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Abstract

Coherent Ising Machine (CIM) is a network of optical parametric oscillators that solves

combinatorial optimization problems by finding the ground state of an Ising Hamiltonian. As a

practical application of CIM, Aonishi et al. proposed a quantum-classical hybrid system to

solve optimization problems of L0-regularization-based compressed sensing (L0RBCS).

Gunathilaka et al. has further enhanced the accuracy of the system. However, the

computationally expensive CIM’s stochastic differential equations (SDEs) limit the use of

digital hardware implementations. As an alternative to Gunathilaka et al.’s CIM SDEs used

previously, we propose using the mean-field CIM (MF-CIM) model, which is a

physics-inspired heuristic solver without quantum noise. MF-CIM surmounts the high

computational cost due to the simple nature of the differential equations (DEs). Furthermore,

our results indicate that the proposed model has similar performance to physically accurate

SDEs in both artificial and magnetic resonance imaging data, paving the way for implementing

CIM-based L0RBCS on digital hardware such as Field Programmable Gate Arrays (FPGAs).

Introduction

Over the past few years, quantum-inspired Ising machines have become increasingly

popular [1–12]. These Ising machines have demonstrated proficient computational capability

in solving combinatorial optimization problems (COPs), especially quadratic unconstrained

binary optimization (QUBO), which is ubiquitous in practical optimization problems. A few

examples of such problems include scheduling [13, 14], portfolio optimization [15], and drug

discovery [16]. In order to solve a COP mapped to an Ising optimization problem, one must

find the ground state of the Ising Hamiltonian. By doing so, the optimal answer to the problem

can be found. However, in practice, finding the ground state of an Ising Hamiltonian is rather

complicated. In terms of complexity, this problem belongs to the class of nondeterministic

polynomial-time (NP-hard) problems [17].

There have been several advances in the development of quantum-inspired Ising machines

throughout the world [18–21]. Among the array of architectures for Ising machines, the

Coherent Ising Machine (CIM) stands as a notable contender. Employing optical parametric

oscillators (OPOs), with the emergence of strong oscillatory states transcending predefined
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thresholds, CIM amplitude configurations effectively encode optimal solutions for specific

Ising problems [19, 22]. Despite the demonstrated capability of physical CIMs available in

laboratory settings to accommodate 100,000 degenerate OPO pulses, equating to 100,000

spins [12] , persistent challenges endure. Notably, CIMs exhibit deficiencies in the precision

controllability of physical parameters and stability [12]. Additionally, their mutual coupling is

currently restricted to low-bit representations such as (-1, +1) to enable fast measurement

feedback. These challenges are prevalent among nearly all physical architectures. As a

practical remedy to these issues, the implementation of optimization algorithms rooted in

classically computable models into digital hardware platforms such as FPGAs is being actively

pursued. The rationale behind the pursuit of digital hardware implementation lies in the

inherent stability, reliability, and cost-effectiveness of such systems, in contrast to their

physical counterparts. Ref. [23] indicates that FPGA clusters facilitating the implementation

of Simulated Bifurcation Machines (SBMs) can potentially accommodate over 100,000 spins.

However, the primary impediment to digital hardware implementation resides in the

complexity of such optimization algorithms. Deriving classically computable models for CIMs

entails the approximation of density matrix master equations utilizing quasi-probability

distribution functions. In the derivation of classically computable models for CIMs, the

truncated-Wigner and the Positive-P representations have been used. [24, 25]

Expanding the density matrix master equations using either the truncated-Wigner or

Positive-P representation facilitates the derivation of Langevin equations for the CIM.

Nonetheless, numerical simulations of the derived stochastic differential equations (SDEs) are

intricate and computationally demanding, rendering them unsuitable for large-scale

simulations and implementation into dedicated digital hardware platforms such as FPGAs and

Application-Specific Integrated Circuits (ASICs). There is, however, a simplified set of

differential equations (DEs) called the mean-field CIM model, which is described in

Refs. [26–29], offers an alternative. In these equations, quantum noise and measurement

effects are not considered. While this model deviates from the precise representation of the

physical CIM, it offers a simplified framework. This simplification enables various numerical

analyses, such as linear stability analysis, and facilitates the development of simple heuristic

algorithms suitable for large-scale simulations and implementation on dedicated digital

hardware. Recently, the mean-field CIM model has been extended to incorporate the Zeeman

term using an effective implementation technique known as chaotic amplitude control (CAC),

as detailed in Ref. [29]. Consequently, the mean-field CIM model, augmented with the

Zeeman term via CAC, finds applications in diverse large-scale real-world COPs, including

Code Division Multiple Access (CDMA), Multi-Input Multi-Output (MIMO), and

L0-regularization-based Compressed Sensing (L0RBCS) [30, 31]. However, to date,

investigations using this model have primarily focused on small-scale Sherrington-Kirkpatrick

(SK) problems.

