimal choice for the associated n∗. Given that these methods are
well-established in the literature, we omit further details here to save space.

Algorithm 1 Iterative bias-correction of ridge estimators when p < n

Input: Design matrix X ∈ Rn×p, response vector y ∈ Rn, and penalty λ > 0;
1: Construct a ridge estimator β̂(λ), set k = 1;
2: while Not Convergent do
3: form β̂c,k(λ) = β̂(λ) +∑k

j=1 λj(X′X + λIp)−jβ̂(λ);
4: k ← k + 1;
5: end while
6: k ← k − 1;
7: END

Output: A de-biased ridge estimator β̂c,k(λ).

Algorithm 2 Ridge-screening and bias-correction of ridge estimators when p > n

Input: Design matrix X ∈ Rn×p, response vector y ∈ Rn, and penalty parameters
λ∗, λ > 0;

1: Apply Algorithm 1 and obtain an initial de-biased ridge estimator β̂c,k(λ∗), set
k1 ← k;

2: Identify the indexes of the largest n∗ < min(n, p) elements among |β̂c,k1(λ∗)|;
3: Define XMk1

as a restricted design matrix of X on the indexes found in Step 2;
4: Initialize the new design XMk1

∈ Rn×n∗ , response vector y ∈ Rn, and penalty
λ > 0;

5: Apply Algorithm 1 again, set l← k, where k is the one in Step 6 of Algorithm 1;
6: END

Output: A de-biased ridge estimator β̂c,k1,l(λ).
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2.5 Inference
In this section, we briefly introduce the inference method for the de-biased ridge
estimators in Sections 2.3 and 2.4. The following theorem can be derived immediately
based on the proofs of Theorem 2 and Theorem 5.

Theorem 6. Assume ε ∼ N(0, Σε), where Σε is a diagonal covaraince matrix.
(i) If p < n and X′X is invertible. Under Assumption 1, we have

β̂c,k(λ)− β ∼d N(µ1,k(λ), Σ1,k(λ)),
where ∼d denotes the exact distribution, µ1,k(λ) = −λk+1(X′X + λIp)−(k+1)β, and

Σ1,k(λ) =
k∑

j=0
λj(X′X + λIp)−(j+1)X′ΣεX

k∑
j=0

λj(X′X + λIp)−(j+1).

Furthermore, for any given configuration of (p, n) with p < n, we have
√

n(β̂c,k(λ)− β) −→d N (0, Σ1(λ)) , as k →∞,

where Σ1(λ) is the asymptotic limit of nΣ1,k(λ).
(ii) Under Assumptions 2-6 and a true model in (18) when p > n. Suppose k is
sufficiently large in the ridge-screening such that the event {M0 ⊂ Mk(λ∗)} holds.
Then the estimator in (22) has the following limiting distribution

β̂Mk,l(λ)− βMk
∼d N(µ2,k,l, Σ2,k,l(λ)),

where µ2,k,l(λ) = −λl+1(X′
Mk

XMk
+ λIn∗)−(l+1)βMk

, and

Σ2,k,l(λ) =
l∑

j=0
λj(X′

Mk
XMk

+ λIn∗)−(j+1)X′
Mk

ΣεXMk

l∑
j=0

λj(X′
Mk

XMk
+ λIn∗)−(j+1).

Furthermore, for any given configuration of (p, n) with p > n, we have
√

n(β̂Mk,l(λ)− βMk
) −→d N (0, Σ2(λ)) , as k, l→∞,

where Σ2(λ) is the asymptotic limit of nΣ2,k,l(λ).

Remark 5. (i) The Assumption of ε ∼ N(0, Σε) can be relaxed to {εi, i = 1, ..., T}
is a martingale difference sequence with finite variances, and the results in Theorem 6
still hold if we make use of martingale central limit theorems in Hall and Heyde (2014)
as n→∞ under Assumptions 3-4.
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(ii) Equation (14) and Theorem 6 indicate that
√

n[β̂(λ)− β +
k∑

j=1
λj(X′X + λIp)−jβ̂(λ)]

∼−→d N

0, n
k∑

j=0
λj(X′X + λIp)−(j+1)X′ΣεX

k∑
j=0

λj(X′X + λIp)−(j+1)

 ,

(25)
and
√

n[β̂Mk
(λ)− βMk

+
l∑

j=1
λj(X′

Mk
XMk

+ λIn∗)−jβ̂Mk
(λ)]

∼−→d N

0, n
k∑

j=0
λj(X′

Mk
XMk

+ λIn∗)−(j+1)X′
Mk

ΣεXMk

k∑
j=0

λj(X′
Mk

XMk
+ λIn∗)−(j+1)

 ,

(26)
for p < n and p > n, respectively, where ∼−→d denotes approximate equivalence in
distribution for sufficiently large k and a given configuration of (p, n). Therefore, we
can make use of the approximations in (25) and (26) to make statistical inference.
(iii) Under the assumption that λ ≍ n and the nonzero singular values of X are of
order

√
n, we can easily show that the variance terms in (25) and (26) are of order

O(1). Consequently,
β̂c,k(λ)− β = Op(n−1/2) and β̂Mk,l(λ)− βMk

= Op(n−1/2),
implying that our de-biased estimators are convergent with standard rate

√
n.

(iv) In practice, it is often assumed that the error term ε is homoskedastic with
Σε = σ2In, which simplifies the inference. Consequently, for sufficiently large k and
l, a consistent estimator for σ can be obtained as:

σ̂ =
√

1
n
∥y−Xβ̂c,k(λ)∥2

2 or σ̂ =
√

1
n
∥y−XMk

β̂Mk,l(λ)∥2
2,

depending on whether p < n or p > n. Then, the variance terms in (25) and (26)
can be estimated from the data.

Hence, by correcting the bias, we can proceed to make statistical inferences and
construct confidence intervals using distributions in (25) and (26) without the need
to identify the sparse structure in Model (1). This is possible because all biases can
be approximated by the data, and the covariance terms in the limiting distributions
are of full rank, and they can be estimated from the available data.
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2.6 Time Series Ridge Regression
In this section, we briefly illustrate the feasibility of the proposed bias-correction
method in time series ridge regression. In particular, we consider the following Auto-
Regressive (AR) model:

yt = β1yt−1 + ... + βpyt−p + εt = x′
tβ + εt, t = p + 1, ..., n, (27)

where xt = (yt−1, ..., yt−p)′ is the covariate vector consisting of the p lagged variables
of yt, and β = (β1, ..., βp)′ is the associated parameter vector. We restrict our con-
sideration to cases where p < n. It’s uncommon to encounter situations where the
number of lagged regressors in autoregressive (AR) models exceeds the sample size.
In practical datasets, instances of AR models with orders surpassing, for instance, 10,
are quite rare.

Let ỹ = (yp+1, ..., yn)′, X̃ = (xp+1, ..., xn)′, and ε̃ = (εp+1, ..., εp)′, then, Model (27)
can be expressed as

ỹt = X̃β + ε̃, (28)

where we assume Cov(ε̃) = σ2In−p for simplicity. For a proper λ > 0, the de-biased
estimator in (14) can be written as

β̂c,k(λ) = β − λk+1(X̃′X̃ + λIp)−(k+1)β +
k∑

j=0
λj(X̃′X̃ + λIp)−(j+1)X̃′ε̃.

For weakly stationary time series sequence {yt}, the ergodic theorem guarantees that
1
n

X̃′X̃ = 1
n

n∑
t=p+1

xtx′
t →p E(xtx′

t), as n→∞.

Suppose the covariance matrix E(xtx′
t) admits a similar spectral decomposition as

X′X/n in Assumption 1 above, and the the magnitude of the penalty λ satisfies λ ≍ n

as that in Assumption 3, we can show that
k∑

j=0
λj+1(X̃′X̃ + λIp)−(j+1) = Op(1), and 1

λ
X̃′ε̃ = Op( 1√

n
).

For large n, it follows that
β̂c,k(λ)− β = op(1), as k →∞, (29)

and
√

n(β̂c,k(λ)− β) =
√

n
k∑

j=0
λj(X̃′X̃ + λIp)−(j+1)X̃′ε̃ = Op(1) as k →∞. (30)

Equation (29) suggests that the bias-correction procedure remains applicable to time
series regression with weakly dependent regressors. Additionally, Equation (30) con-
firms that the asymptotic distribution from Theorem 6(i) holds true for time series
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data as well.

