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DOES THERE EXIST THE APPLICABILITY LIMIT

OF PDE TO DESCRIBE PHYSICAL PHENOMENA?

— A PERSONAL SURVEY OF

QUANTIZATION, QED, TURBULENCE —

ATSUSHI INOUE

Dedication to Masuda san for his warm consideration

Abstract. What does it mean to study PDE(=Partial Differential Equation)? How and what to do
“to claim proudly that I’m studying a certain PDE”? Newton mechanic uses mainly ODE(=Ordinary
Differential Equation) and describes nicely movements of Sun, Moon and Earth etc. Now, so-called
quantum phenomenum is described by, say Schrödinger equation, PDE which explains both wave and
particle characters after quantization of ODE. The coupled Maxwell-Dirac equation is also “quantized”
and QED(=Quantum Electro-Dynamics) theory is invented by physicists. Though it is said this QED
gives very good coincidence between theoretical1and experimental observed quantities, but what is the
equation corresponding to QED? Or, is it possible to describe QED by “equation” in naive sense?
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1. Introduction with a brief personal history of atlom

Though I attended with the TV course of collegial physics2 in my high school time, as I felt the score

of Shingaku-Furiwake3 was insufficient to go to physics, I had no alternative but to proceed to applied

mathematics because for me at that time, two branches seem to treat analogous objects. On the other

hand, my career as a mathematician has been started rather accidentally. Despite I couldn’t imagine I

might be an “ordinary” salaried man4, but fortunately perhaps, just after finished my master course, I was

proposed a research assistant post of department of mathematics. Such posts made increased suddenly

because of “Science and Engineering Faculty Expansion Plan” by the Japanese government which began

after the Sputnik shock suffered by USA. By the way, as is said “The teacher of the university is not

resigned as once if I do it” or “Beggars and monks can’t quit after three days”, I couldn’t only resign

from research assistant post but also had an opportunity to study abroad as a Boursier.

But after several years at around age thirties, I was offered a new position. At that time, continuously

getting salary as researcher, I should do mathematics more seriously, so I felt, and I started to study not

only linear PDE but also non-linear PDE. Surely, Hörmander’s works on linear PDE are overwhelming

at that time.

So to restart with a little mathematician, I questioned naively why the Navier-Stokes equation is so

famous and I wondered if this equation is genuinely good enough or worth studying? If it is so good as

equation, it should be invariant under change of variables? At that time, the initial and boundary value

problem in the time dependent domain for the Navier-Stokes equation is studied by Fujita and Sauer [40]

by penalty method. Since I couldn’t appreciate their method fully5, I find the change of variable formula

for vector field or differential 1-form with the help of Wakimoto [71], under the condition that “gold

fishes in the bowl don’t allow even kissing6”! Not only this, even turbulent phenomena are believed

to be governed by this same equation, why so? Though this equation is derived from conservations of

momentum and mass by observing “laminar flow”, why so easily believed the totally different looking

phenomena, “turbulent flows”, are also governed by the same equation? Not only this, the viscosity

occurs after or before viewing the discrete molecular structure of water as a continuum7? Here it is also

appropriate quoting Hopf saying:

2A part of NBC’s educational program “Continental Classroom” in1958–1963, which is broadcasted from NHK in 1959–
1961 as “physics in nuclear age” with explanation in Japanese

3After 18months of general education, each student should decide to proceed in which department
4Seemingly, I’m not good at temporarily going along with “respectable person” as an amenable member of organization.
5Whether their penalty method works when ∪0≤t≤TΩ(t) × {t} ⊂ Rd+1 when Ω(t) and Ω(t′) is not necessarily diffeo-

morphic each other but with the same volume?
6That is, assuming that the volume of Ω(t) is constant in t and for any t, t′, Ω(t) and Ω(t′) are diffeomorphic each other
7A physicist says naively that viscosity comes from particle structure of water, they don’t bother when they, to treat

fluids, started to regard particles as if continuum.
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Statistical mechanics constructs certain “relevant” phase distributions which characterize

the “typical” phase motions and which must be used for all statistical predictions. · · · · · ·
· · · , in statistical hydromechanics – the theory of highly turbulent fluid flow – the small

scale on which the “fluid elements” interact seems to be of decisive importance, The

relevant distributions based on this scale – the hypothetical Kolmogoroff distributions –

must be mathematically very different from canonical distribution. So far all attempts

to determine the relevant hydrodynamical phase distributions, at least to a sufficient

degree of approximation, have met with considerable mathematical difficulties.

From these consideration, I wonder whether “is there applicability limit for describing physical

phenomena by PDE”? and what is the limit of regarding huge number of water molecules as continuum?

As is well-known, now called “quantum phenomena” are not so well described directly by ODE(Newton

Mechanics), therefore we need to use PDE, Schrödinger equation(in some sense, a quantized version of

Newton Mechanics). Therefore, at least logically, there will exist some phenomena assumed to be not

well describable using PDE.

For such phenomena, Gelfand not only proposed to use FDE8 (=Functional Derivative Equation) for

understanding turbulence and QED, but also questioned whether our existed mathematics tools sufficient

to describe these phenomena? I completely empathize with his opinion, and I feel we need to develop

theory of FDE9.

Apart from above, to treat initial value problem for linear hyperbolic systems of PDE at that

time, there is a trend to diagonalize that system with posing conditions on properties of characteristic

roots, as mathematical technique. But I feel strange why we need to diagonalize system of PDE. I

feel curious to such treatise because not only until when such efforts continue but also there exists not

diagonalizable system of PDE. From my point of view, the necessity of diagnalization is to apply existing

theory of pseudo-differential equations or more precisely, standard symbol calculus is only confined to

scalar case. Therefore, we need to treat matrix structure as it is, this is one motivation to construct

superanalysis(=analysis on superspace Rm|n not on Rm).

Even almost 30 years passed after I started to concern with FDE or superanalysis, these subjects

never belong to the main stream of researchs in mathematical society, at least in Japan. Therefore, it

seems natural, at that time, judges of KAKENHI(=Grants-in-Aid for Scientific Research) disregarded

my proposal concerning FDE and superanalysis almost completely, so I think. But any way, none of

them, even personally, asked me what are them? Finally, I proposed to “make a room to accept appeals

to the judgement of KAKENHI examiners10” which is also neglected completely. Under these situations,

Kŷuya Masuda supported me behind the scenes.

8Someone wrote somewhere that, “if there doesn’t exist Riemannian geometry or invariant theory, theory of relativity,
if there doesn’t exist boundary value theory, wave mechanics, and if there doesn’t exist matrix theory, quantum mechanics
may not be invented? New physical theory is stimulated precedent mathematical theory”

9But in general, we can’t give meaning higher order functional derivatives at each point. Moreover, in infinite dimensional
topological spaces, there doesn’t exist Lebesgue-like measure which permit integration by parts [91]. This means any trial
to extend “A study of PDE by functional analytic method” seems breakdown from the outset. In spite of this, physicists,
using tools not yet mathematically justified, get certain theoretical values and experimental values with complicated and
expensive experiments, and astonishingly these values coincide many digits. This fact seems to imply something exist which
is not yet appreciated mathematically.

10whose names are announced after one year later
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In this note, mathematics which is disregarded by judges of KAKENHI, are mentioned, because

without doing so, these trials are in vain with my physical lifespan11.

Since originally, the descriptive ability of PDE and its reproducibility of physical phenomena are

main concern, it seems natural we wonder the difference between the derivation of classical field equation

and quantum field mechanics.

In any way, it seems worth mentioning the following description which is given in Chapter 9, Func-

tional Methods, of Itzykson and Zuber:“Quantum Field Theory” 1979:

“The path integral formalism of Feynman and Kac provides a unified view of quantum

mechanics, field theory, and statistical models. Starting from the case of finitely many

degrees of freedom it is generalized to include fermion systems and then extended to infi-

nite systems. The steepest-descent method of integration exhibits the close relationship

with classical mechanics and allows us to recover ordinary perturbation theory.”

2. Quantization and Path Integral Method

2.1. The beginning of Path Integral Method. Following explanation is due to Feynman and Hi-

bbs [35] but I cited here from Albeverio and Hoegh-Krohn [2].