In this paper, the mean-field CIM model with the Zeeman term incorporated by CAC is

applied to L0RBCS, which is a COP of image reconstruction. We investigate how the

mean-field CIM model can replace physically accurate CIM models such as Positive-P SDEs

for realizing L0RBCS. Our results demonstrate that both the mean-field CIM model and the

positive-P CIM model perform similarly, despite the fact that the computational costs

associated with the mean-field CIM model are lower. We describe in another paper the

implementation of large-scale optimization algorithms based on the mean-field CIM model

into FPGAs as well as its fast computation of L0RBCS [32].
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Methods

Alternative Minimization Algorithm for L0RBCS

The compressed sensing (CS) method involves the reconstruction of high-dimensional signals

or images from highly downsampled measurements achieved through the following

optimisation.

x̂ = argmin
x∈RN

‖x‖p s.t y = Ax. (1)

In the eq. (1), an observed signal y ∈ R
M , an observation matrix A ∈ R

M×N , and a source

signal x ∈R
N are indicated. The sparseness of the vector x, which corresponds to the ratio of

of non-zero elements in the vector is indicated as a. Compression ratio refers to the ratio of the

number of rows to the number of columns of matrix A, denoted by α .

An attempt at solving L0-norm CS, which is a COP, can be achieved by considering the

two-fold formulation of eq. (1) [33, 34].

(R̂, σ̂ ) = argmin
σ∈{0,1}N

argmin
R∈RN

(

‖y−A(σ ◦R)‖2
2

)

s.t ‖σ‖0 ≤ Ω. (2)

Here R ∈ R
N and σ ∈ {0,1}N

correspond to the source signal and support vector, respectively.

The support vector consists only of binary values. A zero entry indicates that the source signal

entry is zero, and a non-zero entry suggests that the source signal entry is non-zero. The

condition ‖σ‖0 ≤ Ω is a sparsity-inducing prior for constraining the number of non-zero

entries to be Ω.

Ref. [30] and Ref. [31] employed a quantum-classical hybrid approach to solve

optimization problems of L0-norm CS. In order to implement the L0-norm CS with the hybrid

system, the following regularization form called L0RBCS is used [30, 31].

(R,σ) = argmin
σ∈{0,1}N

argmin
R∈RN

(

1

2
‖y−A(σ ◦R)‖2

2 +λ‖σ‖0

)

. (3)

The element-wise representation of eq. (3) gives the following Hamiltonian.

H=
N

∑
r<r′

M

∑
k=1

Ak
r Ak

r′RrRr′σrσr′ −
N

∑
r=1

M

∑
k=1

ykAk
rRrσr +λ

N

∑
r=1

σr, (4)

where an element Ak in A, an element yk in y, an element Rr in R and an element σr in σ . The

problem of optimizing with regards to σ is a quadratic unconstrained binary optimization

(QUBO). This hybrid approach optimizes σ with the use of a CIM while optimizing R with a

Classical Digital Processor (CDP).

Closed-loop CIM for L0RBCS

To date, two proposals have been made for solving L0RBCS using CIMs: an open-loop CIM

model with CDP (OL-CIM-CDP) developed by Aonishi et al. [30] and a closed-loop CIM

model with CDP (CAC-CIM-CDP) developed by Gunathilaka et al. [31]. The closed-loop

CIM model integrates additional nonlinear dynamical feedback mechanisms to actively

regulate system amplitudes towards a designated value known as the target amplitude. This

implementation induces chaotic dynamics within the system and potentially enables escape

from local minima [25–27, 31]. Conversely, the open-loop CIM model is devoid of such

nonlinear dynamical feedback. In CAC-CIM-CDP in Ref. [31], there were two models based

on the truncated-Wigner and Positive-P representations. It was shown that both models

perform almost identically in low-quantum noise situations, and outperforms
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OL-CIM-CDP [25, 31]. Thus, this paper only considers the Positive-P model, which we will

refer to as CAC-CIM-CDP (Positive-P).

For L0RBCS, the SDEs normalized by g for CAC-CIM-CDP (Positive-P) are described as

follows.

d

dt
µr =−(1− p+ j)µr − µr

(

µ2
r + 2g2nr + g2mr

)

+
√

jg2 (mr + nr)WR,r +K

(

dµr

dt

)

in j,r

,
(5)

d

dt
nr =−2(1+ j)nr + 2pmr − 2µ2

r (2nr +mr)− j (mr + nr)
2, (6)

d

dt
mr =−2(1+ j)mr + 2pnr− 2µ2

r (2mr + nr)+p

−
(

µ2
r + g2mr

)

− j (mr + nr)
2 .

(7)

The variable µr represents the normalized mean-amplitude of the r-th DOPO pulse

(µr = g〈âr〉), whereas mr = 〈δ â2
r 〉 and nr = 〈δ â†

r δ âr〉 correspond to the variances of quantum

fluctuations (Here âr indicates the annihilation operator of the r-th signal mode and

δ âr = âr −〈âr〉). WR,r(t) indicates i.i.d. real Gaussian noise satisfying 〈WR,r(t)〉= 0 and

〈WR,r(t)WR,r′(t
′)〉= δrr′δ (t − t ′). The coefficient g2 is the nonlinear saturation parameter of

the CIM. p and K indicate the pump rate and the feedback strength. The parameter j is the

total normalized out-coupling rate at two beam splitters including one for optical homodyne

measurement. The linear loss is represented by (1+ j) in eq. (5), while the two-photon loss is

represented by µr

(

µ2
r + 2g2nr + g2mr

)

. The term
√

jg2 (mr + nr)WR,r represents the

mean-amplitude shift caused by quantum measurements. For this model, injection field

(dµr/dt)in j,r is as follows.