2.7 Constructions of Confidence and Prediction Intervals
In this section, we explore methods for constructing confidence and prediction inter-
vals based on ridge regression. For simplicity, we assume Σε = σ2In to facilitate the
illustrations.

We begin by outlining the construction of confidence intervals for the mean re-
sponse E(y|x0) = x′

0β with a given covariate x0 when p < n. Note that ŷ0 = x′
0β̂(λ)

in a ridge regression, then, by (25) in Remark 5(ii) with a sufficiently large k, we have

x′
0β̂(λ)− x′

0β + x′
0

k∑
j=1

λj(X′X + λIp)−jβ̂(λ) ∼−→d N (0, x′
0Σ1,k(λ)x0) , (31)

where
Σ1,k(λ) = σ2

k∑
j=0

λj(X′X + λIp)−(j+1)X′X
k∑

j=0
λj(X′X + λIp)−(j+1).

In practice, we may replace σ in Σ1,k(λ) by σ̂, which is estimated from the data as that
in Remark 5(iv), and we denote the estimated variance in (31) by Σ̂1,k(λ). Denote
zα the critical value of a standard normal distribution such that its tail probability is
α, then, the (1− α)-confidence interval for x′

0β is [L1, U1], where

L1 = x′
0β̂(λ) + x′

0

k∑
j=1

λj(X′X + λIp)−jβ̂(λ)− zα/2

√
x′

0Σ̂1,k(λ)x0, (32)

and
U1 = x′

0β̂(λ) + x′
0

k∑
j=1

λj(X′X + λIp)−jβ̂(λ) + zα/2

√
x′

0Σ̂1,k(λ)x0. (33)

Next, we discuss the way to construct prediction intervals for a future value yn+1 with
a new covariate xn+1. According to Ch. 2 of Montgomery et al. (2012), by a similar
argument as that for the confidence intervals, we can construct the (1−α)-prediction
intervals of the future value yn+1 as [L2, U2], where

L2 = x′
0β̂(λ) + x′

0

k∑
j=1

λj(X′X + λIp)−jβ̂(λ)− zα/2

√
x′

0Σ̂1,k(λ)x0 + σ̂2, (34)

and
U2 = x′

0β̂(λ) + x′
0

k∑
j=1

λj(X′X + λIp)−jβ̂(λ) + zα/2

√
x′

0Σ̂1,k(λ)x0 + σ̂2. (35)

The values presented in (32)-(35) are directly estimated from the data. Consequently,
we are equipped to construct valid confidence and prediction intervals in ridge regres-
sion employing our proposed bias-correction techniques. Analogously, confidence and
prediction intervals can also be established for models utilizing de-biased ridge esti-
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mators post ridge-screening when p > n. For instance, the (1−α)-prediction interval
of the future value yn+1 produced by the restricted ridge estimator is [L3, U3] with

L3 = x′
0,kβ̂Mk

(λ)+x′
0,k

l∑
j=1

λj(X′
Mk

XMk
+λIn∗)−jβ̂Mk

(λ)−zα/2

√
x′

0,kΣ̂2,k,l(λ)x0,k + σ̂2,

(36)
and
U3 = x′

0,kβ̂Mk
(λ)+x′

0,k

l∑
j=1

λj(X′
Mk

XMk
+λIn∗)−jβ̂Mk

(λ)+zα/2

√
x′

0,kΣ̂2,k,l(λ)x0,k + σ̂2,

(37)
where x0,k is the n∗-dimensional sub-vector of the new covariate x0 selected by the
ridge-screening method.

2.8 Bias-Variance Trade-off
The bias-variance trade-off is a fundamental concept in machine learning and statis-
tics. It refers to the delicate balance between two sources of error in a predictive
model. It is a way of analyzing a learning algorithm’s expected errors. Therefore,
it would be interesting if we can derive the bias-variance trade-off of our de-biased
estimators as we increase the number of iterations.

In this section, we study the MSE of the de-biased ridge estimator β̂c,k(λ) in the
k-th iteration for p < n with a given λ > 0. The analysis of the scenario where p > n

is similar, and hence, we only derive it for the case when p < n. The MSE of the k-th
de-biased ridge estimator is defined as
MSE(β̂c,k(λ)) =E[β̂c,k(λ)− β]′[β̂c,k(λ)− β]

=E[β̂c,k(λ)− Eβ̂c,k(λ)]′[β̂c,k(λ)− Eβ̂c,k(λ)] + [Eβ̂c,k(λ)− β]′[Eβ̂c,k(λ)− β]

=var(β̂c,k(λ)) + bias(β̂c,k(λ))2. (38)
For simplicity, we assume Σε = σ2In. By Assumption 1 and Theorem 6(i),

var(β̂c,k(λ)) =E[ε′X
k∑

j=0
λj(X′X + λIp)−(k+1)

k∑
j=0

λj(X′X + λIp)−(k+1)X′ε]

=E[ε′V1Dk(λ)V′
1ε] = σ2trace[Dk(λ)], (39)

where Dk(λ) = diag(dk,1(λ), ..., dk,p(λ)) with

dk,i(λ) = 1
d2

i

[
1− ( λ

λ + d2
i

)k+1
]2

.
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By a similar argument, we can show that
bias(β̂c,k(λ))2 =β′λk+1(X′X + λIp)−(k+1)λk+1(X′X + λIp)−(k+1)β

=β′U1Λk(λ)U′
1β, (40)

where Λk(λ) = diag(γk,1(λ), ..., γk,p(λ)) with
γk,i(λ) = [ λ

λ + d2
i

]2(k+1).

As the number of iterations k increases, we can readily see that the bias term in (40)
decreases while the variance term in (39) increases. Therefore, it is interesting to see
whether there is a bias-variance trade-off in the proposed bias-correction procedure.

In the following theorem, we provide some sufficient conditions under which we
have a bias-variance trade-off in the proposed method.

Theorem 7. Let Assumption 1 hold and U′
1β = (δ1, ..., δp)′ where p < n.

(i) If δ2
i d2

i

σ2 < 1 and δ2
i d2

i

σ2 + ( λ
λ+d2

i
)k∗+1 ≥ 1 for 1 ≤ i ≤ p and some k∗ ≥ 1, then, as

the number of iterations k increases, the MSE of β̂c,k(λ) will initially decrease to its
minimum value and subsequently rise to a stable level. In particular, the minimum of
the MSE can be achieved at the k-th iteration for some k ∈ [⌊k1⌋, ⌊k2⌋], where

k1 = min

 log(1− δ2
i d2

i

σ2 )
log( λ

λ+d2
i
)
− 1 : 1 ≤ i ≤ p

 , k2 = max

 log(1− δ2
i d2

i

σ2 )
log( λ

λ+d2
i
)
− 1 : 1 ≤ i ≤ p

 ,

and ⌊x⌋ is the largest integer that does not exceed x.
(ii) If δ2

i d2
i

σ2 > 1 for 1 ≤ i ≤ p, then, as the number of iterations k increases, the MSE
of β̂c,k(λ) will decrease to a stable level.

Remark 6. (i) Theorem 7 indicates there exists a bias-variance trade-off in the pro-
posed bias-correction procedure under certain conditions. That is, if the design matrix
and the penalty meet the criteria outlined in Theorem 7(i), the MSE of the de-biased
estimators can attain a minimum value by balancing the bias and variance terms as
the number of iterations k, or equivalently, the "model complexity", increases.
(ii) Theorem 7(ii) suggests the possibility of a monotonically decreasing MSE as the
number of iterations k increases. This phenomenon arises because the increase in the
variance term is not comparable to the decrease in the bias term. Consequently, this
finding is intriguing as it indicates the potential for a de-biased estimator to achieve
an even smaller MSE than classical ridge estimators.
(iii) We highlight that the conditions specified in Theorem 7(ii) can be easily satisfied
under certain scenarios. For instance, assuming d2

i ≍ n as detailed in Assumption 3,
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and δ2
i ≍ O(p−1) or O(1) depending on whether β is a sparse or dense vector with

bounded elements (given that each entry in U1 is of order p−1/2, it becomes evident
that δ2

i d2
i /σ2 is at least of order O(n/p), which can exceed 1. Similarly, the condition

in Theorem 7(i) can also be satisfied if di is of a smaller rate. We omit the details
to save space. The simulation results presented in Section 3 further corroborate our
findings.