Let consider the representation formula for the solution of Schrödinger equation on R
d

i~
∂

∂t
ψ(q, t) = − ~2

2m
∆ψ(q, t) + V (q)ψ(q, t),

with the initial data ψ(q, 0) = ψ(q). Decomposing

H = H0 + V with H0 = − ~2

2m
∆,

and assuming that H is selfadjoint in L2(Rd), we have the solution ψ(q, t) = e−i~−1tHψ(q) by Stone’s

theorem. On the other hand, Lie-Trotter-Kato’s product formula asserts that even though [H0, V ] 6= 0,

we have

e−i~−1tH = e−i~−1t(H0+V ) = lim
n→∞

(e−i~−1(t/n)V e−i~−1(t/n)H0)n.

Since

e−i~−1tH0u(q) = (2πi~t/m)−d/2

∫

Rd

dq′ eim(q−q′)2/(2~t)u(q′),

we have

e−i~−1(t/n)V e−i~−1(t/n)H0u(q) = e−i~−1(t/n)V (q)

∫

Rd

dq′ eim(q−q′)2/(2~t/n)u(q′),

we get,

(2πi~t/m)−d/2

∫

Rd

dq′ eim(q−q′)2/(2~t)u(q′) = (2πi~t/m)−dn/2

∫

Rdn

dq0· · ·dqn−1e
i~S∗

t (qn,··· ,q0)u(q0)

with q′ = q0 and qn = q, where

S∗
t (qn, · · · , q0) =

n∑

j=1

[
m

2

(qj − qj−1)
2

(t/n)2
− V (qj)]

t

n
.

11Sorry to use arXiv as such personal sense
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Taking γ∗(τ) on [0, t] as a zigzag path from q0 at time 0, passing through γ(τj) = qj j = 0, · · ·, n
where τj = j t

n and q0, · · ·, qn are given points in Rd. Feynman regards this S∗
t (qn, · · · , q0) as a Riemann

approximation for the classical action St(γ) along the path γ(τ):

St(γ) =

∫ t

0

dτ [
m

2
(
dγ

dτ
)2 − V (γ(τ))]

Assuming γ∗(τ) is an approximation for any classical path belonging to the path space

Γ(t,q,q̄) = {γ ∈ AC([0, t] : Rd); γ(0) = q, γ(t) = q̄}

and using assumed “Lebesgue-like measure”dFγ on Γ(t,q,q̄), we express its solution as

ψ(q̄, t) =

∫

γ(t)=q̄

dF γ e
i~−1St(γ)ψ(γ(0)),

called Feynman’s path integral expression for the solution of Schrödinger equation by Feynman’s time

sclicing method.

If we permit this integral representation of the solution with operations under integral sign admit-

ted, when making ~ → 0, we have the main contribution stems from the stationary point γc(·) that

is,
δSt(γ)

δγ

∣∣∣∣
γ=γc

= 0. This expression with above interpretation is persuasive to claim that classical

mechanical equation appeared from quantum one when making ~→ 0.

2.2. Quantization à la Fujiwara. Using Feynman’s idea rather conversely, Fujiwara [41, 42] con-

structed a fundamental solution of Schrödinger equation. From a given Lagrangian L(q, q̇), he found a

classical orbit γc(·) ∈ Γ(t,q,q̄) of that Lagrangian mechanics:

q̈(s) + L(q(s), q̇(s)) = 0 with q(0) = q, q̇(0) = p∗

such that q̄ = q(t, q, p∗), that is, γc(0) = q, γc(t) = q̄. Then, the action integral corresponding to γc is

given

St(γc) = St(q̄, q) =

∫ t

0

dsL(γc(s), γ̇c(s)),

moreover defining van Vleck determinant as

D(t, q̄, q) = det

(
∂2

∂q∂q̄
St(q̄, q)

)
,

he finally define a short time propagator as a FIOp(=Fourier Integral Operator)

Ttψ(q̄) =

∫

Rn

dq A(t, q̄, q)ei~
−1St(q̄,q)ψ(q)

where

A(t, q̄, q) =
√
D(t, q̄, q).

Above Fujiwara’s process is justified when supq |∂αq V (q)| ≤ C, (|α| ≥ 2). That is, under this con-

dition, not only there exists a unique classical orbit, and above quantities are well-defined, but also Tt

defines a bounded linear operator on L2(Rn) with the property

‖Tt+su− TsTtu‖ ≤ C(t2 + s2)‖u‖.

Moreover, following operator Et is defined by

lim
n→∞

‖(Tt/n)nu− Etu‖ = 0
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which gives a parametrix of the given initial value problem of Schrödinger equation [41]. The kernel

representation is the fundamental solution such that

(Etu)(q̄) =

∫

Rn

dqK(t, q̄, q)u(q).

Finally, not only how to characterize the long-time behavior12 of K(t, q̄, q) [42], but also how to use the

# products of FIOps by Kumano-go group, are the problems reconsidered.

Remark 2.1. (1)[Feynman-Kac formula]: Sitimulated by Feynman’s idea, M. Kac represents the solution

of
∂

∂t
u(q, t) = σ∆u(q, t)− V (q)u(q, t),

using Wiener measure dW (γ) by

u(q, t) =

∫
e−

∫
t

0
dW (γ)V (γ(s)+q)dsu(γ(0) + q).

(2)[Problem of R/12]: For a given Riemann manifold (M, gjk), applying Fujiwara’s idea to the heat

equation, that is, some type of quantization, Inoue and Maeda [68] got the notorious term R/12 where R

is the scalar curvature of the Riemann metric gjk(q)dq
jdqk. Curiously, this term was also derived as the

most probable path calculation in probability theory [39, 94].

Rather recently the term R/12 appeared in S. Fukushima [43], but this seems not the direct con-

sequence of quantization of gjk(q)dq
jdqk like physicists arguments, for example, B. DeWitt [29] or F.

Bastianelli et al. [14]. Fukushima tries to construct a fundamental solution of i
∂

∂t
− 1

2
∆g +

R

12
.

(3)[Hamiltonian formulation on manifolds?] Above mentioned works containing physicist papers, are for-

mulated in Lagrangian case. Since it needs works to formulate Fourier transformations on manifolds,

physicist papers such as Field [36, 37] claim something interesting without any mathematical estimates.

2.3. Hamilton formulation of PIM. For a given Lagrangian L(q, q̇), above process is denoted formally

as

K =

∫
dF γ e

i~−1S(γ) or K(t, q̄, q) =

∫

Γ(t,q̄,q)

dF γ e
i~−1S(γ)

where

S(γ) =

∫ t

0

dsL(γ(s), γ̇(s)), for each γ ∈ Γ(t,q̄,q).

What does it become when Hamiltonian H(q, p) is given? Here, as is well-known, H(q, p) is related to

L(q, q̇) by Legendre transformation. How to give meaning to the following formal expression?:

K =

∫
dF p dF q e

i~−1
∫
ds(q̇p−H(q,p)).

Under same assumption as above, there exists a classical orbit (q(t, q, p), p(t, q, p)) to the Hamilton equa-

tion for the given H(q, p) with initial data (q, p). For any fixed p, for the map q → q̄ = q(t, q, p), there

exists an inverse map q = x(t, q̄, p) for sufficiently small |t|:

q̄ = q(t, x(t, q̄, p), p) and q = x(t, q(t, q, p), p)

Using these, we put

S(t, q̄, p) = (qp− S0(t, q, p))

∣∣∣∣
q=x(t,q̄,p)

12For example, how Maslov index appeared in PIM?
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and define

D(t, q̄, p) = det

(
∂q̄∂pS(t, q̄, p)

)
.

Finally we define

Ttu(q̄) = (2π~)−n/2

∫

Rn

dpD(t, q̄, p)1/2ei~
−1S(t,q̄,p)û(p).

This gives a parametrix for Schrödinger equation [58].

Remark 2.2. In order to consider a classical orbit connecting 2 points q̄ and q in t, we need 2nd order

time derivatives in corresponding classical mechanical equation. Then, how one treats Weyl or Dirac

equation? Hint is given in the next section.

3. Another interpretation of m.o.c., explained through the simplest case

Let check the difference between Lagarangian or Hamiltonian methods, by taking the simplest

example. This is important to treat first order system of PDE such as Dirac or Weyl equation by

applying Feynman’s time slicing method.

