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Abstract

We numerically study the distribution of the lowest eigenvalue of finite many-boson systems

with k-body interactions modeled by Bosonic Embedded Gaussian Orthogonal [BEGOE(k)] and

Unitary [BEGUE(k)] random matrix Ensembles. Following the recently established result that the

q-normal describes the smooth form of the eigenvalue density of the k-body embedded ensembles,

the first four moments of the distribution of lowest eigenvalues have been analyzed as a function

of the q parameter, with q ∼ 1 for k = 1 and q = 0 for k = m; m being the number of bosons. Our

results show the distribution exhibits a smooth transition from Gaussian like for q close to 1 to a

modified Gumbel like for intermediate values of q to the well-known Tracy-Widom distribution for

q = 0.

I. INTRODUCTION

Extreme value statistics (EVS) is related to, for example, the statistics of either the lowest

few or largest few eigenvalues of a matrix and has found varied applications [1–3]. Depending

on the parent distribution, the classical EVS are classified into Fréchet, Gumbel and Weibull

distributions [4, 5]. The classical EVS deals with the statistics of minimum or maximum of a

set of random variables with a given parent distribution whereas in most of the real physical

systems, the underlying variables are correlated [6]. Complex systems are usually modeled

by classical random matrix ensembles - Gaussian Orthogonal (GOE), Unitary (GUE) and

symplectic (GSE) Ensembles [7, 8]. The eigenvalues are correlated for these ensembles and

the EVS of the (lowest) largest eigenvalues is described by the celebrated (reflected) Tracy-

Widom (TW) distribution [9–11]. For a variety of random matrix ensembles, EVS has been

investigated. However, one class of ensembles where there has been very little attention are

embedded random matrix ensembles with k-body interactions which are now established to

be essential while dealing with dynamics of complex quantum many-body systems [12–16].

Embedded ensembles are random matrix ensembles that describe the generic properties

of many-particle (fermion/boson) interacting complex systems [15]. Given m number of

fermions or bosons distributed in N single particle levels interacting via k-body interactions
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(k ≤ m), the k-body fermionic or bosonic embedded ensembles are constructed by defining

the k-particle Hamiltonian to be a GOE (or a GUE) and then propagating it to m-particle

spaces using the underlying Lie algebra [15]. The case when rank of interactions k equals

number of fermions or bosons m, we have a GOE (or a GUE). As the k-particle Hamil-

tonian is embedded in the m-particle Hamiltonian, the many-particle matrix elements are

correlated for embedded ensembles (EE), unlike a GOE (or a GUE). Note that although

the matrix elements for GOE (or a GUE) are independent and identically distributed ran-

dom variables, its eigenvalues are correlated. Therefore, the eigenvalues of EE will have

additional correlations.

Recently, numerical results for distribution of largest eigenvalue within the framework

of fermionic embedded ensembles have shown a smooth transition from Gaussian to TW

distribution as a function of rank of interactions k [17]. In addition, for two-body fermionic

and bosonic ensembles, the distribution of ground state energies was shown to follow the

modified-Gumbel distribution [18]. Going further, in this paper, we focus on Bosonic Embed-

ded Gaussian Orthogonal [BEGOE(k)] and Unitary [BEGUE(k)] random matrix Ensembles

with k-body interactions.

Interestingly, the transition in eigenvalue density for BEGOE(k) [also BEGUE(k)] is well

described by q-normal form, with parameter q being related to the fourth moment of the

eigenvalue density [19]. Note that, q = 1 gives Gaussian eigenvalue density and this is

valid for k <∼ m and q = 0 gives semi-circle (GOE/GUE) eigenvalue density as valid for

k = m. We are interested in numerically investigating how the distribution of the lowest

eigenvalues for BEGOE(k) [also BEGUE(k)] varies as a function of the q parameter. For

k = m (GOE/GUE), the distribution of the lowest eigenvalues follows the well-known TW

distribution [9–11].