(

dµr

dt

)

in j,r

= jer

(

Rrhr −
√

τη2

4

)

, (8)

d

dt
er =−β

(

µ̃2
r − τ

)

er, (9)

µ̃r = µr +

√

g2

4 j
WR,r, (10)

hr =−
N

∑
r′=1( 6=r)

M

∑
k=1

Ak
r Ak

r′Rr′
1

2

(

µ̃r′ +
√

τ
)

+
M

∑
k=1

√
τAk

ryk, (11)

where hr denotes the local field, and er is the auxiliary variable for error feedback. The target

amplitude for CAC is given by the parameter τ . The variable Rr is the signal value estimated

by CDP. η represents the threshold given by η =
√

2λ , which was introduced to maintain

consistency with previous research, and represents the threshold value of the L0-norm

proximal operator (hard thresholding) [30, 31]. µ̃r implies the measured-amplitude, and WR,r is

the same real Gaussian noise as used in eq. (5). The mutual interaction can be considered as

J̃rr′ =−∑M
k=1 Ak

rAk
r′ and the Zeeman term is hz

r =
√

τ ∑M
k=1 Ak

r yk. Refer to Ref. [31] for a

detailed explanation. Closed-loop and open-loop systems differ in whether the injection field

of the CIM system is dynamically modulated or not [28, 29].
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Closed-loop Mean-field CIM for L0RBCS

Given the previous section, it is obvious that the SDEs used for simulation are quite

complicated and pose a high computational cost.

Our approach in this paper relies on the physics-inspired heuristic CIM algorithm without

quantum noise and disregards any measurement effects proposed in Ref. [29], called

mean-field CIM DEs with CAC to overcome this computational cost problem. Hereafter,

mean-field CIM with CAC will be referred to as MFZ-CIM (Mean-Field Zeeman CIM) and

mean-field CIM with CAC and CDP as CAC-MFZ-CDP. By considering µr = cr, ignoring the

fluctuations and taking the limit as g2 → 0, as described in Ref. [29], eqs. (5)-(7) can be

simplified as follows [29, 31].

dcr

dt
= (−1+ p− c2

r)cr +K

(

dcr

dt

)

in j,r

, (12)

(

dcr

dt

)

in j,r

= jer

(

Rrhr −
η2

4

√
τ

)

, (13)

d

dt
er =−β

(

c2
r − τ

)

er, (14)

hr =−
N

∑
r′=1( 6=r)

M

∑
k=1

Ak
rAk

r′Rr′
1

4

(

cr′ +
√

τ
)

+
M

∑
k=1

√
τ

2
Ak

ryk. (15)

On the right-hand side of the eq. (12), linear loss, pump gain, and nonlinear saturation are

represented by the first, second, and third terms in the parenthesis. K (dcr/dt)in j,r corresponds

to the mutual coupling term. In eq.(13) hr is the local field expressed as eq. (15), er is for the

error feedback in the CAC feedback loop, and τ indicates the target amplitude for the CAC. Rr

is the signal value estimated by the CDP.

This threshold η is given by η =
√

2λ so that consistency can be maintained with eq. (8).

In the local field eq. (15), the mutual interaction is J̃rr′ =−∑M
k=1 Ak

r Ak
r′ and the Zeeman term is

hz
r =

√
τ ∑M

k=1 Ak
r yk.

The above local field eq.(14) is the same as Ref. [31]. Next, consistent with Ref. [30], we

introduce the local field wherein continuous amplitudes 1/2(c′r +
√

τ) are substituted with

binary values σ = H(cr) (H(x): Heaviside step function).

hBN
r =−

√
τ

2

(

N

∑
r′=1( 6=r)

M

∑
k=1

Ak
r Ak

r′Rr′σr′−
M

∑
k=1

Ak
ryk

)

. (16)

This is a simplified version of the local field (See supporting information for the derivation)

that makes digital hardware implementations easier. At the initial state of eqs. (12)-(15), due to

its deterministic nature, a Gaussian random value with a mean of 0 and a variance of 10−4 was

introduced to cr as vacuum noise, and er is initialized as 1.

Numerical experiments

We used artificial random data and Magnetic Resonance Image (MRI) data of a brain to

evaluate the performance of the proposed model CAC-MFZ-CDP and its use of continuous

(hr) and binarized (hBN
r ) local fields.

In accordance with Ref. [30, 31], we also employ the same observation model to generate

random datasets.
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



. (17)

Here a random observation matrix is generated from independent and identical normal

distributions with the variance 1/M, which meets the condition 〈Ak
r〉= 0 and

〈Ak
rAk′

r′ 〉= 1/Mδrr′δkk′ , for each entry of the observation matrix A ∈ R
M×N . Also, the true

source signal x ∈ R
N is randomly generated from an independent and identical normal

distribution with a mean 0 and a variance of 1, which satisfies 〈xr〉= 0 and 〈xrxr′〉= δrr′ .

Randomly selected a×N elements of ξ ∈ (0,1)N are assigned 1, while others are assigned 0.

Refer to Ref. [30, 31] for a detailed explanation. The variable wnoise ∈R
M indicates the

observation noise satisfying 〈wk
noise〉= 0 and 〈wk

noisewk′
noise〉= ν2δkk′ . ν2 is the variance of the

observation noise.