Recall m.o.c.(=method of characteristics). On region Ω ⊂ R
d+1, we consider the following initial

value problem: Let solve

(3.1)





∂

∂t
u(t, q) +

d∑

j=1

aj(t, q)
∂

∂qj
u(t, q) = b(t, q)u(t, q) + f(t, q),

u(t, q) = u(q)

The characterisitic equation of (3.1) is given by




d

dt
qj(t) = aj(t, q(t)),

qj(t) = q
j

for j = 1, · · · , d,

with solution denoted by

q(t) = q(t, t; q) = (q1(t), · · · , qd(t)) ∈ R
d, q = (q

1
, · · ·, q

d
).

Using this,

Theorem 3.1 (method of characteristics). In (3.1), assume coefficients aj ∈ C1(Ω : R), b, f ∈ C(Ω : R).

Taking any point (t, q) ∈ Ω, assume u is C1 in a neighbourhood of q. Then, there exists a unique solutiion

u(t, q) near (t, q). Moreover, putting B(t, q) = b(t, q(t, t; q)), F (t, q) = f(t, q(t, t; q)) and defining

(3.2) U(t, q) = e
∫

t

t
dτ B(τ,q)

{∫ t

t

ds e−
∫

s

t
dτ B(τ,q)F (s, q) + u(q)

}

we have a solution (3.1) given by

(3.3) u(t, q̄) = U(t, x(t, q̄)).

Here, q = x(t, t; q) is the inverse function of q̄ = q(t, t; q).

Remark 3.1. (3.2) satisfies

d

dt
U(t, q) = B(t, q)U(t, q) + F (t, q).
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An example: With this theorem in mind, we consider the following simplest case:

(3.4)




i~
∂

∂t
u(t, q) = a

~

i

∂

∂q
u(t, q) + bqu(t, q),

u(0, q) = u(q).

The symbol of the righthand side of above equation is derived by

H(q, p) = e−i~−1qp
(
a
~

i

∂

∂q
+ bq

)
ei~

−1qp = ap+ bq.

From this, we have the characteristic

q̇(t) =
∂H(q, p)

∂p
= a with q(0) = q,

whose solution is given

q(s) = q + as with q = x(t, q) = q − at.

Since above representation (3.2) gives

U(t, q) = u(q)e−i~−1(bqt+2−1abt2),

from (3.3), we get

u(t, q) = u(q − at)e−i~−1(bqt−2−1abt2).

By this procedure, the information of p(t) isn’t used!

Now, we give another interpretation of this representation by Hamilton path integral method.

For (t, q, p), putting

S0(t, q, p) =

∫ t

0

ds[q̇(s)p(s)−H(q(s), p(s))] = −bqt− 2−1abt2,

we define the action integral for Hamilton function H(q, p)

S(t, q, p) = q p+ S0(t, q, p)
∣∣
q=x(t,q)

= qp− apt− bqt+ 2−1abt2.

This S = S(t, q, p) satisfies the following Hamilton-Jacobi equation:

∂

∂t
S +H(q, ∂qS) = 0 with S(0, q, p) = qp.

In this case, van Vleck determinant is a scalar

∂2S(t, q, p)

∂q∂p
= 1

and it satisfies the following continuity equation:

∂

∂t
D +

1

2
∂q(DHp) = 0 with D(0, q, p) = 1 where Hp =

∂H

∂p
(q, ∂qS)

Using these classical quantities S and D, modifying Feynman’s method slightly13, we define

u(t, q) = (2π~)−1/2

∫
dpD1/2(t, q, p)·ei~−1S(t,q,p)û(p),

Using δ(q − at− q) = (2π~)−1
∫
dpei~

−1(q−at−q)p, we have

u(t, q) = (2π~)−1/2

∫
dp ei~

−1S(t,q,p)û(p)

= (2π~)−1

∫∫
dpdq ei~

−1(S(t,q,p)−qp)u(q) =

∫
dqδ(q − at− q)u(q)ei~−1(−bqt+2−1abt2)

= u(q − at)ei~−1(−bqt+2−1abt2).

13Though Feynman’s procedure based on Lagrangian, here we changed to Hamiltonian formulation
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Problem 3.1. How we interprete the solution of (3.1) by this idea? More generally, how to apply this

interpretation to systems of PDE, for example, Weyl or Dirac equations14?

4. Necessity of superanalysis

4.1. Reasons of necessity. There are several reasons at least for me: (i) As is written in p.355 of

R.Feynman & A.R. Hibbs [35], ‘spin’ has been the object outside Feynman’s procedures at that time

(below, underlined by atlom):

· · · path integrals suffer grievously from a serious defect. They do not permit a discus-

sion of spin operators or other such operators in a simple and lucid way. They find their

greatest use in systems for which coordinates and their conjugate momenta are adequate.

Nevertheless, spin is a simple and vital part of real quantum-mechanical systems. It is

a serious limitation that the half-integral spin of the electron does not find a simple and

ready representation. It can be handled if the amplitudes and quantities are considered

as quarternions instead of ordinary complex numbers, but the lack of commutativity of

such numbers is a serious complication.

(ii) E. Berezin [18], who invented the second quantization, proposed to “treat boson and fermion on equal

footing”. That is, instead of R or C, he claims the necessity to construct a scalar-like, non-commutative

ground field, where lives electron and photon equally.

(iii) E. Witten [99] explained the meaning of supersymmetric idea in physics to mathematician by new

derivation of Morse inequalities using exterior differential operations. But be careful, in many case,

physicists usage of supersymmetry only means to use fermion or odd variables, not exactly treating some

“symmetry” in Rm|n, for example K.B. Efetov’s works [32] and Y.V. Fyodorov [44].

4.2. Regarding matrices as differential operators! A claim “any Clifford algebra has a representa-

tion on Grassmann algebra”15 is straight forwardly explained for 2× 2 matrices case. Though analogous

argument works for a set of 2d × 2d matrices because it has Clifford relation, but for a set of general

N × N matrices, we need to find suitable algebra on which we need foundation of analysis. I imagine

not only the work of J.L. Martin [78, 79] but also the one by R. Campoamor-Stursberg et al. [22] give

some hint on this. Especially N = 3 will be interesting when we consider vorticity equation for Euler or

Navier-Stokes equation.

Recall Pauli matrices {σσσk}3k=1:

σσσ1 =

(
0 1
1 0

)
, σσσ2 = −i

(
0 1
−1 0

)
, σσσ3 =

(
1 0
0 −1

)
.

These matrices satisfy not only Clifford relation

(4.1) σσσjσσσk + σσσkσσσj = 2δjk, where j, k = 1, 2, 3,

but also the following for any (j, k, ℓ), an even permutation of (1, 2, 3):

(4.2) σσσjσσσk = iσσσℓ.

14Inoue[57, 59]
15Though I don’t appreciate fully Chevalley’ theorem“Any Clifford algebra has a representation on Grassmann algebra”,

but following consideration may be sufficient of my intuitive arguments.
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Decompose any 2× 2 matrix A by {σσσj},

(4.3)

A =

(
a c
d b

)
=
a+ b

2

(
1 0
0 1

)
+
a− b
2

(
1 0
0 −1

)

+
c+ d

2

(
0 1
1 0

)
+
c− d
2

(
0 1
−1 0

)

=
a+ b

2
I2 +

a− b
2

σσσ3 +
c+ d

2
σσσ1 + i

c− d
2

σσσ2.

That is, a set of all 2× 2 matrices has the Clifford algebra structure with Pauli matrices {σσσk} as a basis.

We identify a vector as a function of Grassmann variables. Then, a matrix is regarded as a differential

operator acting on a set of functions composed with Grassmann variables, which forms something-like

field similar to real or complex number field but non-commutative.

Rather abruptly we prepare16 two odd variables θ1, θ2 having the following relations:

(4.4) θ1·θ2 + θ2·θ1 = 0, θj ·θj = 0, (j = 1, 2)

That is, they have product · having Grassmann relations and differentiation such as

∂

∂θ1
1 = 0,

∂

∂θ1
θ1 = 1, etc.

Here, when we differentiate, bringing that variable in front, i.e.

∂

∂θ2
θ1·θ2 =

∂

∂θ2
(−θ2·θ1) =

∂

∂θ2
(θ2·(−θ1)) = −θ1.