From Theorem 2 in Theobald (1974), the MSE of the classical ridge estimator can
be smaller than that of the least-squares estimator for certain properly chosen λ > 0.
In our framework, we observe a similar paradigm concerning the number of iterations
k > 0, as described in the following corollary

Corollary 1. Under the conditions outlined in Theorem 7, there exists an iteration
number k such that

MSE(β̂c,k(λ)) < MSE(β̂c,0(λ)) = MSE(β̂(λ)),
suggesting that the proposed de-biased estimators can further minimize the MSEs while
also correcting a portion of the bias compared to classical ridge estimators.

3 Monte Carlo Simulations
In this section, we conduct Monte-Carlo experiments to illustrate the proposed pro-
cedure. We consider two scenarios where p < n and p > n and study the effect of
the bias-correction procedure and the approximation of the asymptotic normalities
established in Section 2.5.

Example 1. In this example, we consider the data-generating process in (2) for
different settings of (p, n) with p < n. For each configuration of (p, n), we set the
seed number in R software as (1234) and first generate an n× p matrix H, where its
elements are drawn independently from a Uniform distribution U(−2, 2). We then
perform a singular-value decomposition on H and obtain its left and right singular
vectors M ∈ Rn×p and N ∈ Rp×p, then we let X = MN′. The first p/2 elements of
β are generated from U(−2,−1) independently, and the remaining p/2 elements are
from U(1, 2). In each replication, the noise ε is generated from multivariate normal
distribution N(0, In). We consider the scenarios where (p, n) = (50, 100), (50, 400),
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(100, 200), and (100, 500). The choices of λ are λ = 0.05n, 0.1n, 0.3n, and 0.5n. 1000
replications are used in each setting throughout the experiments.

In Table 1, we report the estimation errors of the ridge estimators and the de-
biased ones. For each configuration of (p, n, λ), we define the empirical mean squared
errors (MSEs) as

MSE(bλ) = 1
1000

1000∑
j=1
∥β̂(j)(λ)− β∥2

2 (41)

and
MSE(bλ,k) = 1

1000

1000∑
j=1
∥β̂(j)

c,k(λ)− β∥2
2, (42)

where β̂
(j)(λ) and β̂

(j)
c,k(λ) are the ridge estimators and the de-biased one with k

iterations in the j-th replication, respectively. The standard errors σ̂0 and σ̂100 are
estimated via

σ̂0 =
√√√√ 1

1000

1000∑
j=1

1
n
∥y−Xβ̂

(j)(λ)∥2
2 and σ̂100 =

√√√√ 1
1000

1000∑
j=1

1
n
∥y−Xβ̂

(j)
c,100(λ)∥2

2.

(43)
In other words, we evaluate the estimations of the standard errors by the ridge esti-
mators and the de-biased ones.

For each setting in Table 1, we see that the MSE first decreases as the number
of iterations increases, and then increases as we use more iterations to correction
the bias terms. This is understandable because it is in line with the bias-variance
trade-off in the machine learning literature. See, for example, Hastie et al. (2009).
Specifically, we plot the MSEs for (p, n) = (50, 100) and (100, 200) with λ = 0.05n

in Figure 1, where we can clearly see that the MSEs can achieve a minimum point
as we increase the number of iterations, or equivalently, the model complexity, and
the MSE will further increase as we try to completely correct the biases. Finally, the
MSE becomes stable, which is consistent with our asymptotic theory. Moreover, the
standard error estimated using the debiased ridge estimator is closer to the true one
(unity), showing the effectiveness of our bias-correction procedure.

Furthermore, we study the consistency of the de-biased estimators using our pro-
posed method. For simplicity, we investigate the averaging estimation errors (AEEs)
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Table 1: Empirical mean squared errors (MSEs) when p < n in Example 1,
where the MSEs are defined in (41) and (42) for bλ and bλ,k, respectively. The
number of iterations k = 1, 5, 10, 20, 50, 100, and σ̂0 and σ̂100 are estimated by
(43). 1000 replications are used in the experiments.

λ = 0.05n
(p, n) bλ bλ,1 bλ,5 bλ,10 bλ,20 bλ,50 bλ,100 σ̂0 σ̂100

(50,100) 78.8 58.3 34.3 39.2 47.7 49.8 49.9 1.29 1.19
(50,400) 105.3 95.9 67.9 48.4 35.6 42.9 49.3 1.11 1.06
(100,200) 192.4 161.3 92.8 70.6 79.0 98.5 100.0 1.47 1.23
(100,500) 217.4 201.4 151.2 111.4 76.7 79.0 96.3 1.15 1.05

λ = 0.1n
(p, n) bλ bλ,1 bλ,5 bλ,10 bλ,20 bλ,50 bλ,100 σ̂0 σ̂100

(50,100) 92.6 77.6 44.8 34.5 39.2 49.1 49.8 1.34 1.19
(50,400) 110.4 105.2 87.2 70.3 49.4 35.1 42.9 1.12 1.05
(100,200) 210.5 191.5 135.5 96.4 70.9 85.7 98.5 1.50 1.23
(100,500) 210.4 217.2 186.5 155.8 113.8 71.6 79.0 1.16 1.03

λ = 0.3n
(p, n) bλ bλ,1 bλ,5 bλ,10 bλ,20 bλ,50 bλ,100 σ̂0 σ̂100

(50,100) 104.6 98.1 76.8 58.6 40.2 36.7 46.4 1.39 1.18
(50,400) 114.1 112.2 105.1 97.1 83.2 55.8 37.9 1.12 1.04
(100,200) 224.3 217.1 191.0 163.9 124.3 75.4 74.1 1.52 1.20
(100,500) 231.9 228.8 217.1 203.5 179.5 127.6 85.3 1.16 1.03

λ = 0.5n
(p, n) bλ bλ,1 bλ,5 bλ,10 bλ,20 bλ,50 bλ,100 σ̂0 σ̂100

(50,100) 107.3 103.2 88.6 74.0 54.1 34.7 39.2 1.40 1.14
(50,400) 114.9 113.7 109.3 104.1 94.6 72.3 50.3 1.12 1.05
(100,200) 227.2 222.8 206.0 187.3 156.1 99.8 71.2 1.53 1.20
(100,500) 233.1 231.3 224.1 215.4 199.4 159.8 115.9 1.16 1.06
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Figure 1: The bias-variance trade-off reflected by the empirical MSEs of the de-
biased ridge estimators for different number of iterations in Example 1, where we
consider λ = 0.05n for (p, n) = (50, 100) and (100, 200) in (a) and (b), respectively.
1000 replications are used in the experiments.

of the ridge estimators and the de-biased ones, which are defined, respectively, as

AEE(bλ) = 1
√

p
∥ 1

1000

1000∑
j=1

β̂
(j)(λ)− β∥2 (44)

and
AEE(bλ,k) = 1

√
p
∥ 1

1000

1000∑
j=1

β̂
(j)
c,k(λ)− β∥2, (45)

where the ones in the ℓ2-norm are the empirical versions of the biases. The AEEs
are reported in Table 2. From Table 2, we can see a decreasing pattern for each
(p, n) as the number of iterations increases, implying that our de-biased estimators
are consistent to the true parameters for sufficiently large k.

Finally, we investigate the performance of the inference approach based on the
de-biased estimators in Theorem 6 for p < n. For simplicity, we only consider the
case when (p, n) = (100, 200) and λ = 0.3n, and we can produce similar results for
other settings. Let ei be the i-th standard unit vector of Rp,

θ1 = (0.8,−1, 0.5, 0′
p−3)′, and θ2 = (−1, 0.5, 0.8, 0′

p−3)′,

where 0s is an s-dimensional vector of zeros. Figure 2 presents the histograms of
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Table 2: Empirical averaging estimation errors (AEEs) when p < n in Example
1, where the AEEs are defined in (44) and (45) for bλ and bλ,k, respectively. The
number of iterations k = 1, 5, 10, 20, 50, and 100. 1000 replications are used in
the experiments.