In order to evaluate the proposed approach on real-world data, an MRI of a brain from

Ref. [35] was used. Using the BILINEAR interpolation method, the original 320× 320 brain

MRI image was resized to 64× 64 and 128× 128 images. For the simulations, 78.8% and

82.2% of the Haar wavelet (HWT) coefficients were set to zero to produce two sparse images

with different sizes (64× 64 and 128× 128 pixels) spanned by Haar basis functions with

sparseness of 0.212 and 0.178. Then after applying the discrete Fourier transform (DFT), 1638

and 4915 points were undersampled at random points from the 64× 64 and 128× 128 k-space

data to produce two observation signals with compression rates of 0.4 and 0.3. We solved the

following optimization problem based on our previous work to reconstruct the source signals

from the undersampled k-space data.

x = argmin(‖y− SFx‖2
2 +

1

2
γ‖∆vx‖2

2 +
1

2
γ‖∆hx‖2

2 +λ‖Ψx‖0). (18)

In this case, x is the source signal, while y is the observation signal. DFT matrices are denoted

by F , while HWT matrices are denoted by Ψ. Undersampling is performed at random points

using an undersampling matrix, S. ∆v and ∆h are the matrices discretely representing the

vertical and horizontal second-order derivative operators, respectively. γ and λ are the L2 and

L0 regularization parameters.

Considering HWT r = Ψx to eq. (18), the mutual interaction matrix J and the Zeeman term

vector hz for CIM are given as follows.

hz = SFΨT y, (19)

J̃ = ΨFT ST SFΨT + γΨ∆T
v ∆vΨT + γΨ∆T

h ∆hΨT . (20)

Here, the observation matrix is given as A = SFΨT . The second and third terms in J̃ are from

the L2 regularization terms. γ is set to 0.0001. As an initial condition for the CIM simulation,

we use the LASSO solution. Refer to Ref. [30, 31] for a detailed explanation.

In this paper, CAC-MFZ-CDP is compared primarily with CAC-CIM-CDP (Positive-P) of

Gunathilaka et al [31]. Depending on the time t, CAC-CIM-CDP and CAC-MFZ-CDP pump

rates p were scheduled as follows.

p = (pthr − d)+
2d

1+ e
−
(

t − 4

2

) . (21)

Here, pthr = 1 for all simulations. A value of d of 0.4 was used for artificial random data,

while a value of 0.6 was used for MRI data simulations. In both CAC-CIM-CDP and

CAC-MFZ-CDP, the threshold η was scheduled depending on the alternating iteration time i

as follows.
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ηi = max

[

ηinit

(

1− i

velo

)

,ηend

]

. (22)

In all simulations using artificial random data, velo is equal to 51. And velo = 11 was used for

CAC-MFZ-CDP and CAC-CIM-CDP in MRI simulations. In MRI data, the threshold η was

fixed by setting ηinit = ηend instead of linearly lowering as in eq. (22). Overall g2 = 10−7. In

CAC-MFZ-CDP and CL-CIM-CDP, we set the time increment ∆t = 0.02 increasing up to 20×
the photon’s lifetime.

For artificial random data, With the CDP, we used the Jacobi method with a time increment

∆tc set to 0.1 and 100 iterations. With MRI data, the Conjugate Gradient Descent method was

used for the CDP, with a maximum iteration of 10000. In the simulations with observation

noise, for CAC-CIM-CDP we used τ = 0.21 for ν = 0.05, while τ = 0.15 for ν = 0.1 [31].

Throughout all simulations of CAC-MFZ-CDP, τ = 1 was used. Parameter ηinit = 0.8 was

used for CAC-CIM-CDP and CAC-MFZ-CDP. ηend was set to 0.18 when ν = 0.05 and 0.35

for ν = 0.1 to keep consistency with previous research. N = 2000 was used in all artificial

random data simulations. In the case of K, CAC-CIM-CDP (Positive-P) set it to 0.01 and for

CAC-MFZ-CDP, it was set to 0.1 for MRI data. In artificial random data K = 1 for every

model.

Algorithm 1 Alternating minimisation for L0RBCS as a QUBO problem on CAC-CIM-CDP

and MFZ-CIM-CDP. The schedules of the pump rate and threshold are given in eq. (21) and

(22)

Require: M×N observation matrix: A, M-dimensional observation signal: y;

Ensure: N-dimensional support vector: σ , N-dimensional signal vector: R;

1: Initialise R = Rinit , η = ηinit , g2 = 10−7 for CAC-CIM-CDP (Positive-P), and τ = 1

2: for i = 0 to velo do

3: Minimise H with respect to σ by CIM:

4: σ = Support estimation using CAC-CIM (eq. (5)-(11)) or MFZ-CIM (eq. (12)-(16))

Initialise cr with random normal Gaussian values with mean 0 and variance 10−4

and er = 1 for MFZ-CIM-CDP. For CAC-CIM-CDP initialize µr = 0, nr = 0 and

mr = 0. And we increase time to 20 times the photon’s lifetime.