Now, we will give a preview. Section II defines the BEGOE(k)/BEGUE(k) and gives

the q-normal form for the eigenvalue densities alongwith the formula for the parameter q in

terms of (N,m, k). We also give the various distributions that have been used in the present

work to analyze the distribution of lowest eigenvalues. In Section III, we then analyze the

first four moments of the lowest eigenvalue distribution. We compare the lowest eigenvalue

distribution with EVS and study the spacing distribution between lowest eigenvalue and its

nearest neighbor in Section IV. Finally, Section V gives conclusions and future outlook.
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II. PRELIMINARIES

In this section, we define bosonic embedded ensembles and give the q-normal form for

the eigenvalue densities [19]. Then we explain the various distributions that have been used

to analyze the distribution of lowest eigenvalues for BEGOE(k) and BEGUE(k).

A. q-normal form for eigenvalue density of BEGOE(k)

Given a system of m spin-less bosons in N degenerate single particle states and say the

interaction among the bosons is a k-body interactions (1 ≤ k ≤ m), then the Hamiltonian

operator for the system takes the form

H(k, β) =
∑
ka,kb

vβka,kbB
†(ka)B(kb) . (1)

Here, ka and kb denote k-particle configuration states in occupation number basis and B†(ka)

creates a normalized k particle state |ka ⟩ with B†(ka) |0⟩ = |ka ⟩. Similarly B(kb) is a k

particle annihilation operator. Note that vβka,kb are the matrix elements of H in the defining

k particle space with the H matrix dimension being dk =
(
N+k−1

k

)
. Here, Dyson’s parameter

β is equal to 1 for GOE and 2 for GUE. Now, representing the V matrix by GOE/GUE

in k particle space we have a GOE/GUE ensemble of operators and action of each member

of this GOE/GUE on the m particle states will generate a m particle matrix of dimension

dm =
(
N+m−1

m

)
. The ensemble of these matrices form embedded GOE/GUE of k particle

interactions [BEGOE(k)/BEGUE(k) with B for bosons] in m particle spaces. In defining

the GOE in k-particle spaces, we choose the matrix elements to be independent Gaussian

variables with variance 2 for diagonal matrix elements and 1 for off-diagonal matrix elements,

For GUE, the variance of real and imaginary parts of the off-diagonal matrix elements are

chosen to be unity.

In order to introduce the q-normal form, firstly one needs the definition of q numbers [n]q

and they are(with [0]q = 0),

[n]q =
1− qn

1− q
= 1 + q + q2 + . . .+ qn−1 . (2)

Note that [n]q→1 = n. Similarly, q-factorial [n]q! = Πn
j=1 [j]q with [0]q! = 1. Given these, the

q-normal distribution fqN(x|q) with x being a standardized variable (then x is zero centered
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with variance unity), is given by [20, 21]

fqN(x|q) =

√
1− q

∞∏
k′=0

(
1− qk

′+1
)

2π
√

4− (1− q)x2

∞∏
k′=0

[
(1 + qk

′
)2 − (1− q)qk

′
x2
]
. (3)

The fqN(x|q) is non-zero for x in the domain defined by s(q) where

s(q) =

(
− 2√

1− q
, +

2√
1− q

)
. (4)

Note that
∫
s(q)

fqN(x|q) dx = 1. Most important property of q-normal is that fqN(x|1) is

Gaussian with s(q = 1) = (−∞,∞) and similarly, fqN(x|0) = (1/2π)
√
4− x2, the semi-circle

with s(q = 0) = (−2, 2).

The reduced central fourth moment for eigenvalue density is γ2(N,m, k) = q(N,m, k)−1

and the formula for parameter q(N,m, k) for BEGOE(k)/BEGUE(k) is [19],

q(N,m, k) =

(
N +m− 1

m

)−1 νmax∑
ν=0

Λν
B(N,m,m− k) Λν

B(N,m, k) dB(gν)

[Λ0
B(N,m, k)]

2

Λν
B(N,m, r) =

(
m− ν

r

) (
N +m+ ν − 1

r

)
,

dB(gν) =

(
N + ν − 1

ν

)2

−
(
N + ν − 2

ν − 1

)2

.

(5)

Here, νmax = min(k,m − k). This formula is pretty accurate for k ≥ 2 but there are large

deviations for k = 1 [19, 22]. Note that Λ0
B(N,m, k) gives the spectral variance.