λ = 0.05n
(p, n) bλ bλ,1 bλ,5 bλ,10 bλ,20 bλ,50 bλ,100

(50,100) 1.24 1.01 0.50 0.20 0.04 0.03 0.03
(50,400) 1.45 1.38 1.14 0.89 0.55 0.13 0.03
(100,200) 1.38 1.26 0.86 0.53 0.21 0.03 0.03
(100,500) 1.47 1.42 1.21 1.00 0.67 0.21 0.04

λ = 0.1n
(p, n) bλ bλ,1 bλ,5 bλ,10 bλ,20 bλ,50 bλ,100

(50,100) 1.36 1.23 0.84 0.52 0.20 0.03 0.03
(50,400) 1.49 1.45 1.31 1.16 0.91 0.44 0.13
(100,200) 1.45 1.38 1.14 0.89 0.55 0.13 0.03
(100,500) 1.50 1.47 1.36 1.23 1.01 0.56 0.21

λ = 0.3n
(p, n) bλ bλ,1 bλ,5 bλ,10 bλ,20 bλ,50 bλ,100

(50,100) 1.45 1.40 1.23 1.04 0.75 0.28 0.05
(50,400) 1.51 1.50 1.45 1.39 1.28 1.00 0.66
(100,200) 1.50 1.47 1.38 1.27 1.08 0.66 0.29
(100,500) 1.52 1.51 1.47 1.42 1.33 1.09 0.78

λ = 0.5n
(p, n) bλ bλ,1 bλ,5 bλ,10 bλ,20 bλ,50 bλ,100

(50,100) 1.47 1.44 1.33 1.20 0.98 0.54 0.20
(50,400) 1.52 1.51 1.48 1.44 1.37 1.18 0.92
(100,200) 1.51 1.49 1.43 1.36 1.24 0.92 0.56
(100,500) 1.53 1.52 1.49 1.47 1.41 1.25 1.02
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√
ne′

1(β̂(λ)− β),
√

ne′
2(β̂(λ)− β),

√
nθ′

1(β̂(λ)− β), and
√

nθ′
2(β̂(λ)− β) obtained

from 1000 experiments. From Figure 2, we see that the biases of the empirical means
in all the histogram plots are significantly large and diverges from zero, implying
that the traditional ridge estimators are not appropriate to make statistical infer-
ences without the information of the bias terms. In contrast, we plot the empirical
histograms of the de-biased counterparts in Figure 3 under the same setting. From
Figure 3, we see that the finite sample performance is quite satisfactory, and the
bias effect of the de-biased estimators is very small. In addition, the curve of the
normal distribution in Theorem 6(i) is added to the corresponding histograms, where
the standard error term σ is estimated from the data as that in Remark 5(iv) and
Table 1. From these curves, we can further confirm that our inference method is valid
for the de-biased ridge estimators, indicating that valid inferences based on the ridge
estimators with our bias-correction method can be made in practice.
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Figure 2: Empirical histograms of (a)
√

ne′
1(β̂(λ)−β); (b)

√
ne′

2(β̂(λ)−β); (c)√
nθ′

1(β̂(λ)−β); and (d)
√

nθ′
2(β̂(λ)−β) in Example 1, where (p, n) = (100, 200)

and λ = 0.3n. 1000 replications are used in the experiments.

Example 2. In this example, we consider the scenario where p > n. The seed
number used in this example is the same as that in Example 1. Each row of the design
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Figure 3: Empirical histograms of (a)
√

ne′
1(β̂c,k(λ)−β); (b)

√
ne′

2(β̂c,k(λ)−β);
(c)
√

nθ′
1(β̂c,k(λ)−β); and (d)

√
nθ′

2(β̂c,k(λ)−β) in Example 1. We choose k =
120 for the de-biased estimators with (p, n) = (100, 200) and λ = 0.3n. A density
curve is plotted based on the limiting distribution outlined in Theorem 6(i). 1000
replications are used in the experiments.

matrix X is generated independently from multivariate standard normal distribution
N(0, Ip). For each configuration of (p, n), the first 5 elements in β are generated from
U(−5,−2), the 6th to the 10th element are from U(2, 5), and the remaining ones are
zeros. In other words, we consider the sparse vector β with p∗ = 10 in (18). The
dimensions and the sample sizes are (p, n) = (150, 120), (150, 140), (220, 180), and
(220, 200), and we consider λ = 0.1n, 0.3n, and 0.8n in each replication for any given
(p, n). For simplicity, we choose n∗ = 40 in the ridge screening of (20) with k = 100
iterations. 1000 replications are used for each configuration of (p, n) throughout the
experiments.

In Table 3, we report the empirical MSEs of the ridge estimators and the de-biased
ones before applying the ridge-screening method, and those after the ridge-screening
with k = 100 iterations in the first stage of bias-corrections. Specifically, the upper
panel in Table 3 for each λ presents the MSEs of the ridge estimators and the de-
biased ones using 100 iterations without applying the ridge-screening approach. We
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see that the MSEs of the de-biased estimators become quite stable as we increase
the number of iterations, which is consistent with our findings that there is a term
that cannot be corrected from the data. In addition, the estimated standard errors
are not close to unity, which is the true one in the experiments. In the lower panel
of Table 3 for each λ, we apply the ridge-screening approach with k = 100 and
sort out the largest n∗ = 40 components of β̂c,100(λ), and then obtain the restricted
ridge estimators. We further apply the bias-correction approach and the de-biased
estimators are obtained in another 100 iterations. From the lower panels of Table 3
for each λ, we see that the bias of the de-biased estimators decreases sharply to a
relatively stable value for each configuration of (p, n), which is understandable since
the selected model consists of more parameters than those in the true one. In addition,
the estimation errors are significantly smaller than those without the ridge-screening
approach, and the estimated standard errors after bias correction are closer to the
true one than the methods without using the ridge-screening and the bias-correction
approaches. We also note that the estimated standard errors are still larger than
the true one (unity) when λ = 0.8n after the ridge-screening, but they are much
closer to the true ones than all the ones produced by the original ridge estimators.
In addition, this can be optimized by choosing more appropriate tuning parameter
λ (e.g. λ = 0.1n or 0.3n) such that the estimated standard errors are close to one.
Furthermore, we also note that there is also a bias-variance trade-off in the MSEs of
the de-biased estimators with or without the ridge-screening. Figure 4 plots the the
empirical MSEs of the de-biased ridge estimators for different number of iterations
for λ = 0.5n and (p, n) = (150, 120), where (a) plots the MSEs of the de-baised ridge
estimators before applying the ridge-screening method, and (b) provides the MSEs
of the de-biased ridge estimators after the ridge-screening. We can clearly see that
there is an optimal number of iteration that minimizes the MSE, which is in line with
our asymptotic results in Theorem 7.

We also study the performance of the proposed ridge-screening method in Table 4,
where the empirical probability (EP) is calculated by

EP (M0 ⊂Mk(λ∗)) = 1
1000

1000∑
i=1

|M0 ∩Mi
k(λ∗)|

10 , (46)

where Mi
k(λ∗) is the recovery in the i-th experiment and |M0 ∩ Mi

k(λ∗)| is the
cardinality of the set M0 ∩ Mi

k(λ∗). We can see from Table 4 that our method
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provides satisfactory performance in variable selections3.
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Figure 4: The bias-variance trade-off reflected by the empirical MSEs of the
de-biased ridge estimators for different number of iterations in Example 2, where
we consider λ = 0.5n for (p, n) = (150, 120), where (a) plots the MSEs of the
de-baised ridge estimators before applying the ridge-screening method, and (b)
provides the MSEs of the de-biased ridge estimators after the ridge-screening.
1000 replications are used in the experiments.

Similar to the experiments in Example 1, we present the empirical averaging
estimation errors (AEEs) in Table 5. The settings of (p, n), λ∗, λ, k, and l are the
same as those in Table 3. From Table 5, we see that the averaging estimation errors
before ridge-screening are also quite stable as we increase the number of iterations
which is similar to the findings in Table 3. After we apply the ridge-screening approach
to the de-biased estimators in the upper panel of Table 5 with k = 100 for each λ∗, the
bias terms (in the lower panel for each λ) decrease substantially from the ones before,
and they also decrease to stable values as we increase the number of iterations in the
second-stage bias correction. Notably, the bias terms are all significantly smaller than
those in the upper panel without the ridge-screening procedure. This is in agreement

3The comparison results with other variable selection approaches, such as the LASSO, are not
provided in this experiment due to the empirical probability of correct recoveries by the proposed
RS method being 100% in all settings of Table 4.
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Table 3: Empirical mean squared errors (MSEs) when p > n in Example 2, where
the MSEs are similarly defined as those in (41) and (42) for bλ, bλ,k, and bλ,k,l.
For each λ∗ = λ, the upper panel reports the MSEs before ridge-screening, and
the lower one presents the MSEs after ridge-screening with k = 100 and n∗ = 40
in the variable selection. The number of iterations is set to k = 1, 5, 10, 20, 50,
and 100 for the first-stage de-biased estimation, and l = 1, 5, 10, 20, 50, and 100
for the second-stage bias-correction following the ridge-screening. σ̂0, σ̂100, σ̂k,0
and σ̂k,100 are similarly estimated by the method in (43). 1000 replications are
used in the experiments.