5: Minimise H with respect to R by CDP using Conjugate Gradient Descent or Jacobi

method:

6: Update η
7: end for

Results

Amplitude evolution of Continuous vs Binarized

Fig. 1 illustrates the evolution of amplitudes cr in both MFZ-CIM DEs with binarized (hBN
r )

and continuous (hr) local fields (Fig. 1b and Fig. 1c respectively) and the evolution of

measured amplitudes µ̃r in CAC-CIM SDEs (Positive-P) (Fig. 1a). The indicated amplitudes

for each model are from the second alternative minimization process in Algorithm 1.

CAC-CIM (Positive-P) and MFZ-CIM exhibit distinct amplitude evolutions despite solving the

same problem instance, namely the CAC-CIM (Positive-P) is more chaotic than the MFZ-CIM.

It is evident from these figures that, despite such distinct amplitude evolutions, the amplitudes

for each model are equalized around −1 and +1 and are intermittently wandered between −1

and +1 as the target amplitude τ is set to 1. The figures clearly demonstrate the oscillation
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between −1 and +1 as τ is set to 1. A noteworthy observation is that, compared to MFZ-CIM

with hr, MFZ-CIM with hBN
r exhibits somewhat more chaotic behavior after the bifurcation,

whilst MFZ-CIM with hr shows relatively more chaotic behavior near the bifurcation.

(a)

(b) (c)

Fig 1. Amplitude evolution of CAC-CIM (Positive-P) and CAC-MFZs with continuous

and binarized local fields. (a), (b) and (c) indicates the measured amplitude µ̃r of CAC-CIM

(Positive-P), amplitude cr evolution of CAC-MFZ with continuous and binarized local fields

introduced in eq. (15) and eq. (16) respectively. A slightly more chaotic behavior can be seen

in the continuous case. The indicated amplitudes for each model come from the second

alternative minimization process in Algorithm 1 under the same problem instance. The system

size was set as N = 2000 while the compression and the sparseness were 0.6 and 0.2.

Comparison of ground state predictions with alternating minimization

In this section, the ability of CAC-MFZ-CDP to find the ground state is compared to

L0RBCS’s theoretical limit. For a detailed explanation of the non-equilibrium statistical

mechanics method to derive the macroscopic parameter equations, see [30].

Here we generate random samples of the observation matrix, source signal, and true

support vector in order to compare the solutions of the models with the ground state predicted

by statistical mechanics. System size N was set to 2000 with varying a,α and ν (standard

deviation of the observation noise) values. ηinit was set to 0.8 for CAC-CIM-CDP and

CAC-MFZ-CIM. For ν = 0.05 (2a and 2b), ηend was 0.18 where ηend = 0.35 for ν = 0.1 (2c

and 2d).

In the y-axis of Fig. 2 averaged root-mean-square-error (RMSE) (defined as
√

1/N ∑N
r=1 (Rrσr − xrξr)

2
) is indicated. Here xr and ξr are the correct N-dimensional signal

and support vectors (see Methods). The black solid line depicts the RMSE predicted by

statistical mechanics for L0RBCS defined in eqs. at its ground state [30]. The red squares

represent CAC-MFZ-CDP with the binarized local field hBN
r , while the green pluses represent

CAC-MFZ-CDP with the continuous local field hr. The blue circles represent the results for
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u = 0.05, a = 0.6

u = 0.1, a = 0.6

u = 0.05, a = 0.8

u = 0.1, a = 0.8

(a) (b)

(c) (d)

Fig 2. CAC-MFZ-CDP’s average RMSE compared to the theoretical limit of L0RBCS,

when observation noise exists. (a) and (b) indicates the average performance for N = 2000

system where α = 0.6 and α = 0.8 respectively for ν = 0.05. (c) and (d) states the average

performance for ν = 0.1. ηinit = 0.8 was used for CAC-CIM-CDP and CAC-MFZ-CDP. (a)

and (b) ηend was set to 0.18 for all models. (c) and (d) ηend was set to 0.35 for all models.

CAC-CIM-CDP (Positive-P). Results indicate that the performance of both CAC-MFZ-CIM

models is similar to CAC-CIM-CDP (Positive-P). However, it appears that CAC-MFZ-CDP

has slightly worse performance in low a values. And as can be seen from a comparison of the

results between CAC-MFZ-CDP models with hBN
r and hr, the performance is virtually the

same.

Sparse MRI simulations

Since artificial random data simulations indicate a similar performance to CAC-CIM-CDP, we

conducted experiments on MRI data to ascertain whether this similarity exists with real-world

data as well. For each threshold η in the images 64× 64 and 128× 128, the average RMSE

value for 10 simulations is shown in Fig. 3a and Fig. 3b. The minimum RMSE for 64× 64 in

terms of LASSO (black line), CAC-CIM-CDP (Positive-P) (dotted blue), CAC-MFZ-CDP

with the binarized local field hBN
r (red) and CAC-MFZ-CDP with the continuous local field hr

(green) can be indicated by 0.0292, 0.0182, 0.0176 and 0.0168, respectively. Fig.4 indicates

the corresponding reconstructions for the case 64× 64 pixels. Furthermore, Fig.4 illustrates

the difference in pixel identification between the two models when compared to the original

resized image for case 64× 64 pixels. However, it is difficult to visually verify the

reconstruction accuracy among CAC-MFZ-CDPs with hBN
r and hr.
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For the case of 128× 128, the minimum RMSE for each model is 0.0276, 0.0209, 0.0206

and 0.0206, respectively. Here, we do not indicate the reconstruction for 128× 128 pixels case

because the difference in reconstruction between these CIM models cannot be visually

confirmed. According to the RMSE values acquired for various η , the performance of both the

binarized and continuous CAC-MFZ-CDP models is almost the same. Additionally, both

CAC-MFZ-CDP and CAC-CIM-CDP (Positive-P) models exhibit relatively similar results.