More concretely, for example, taking two variables z1 and z2 in R2, construct differential forms dz1,

dz2 with exterior product ∧ and interior product ⌊ such that

dz1 ∧ dz2 = −dz2 ∧ dz1, dzj ∧ dzj = 0,
∂

∂zj
⌊dzk = δjk.

Here, identifying dzj as θj for j = 1.2, ∧ as · and ∂
∂zj
⌊ as ∂

∂θj
, and abbreviating ·, we continue to explain.

Using odd variables θ1, θ2, we give the identifying maps #, ♭ with Grassmann algebras as follows:

(4.5)

Γ0 = {u(θ) = u0 + u1θ1θ2 | u0, u1 ∈ C}
♭→←
♯
C

2 =

{
u =

(
u0
u1

) ∣∣ u0, u1 ∈ C

}

with (#u)(θ) =

(
#

(
u0
u1

))
(θ) = u0 + u1θ1θ2,

♭(u0 + u1θ1θ2) = ♭(u(θ)) =

(
u0
u1

)
.

Here, we have u(0) = u(θ)|θ=0 = u0, ∂θ2∂θ1u(θ)|θ=0 = ∂θ2(∂θ1u(θ))|θ=0 = u1, which relates a vector u

and a function u(θ).

Now, we define differential operators w.r.t. odd variables:

(4.6)

σ1(θ, ∂θ) = θ1θ2 −
∂2

∂θ1∂θ2
,

σ2(θ, ∂θ) = i

(
θ1θ2 +

∂2

∂θ1∂θ2

)
,

σ3(θ, ∂θ) = 1− θ1
∂

∂θ1
− θ2

∂

∂θ2
.

16usage “preparing” odd variables θ1, θ2 is not frequently used in PDE group
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Thes operators act on u(θ) = u0 + u1θ1θ2 ∈ Γ0 as follows:

σ1(θ, ∂θ)(u0 + u1θ1θ2) = u0θ1θ2 + u1,

σ2(θ, ∂θ)(u0 + u1θ1θ2) = i(u0θ1θ2 − u1),

σ3(θ, ∂θ)(u0 + u1θ1θ2) = u0 − u1θ1θ2.
Here,

∂2

∂θ1∂θ2
θ1θ2 = ∂θ1∂θ2θ1θ2

= ∂θ1(∂θ2θ1θ2) = ∂θ1(∂θ2(−θ2θ1)) = ∂θ1(−θ1) = −1.

They act on Γ0 as,

σ1(θ, ∂θ)σ2(θ, ∂θ) = iσ3(θ, ∂θ), σ2(θ, ∂θ)σ3(θ, ∂θ) = iσ1(θ, ∂θ), σ3(θ, ∂θ)σ1(θ, ∂θ) = iσ2(θ, ∂θ).

Remark 4.1. (1) The action σ1(θ, ∂θ) on Γ0 has a matrix representation

♭σ1(θ, ∂θ)♯

(
u0
u1

)
=

(
u1
u0

)
, ♭σ1(θ, ∂θ)♯ = σσσ1, etc.

(2) Moreover, putting

Γ1 = {v(θ) = v1θ1 + v2θ2 | v1, v2 ∈ C}
♭→←
♯
C

2 =

{
v =

(
v1
v2

)
| v1, v2 ∈ C

}

we have

σj(θ, ∂θ)v(θ) = 0 for any v ∈ Γ1 and j = 1, 2, 3.

We define Fourier transformation17 for odd variables. Taking number k̄ in R× = R − {0} or iR×

called it as spin constant, we define

û(π) = k̄

∫

R0|2

dθ e−ik̄−1〈θ|π〉u(θ), u(θ) = k̄

∫

R0|2

dπ eik̄
−1〈θ|π〉û(π).

In the above, the integral interval R0|2 may be considered only as a symbol, at least for the time being.

Here, 〈θ|π〉 = θ1π1 + θ2π2 and

〈θ|π〉2 = 2θ1π1θ2π2 = −2θ1θ2π1π2, 〈θ|π〉j =
j times︷ ︸︸ ︷

〈θ|π〉〈θ|π〉· · ·〈θ|π〉 = 0 if j ≥ 3

we have

ea〈θ|π〉 =
∞∑

ℓ=1

aℓ〈θ|π〉ℓ
ℓ!

= 1 + a〈θ|π〉 − a2θ1θ2π1π2.

Remark 4.2. “Integration” should be considered preferable such that (i) all polynomials are integrable,

(ii) linear with integrand and (iii) translation invariant, Berezin integration satisfies these properties.

By Fourier transformation, differential operator is regarded as multiplication in dual space18, and

theory of pseudo-differential operators treats PDE with variable coefficients controlling error estimates.

Defining Weyl symbols of differential operators {σj(θ, ∂θ)}3j=1 as

(4.7)





σ1(θ, π) = θ1θ2 + k̄−2π1π2,

σ2(θ, π) = i(θ1θ2 − k̄−2π1π2),

σ3(θ, π) = −ik̄−1〈θ|π〉 = −ik̄−1(θ1π1 + θ2π2),

17The integration here is very algebraic, called Berezin integral, which has properties as integral. See, more precisely,
V.S. Vladimirov and I.V. Volovich [98]

18This means, must we recognize objects algebraically? Or four arithmetic operations is the only core to recognize
mathematically?
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we have, for example,

(σ̂w
3 (θ, ∂θ)u)(θ) = −ik̄

∫∫

R0|2×R0|2

dπdθ′ eik̄
−1〈θ−θ′|π〉σ3(

θ + θ′

2
, π)(u0 + u1θ

′
1θ

′
2)

= u0 − u1θ1θ2 = σ3(θ, ∂θ)(u0 + u1θ1θ2). etc.

Here, we used ∫

R0|2

dπ eik̄
−1〈θ−θ′|π〉σ3(

θ + θ′

2
, π) = −ik̄−1(θ1θ2 − θ′1θ′2).

Remark 4.3. (i) It takes many time to perceive the meaning of 1 in σ3(θ, ∂θ) appeared in (4.6), that is,

1 stems from Weyl quantization!

(ii) Artificially introduced spin constant k̄ gives nice result only when k̄~−1 = 1, that is, the action

integral obtained by Jacobi method satisfies Hamilton-Jacobi equation in case k̄~−1 = 1, therefore we

assume k̄ = ~!

Therefor, from (4.3), we have

(4.8) (♯Au)(θ) = [
a+ b

2
+
a− b
2

σ3(θ, ∂θ) +
c+ d

2
σ1(θ, ∂θ) + i

c− d
2

σ2(θ, ∂θ)]u(θ).

whose Weyl symbol is

(4.9) σw(♯A♭) = [
a+ b

2
+
a− b
2

σw
3 (θ, π) +

c+ d

2
σ1(θ, π) + i

c− d
2

σ2(θ, π)].

Remark 4.4. In the theory of pseudo-differential operators, symbol calculus is the main ingredient where

algebra is essentially R. Whether analogous procedure works on superspace Rm|n? More explicitly, though

the symbol of σ1(θ, ∂θ) is given as θ1θ2+k̄
−2π1π2, but whether the inverse of σ1(θ, ∂θ) is calculated directly

from θ1θ2 + k̄−2π1π2?

4.3. Chi’s example. The following result is a part of Chi [23] in 1958:

Theorem 4.1 (An example of weakly hyperbolic equation). Let

L(t) = L(t, ∂q) = t2∂2q + b∂q.

Solving the initial value problem

(4.10) utt − L(t, ∂q)u = 0 with u(0, q) = u0(q), ut(0, q) = 0,

when b = 4k + 1, k ∈ Z+, we have the solution given by

u(t, q) =

k∑

ℓ=0

22ℓ k!

(2ℓ)!(k − ℓ)! t
2ℓu

(ℓ)
0

(
q +

t2

2

)
.

In this section, we derive this result by completely different method from Chi.

4.3.1. Chi’s proof. Applying change of variables,

ξ = x+
t2

2
, η = x− t2

2

to u(t, x), Chi reduces above problem to the Euler-Darboux equation for ũ(ξ, η) = u

(√
ξ − η, ξ + η

2

)

yielding,

(4.11)
∂2ũ

∂ξ∂η
− 1− b

4(ξ − η)
∂ũ

∂ξ
+

1 + b

4(ξ − η)
∂ũ

∂η
= 0
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with initial condition

ũ(ξ, ξ) = u0(ξ), lim
ξ−η→0

(ξ − η)1/2
(
∂ũ

∂ξ
− ∂ũ

∂η

)
= u1(ξ).