B. Extreme value statistics

In the present work, we use three different distributions that characterize EVS - Classical

TW distribution, modified Gumbel distribution and χ2 distribution.

1. Classical Tracy-Widom distribution

The TW distribution of lowest eigenvalues Emin, corresponding to a D-dimensional sys-

tem, is given by [9–11],

Fβ(E)
D→∞−→ P

[
D1/6(Emin + 2

√
βD) ≤ E

]
, β = 1, 2 . (6)
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For β = 1 and 2, we have

F1(x) = exp[Θ(x)] F
1/2
2 (x) ,

F2(x) = exp

(
−
∫ ∞

x

(s− x)[Q(s)]2 ds

)
,

(7)

where Q is given in terms of the solution to Painlevé type II equation Q′′ = sQ + 2Q3

subjected to the boundary condition Q(s) ≈ Ai(s) for s → ∞, with Ai(s) denoting the Airy

function and Θ(x) = −
∫∞
x

Q(s) ds/2. Note that β is the Dyson’s parameter.

2. Modified Gumbel distribution

Gumbel distributions are one of the EVS and have been used to analyze ground state dis-

tribution in Sherrington-Kirkpatrick model [23] and Two-body random ensembles (TBRE)

[18]. The modified Gumbel distribution is given by [4, 5],

Gµ(E) = w exp

[
µ

(
E − u

v

)
− µ exp

(
E − u

v

)]
, (8)

with w, u and v as functions of parameter µ. The Gµ provides an interpolation between the

standard Gumbel (µ = 1) and Gaussian (µ = ∞) distribution.

3. χ2
M distribution

Lea Santos et al demonstrated that χ2
M distribution (for a system with M degrees of

freedom) explains the distribution of lowest eigenvalues of disordered many-body quantum

systems [24],

P (E) =
1

2M/2Γ(M/2)
exp(−E/2)EM/2−1 (E ≥ 0). (9)

This distribution remains well-defined even when the free parameter M is non-integer. The

fitting parameter M is related to skewness (S) as M = 8/S2. For GOE, we have S =

−0.293, M ≈ 93 and Eq. (9) fits TW distribution very well. Similarly, also for GUE, with

S = −0.224 and M ≈ 160, Eq. (9) fits TW distribution very well. .
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III. FIRST FOUR MOMENTS OF THE LOWEST EIGENVALUE DISTRIBU-

TION

In all the examples considered in this paper, we construct a 1000 member BEGOE(k)

and BEGUE(k) with following choices of number of single particle states N and number of

bosons m: N = 4, m = 4 − 14; N = 5, m = 5 − 11; and N = 6, m = 6 − 9. Remember

that rank of interactions k takes values from 1 to m. In all these examples, we obtain the

lowest eigenvalue; we denote this by λ hereafter. For the distribution of λ, we will present in

this Section, results for the centroid λc, width σλ, skewness S (defined by the third central

moment) and Kurtosis κ (defined by the fourth central moment).

Firstly, we compute the parameter q using Eq. (5) and its variation with k is shown in

Fig. 1. Notice the linear behavior for intermediate values of k/m while there are strong

deviations near the two extreme values of k. Although the variation of q with k/m is smooth,

there is very weak dependence on N .

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

 N=4, m=4-14
 N=5, m=5-11
 N=6, m=6-9

q

k/m

FIG. 1. Variation of parameter q(N,m, k) as a function of k/m for various values of (N,m) :

N = 4, m = 4− 14; N = 5, m = 5− 11; and N = 6, m = 6− 9.

A. Centroid of lowest eigenvalue distribution

The q-normal distribution shows that the distribution has a cut-off at−2[βΛ0
B(N,m, k)]1/2/[1−

q(N,m, k)]1/2 at the lower edge when measured with respect to the ensemble averaged eigen-
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value centroid; this follows easily from Eq. (4). For finite (N,m), there will be departures as

q-normal is an asymptotic form for the eigenvalue densities. Therefore, we use the following

parametrization for the centroid λc of λ’s for a given (N,m, k),

λc(N,m, k) =
−2√

1− q(N,m, k)

[
βΛ0

B(N,m, k)
]α
. (10)

where Eq. (5) gives the formula for parameter q(N,m, k) and Λ0
B(N,m, k) for BEGOE(k)/BEGUE(k).