MRI data, however, indicates that CAC-MFZ-CDP’s average RMSE is higher than

CAC-CIM-CDP’s in low η values such as η < 0.01. Considering the main difference between

CAC-MFZ-CDP and CAC-CIM-CDP is the absence of noise, it is reasonable to assume that

quantum noise may boost performance in low η ranges for CAC-CIM-CDP.

(a) (b)

Fig 3. Average performance of the models for different-size MRI data when

L0-regularization parameter varies (a) Performance on 64× 64. (b) Performance on

128× 128. The black line indicates LASSO performance. On the blue box plot,

CAC-CIM-CDP (Positive-P) results are shown, and on the red and green box plots,

CAC-MFZ-CDP results with binarized and continuous local fields are shown. Each box plot

illustrates the maximum, minimum, 25th percentile (bottom edge), 75th percentile (top edge),

and median (central horizontal line) of RMSEs for each model at different threshold values.

We display the maximum, minimum, and median of RMSE for CAC-MFZ-CDP. There are

markers indicating outliers. The compression and sparseness for (a) were 0.4 and 0.212

respectively while for (b) were 0.3 and 0.178.

Discussion

Role of quantum noise in CIMs

CAC-CIM and MFZ-CIM differ predominantly in their presence and absence of quantum

noise. As the saturation parameter g2 = 10−7 is taken into account in the CAC-CIM, the model

only introduces a subtle amount of noise to the system.

There are, however, some disadvantages associated with the presence of quantum noise.

Multiple studies have demonstrated that increasing g2 (aka decreasing the number of photons

per pulse, which increases quantum noise) decreases the success probability of the

CIM [24, 25, 31]. It is mainly due to the fact that when indirect homodyne measurements are

carried out, those signals are easily buried in the quantum noise in the CIM [36]. Essentially,

this is due to the fact that, at around g2 = 10−2, when g2 is continued to increase, the

amplitude fluctuation becomes larger than the target amplitude τ (eq. (9) and τ = 1), and with

such large fluctuations, er will keep decreasing (see Supporting information), resulting in no

effective feedback [25].
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(f)(d)

(b)(a)
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CAC-CIM-CDP

(Positive-P)

Initial Image k-space 64x64 LASSO

CAC-MFZ-CDP (CN)(e) CAC-MFZ-CDP (BN)

Fig 4. Reconstructed Images for MRI data with 64× 64. (a) Initial 64× 64 image.

Sparseness and compression ratios were 0.212 and 0.4 respectively. (b) k-space data (grey

points) and random undersampled points (red points). (c), (d), (e) and (f) correspond to the

reconstructions obtained from LASSO, CAC-CIM-CDP (Positive-P) and CAC-MFZ-CDPs

with continuous and binarized local fields (BN and CN) where RMSE values are 0.0292,

0.0182, 0.0176 and 0.0168 respectively. Pixel-wise differences between the reconstructions are

depicted in the enlarged portions of the images. For (d), (e) and (f) a total of 11 alternating

minimization processes were performed. And for (c), (d), (e) and (f) ηinit = ηend was 0.0003,

0.022, 0.025 and 0.022 respectively.

Initially, we supposed that the introduction of subtle noise would increase the success

probability and help CAC-CIM reach the theoretical limit of L0RBCS in small a regions with

large observation noise (ν = 0.1) (see Figs. 2c and 2d which indicates slightly low RMSE with

CAC-CIM for a < 0.05 than with MFZ-CIM). However, further numerical simulations

revealed that quantum noise may not be the cause of this deviation, which rather may be

caused by parameter optimization (see Supporting information).

As of right now, quantum noise appears to be a disadvantage in CIM. Nevertheless, a more

comprehensive study of this topic may contribute to a deeper understanding of the CIM.

Advantage of Mean-Field CIM for large-scale optimization

In comparison to CAC-CIM (eq. (5)-(11)), it is evident that MFZ-CIM (eq. (12)-(16)) has a

much simpler formulation. However, the MFZ-CIM is a heuristic approach. Since real-world

optimization problems are large-scale, a less computationally intensive solver is essential. So

MFZ-CIM is suitable for such large-scale COPs. Furthermore, it has been claimed that in

MF-CIM the success rate of finding a solution has been higher [37].
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Difference in three fields

We compared the performance of these three models using artificial random data with an

additional experiment shown in Fig. 5, in order to determine if there are any significant

performance differences between them. In Fig. 5a, the RMSE for every alternative

minimization procedure is shown as boxplots for CAC-CIM-CDP (Positive-P), binarized local

field CAC-MFZ-CDP, and continuous local field CAC-MFZ-CDP. Each box plot illustrates the

maximum, minimum, 25th percentile (bottom edge), 75th percentile (top edge), and median

(central horizontal line) of RMSEs for each model at different alternative minimization steps.

From Fig. 5a, it can be concluded that these three methods have relatively similar performance.