Remark 4.5. For

E(α, β) = ∂ξ∂η −
β

ξ − η ∂ξ +
α

ξ − η ∂η,

with α = 1+b
4 , β = 1−b

4 , it gives (4.11). He uses the fact such that if 0 < α, β < 1 then the solution of

E(α, β)u = 0 is expressed as the convergent Euler-Darboux integral

u(ξ, η) =
Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0

dt u0(ξ + (η − ξ)t)tβ−1(1− t)α−1

+
Γ(1 − α− β)

2Γ(1− α)Γ(1 − β) (η − ξ)
t−α−β

∫ 1

0

dt u1(ξ + (η − ξ)t)t−α(1 − t)−β .

Moreover, for other α, β, this integral diverges as it stands, he gives these as Riemann-Liouville integral.

Seemingly, Euler-Darboux equation has some relations to special functions or Painleve’s functions,

therefore proceeding inversely, we might dream another perspective to these functions by using superanal-

ysis?

4.3.2. Direct construction of a solution of Hamilton-Jacobi equation. Without reducing to Euler-Darboux

equation, we give a simple minded proof (at least as a story) of Chi’s equation applying superanalysis.

Putting u0 = u, u1 = ut, we make (4.10) to a system:

i
∂

∂t

(
u0
u1

)
= i

(
0 1

L(t, ∂q) 0

)(
u0
u1

)
.

Here, we multiply i to both sides, rather artificially. Changing a vector representation to non-commutative

scalar one by putting u(t, x, θ) = u0(t, x) + u1(t, x)θ1θ2, we have

(L(t, ∂x)θ1θ2 − ∂θ1∂θ2)(u0 + u1θ1θ2) = u1 + Lu0θ1θ2 ∼
(

0 1
L(t, ∂x) 0

)(
u0
u1

)
.

Here, q ∈ R is imbedded in x ∈ R1|0 such that XB = q. Defining

H(t, ∂x, θ, ∂θ) = iL(t, ∂x)θ1θ2 − i∂θ1∂θ2

whose symbol is given by

H(t, ξ, θ, π) = i(−t2ξ2 + ibξ)θ1θ2 + iπ1π2

and corresponding Hamilton-Jacobi equation is given by

(4.12) St +H(t,Sx, θ,Sθ) = 0

which is solved with the initial condition S(0, x, ξ, θ, π) = 〈x|ξ〉 + 〈θ|π〉.

In the supersmooth category, since we have

(4.13)

S(t, x, ξ, θ, π) =S(t, x, ξ) +X(t, x, ξ)θ1θ2 + Y (t, x, ξ)θ1π1 + Ỹ (t, x, ξ)θ2π2

+ V (t, x, ξ)θ1π2 + Ṽ (t, x, ξ)θ2π1

+ Z(t, x, ξ)π1π2 +W (t, x, ξ)θ1θ2π1π2,
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where

S(t, x, ξ) = S(t, x, ξ, 0, 0),

X(t, x, ξ) = ∂θ2∂θ1S(t, x, ξ, θ, π)
∣∣
θ=π=0

,

Y (t, x, ξ) = ∂π1∂θ1S(t, x, ξ, θ, π)
∣∣
θ=π=0

, Ỹ (t, x, ξ) = ∂π2∂θ2S(t, x, ξ, θ, π)
∣∣
θ=π=0

,

V (t, x, ξ) = ∂π2∂θ1S(t, x, ξ, θ, π)
∣∣
θ=π=0

, Ṽ (t, x, ξ) = ∂π1∂θ2S(t, x, ξ, θ, π)
∣∣
θ=π=0

,

Z(t, x, ξ) = ∂π2∂π1S(t, x, ξ, θ, π)
∣∣
θ=π=0

, W (t, x, ξ) = ∂π2∂π1∂θ2∂θ1S(t, x, ξ, θ, π)
∣∣
θ=π=0

,

we should seek solution S of (4.12) with this form. Since

H(t,Sx, θ,Sθ) = i(−t2S2x + ibSx)θ1θ2 + iSθ1Sθ2 ,

putting θ = π = 0 in (4.12), we have readily

St(t, x, ξ) = 0 with S(0, x, ξ)) = 〈x|ξ〉.

This gives S(t, x, ξ) = 〈x|ξ〉.

Differentiating (4.12) w.r.t. θ1 and θ2 then restricting to θ = π = 0, we get

Xt + i(−t2ξ2 + ibξ) + iX2 = 0.

Since this is the Riccati type ODE, using ϕ(t), we find X = −i ϕ̇ϕ , that is,

(4.14) ϕ̈+ (t2ξ2 − ibξ)ϕ = 0 with ϕ̇(0) = 0.

Regarding (x, ξ) as parameter, we may solve this equation by power series in t, but this procedure is

postponed until explaining our construction of S and quantization.

Putting Y (t, x, ξ) = ∂π1∂θ1S(t, x, ξ, θ, π)
∣∣
θ=π=0

, we have from (4.12),

Yt + iXY = 0 with Y (0) = 1.

From above structure ofX , we have Y ϕ = 1. Analogously, we have Ỹ (t, x, ξ) = ∂π2∂θ2S(t, x, ξ, θ, π)
∣∣
θ=π=0

which equals to Y .

Calculating V and Ṽ analogously, we get both equal to 0.

As Z(t, x, ξ) = ∂π2∂π1S(t, x, ξ, θ, π)
∣∣
θ=π=0

satisfies

Zt + iY 2 = 0 with Z(0) = 0,

we have

Z(t, x, ξ) = −i
∫ t

0

ds Y 2(s) = −i
∫ t

0

dsϕ(s)−2.

Analogously, we get W = 0.

Therefore using ϕ, we have

(4.15) S = 〈x|ξ〉+Xθ1θ2 + Y 〈θ|π〉 + Zπ1π2 with X = −i ϕ̇
ϕ
, Y =

1

ϕ
, Z = −i

∫ t

0

dsϕ(s)−2.

4.3.3. Continuity equation. Define van Vleck determinant as

D(t, x, θ, ξ, π) = sdet

(
∂2S(t,x,θ,ξ,π)

∂x∂ξ
∂2S(t,x,θ,ξ,π)

∂x∂π
∂2S(t,x,θ,ξ,π)

∂θ∂ξ
∂2S(t,x,θ,ξ,π)

∂θ∂π

)
,

and abbreviated as D = D(t, x, θ, ξ, π). Using (4.15), we have

D = ϕ2.



DOES THERE EXIST THE APPLICABILITY LIMIT OF PDE 15

4.3.4. Quantization. Using S and A = D1/2, we define

(4.16)

Ttu(θ) = (2π)−1/2

∫
dξ dπAeiS û(π)

= (2π)−1/2

∫
dξ eiS1

[ ∫
dπ Y −1eiS2(û1 + û0π1π2)

]

where for the sake of notational simplicity, we put

S = S1 + S2,

S1 = 〈x|ξ〉+Xθ1θ2, S2 = Y 〈θ|π〉 + Zπ1π2.

Since ∫
dπ Y −1eiS2(û1 + û2π1π2) = Y −1û0 + Y −1(iZ + Y 2θ1θ2)û1,

therefore, remarking eiXθ1θ2 = 1 + iXθ1θ2, we have

(1 + iXθ1θ2)(Y
−1û0 + Y −1(iZ + Y 2θ1θ2)û1)

= Y −1û0 + iY −1Zû1 + [iXY −1û0 − (Y +XY −1Z)û1]θ1θ2.

Finally, we have

(4.17)

(Ttu)(θ) = u0(t, x) + u1(t, x)θ1θ2 with

u0(t, x) = (2π)−1/2

∫
dξ ei〈x|ξ〉(Y −1û0 + iY −1Zû1),

u1(t, x) = (2π)−1/2

∫
dξ ei〈x|ξ〉[iXY −1û0 − (Y +XY −1Z)û1].

Therefore, when u1 = 0, we have

(4.18) u0(t, x) = (2π)−1/2

∫
dξ ei〈x|ξ〉ϕ(t, x, ξ)û0(ξ).