In the limit q-normal form is exact, the parameter α = 1/2 and secondly, for k = m, the Eq.

(5) gives the well-known result for TW for GOE/GUE. Therefore, using the calculated λ

values, via least-square procedure, we have determined the values of α for all (N,m, k) values

listed above. The corresponding results are shown in Fig. 2. For 0 ≤ q ≤ 0.75, the agree-

ment with q-normal form result that α = 0.5 is almost exact. However, for q(N,m, k) >∼ 0.8,

the deviations from α = 1/2 are significant and they correspond to k = 1. This appears to

be due to the well known result that the eigenvalue centroid scaled by the spectral width

fluctuations from member to member are largest for k = 1 [25] and they decrease faster as

k increases. This also corresponds to ensemble vs spectral averaging in EE [26, 27]; see also

Appendix. In addition, the N = 4 systems show much larger deviations from α = 0.5. This

is understandable as one needs atleast five single particle states for asymptotics to work well

[28].

B. Variance of lowest eigenvalue distribution

The variance for TW distribution is D−1/6 for D-dimensional GOE/GUE. This corre-

sponds to BEGOE(k)/BEGUE(k) with k = m and D =
(
N+k−1

k

)
. This is also proportional

to the spectral width. Therefore, we use the following two parametrizations for bosonic EE,

σλ(N,m, k) =
[
βΛ0

B(N,m, k)
]µ1 , (11)

and

σλ(N,m, k) =
[
βΛ0(N,m, k)

]µ2

(
N + k − 1

k

)(−1/2)

. (12)

For k = m case, i.e. for classical Gaussian ensembles, the exponent µ1 = −1/6 for Eq. (11)

and µ2 = 1/3 for Eq. (12). Both of these will give σλ = D−1/6 for the case k = m.

Now, using the calculated λ values, via least-square procedure, we have determined the

values of µ1 and µ2 for all (N,m, k) values listed above. The results are shown in Fig. 3.
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0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

BEGOE(k)

 q

 N=4
 N=5
 N=6

0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

 q

BEGUE(k)

 N=4
 N=5
 N=6

(a) (b)

FIG. 2. Variation in parameter α defined in Eq. (10) for the centroids of the lowest eigenvalue

distributions for a 1000 member (a) BEGOE(k) and (b) BEGUE(k) with different values of (N,m)

(m values corresponding to each N are given in Fig. 1) and k = 1−m. The circles highlight the

points corresponding to k = 1.

For small values of q <∼ 0.1, the coefficients µ1 and µ2 increase linearly and then, essentially

become a constant. The values decrease for k = 1. Note that µ1 becomes positive (also µ2

increases) which implies larger variance compared to that for TW. This trend is common

for both EGOE/EGUE.

C. Skewness and excess of lowest eigenvalue distribution

We have computed the shape parameters - skewness S and kurtosis κ for the λ distribution

and analyze their variation with parameter q in Fig. 4 using some examples. For very small

and very large q values, we see departure from the linear decreasing behavior in both skewness

and kurtosis. For 0.1 <∼ q <∼ 0.8, the S/STW value decreases from ∼ 4 to 2 while κ/κTW

value decreases from ∼ 1.5 to 1.0. Thus, the skewness and kurtosis values are larger than

those for TW distribution for intermediate q values.

It might be insightful to derive the expressions for variance, skewness and kurtosis from

first principles but this is beyond the scope of the present paper.
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 N=6

 

 

 q

2

0.00 0.25 0.50 0.75 1.00

-0.2

0.0

0.2

0.4

0.6

BEGOE(k)
1

0.00 0.25 0.50 0.75 1.00
0.2

0.4

0.6

 N=4
 N=5
 N=6

 

 

 q

2

0.00 0.25 0.50 0.75 1.00

-0.2

0.0

0.2

0.4

0.6

BEGUE(k)

1

(a) (b)

FIG. 3. Variation in the parameters µ1 and µ2 defined respectively in Eqs. (11) and (12) for

the variances of the lowest eigenvalue distributions for a 1000 member (a) BEGOE(k) and (b)

BEGUE(k) as a function of parameter q(N,m, k), with different values of (N,m) (m values corre-

sponding to each N are given in Fig. 1) and k = 1−m.