λ∗ = 0.1n (before ridge-screening)
(p, n) bλ bλ,1 bλ,5 bλ,10 bλ,20 bλ,50 bλ,100 σ̂0 σ̂100

(150,120) 30.64 26.70 28.64 28.73 28.73 28.73 28.73 1.66 2.14
(150,140) 14.84 10.87 11.67 11.68 11.68 11.68 11.68 2.00 2.07
(220,180) 50.10 45.30 46.08 46.12 46.12 46.12 46.12 1.75 2.24
(220,200) 30.90 24.09 25.02 25.04 25.04 25.04 25.04 1.82 2.03

λ = 0.1n, k = 100 (after ridge-screening)
(p, n) bλ,k bλ,k,1 bλ,k,5 bλ,k,10 bλ,k,20 bλ,k,50 bλ,k,100 σ̂k,0 σ̂k,100

(150,120) 11.34 5.44 5.50 5.50 5.50 5.50 5.50 1.37 0.84
(150,140) 8.95 5.52 5.62 5.62 5.62 5.62 5.62 1.25 0.82
(220,180) 10.89 3.51 3.48 3.48 3.48 3.48 3.48 1.58 0.91
(220,200) 8.49 3.40 3.45 3.45 3.45 3.45 3.45 1.50 0.90

λ∗ = 0.3n (before ridge-screening)
(p, n) bλ bλ,1 bλ,5 bλ,10 bλ,20 bλ,50 bλ,100 σ̂0 σ̂100

(150,120) 39.96 31.59 34.59 35.23 35.25 35.25 35.25 2.48 3.46
(150,140) 23.83 15.88 18.09 18.39 18.39 18.39 18.39 2.33 3.10
(220,180) 60.94 51.27 52.98 53.43 53.45 53.45 53.45 2.63 3.68
(220,200) 45.13 32.61 35.01 35.45 35.46 35.46 35.46 2.86 3.62

λ = 0.3n, k = 100 (after ridge-screening)
(p, n) bλ,k bλ,k,1 bλ,k,5 bλ,k,10 bλ,k,20 bλ,k,50 bλ,k,100 σ̂k,0 σ̂k,100

(150,120) 24.95 12.36 12.55 12.55 12.55 12.55 12.55 2.60 1.31
(150,140) 17.94 9.56 10.04 10.05 10.05 10.05 10.05 2.39 1.21
(220,180) 31.66 13.39 12.73 12.73 12.73 12.73 12.73 3.01 1.44
(220,200) 24.13 9.39 9.51 9.51 9.51 9.51 9.51 3.00 1.30

λ∗ = 0.8n (before ridge-screening)
(p, n) bλ bλ,1 bλ,5 bλ,10 bλ,20 bλ,50 bλ,100 σ̂0 σ̂100

(150,120) 53.47 40.79 44.04 47.60 48.03 48.04 48.04 3.89 5.72
(150,140) 36.98 24.48 29.14 31.97 32.23 32.23 32.23 3.90 5.35
(220,180) 76.32 61.94 64.70 68.21 68.59 68.60 68.60 4.15 6.17
(220,200) 64.95 46.37 50.70 54.71 55.11 55.11 55.11 4.63 6.53

λ = 0.8n, k = 100 (after ridge-screening)
(p, n) bλ,k bλ,k,1 bλ,k,5 bλ,k,10 bλ,k,20 bλ,k,50 bλ,k,100 σ̂k,0 σ̂k,100

(150,120) 44.82 27.37 26.15 26.49 26.50 26.50 26.50 4.23 2.75
(150,140) 31.97 17.88 18.98 19.42 19.43 19.43 19.43 4.22 2.53
(220,180) 59.55 35.56 32.39 32.55 32.56 32.56 32.56 4.80 2.86
(220,200) 51.11 26.92 25.79 26.20 26.21 26.21 26.21 5.14 2.93
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Table 4: Empirical probability (EP) of correct recoveries of the true models for
λ∗ = 0.1n, 0.3n, and 0.8n, where we conduct 100 iterations in the bias-correction
procedure and set n∗ = 40 in the ridge-screening. 1000 replications are used in
the experiments.

λ∗ = 0.1n, k = 100
(p, n)

EP (150,200) (150,140) (220,180) (220,200)
EP (M0 ⊂Mk(λ∗)) 100% 100% 100% 100%

λ∗ = 0.3n, k = 100
(p, n)

EP (150,200) (150,140) (220,180) (220,200)
EP (M0 ⊂Mk(λ∗)) 100% 100% 100% 100%

λ∗ = 0.8n, k = 100
(p, n)

EP (150,200) (150,140) (220,180) (220,200)
EP (M0 ⊂Mk(λ∗)) 100% 100% 100% 100%

with our theoretical results in Theorem 5 and Theorem 7.
Finally, we study the performance of the inference method in Theorem 6(ii). We

only consider the case when (p, n) = (220, 200), λ∗ = λ = 0.1n, and n∗ = 40, and we
can produce similar results for other settings. Define

γ1 = (0.8,−1, 0.5, 0′
p−3)′, γ2 = (0,−1, 0.5, 0.8, 0′

p−4)′,

γ3 = (0′
3,−0.9, 0.4,−0.8, 0′

p−6)′, and γ4 = (0′
4, 0.5, 0.7,−0.8, 0′

p−7)′.

We plot the empirical histograms of
√

nγ ′
1(β̂(λ)−β),

√
nγ ′

2(β̂(λ)−β),
√

nγ ′
3(β̂(λ)−

β), and
√

nγ ′
4(β̂(λ)− β) in Figure 5, from which it is observed that most of the es-

timators are not centered around zero. Subsequently, we apply the bias-correction
procedure to the original ridge estimators, and the empirical histograms of the bias-
corrected estimators are presented in Figure 6 as compared to Figure 5. From Fig-
ure 6, it can be seen that while some estimators become more centered around zero
(e.g., (a) and (b)) due to the bias-correction procedure, the validity of inference with-
out ridge-screening cannot be assured, as (c) and (d) still exhibit significant biases.

Furthermore, we apply the ridge-screening approach to the de-biased estimators
depicted in Figure 6, subsequently obtaining restricted ridge estimators along with
their de-biased counterparts. Figure 7 showcases the empirical histograms of: (a)
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Table 5: Empirical averaging estimation errors (AEEs) when p > n in Example
2, where the AEEs are similarly defined as those in (41) and (42) for bλ, bλ,k, and
bλ,k,l. For each λ, the upper panel reports the AEES before ridge-screening, and
the lower one presents the AEEs after ridge-screening with k = 100 and n∗ = 40
in the variable selection. The number of iterations is set to k = 1, 5, 10, 20, 50, and
100 for the first-stage de-biased estimation, and l = 1, 5, 10, 20, 50, and 100 for
the second-stage bias-correction following the ridge-screening. 1000 replications
are used in the experiments.

λ∗ = 0.1n (before ridge-screening)
(p, n) bλ bλ,1 bλ,5 bλ,10 bλ,20 bλ,50 bλ,100

(150,120) 0.44 0.41 0.42 0.42 0.42 0.42 0.42
(150,140) 0.30 0.24 0.25 0.25 0.25 0.25 0.25
(220,180) 0.47 0.44 0.44 0.44 0.44 0.44 0.44
(220,200) 0.37 0.32 0.32 0.32 0.32 0.32 0.32

λ = 0.1n, k = 100 (after ridge-screening)
(p, n) bλ,k bλ,k,1 bλ,k,5 bλ,10 bλ,k,20 bλ,k,50 bλ,k,100

(150,120) 0.26 0.17 0.17 0.17 0.17 0.17 0.17
(150,140) 0.22 0.16 0.16 0.16 0.16 0.16 0.16
(220,180) 0.21 0.11 0.11 0.11 0.11 0.11 0.11
(220,200) 0.19 0.11 0.11 0.11 0.11 0.11 0.11

λ∗ = 0.3n (before ridge-screening)
(p, n) bλ bλ,1 bλ,5 bλ,10 bλ,20 bλ,50 bλ,100

(150,120) 0.51 0.45 0.47 0.47 0.47 0.47 0.47
(150,140) 0.39 0.31 0.33 0.33 0.33 0.33 0.33
(220,180) 0.52 0.48 0.48 0.48 0.48 0.48 0.48
(220,200) 0.45 0.38 0.39 0.39 0.39 0.39 0.39