4.3.5. Calculation of ϕ. We try to find a power series solution w.r.t. t of (4.14). Decomposing19 ϕ(t) =

φ(t)eit
2ξ/2, φ satisfies below from (4.14):

(4.19) φ̈+ 2itξφ̇+ i(1− b)ξφ = 0 with φ(0) = 1, φ̇(0) = 0.

Putting α = 2iξ, β = i(1− b)ξ, we rewrite (4.19) as

(4.20) φ̈+ αφ̇+ βφ = 0 with φ(0) = 1, φ̇(0) = 0.

Putting φ(t) =
∑∞

j=0 cjt
j into above, comparing coefficients of each tℓ, we have, for any ℓ, c2ℓ+1 = 0

and

c2ℓ =
(−1)ℓ(2α)ℓ

(2ℓ)!

( β
2α

)
ℓ

where (x)ℓ = x(x+ 1)· · ·(x+ ℓ− 1) =
Γ(x+ ℓ)

Γ(x)
.

Remark 4.6. When β = b− 1 = 4k with k = 0, 1, 2, · · ·, since
( β
2α

)
ℓ
= (−k)ℓ = (−k)(−k + 1)· · ·(−k + ℓ− 1) = (−1)ℓ(k − 1)· · ·(k − ℓ+ 1) =

(−1)ℓk!
(k − ℓ)!

above power series becomes a finite sum, we have

(4.21) φ(t) =

k∑

j=0

4jk!

(2j)!(k − j)! (iξ)
jt2j .

19How to find factor eit
2ξ/2?
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At last, putting (4.21) into (4.18), we get

u0(t, q) = (2π)−1/2

∫
dp eiqp

( k∑

j=0

4jk!

(2j)!(k − j)! (ip)
jt2j

)
eipt

2/2û0(p)

= (2π)−1/2

∫
dp eip(q+t2/2)

( k∑

j=0

22jk!

(2j)!(k − j)! (ip)
jt2j

)
û0(p)

=
k∑

j=0

22jk!

(2j)!(k − j)! t
2ju

(j)
0

(
q +

t2

2

)
.

4.4. An application to Random Matrix Theory. In 1983, K.B. Efetov [32] wrote a paper entitled

“Supersymmetry and theory of disordered metals” where he derived Wigner’s semi-circle law by applying

“his superanalysis”.

Let HN be a set of N ×N Hermite matrices. Identifying this topologically with RN2

, we introduce

probability measure dµN (H) on HN .

(4.22)

dµN (H) =
N∏

k=1

d(ℜHkk)
N∏

j<k

d(ℜHjk)d(ℑHjk)PN,J(H),

PN,J(H) = Z−1
N,J exp

[
− N

2J2
tr H∗H

]
.

Here, H = (Hjk), H
∗ = (H∗

jk) = (Hkj) = tH ,
∏N

k=1 d(ℜHkk)
∏N

j<k d(ℜHjk)d(ℑHjk) is the Lebesgue

measure on RN2

, Z−1
N,J is the normalized constant given by ZN,J = 2N/2(J2π/N)3N/2.

Let Eα = Eα(H) (α = 1, · · · , N) be real eigenvalues of a given matrix H ∈ HN . For Dirac’s delta

δ, we put

(4.23) ρN (λ) = ρN (λ;H) = N−1
N∑

α=1

δ(λ − Eα(H)),

and for any function f on HN , we consider

〈
f
〉
N

=
〈
f(·)

〉
N

=

∫

HN

dµN (H) f(H).

Theorem 4.2 (Wigner’s semi-circle law).

(4.24) lim
N→∞

〈
ρN(λ)

〉
N

= wsc(λ) =

{
(2πJ2)−1

√
4J2 − λ2 for |λ| < 2J,

0 for |λ| > 2J.

This expression is derived by introducing auxiliary odd variables ρ1, ρ2:

(4.25)
〈
ρN(λ)

〉
N

= π−1ℑ
∫

Q

dQ
(
{(λ− i0)I2 −Q}−1

)
bb
exp [−NL(Q)]

Here In is the n× n identity matrix, and

(4.26)

L(Q) = str [(2J2)−1Q2 + log((λ − i0)I2 −Q)],

Q =
{
Q =

(
x1 ρ1
ρ2 ix2

) ∣∣x1, x2 ∈ Rev, ρ1, ρ2 ∈ Rod

} ∼= R2|2,

dQ =
dx1dx2
2π

dρ1dρ2,

(
((λ − i0)I2 −Q)−1

)
bb

=
(λ− i0− x1)(λ − i0− ix2) + ρ1ρ2

(λ− i0− x1)2(λ− i0− ix2)
.

For 2× 2-supermatrix A, (A)bb is boson-boson(or even-even) part, in this case A11.
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Here, the key point of applying superanalysis is that in (4.25) parameter N appeared in one place20,

and this derivation isn’t justified mathematically there. In physics literature, they apply formally saddle

point method or steepest descent to (4.25) when N →∞. Since they get

〈δL(Q)

δQ
, Q̃〉 = d

dǫ
L(Q + ǫQ̃)

∣∣∣∣
ǫ=0

,

critical point is given by
δL(Q)

δQ
= str

( Q
J2
− 1

λ−Q
)
= 0.

Defining these as effective saddle points, putting

Qc = (
1

2
λ+

1

2

√
λ2 − 4J2)I2,

they have

lim
N→∞

〈
ρN (λ)

〉
N

= π−1ℑ(λ−Qc)
−1
bb = wsc(λ). �

Remark 4.7. Though the derivation of expression (4.25) is justified in [70], we can’t justify the usage

of saddle point method in this setting21, at that time. Since I feel this problem has relation to “Laplace’s

method in function space” in B. Simon [90], so I have an interest.

5. Some examples of FDE

5.1. A Schwinger-Dyson equation.

5.1.1. A derivation of A Schwinger-Dyson equation of first order. A formally given quadratic Lagrangian,

we try to give meaning to the first order Schwinger-Dyson equation [53]: Let

(5.1)

L(q, v) =
1

2

∫

R

dt(q̇(t)2 − ω2
0q(t)

2)

+
1

2

∫

R4

dxdt(|vt(x, t)|2 − |∇v(x, t)|2)− λ
∫

R4

dxdtδ(x)q(t)v(x, t)

be given, then critical point of L is calculated by

(5.2)

d

dǫ
L(q + ǫρ, v)

∣∣∣∣
ǫ=0

=

∫

R

dt(q̇(t)ρ̇(t)− ω2
0q(t)ρ(t))− λ

∫

R4

dxdtδ(x)ρ(t)v(x, t)

=

∫

R

dt

(
− d2

dt2
q(t)− ω2

0q(t)− λ
∫

R3

dxδ(x)v(x, t)

)
ρ(t)

= 〈δL(q, v)
δq(t)

, ρ(t)〉 = 0,

and

(5.3)

d

dǫ
L(q, v + ǫϕ)

∣∣∣∣
ǫ=0

=

∫

R4

dxdt(vt(x, t)ϕt(x, t)−∇v(x, t)∇ϕ(x, t))

− λ
∫

R4

dxdtδ(x)q(t)ϕ(x, t)

= −
∫

R4

dxdt(vtt(x, t)−∆v(x, t) + λδ(x)q(t))ϕ(x, t)

= 〈δL(q, v)
δv(x, t)

, ϕ(x, t)〉 = 0.

20This fact makes us remind the appearance of ~ at one place in Feynman Path Integral
21Therefore, we give a proof of a very small portion which is explained in Y.V.Fyodorov [44]
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From these, at least formally, we may suppose the corresponding classical orbit (q(t), v(x, t)) satisfy below:

(5.4)




(
d2

dt2
+ ω2

0)q(t) = −λ
∫

R3

dxδ(x)q(t)v(x, t),

�v(x, t) = λδ(x)q(t).

Putting the generating functional as

(5.5) Ẑ = Ẑ(q, v) = ei~
−1L(q,v),

we define its characteristic functional

(5.6)

Z(p, u) = Z−1
0

∫
dF q dF v Ẑ(q, v)e

−i~−1(〈q,p〉+〈v,u〉)

with Z0 =

∫
dF q dF v Ẑ(q, v).