IV. LOWEST EIGENVALUE DISTRIBUTION: COMPARISON WITH EVS

In this section, we compare the distribution of lowest eigenvalues with EVS given in

Section II and also compare them to Gaussian distribution. The results for a 1000 member

BEGOE(k) and BEGUE(k) are given in Figs. 5 and 6, respectively. These are obtained

for N = 5 and m = 10 system with k varying from 1 to 10. The numerical histograms are

computed using the scaled lowest eigenvalues

λ̃ =
λ− λc(N,m, k)

σλ(N,m, k)
. (13)

We choose N = 5 and m = 10 system as the distributions may have smooth form only in

the asymptotic limit with m >> N for bosons. Note that the modified Gumbel (smooth red
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0.00 0.25 0.50 0.75 1.00

0.0

1.0

2.0

3.0

4.0

S/
S T

W

0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

/
TW

q

FIG. 4. Variation in skewness (upper panel) and kurtosis (lower panel) for BEGOE(k) (squares)

and BEGUE(k) (circles) as a function of parameter q(N,m, k). Results are shown for 1000 member

ensembles with N = 5, m = 10− 11 (solid symbols) and N = 6, m = 6− 8 (open symbols). Note

that STW = −0.2935, κTW = 3.1652 for β = 1 and STW = −0.2241, κTW = 3.0934 for β = 2.

curves) distributions are obtained using Eq. (8). Similarly, TW (smooth blue curves) and

χ2 (black dashed curves) distributions are obtained using Eqs. (7) and (9) respectively. For

k = 1, the distributions are close to Gaussian form. However, for 2 ≤ k ≤ 6 the distributions

are close to modified Gumbel form and it transitions to TW for k = 10. For BEGOE(k),

the values of the fitting parameter µ are 13(k = 1), 1.8(k = 2), 2.6(k = 3), 1.0(k = 4),

1.5(k = 5), 1.0(k = 6), 3.2(k = 7), 5.7(k = 8), 4.4(k = 9) and 6.0(k = 10). Similarly, the

fitting parameter M for χ2 distribution are 135(k = 1), 17(k = 2), 26(k = 3), 9(k = 4),

15(k = 5), 12(k = 6), 28(k = 7), 82(k = 8), 41(k = 9) and 93(k = m = 10). Beyond
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0.1

1
k=5           q=0.172

P(
)

BEGOE(k): N=5,m=10

-4 -2 0 2 4

1E-3

0.01

0.1

1

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

 

-4 -2 0 2 4

1E-3

0.01

0.1

1
k=6           q=0.172 k=7           q=0.045 k=8           q=0.001 k=9           q=0 k=m=10    q=0

FIG. 5. Normalized probability distributions P (λ̃) for the lowest eigenvalues for a 1000 member

BEGOE(k) with (N,m) = (5, 10). The Gaussian (smooth green curves), modified Gumbel (smooth

red curves) distribution using Eq. (8), χ2 distribution using Eq. (9) (black dashed curves) and the

TW (smooth blue curves) distribution using Eq. (7) are superimposed in each panel with the

numerical histograms.

k = 6, the χ2 distributions are close to TW distributions. For BEGUE(k), the values of

fitting parameters µ and M , respectively, are [12(k = 1), 4.2(k = 2), 2.8(k = 3), 2.9(k = 4),

1.5(k = 5), 1.5(k = 6), 6.2(k = 7), 7.3(k = 8) 8.4(k = 9), 5.5 (k = 10)] and [136(k = 1),

34(k = 2), 28(k = 3), 24(k = 4), 14(k = 5), 14(k = 6), 97(k = 7), 145(k = 8), 69(k = 9) and

160(k = 10)]. Thus, the lowest eigenvalue distribution for BEGOE(k)/BEGUE(k) changes

from Gaussian to modified Gumbel to Tracy-Widom as q(N,m, k) changes from ∼ 1 (k = 1)

to 0 (k = m). For fermion systems, it was concluded that there is a transition from Gaussian

to TW form for the largest eigenvalue distribution [17].