λ = 0.3n, k = 100 (after ridge-screening)
(p, n) bλ,k bλ,k,1 bλ,k,5 bλ,10 bλ,k,20 bλ,k,50 bλ,k,100

(150,120) 0.40 0.27 0.27 0.27 0.27 0.27 0.27
(150,140) 0.34 0.24 0.24 0.25 0.25 0.25 0.25
(220,180) 0.37 0.24 0.23 0.23 0.23 0.23 0.23
(220,200) 0.33 0.20 0.20 0.20 0.20 0.20 0.20

λ∗ = 0.8n (before ridge-screening)
(p, n) bλ bλ,1 bλ,5 bλ,10 bλ,20 bλ,50 bλ,100

(150,120) 0.60 0.52 0.53 0.56 0.56 0.56 0.56
(150,140) 0.50 0.40 0.43 0.45 0.45 0.45 0.45
(220,180) 0.59 0.53 0.54 0.55 0.55 0.55 0.55
(220,200) 0.54 0.46 0.47 0.49 0.49 0.49 0.49

λ = 0.8n, k = 100 (after ridge-screening)
(p, n) bλ,k bλ,k,1 bλ,k,5 bλ,10 bλ,k,20 bλ,k,50 bλ,k,100

(150,120) 0.54 0.42 0.41 0.41 0.41 0.41 0.41
(150,140) 0.46 0.34 0.35 0.35 0.35 0.35 0.35
(220,180) 0.52 0.40 0.38 0.38 0.38 0.38 0.38
(220,200) 0.48 0.34 0.33 0.33 0.33 0.33 0.33
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√
nγ ′

1(β̂
∗
Mk,l(λ) − β); (b)

√
nγ ′

2(β̂
∗
Mk,l(λ) − β); (c)

√
nγ ′

3(β̂
∗
Mk,l(λ) − β); and (d)

√
nγ ′

4(β̂
∗
Mk,l(λ) − β), where β̂

∗
Mk,l(λ) is a p-dimensional vector with β̂Mk,l(λ) as its

sub-vector and the remaining elements are set to zero. Similar to the curves in Fig-
ure 3, the density curve in Figure 7 is plotted based on the limiting distribution
specified in Theorem 6(ii). From Figure 7, it is evident that the de-biased restricted
ridge estimators predominantly cluster around zero. The density curves for the cor-
responding estimators are quite satisfactory, suggesting the validity of the proposed
inference approach.
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Figure 5: Empirical histograms of (a)
√

nγ ′
1(β̂(λ)−β); (b)

√
nγ ′

2(β̂(λ)−β); (c)√
nγ ′

3(β̂(λ)−β); and (d)
√

nγ ′
4(β̂(λ)−β) in Example 2. We set (p, n) = (220, 200)

and λ = 0.1n. 1000 replications are used in the experiments.

4 Empirical Application
In this section, we apply the proposed method to forecast the U.S. macroeconomic
series and study the out-of-sample prediction intervals using ridge regression. We con-
sider the widely used macroeconomic variables studied by Stock and Watson (2002a),
McCracken and Ng (2016), Giannone et al. (2021), and Gao and Tsay (2022, 2023),
among many others. The data are obtained from the FRED-MD data base which
are maintained by St. Louis Fed. See https://research.stlouisfed.org/econ/
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Figure 6: Empirical histograms of (a)
√

nγ ′
1(β̂c,k(λ)−β); (b)

√
nγ ′

2(β̂c,k(λ)−β);
(c)
√

nγ ′
3(β̂c,k(λ)−β); and (d)

√
nγ ′

4(β̂c,k(λ)−β) in Example 2. We set (p, n) =
(220, 200), k = 100, and λ = 0.1n. 1000 replications are used in the experiments.

mccracken/fred-databases/. There are 127 variables in the online data set, and we
remove 4 of them because of missing values therein. Consequently, we consider the
123 macro variables spanning from July 1962 to December 2019 as all the series have
no missing values during this period, which is the same as the setting in Gao and Tsay
(2023). The detailed variables and transformation codes to ensure the stationarity of
each macro variable are provided in Table IA.I of Gao and Tsay (2023). The sample
size is n = 690.

Similar to Stock and Watson (2002b), Bai and Ng (2006), and Cheng and Hansen
(2015), we adopt the following factor-augmented regression model:

Xt = Λft + et,

yt+h = α1yt + ... + αqyt−q+1 + γ1f1,t + ... + γrfr,t + εt+h, t = q, ..., n− h,
(47)

where Xt consists of 122 macroeconomic variables, yt is the remaining target one, and
ft = (f1,t, ..., fr,t)′ is an r-dimensional latent factor process which can be estimated
by applying Principal Component Analysis (PCA) to Xt. We set q = 10 and r = 60,
and apply the ridge regression to estimate the parameters αi and γj for 1 ≤ i ≤ q

and 1 ≤ j ≤ r with estimated factors. Hence, the number of covariates in the ridge
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Figure 7: Empirical histograms of (a)
√

nγ ′
1(β̂

∗
Mk,l(λ)−β); (b)

√
nγ ′

2(β̂
∗
Mk,l(λ)−

β); (c)
√

nγ ′
3(β̂

∗
Mk,l(λ) − β); and (d)

√
nγ ′

4(β̂
∗
Mk,l(λ) − β) in Example 2, where

β̂
∗
Mk,l(λ) is a p-dimensional vector with β̂Mk,l(λ) as its sub-vector and the other

elements being zero. We set (p, n) = (220, 200), k = 100, n∗ = 40, l = 100, and
λ = λ∗ = 0.1n. The density curve is plotted based on the limiting distribution in
Theorem 6(ii). 1000 replications are used in the experiments.

regression is p = q + r = 70. We focus on the prediction of the consumer price index:
all (CPI-All), which is an important index related to the inflation. See also Stock and
Watson (2002a) and Gao and Tsay (2022) for similar studies.

First, we set λ ∈ {0.05n, 0.1n, 0.2n, ..., 1.5n} which contains 16 candidates for the
penalty parameter. We split the sample into two subsamples, where the first one
consists of the first 80% of the data for modeling and the second subsample of the
remaining 20% of the data for out-of-sample prediction. We adopt the rolling-window
scheme as that in Gao and Tsay (2023), that is, we train the factors and the forecast-
ing coefficients using the first subsample to predict the next target data point. Then
we repeat the above procedure after moving the next available observation of predic-
tors and target CPI-All variable from the second subsample to the first one to obtain
the next prediction. This rolling-window scheme is terminated when there is no more
observation to compute the forecasting error. We choose the optimal penalty in the
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ridge estimator such that the out-of-sample mean-squared forecast errors (MSFEs)
achieve a minimum value. Thus, this setting is in line with the advocated models
combining regularized estimation and data-driven selection of regularization parame-
ters in Abadie and Kasy (2019). In this experiment, we find that the optimal penalty
λ̂ = 0.8n for h = 1 and λ̂ = 0.7n for h = 2.

Next, for each configuration of (λ̂, h) = (0.8n, 1) and (0.7n, 2), we execute Al-
gorithm 1. We observe that the bias-correction procedure terminates within 3 to
5 iterations when setting η = O(10−4) in equation (24). For simplicity, we opt for
k = 10 in the bias-correction, a choice deemed sufficiently large. Following the guide-
lines provided in Section 2.7, we compute pointwise prediction intervals for the data
points in the testing set. The standard errors for each prediction are determined us-
ing the method described in Remark 5(iv). We present the 95% pointwise prediction
intervals for both 1-step ahead and 2-step ahead forecasts in Figure 8 and Figure 9,
respectively. It is evident that the majority of the true observations fall within these
prediction intervals. Additionally, we evaluate the coverage rates of the prediction
intervals across the 138 points in the testing set. We find a consistent coverage rate
of 92.03% for both the 1-step and 2-step ahead forecasts, indicating that the 95%
prediction intervals perform effectively in this empirical example.