This Z(p, u) satisfies formally the following equation:

(5.7)





(
d2

dt2
+ ω2

0)
δZ(p, u)

δp(t)
= −i~−1p(t)Z(p, u)− λ

∫

R3

dxδ(x)
δZ(p, u)

δu(x, t)
,

�
δZ(p, u)

δu(x, t)
= −i~−1u(x, t)Z(p, u)− λδ(x)δZ(p, u)

δp(t)
.

In fact, since

δẐ(q, v)

δq(t)
= −i~−1(

d2

dt2
+ ω2

0)q(t)Ẑ − i~−1λ

∫

R3

dxδ(x)v(x, t)Ẑ ,

δẐ(q, v)

δv(x, t)
= −i~−1

�v(x, t)Ẑ − i~−1λδ(x)q(t)Ẑ ,

assuming that functional integration permit integration by parts, we have

Z−1
0

∫
dF q dF v

δẐ(q, v)

δq(t)
e−i~−1(〈q,p〉+〈v,u〉) = i~−1p(t)Z(p, u),

Z−1
0

∫
dF q dF v

δẐ(q, v)

δv(x, t)
e−i~−1(〈q,p〉+〈v,u〉) = i~−1u(x, t)Z(p, u),

Interchanging integration and differentiation formally, we get

δZ(p, u)

δp(t)
= −i~−1Z−1

0

∫
dF q dF v q(t)Ẑ(q, v)e

−i~−1(〈q,p〉+〈v,u〉),

δZ(p, u)

δu(x, t)
= −i~−1Z−1

0

∫
dF q dF v v(x, t)Ẑ(q, v)e

−i~−1(〈q,p〉+〈v,u〉).

From these, we have

Z−1
0

∫
dF q dF v

(
− i~−1(

d2

dt2
+ ω2

0)q(t)Ẑ − i~−1λ

∫

R3

dxδ(x)v(x, t)Ẑ

)
e−i~−1(〈q,p〉+〈v,u〉)

= (
d2

dt2
+ ω2

0)
δZ(p, u)

δp(t)
+ λ

∫

R3

dxδ(x)
δZ(p, u)

δu(x, t)
= i~−1p(t)Z(p, u). //

5.1.2. Reformulation and calculation.

Feynman propagator E(x, t) = �
−1
F (x, t). As a formal solution of division problem �E(x, t) = δ(x, t) in

D′(R4), we have

E(x, t) = lim
ǫ→0

(2π)−4

∫

R4

dτdξ
e−itτ+ixξ

−τ2 + |ξ|2 − iǫ
whose precise meanings are given in, for example, Gelfand and Shilov [46].

Remark 5.1. Approximate δ(x) by ρǫ(x) = ǫ−2ρ(x/ǫ), i.e. for ρ(x) = ρ(|x|) ∈ C∞
0 (R3), ρ(x) ≥ 0 and

∫
R3 dxρ(x) = 1, making ǫ→ 0 then ρǫ(x)→ δ(x) in D′(R3).
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Lemma 5.1. For any u ∈ S(R4), �−1
F u ∈ S ′(R4). Moreover, when u ∈ C∞

0 (R4), limǫ→0〈ρǫ(·),�−1
F u(·, t)〉

exists in H−1(R) and formally represented as 〈δ,�−1
F u〉(t) or 〈δ(·),�−1

F u(·, t)〉.

Renormalization. Applying �
−1
F to the second equation of (5.7), and putting this into the first equation

of (5.7), we get

(5.8)

(
d2

dt2
+ ω2

0 − λ2
∫

R3

dx δ(x)�−1
F (x, t))

δZ(p, u)

δp(t)

= −i~−1p(t)Z(p, u) + i~−1λ

∫

R3

dx δ(x)�−1
F u(x, t)Z.

Here, we approximate δ(x) by ρǫ(x). In this case, putting

(Aǫ
λf)(t) = (

d2

dt2
+ ω2

0)f(t)− λ2〈ρǫ(·), (�−1
F (ρǫf))(·, t)〉,

using Fourier transformation and Plancherel theorem,

(Âǫ
λf)(τ) =

1√
2π

∫
dτeitτ (Aǫ

λf)(t)

= (−τ2 + ω2
0)f̂(τ) +

λ2

4π2

∫

R3

dξ
|ρ̂ǫ(ξ)|2

τ2 − |ξ|2 + i0
f̂(τ)

= (−τ2 + ω2
0)f̂(τ)

+
λ2

4π2

[ ∫

R3

dξ|ρ̂ǫ(ξ)|2
(

1

τ2 − |ξ|2 + i0
+

1

|ξ|2
)
−
∫

R3

dξ
|ρ̂ǫ(ξ)|2
|ξ|2

]
f̂(τ).

Simply disregarding the last term which is ∞, making ǫ→ 0, then we have

lim
ǫ→0

∫

R3

dξ|ρ̂ǫ(ξ)|2
(

1

τ2 − |ξ|2 + i0
+

1

|ξ|2
)

=

∫

R3

dξ

(
τ2 + i0

(τ2 − |ξ|2 + i0)|ξ|2
)

=

∫

S2

dω

∫ ∞

0

ρ2dρ
τ2 + i0

(τ2 − ρ2 + i0)ρ2

= 4π

∫ ∞

0

dρ
τ2 + i0

τ2 − ρ2 + i0
= −4π(2πi) τ

2

2|τ | = −4iπ
2|τ |

Therefore

lim
ǫ→0

(Âǫ
λf)(τ) = {(−τ2 + ω2

0)− iλ2|τ |}f̂(τ),

so we define

(AR
λ f)(t) = (

d2

dt2
+ ω2

0 − iλ2|
d

dt
|)f(t).

When λ > 0, for any τ ∈ R, since −τ2 − iλ2|τ |+ ω2
0 6= 0, we have

Lemma 5.2. Operator AR
λ (λ > 0) is invertible, and (AR

λ )
−1 maps H−1(R) to H1(R) as bounded operator.

Moreover, for any p ∈ H1(R), the quantity 〈(AR
λ )

−1p, p〉 is well-defined.

Problem 5.1. Though I wrote this paper, it isn’t clear the sentence “Simply disregarding the last term”.

For example, whether we may find analogous regularization, such as zeta regularization for divergent

series or divergent integral in [1] or other summability methods?

Renormalized FDE equation and a result. Now, we have the renormalized FDE equation

(5.9)

AR
λ

δZ(p, u)

δp(t)
= −i~−1p(t)Z(p, u) + i~−1λ

∫

R3

dxδ(x)�−1
F u(x, t)Z(p, u),

�
δZ(p, u)

δu(x, t)
= [i~−1u(x, t) + i~λ2(δ(x)(AR

λ )
−1〈δ(·),�−1

F u(·, t)〉)

− i~−1λ(δ(AR
λ )

−1p)(x, t)]Z(p, u)
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whose solution is obtained explicitly as

(5.10)

Z(p, u) = exp[i(2~)−1〈(AR
λ )

−1p, p〉+ i(2~)−1〈�−1
F u, u〉

+i(2~)−1λ2〈(AR
λ )

−1〈δ,�−1
F u〉(t), 〈δ,�−1

F u〉(t)〉

−i~−1λ〈(AR
λ )

−1p, 〈δ,�−1
F u〉(t)〉]

and all Green function is obtained as bellow:

G(n,m)(t1, · · · , tn, (y1, s1), · · · , (ym, sm)))

= (i~)n+m δn+mZ(0, 0)

δp(t1) · · · δp(tn)δu(y1, s1) · · · δu(ym, sm)
.

Small goals: Enlarging Feynman’s idea slightly, following afore mentioned Itzykson-Zuber’s claim,

we dare to imagine “Quantum mechanics(Quantum field theory) stands for obtaining properties of gener-

ating function22 represented by Lagrange or Hamilton function using Feynman measure”. To relate these

quantities to classical mechanics(classical field theory) and to get rid of the use of non-existing Feynman

measure, we take formally the characteristic function which satisfies certain FDE23 and give meaning to

it after renormalization and solve it!

As is known, to study PDE without getting explicit solution of it, we fully use Lebesgue measure to

have the existence proof using integration by parts, change of variables formula under integral sign and

Fourier transformations with the method of functional analysis24. As mentioned before, not only there

doesn’t exist a translational invariant, completely additive measure in function spaces, but also giving

meaning to the trace of higher order functional derivatives is hard. For a simple quadratic interaction,

we give meaning to some devices eliminating ∞. This suggests that as is used by physicists, expand

w.r.t. interaction parameter and performing Gaussian type integration, after summation method, we get

something-like a solution of FDE.