Before concluding, we also studied the distribution of the spacings between lowest and

the next lowest eigenvalue, which is also an extreme statistic. We use the normalized spacing

s which is the ratio of actual spacing with the average spacing and the results are shown

in Figs. 7 and 8 respectively for BEGOE(k) and BEGUE(k). The numerical histograms
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FIG. 6. Same as Fig. 5 but for BEGUE(k).

are compared with Poisson and the Wigner’s surmise results. It shows that as q parameter

changes, there is a transition from Wigner’s surmise to Poisson to Wigner’s surmise. An

analytical derivation of this result might be valuable.

V. CONCLUSIONS AND FUTURE OUTLOOK

We have presented numerical results for the first four moments of the lowest eigenvalue

distribution for BEGOE(k) and BEGUE(k). We have analytical understanding of the cen-

troid, from the q-normal form of the ensemble averaged eigenvalue density for EE(k), and

for the other three moments, one needs to derive analytical results. Numerical results sug-

gest that the distribution of the lowest eigenvalues for BEGOE(k) and BEGUE(k) make

a transition from Gaussian [q(N,m, k) ∼ 1] to modified Gumbel (intermediate q(N,m, k)

values) to TW (q = 0) as we change the rank of interactions k. Similarly, the distribution

of normalized spacing between the lowest and next lowest eigenvalues exhibits a transition

from Wigner’s surmise to Poisson to Wigner’s surmise with decreasing q value. The set

of numerical calculations presented in this paper for BEGOE(k) and BEGUE(k) and simi-
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FIG. 7. Distribution of normalized spacings s between the lowest and the next lowest eigenvalue

for the same system considered in Fig. 5. We compare the numerical histograms with Poisson

distribution (black smooth curve) and the Wigner’s surmise (red smooth curve) for GOE [7].

larly, those in [17] for the fermionic EGOE(k) and EGUE(k) may be used may be used as

a starting point for further exploring the EVS in random matrix ensembles appropriate for

quantum many-body interacting systems.
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FIG. 8. Same as Fig. 7 but for BEGUE(k). Note that the corresponding Wigner’s surmise is for

GUE [7].

Appendix: Fluctuations in α values for centroids

To further probe into the fluctuations in α values from 0.5 as shown in Fig. 2, we

computed the parameter qi(N,m, k) for each member i of the ensemble using the kurtosis.

Then, used qi(N,m, k) along with the minimum eigenvalue λi(N,m, k) for each member to

calculate λc(N,m, k) = ⟨λi(N,m, k)
√
1− qi(N,m, k)⟩. Then the exponent α is obtained

using the equation λc(N,m, k) = −2.0[βΛ0(N,m, k)]
α
). The results for a 1000 member

BEGOE(k) are shown in Fig. A1. One can see that α ∼ 0.5 for all k values, unlike as in

Fig. 2. Thus, the member-to-member fluctuations in the minimum eigenvalues λi(N,m, k)

and parameter qi(N,m, k) are giving the large deviations for α from 0.5 in Fig. 2. Though

not shown, we expect similar results for BEGUE(k). The systems with k = 1 appear to be
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FIG. A1. Variation in parameter α for the centroids λc(N,m, k) of the lowest eigenvalue

distributions for a 1000 member BEGOE(k) with different values of (N,m) (m values corre-

sponding to each N are given in Fig. 1) and k = 1 − m. We have computed the parame-

ter qi(N,m, k) for each member i of the ensemble using the kurtosis. Then, used qi(N,m, k)

along with the minimum eigenvalue λi(N,m, k) for each member of the ensemble to calculate

λc(N,m, k) = ⟨λi(N,m, k)
√
1− qi(N,m, k)⟩. Then the exponent α is obtained using the equation

λc(N,m, k) = −2.0[βΛ0(N,m, k)]
α
). Thus, we account for the member-to-member fluctuations in

lowest eigenvalues λi(N,m, k) and qi(N,m, k) parameter and find α ∼ 0.5 for all k values, unlike

in Fig. 2.

special and there are results in [29] for different types of k = 1 interactions.
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