Finally, we investigate the effectiveness of the ridge-screening (RS) approach in
out-of-sample predictions. We take the 1-step ahead prediction as an example. For
each λ∗ ∈ {0.05n, 0.1n, 0.2n, ..., 1.5n}, which is the same as our previous candidate set,
we adopt k = 10 and vary n∗ from 10 to 70 in (20), that is, we select the largest 10 to
70 variables based on their magnitudes from the set {|β̂c,10,1(λ∗)|, ..., |β̂c,10,70(λ∗)|} and
compute their corresponding out-of-sample forecast errors. By minimizing the out-of-
sample MSFEs, we determined that the optimal parameters are (λ̂∗, n∗) = (0.5n, 31).
This implies that the submodel, consisting of covariates corresponding to the largest
31 elements in |β̂c,10(0.5n)|, yields the smallest out-of-sample MSFEs. Consequently,
we chose λ̂ = λ̂∗ = 0.5n for the subsequent bias-correction procedure in the restricted
ridge estimators, conducting it with l = 10 iterations. Figure 10 displays the 95% out-
of-sample prediction intervals based on the selected submodel and the corresponding
restricted ridge estimators for h = 1. Interestingly, we observe that some observations
not covered by the prediction intervals in Figure 8 are encompassed by the new
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Figure 8: Out-of-sample pointwise prediction intervals for the monthly CPI-
All from July 1, 2008 to Dec. 12, 2019, constructed using (34)-(35) at a 95%
confidence level with λ̂ = 0.8n and k = 10 for the 1-step ahead forecast. The
blue lines represent the confidence intervals, while the dark lines plot the true
observations.

intervals in Figure 10. The coverage rate of these 95% prediction intervals stands
at 93.5%, surpassing the 92.03% achieved by the previous approach without ridge-
screening. This suggests that the ridge-screening method enhances the performance
of the prediction intervals.

5 Conclusion
A fundamental question in ridge regression revolves around the possibility of correct-
ing the bias term using available data, alongside ensuring the validity of statistical in-
ferences without affecting the predictive performance of the original ridge estimator.
This paper tackles these long-standing challenges by introducing a straightforward
and readily implementable iterative procedure, along with a ridge-screening method.
In cases where the dimension p is smaller than the sample size n, our procedure ef-
fectively corrects the bias term under very mild assumptions. However, when p > n

and the projection matrix becomes singular, we propose a ridge-screening approach
to eliminate coefficients that are relatively insignificant compared to others. We then
specifically focus on the restricted model, which retains a sufficient number of pa-
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Figure 9: Out-of-sample pointwise prediction intervals for the monthly CPI-
All from July 1, 2008 to Dec. 12, 2019, constructed using (34)-(35) at a 95%
confidence level with λ̂ = 0.7n and k = 10 for the 2-step ahead forecast. The
blue lines represent the confidence intervals, while the dark lines plot the true
observations.

rameters to encapsulate most of the information regarding the response vector. Our
bias-correction procedure can be further applied to the restricted model, enabling the
correction of the bias. Moreover, the ridge-screening method offers a novel approach
to variable selection, which is of independent interest beyond bias correction. We
derive the limiting distributions of the de-biased estimators, facilitating the making
of statistical inferences. Simulated and real data examples are used to corroborate
the effectiveness and validity of our proposed methodology. The proposed inference
solution for ridge regression serves as an illustrative example addressing the inference
challenges of regularized machine learning methods outlined in Section 2.8 of Athey
and Imbens (2019) without adversely affecting the predictive performance.
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Online Appendix: Proofs of the Theorems
We will use C or c to denote a generic constant the value of which may change at
different places.

Proof of Theorem 1. To see the bias of the ridge estimator, it follows from (2)
that

β̂(λ) = β − λ(X′X + λIp)−1β + (X′X + λIp)−1X′ε. (A.1)

Conditioning on X, by the assumption that Eε = 0, it follows immediately that

β − E(β̂(λ)) = λ(X′X + λIp)−1β.

This completes the proof. □

Proof of Theorem 2. By (A.1) and an elementary argument, β̂c,k(λ) can be
written as

β̂c,k(λ) =β̂(λ) +
k∑

j=1
λj(X′X + λIp)−jβ̂(λ)

=β − λk+1(X′X + λIp)−(k+1)β +
k∑

j=0
λj(X′X + λIp)−(j+1)X′ε. (A.2)

Then, it follows that

β − Eβ̂c,k = λk+1(X′X + λIp)−(k+1)β.

When p < n and X′X is invertible, by Assumption 1, the singular-value decomposition
of X′X is

X′X = U1D2
1U1, D1 = diag(d1, ..., dp), dj > 0.

Then, it is not hard to see that

(X′X + λIp)−(k+1) = U1(D2
1 + λIp)−(k+1)U′

1,

and
bλ,k = λk+1U1(D2

1 + λIp)−(k+1)U′
1β.

1



Note that, for 1 ≤ j ≤ p, each diagonal element in λk+1(D2
1 + λIp)−(k+1) is

(
λ

d2
j + λ

)k+1

→ 0, as k →∞,

at a rate of exponential decay. Therefore, for any given configuration of (p, n) with
p < n, if the number of iteration k satisfies max1≤j≤p Cn,p( λ

d2
j +λ

)k+1 → 0 with ∥β∥2 <

Cp,n, we can show that
∥bλ∥2 → 0, as k →∞.

As a matter of fact, the aforementioned result applies to any given and fixed (p, n).
Furthermore, when considering the scenario where both p and n tend towards infinity
in an asymptotic framework, it is not hard to see that the above convergence also
holds under the condition that d2

j ≍ λ ≍ n in relation to the sample size n within an
asymptotic setting. This completes the proof. □

Proof of Theorem 3. Note that

bλ,k = λk+1(X′X + λIp)−(k+1)β.

When p > n, by Assumption 2, the singular-value decomposition of (X′X + λIp) is

X′X + λIp = UDU′, U = [U1, U2], D = diag(D2
1 + λIp∗ , λIp−p∗).

Then,

bλ,k =λk+1
{
U1(D1 + λIp∗)−(k+1)U′

1 + λ−(k+1)U2U′
2

}
β

=U1λ
k+1(D1 + λIp∗)−(k+1)U′

1β + U2U′
2β. (A.3)

By a similar argument as that in the proof of Theorem 2, the first term in (A.3)
vanishes as k →∞. Hence,

bλ,k → U2U′
2β, as k →∞.
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If we further allow n, p→∞, under a similar setting in the proof of Theorem 2 above,
we can show that

bλ,k −U2U′
2β → 0, as n, p, k →∞,

which is discussed in Remark 3(iii). This completes the proof. □

Proof of Theorem 4. We prove it by contradiction. Suppose X′X is singular
and there exists a transformation matrix S such that

E(SY) = U2U′
2β. (A.4)

In other words, the remaining bias term in Theorem 3 can be corrected by SY. (A.4)
implies that

E(SX)β = U2U′
2β. (A.5)

Since a p-dimensional space can be spanned by the columns of [U1, U2], there exist
vectors α1 ∈ Rp∗ and α2 ∈ Rp−p∗ such that

β = U1α1 + U2α2.

We only talk about the case when α1 ̸= 0 and α2 ̸= 0 since either α1 = 0 or α2 ̸= 0
will lead the bias term to be zero, implying that we do not need to correct it. We
plug it into (A.5) and obtain

E(SX)U1α1 = U2α2. (A.6)

Note that U1α1 is a vector in the hyperplane spanned by the columns of U1, and
U2α2 is a vector in the hyperplane spanned by the columns of U2. Since U1 is
orthogonal to U2, we cannot find any linear transformation matrix S such that the
equation of (A.6) holds. This contradicts our assumption. This completes the proof.
□

Proof of Theorem 5. (i) We first consider the case when p < n. By (A.2) in
the proof of Theorem 2 above,

β̂c,k(λ∗) = β +
k∑

j=0
λ∗j(X′X + λ∗Ip)−(j+1)X′ε + o(1) = β + γ + o(1),
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where o(1) can be made arbitrarily small at an exponential rate, and β has s∗ nonzero
element, which can be smaller than p. We use the SVD of X′X when p < n as that
in the proof of Theorem 2 and obtain

k∑
j=0

λ∗j+1(X′X + λ∗Ip)−(j+1) = U1D∗
1U′

1,

where D∗
1 = diag(d∗

1, ..., d∗
p) with

d∗
i =

k∑
j=0

(
λ∗

λ∗ + d2
i

)j+1

= λ∗

d2
i

+ o(1) ≍ O(1), 1 ≤ i ≤ p,

where o(1) is also an arbitrarily small term at an exponential rate, and λ∗ and d2
i are

all of order n by Assumption 3. Then,

γ =
k∑

j=0
λ∗j(X′X + λ∗Ip)−(j+1)X′ε = U1D∗

1U′
1V

D1√
λ∗

U′
1

ε√
λ∗

.