Furthermore as shown in Fig. 5b, the Hamming loss (determines how accurate the prediction

of the support) was calculated as Hamming Loss = 1/N
(

∑N
r=0|σr − ξr|

)

, the CAC-MFZ-CDP

method had slightly better accuracy than CAC-CIM-CDP at predicting the support in at certain

alternative minimization steps (e.g. step 30 - step 40) and the support estimation accuracies of

CAC-MFZ-CDPs with continuous local fields and discrete local fields are almost the same as

each other. Therefore, CAC-MFZ-CDP slightly outperforms the CAC-CIM-CDP, which is

consistent with our previous reports [29]. And, Figs. 5a and 5b also support that there is

almost no difference in performance between CAC-MFZ-CDPs with continuous local fields

and discrete local fields.

(a) (b)

Fig 5. Performance comparison between continuous and binarized local fields at each

alternative minimization step. (a) Log average RMSE values for 10 random datasets for each

alternative minimization step. CAC-CIM-CDP (Positive-P), CAC-MFZ-CDP (BN) and

CAC-MFZ-CDP (CN) results are indicated in black, blue and red boxplots respectively. (b)

Log average Hamming loss values for 10 random datasets for each alternative minimization

step which calculates the average support estimation accuracy.

Advantages of discrete local fields

One of the principal advantages of discrete local fields is their simplicity when it comes to

hardware implementations such as FPGAs. The most expensive process in the calculation of

the CIM models is the multiplication of the N ×N coupling matrix with the N-dimensional

amplitude vector for calculating the local field. By comparing discrete variable local fields

with continuous variable local fields in our formulation, one can see that the complexity and

memory requirements of the circuit can be substantially reduced with the discrete local field,

making it possible to increase the degree of parallelism for the multiplication operation.

Furthermore, all the results in this paper, including Fig. 5, show that CAC-MFZ-CDPs with

continuous local fields and discrete local fields perform almost identically. Thus, using

May 2, 2024 12/19



discrete local fields, it is possible to realize highly parallel implementation of large-scale

systems into digital circuits such as FPGAs without compromising the performance.

Future work

Taking into account the paper’s goal to compare CAC-MFZ-CDP performance with

CAC-CIM-CDP (low computational cost model vs. high computational cost model), the

acquired results indicate that both models have a reasonably similar performance on L0RBCS.

Therefore, CAC-MFZ-CDP is a relatively low computational cost alternative to complicated

CIM SDEs for L0RBCS. With this, it should make it relatively easy to implement on digital

hardware such as FPGAs. To our knowledge as of yet, no CIM models have been implemented

on FPGAs with Zeeman terms, or CIM models that solve real-world optimization problems. It

is our belief that the CAC-MFZ-CDP model proposed in this paper will bring CIMs one step

closer to being used to solve real-world optimization problems in real life.

However, it is evident that how effective the CAC algorithm is for large-scale COPs is still

unknown. Further investigation is needed in this context on how quantum noise in CIM and

CAC’s chaotic behavior affects the performance of the given problem. Even though it is

computationally costly for large-scale COPs to compare every spin-flip and decide the optimal

rather than just taking the final spin configuration as the estimation after time development, an

investigation is needed in order to determine which is better due to the difference between

amplitude evolution of the models.

Furthermore, parameter optimization has been shown to improve the performance of these

models in certain regions (see Supporting information). It is pertinent to note that using

grid-search methods to find optimal parameters may not be the best / most effective method

when attempting to solve large-scale optimization problems. Methods such as Bayesian

optimization leverage historical evaluations to make informed decisions [38]. It utilizes past

data to minimize search time and enhance model performance by identifying optimal

configurations of hyperparameters. Compared to traditional methods such as grid search, these

methods are generally considered to be more effective in scenarios with high-dimensional

hyperparameter spaces. For future implementations, it may be beneficial to consider using

such techniques in order to evaluate how much of an accuracy improvement could be achieved.

Conclusion

In this paper, we have introduced CAC-MFZ-CDP, a physics-inspired heuristic model for

solving L0RBCS problems. In contrast to CAC-CIM-CDP, a more physically accurate model

for L0RBCS, CAC-MFZ-CIM displays similar performance in both artificial random data and

real-world MRI data. In the new model, we have introduced a binarized local field along with

a continuous local field that is tailored for future digital hardware implementations. With its

simplicity, CAC-MFZ-CIM overcomes the computational cost of CAC-CIM-CDP and paves

the way for FPGA-based digital hardware implementations.

Supporting information

Derivation of the injection field for CAC-MFZ-CDP

In the case of L0RBCS, consider the Hamiltonian as follows.

H=
N

∑
r<r′

M

∑
k=1

Ak
r Ak

r′RrRr′σrσr′ −
N

∑
r=1

M

∑
k=1

ykAk
rRrσr +λ

N

∑
r=1

σr. (23)
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Then considering Ising spins as sr =±1, Hamiltonian is converted using a quadratic

unconstrained binary optimization (QUBO) problem conversion.

H=
N

∑
r<r′

M

∑
k=1

Ak
r Ak

r′RrRr′

(

sr + 1

2

)(

sr′ + 1

2

)

−
N

∑
r=1

M

∑
k=1

ykAk
rRr

(

sr + 1

2

)

+λ
N

∑
r=1

(

sr + 1

2

)

.