Note that the ℓ2-norm of each row of U1D∗
1U′

1V D1√
λ∗ U′

1 is

∥e′
iU1D∗

1U′
1V

D1√
λ∗

U′
1∥2

2 ≤ C <∞,

where we used the fact that each element in the diagonal matrices D∗
1 and D1√

λ∗ is
bounded from above and below. By Assumption 6, we have

max
1≤i≤p

|γi| = Op(
√

1
λ∗

√
log(p) = Op(

√
log(p)

n
).

For i ∈M0, by Assumption 5 and log(p)/n1−2τ → 0,

min
i∈M0

|β̂c,k,i(λ∗)| ≥ min
i∈M0

|βi| −Op(
√

log(p)
n

) ≥ Cn−τ ,

and

max
i∈Mc

0
|β̂c,k,i(λ∗)| ≤ C

√
log(p)

n
.
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It is obvious that
min
i∈M0

|β̂c,k,i(λ∗)| > max
i∈Mc

0
|β̂c,k,i(λ∗)|,

with probability tending to one. This implies that the magnitudes of the parameters
β̂c,k,i(λ∗)’s for i ∈ M0 are of larger orders than the remaining ones. Therefore, we
prove that

P (M0 ⊂Mk(λ∗))→ 1, as k →∞,

if we choose n∗ ≥ s∗ in (20) of the main article. For instance, we may simply choose
n∗ = p for p < n, which creates a dense model suitable for bias-correction.

Next, we consider the case when p > n. Note that Theorem 3 implies that

β̂c,k(λ∗) = β−U2U′
2β+

k∑
j=0

λ∗j(X′X+λ∗Ip)−(j+1)X′ε+o(1) = β−δ+γ+o(1), (A.7)

where the term o(1) can be arbitrarily small at a rate of exponential decay as k →∞.
The idea of proving the result is as follows. We first investigate the lower bound of
(mini∈M0 |β̂c,k,i(λ∗)|)2 and the upper bound of ∥β̂c,k,i(λ∗)∥2

2. If the number of coordi-
nates selected in Mk(λ∗) is greater than the ratio between the upper bound and the
lower bound, the submodel Mk(λ∗) must contain the true M0 as a subset.

For i ∈M0, by Assumption 5, the magnitude of the i-th coordinate of U2U′
2β is

less than that of β. If log(p)/n1−2τ → 0, we have

min
i∈M0

|β̂c,k,i(λ∗)| ≥ C2n
−τ − C1n

−τ −Op(
√

log(p)/n) ≥ Op(n−τ ),

where C2 > C1 > 0. In addition,

∥β̂c,k(λ∗)∥2
2 ≤ C∥U1U′

1β∥2
2+C∥

k∑
j=0

λ∗j(X′X+λ∗Ip)−(j+1)X′ε∥2
2 ≤ Cs∗+Cn−2p log(p).

Then,
∥β̂c,k(λ∗)∥2

2

(mini∈M0 |β̂c,k,i(λ∗)|)2
≤ Cn−2τ s∗ + Cn2τ−2p log(p). (A.8)

The upper bound in (A.8) is important for us to show the result because it implies
that the number of elements in |β̂c,k(λ∗)| that are greater than mini∈M0 |β̂c,k,i(λ∗)| is
at most Cn−2τ s∗ + Cn2τ−2p log(p). Note that all elements with indexes i ∈ M0 are
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greater than or equal to mini∈M0 |β̂c,k,i(λ∗)|. Therefore, if the choice of n∗ in (20)
satisfies

n∗

Cn−2τ s∗ + Cn2τ−2p log(p) →∞,

or equivalently, the number of largest elements selected in |β̂c,k(λ∗)|, n∗, is more than
the total number of parameters in |β̂c,k(λ∗)| that is greater than mini∈M0 |β̂c,k,i(λ∗)|,
we must have that Mk(λ∗) consists of all the indexes in M0. This proves (i).

(ii) Since M0 ⊂Mk(λ∗) with probability tending to one, on the event of {M0 ⊂
Mk(λ∗)}, the proof is the same as that for Theorem 2. This completes the proof. □

Proof of Theorem 6. By (A.2), we can obtain that

β̂c,k(λ)− β = −λk+1(X′X + λIp)−(k+1)β +
k∑

j=0
λj(X′X + λIp)−(j+1)X′ε,

and

β̂Mk,l(λ)−βMk
= −λl+1(X′

Mk
XMk

+λIn∗)−(l+1)βMk
+

l∑
j=0

λj(X′
Mk

XMk
+λIn∗)−(j+1)X′

Mk
ε.

Under the assumption that ε ∼ N(0, Σε), the exact distributions in Theorem 6(i)-(ii)
are straightforward.

Moreover, by a similar argument as that in the proof of Theorem 2 above, it is
not hard to see that

√
nµ1,k(λ) = o(1) and

√
nµ2,k,l(λ) = o(1),

where o(1) can be arbitrarily small at an exponential rate if k and l are suffi-
ciently large. Consequently, for any given and fixed (p, n), the means

√
nµ1,k(λ) and

√
nµ2,k,l(λ) are asymptotically vanishing as k, l → ∞, and the asymptotic normal

distributions in Theorem 6 hold.
As discussed in Remark 5(i), if the normality assumption that ε ∼ N(0, Σε) is

relaxed to the case that {εi, i = 1, ..., T} is a martingale difference sequence with finite
variances, under the assumption that λ ≍ λ∗ ≍ n and the nonzero singular values of
X are of order

√
n, the limiting distributions in Theorem 6 can also be established

6



as n → ∞, following the argument in Hall and Heyde (2014). We omit the details.
This completes the proof of Theorem 6. □

Proof of Theorem 7. (i) Assume Σε = σ2In, by Assumption 1 and (38), the
MSE of β̂c,k(λ) can be expressed as

MSE(β̂c,k(λ)) =β′λk+1(X′X + λIp)−(k+1)λk+1(X′X + λIp)−(k+1)β

+ E[ε′X
k∑

j=0
λj(X′X + λIp)−(k+1)

k∑
j=0

λj(X′X + λIp)−(k+1)X′ε]

=β′U1Λk(λ)U′
1β + E[ε′V1Dk(λ)V′

1ε]

=β′U1Λk(λ)U′
1β + σ2trace[Dk(λ)], (A.9)

where Λk(λ) = diag(γk,1(λ), ..., γk,p(λ)) with

γk,i(λ) = [ λ

λ + d2
i

]2(k+1),

and Dk(λ) = diag(dk,1(λ), ..., dk,p(λ)) with

dk,i(λ) = 1
d2

i

[
1− ( λ

λ + d2
i

)k+1
]2

.

Let U′
1β = (δ1, ..., δp)′, then,

MSE(β̂c,k(λ)) =
p∑

i=1
δ2

i [ λ

λ + d2
i

]2(k+1) + σ2
p∑

i=1

1
d2

i

[
1− ( λ

λ + d2
i

)k+1
]2

. (A.10)

Note that MSE(β̂(λ)) = MSE(β̂c,0(λ)), and the MSE will become stable if k → ∞,
then, for any finite k ≥ 1, define

fi(k) = δ2
i [ λ

λ + d2
i

]2(k+1) + σ2 1
d2

i

[
1− ( λ

λ + d2
i

)k+1
]2

,

and MSE(β̂c,k(λ)) = ∑p
i=1 fi(k). It suffices to investigate the derivatives of fi(k) for

1 ≤ i ≤ p and finite k > 0. Note that

f ′
i(k) = 2δ2

i (k + 1) log( λ

λ + d2
i

)− 2σ2

d2
i

(k + 1)[1− ( λ

λ + d2
i

)k+1] log( λ

λ + d2
i

). (A.11)
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Then f ′
i(k) < 0 if and only if

δ2
i d2

i

σ2 > 1− ( λ

λ + di

)k+1. (A.12)

It follows from (A.12) that

k ≤
log(1− δ2

i d2
i

σ2 )
log( λ

λ+d2
i
)
− 1, 1 ≤ i ≤ p. (A.13)

On the other hand, we also expect that k ≥ k∗ ≥ 1 such that we can achieve a
minimum before the MSE increases, then we also require that

δ2
i d2

i

σ2 + ( λ

λ + d2
i

)k∗+1 ≥ 1.

Since the MSE consists of p terms in the summation, then it achieves the global
minimum at k which is between the minimum and the maximum integers of all the
inflection points in the upper bounds of (A.13) for all 1 ≤ i ≤ p. This completes the
proof of Theorem 7(i).

(ii) The result of Theorem 7(ii) is straightforward from the inequality in (A.12).
We omit the details here. This completes the proof. □
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