(24)

Accordingly, if we take the derivative with respect to sr into account, we can write the injection

field in the following way.

(

dcr

dt

)

in j,r

=−
N

∑
r<r′

M

∑
k=1

1

2
Ak

rAk
r′RrRr′

(

sr′ + 1

2

)

+
1

2

N

∑
r=1

M

∑
k=1

ykAk
r Rr −

λ

2
.

(25)

By replacing 1 with
√

τ , sr with cr, and the regularization parameter using η , we get the

injection field for continuous variables.

(

dcr

dt

)

in j,r

=−
N

∑
r′=1( 6=r)

M

∑
k=1

1

2
Ak

rAk
r′Rr′

1

2

(

cr′ +
√

τ
)

+
M

∑
k=1

√
τ

2
Ak

ryk

−
√

τη2

4
.

(26)

We replace
(

cr′ +
√

τ
)

/2 with σr′ in order to transform eq. (26) into a binarized formulation.

As a result, we have the following injection field.

(

dcr

dt

)

in j,r

=−
N

∑
r′=1( 6=r)

M

∑
k=1

1

2
Ak

r Ak
r′Rr′σr′+

M

∑
k=1

√
τ

2
Ak

ryk

−
√

τη2

4
.

(27)

If necessary, the 1/2 in the injection field can be ignored since it is a result of replacing σr

with (cr + 1)/2 before taking the derivative with respect to cr. Replacing σr with (cr + 1)/2

after taking the derivative with respect to σr will not include a 1/2.

Error amplitude when g2 becomes larger

This phenomenon is addressed in detail in Ref. [25] where the performance of low-photon

CIM was examined. In Fig. 6 y-axis indicates the log-values of the error amplitude where

x-axis indicates the photon-lifetime. Fig. 6a and Fig. 6b corresponds to g2 = 10−7 and 10−1

respectively for the second alternating minimization process where Fig. 6c and Fig. 6d

corresponds to g2 = 10−7 and 10−1 respectively for the twentieth one. It is evident from Fig. 6

that when g2 becomes larger, er keeps decreasing resulting in no effective feedback.

Performance discrepancy around a < 0.05

During the analysis of Fig. 2, it was clear that both the CAC-MFZ-CDP (BN) and

CAC-MFZ-CDP (CN) performed slightly worse than the CAC-CIM-CDP (Positive-P) model

in the area of a < 0.05. In the Discussion, we explained that one of the major differences

between CAC-CIM and MFZ-CIM is the absence of quantum noise in MFZ-CIM. Initially,

this performance discrepancy was thought to be caused by the effect of quantum noise in the
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(a) (b)

(d)(c)

Fig 6. Error amplitude (er) evolution of CAC-CIM (Positive-P) when g2 = 10−7 and

g2 = 10−1. (a) and (c) indicate the error amplitude er (in log values) of CAC-CIM (Positive-P)

when g2 = 10−7 in the second and twentieth alternative minimization process respectively in

Algorithm 1. (b) and (d) indicate the er of CAC-CIM (Positive-P) when g2 = 10−1 in the

second and twentieth alternative minimization process. The results are under the same problem

instance. The system size was set as N = 2000 while the compression and the sparseness were

0.6 and 0.2.

CAC-CIM and that this noise allows the CAC-CIM to perform better compared to

CAC-MFZ-CDP (BN) and CAC-MFZ-CDP (CN). Further calculations, however, have

demonstrated that this may not be the case.

The analysis was conducted by considering CAC-CIM-CDP (Positive-P) eq. (5) - (7) using

g2 = 10−7. In Fig. 7, dashed blue and green lines indicate the CAC-MFZ-CDP (BN) with

τ = 1 and τ = 0.15 respectively. The solid blue and green lines indicate CAC-MFZ-CDP (CN)

for τ = 1 and τ = 0.15 respectively. In this case, we consider the first term of eq. (12) as

(−1+ p− j− c2
r)cr instead of (−1+ p− c2

r)cr to match the term of eq. (5) for CAC-CIM-CDP

(Positive-P). The red square and circle indicate the CAC-CIM-CDP (Positive-P) with τ = 1

and τ = 0.15 respectively. As it is clear from the results, when τ = 0.15 is used, the

performance of the CAC-CIM-CDP (Positive-P) performance becomes almost identical to

CAC-MFZ-CDP (CN). However, CAC-MFZ-CDP (BN) does not show a difference in

performance with the change in τ . Since the continuous and binarized models have different

compositions, this is to be expected. Consequently, the continuous model has more sensitive

parameters than the binarized model, and the discrepancy around a < 0.05 can be explained by

parameter optimization.
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Fig 7. Performance difference when sparseness and τ changes for CAC-CIM-CDP

(Positive-P). The y-axis indicates the log-RMSE values acquired when sparseness and τ is

changed for each model. Dashed blue and green lines indicate the CAC-MFZ-CDP (BN) with

τ = 1 and τ = 0.15 respectively. The solid blue and green lines indicate CAC-MFZ-CDP (CN)

for τ = 1 and τ = 0.15 respectively. Red square and circle indicate the CAC-CIM-CDP

(Positive-P) with τ = 1 and τ = 0.15 respectively. Here ν = 0.1, α = 0.6 and N = 2000.
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