Moreover, in the next paragraph, I give a trial to understand the trace of 2nd order functional

derivatives.

5.2. Hopf equation. Let (M, gjk) be a compact Riemannian manifold of dimension d with or without

boundary ∂M . We denote by
◦

Xσ(M) and
◦

Λ1
σ(M), the space of all solenoidal vector fields on M which

vanish near the boundary and that of all divergence free 1-forms on M which vanish near the boundary,

respectively. H̃ (resp. H) stands for the completion of the space
◦

Λ1
σ(M) (resp.

◦

Xσ(M)) w.r.t. L̃2-norm

(resp. L2-norm).

5.2.1. Differential geometrical expression of Navier-Stokes equation. For a vector field u = uj
∂

∂xj
, we

have the Navier-Stokes equation

(5.11)
∂ui

∂t
− ν(∆u)i + (∇uu)

i + pi = f i,

with

δu =
1√
g

∂

∂xi
(
√
gui) = 0, u(0, x) = u(x) and u(t, x)

∣∣
x∈∂M

= 0.

Here

(∆u)i = ∇k∇ku
i −Ri

ku
k, etc.

22For the time being, we don’t concern with how these functions relate to the physical quantities observed by experiments
23Since in general, it contains higher order derivatives, we need new device contrivance such as Colombeau’s generalized

functions
24Project called “A study of PDE by functional analytic method” initiated by K. Yosida in Japan.
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5.2.2. Hopf’s motivation. Following Hopf’s introduction in [52], we quote

The differential law which governs the motion of a deterministic mechanical system has

the symbolic form
du

dt
= F(u)

where u is an instantaneous phase of the system and where the right jand side is com-

pletely determined by the phase. · · · · · ·
There are mechanical systems the phases of which are characterized by a very large

number of independent parameters and the phase motions of which are tremendously

complicated. Two examples are the classical model of a gas with its very large number

of degrees of freedom and the flow of viscous incompressible fluid at a very large value

of overall Reynolds number.

In both cases the important task is not the determination of the exact phase motion

with an exactly given initial phases but the determination of the statistical properties of

the “typical” phase motion. In order to achieve this goal statistical mechanics studies

probability distributions of simultaneous phases and their evolution in time resulting

from the individual phase motions. · · · · · ·

Moreover, he claims to find statistical equilibrium of the system, we need to seek stationary phase

distribution. This idea is comparable to find equilibrium state of Hamilton flow, we try to find a stable

solution of Liouville equation.

5.2.3. Derivation of Hopf equation. Let Ttu0 be a (some kind of) solution of Navier-Stokes equation (NS)

with the initial data u0, for a Borel measure µ(ω) on H, we put µt(ω) = µ(T−1
t (ω)). Here, ω is a Borel

set on H. The characteristic function of this measure µt(ω) should satisfy the equation, called Hopf

equation. More precisely,

(I) the characteristic function of this measure dµt(·) is given by

W (t, η) =

∫

H

dµt(u) e
i〈u,η〉 =

∫

H

dµ(u) ei〈Ttu,η〉

which satisfies

(5.12)

∂

∂t
W (t, η) =

∫

M

dgx

[
−i{ ∂

∂xk
ηj(x) − Γℓ

jk(x)ηℓ}
δ2W (t, η)

δηj(x)δηk(x)

+ν(∆η)j(x)
δW (t, η)

δηj(x)
+ iηj(x)f

j(t, x)W (t, η)

]
.

One of the additional conditions to this equation is

(5.13)
1√
g(x)

∂

∂xj
{
√
g(x)

δW (t, η)

δηj(x)
} = 0,

(5.14) W (0, η) =W0(η) andW (t, 0) = 1.

Here, t ∈ (0,∞) and

η = η(x) = ηj(x)dx
j ∈

◦

Λ1
σ(M), f = f(t, x) = f j(t, x)∂/∂xj ∈

◦

Xσ(M).

Given positive definite functional W0(η) on H̃ satisfies

(5.15) W0(η) = 1 and
1√
g(x)

∂

∂xj
{
√
g(x)

δW0(η)

δηj(x)
} = 0.
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This equation is something like Liouville equation corresponding to Navier-Stokes equation. In fact, let

u(t, x) = Ttu(x) be a “solution” for Navier-Stokes equation with initial data u = uj∂/∂xj ∈ H. For Borel

measure µ(ω) on H = L2
σ(Ω), put µt(ω) = µ(T−1

t (ω)) for any Borel set ω in H. More explicitly, put

(5.16) Φ(t, v) =

∫
ei(v,Ttu)µ(du) =

∫
ei(v,u)µt(du),

Then, this functional satisfies Hopf equation formally. In the above, for u, we put ũ as the solenoidal

part of u.

5.2.4. How to give the meaning to the trace of 2nd order functional derivative.

Problem 5.2. Our problems here are, whether does there exist a funtional W (t, η) satisfying (5.12), and

how to give meaning to the 2nd order functional derivatives
δ2W (t, η)

δηj(x)δηk(x)
?

Above problem (I) is restated as

(II) Find a Borel measure µ(t, ·) on H which satisfies

(5.17)

−
∫ ∞

0

∫

H

dµ(t, u)
∂Φ(t, u)

∂t
−
∫

H

dµ0(u)Φ(0, u)

=

∫ ∞

0

∫

H

∫

M

dgxdµ(t, u)dt

[
−uk(x)uj(x) ∂

∂xk
δΦ(t, u)

δuj(x)
+ Γj

kℓ(x)u
k(x)uℓ(x)

δΦ(t, u)

δuj(x)

+ν∇ku
j(x)·∇k δΦ(t, u)

δuj(x)
− f j(t, x)

δΦ(t, u)

δuj(x)

]

for any suitable test functionals Φ(t, u).

Remark 5.2. There appeared only 1st order Functional Derivatives in (II)!

Theorem 5.3 (A part of Theorem A’ of Inoue [54]). Let f(·) ∈ L2((0,∞);V−1) be given and suppose a

Borel measure µ0 on H satisfies ∫

H

dµ0(u)(1 + |u|2) <∞.

Then, there exists a basic family {µ(t, ·)}0<t<∞ of Borel measures on H such that
∫ ∞

0

dt

∫

H

dµ(t, u)Φt(t, u) +

∫

H

dµ0(u)Φt(0, u)

=

∫ ∞

0

dt

[∫

H

dµ(t, u)
{
νa(u, Φ̃u(t, u)) + b(u, u, Φ̃u(t, u))− 〈f(t),Φu(t, u)〉

}]

for any Φ ∈ TF with compact support in t, i.e. there exists a constant T depending on Φ such that

φ(t, ·) = 0 when t ≥ T .

In the above, forms a and b are defined by

a(u, v) =

∫

M

dgx gij∇ku
i∇kvj ,

b(u, v, w) = (∇uv, w) =

∫

M

dgx gij{uk
∂

∂xk
vi + Γi

kℓu
kvℓ}wj

for u, v, w ∈ X(M) with u = uj ∂
∂xj etc.

Definition 5.1 (Definition 2.7 of [54]). A real functional Φ(·, ·) on [0,∞)×V is called TF(=test functionl)

denoted by Φ ∈ TF if it satisfies the following.



DOES THERE EXIST THE APPLICABILITY LIMIT OF PDE 23

(1) Φ(·, ·) is continuous on [0,∞)×V and verifies

|Φu(t, u)| ≤ c and |Φt(t, u)| ≤ c+ c|u|

where Φu(t, ·) is regarded as an element in H̃.

(2) Φ(·, ·) is Fréchet H-differentiable in the direction V.

(3) Φu(·, ·) is continuous on [0,∞)×V to Ṽs and is bounded, i.e. there exists a constant c depending

on Φ such that

‖Φu(t, u)‖s ≤ c and |Φt(t, u)| ≤ c+ c|u| for any (t, u) ∈ [0,∞)×V.

Appendix A. Some questions on Euler or Navier-Stokes equations

Though the following results are rather recent one which make me not only astonish, but also such

impression is criticized because “ These results don’t match physical reality” by physicists and rather

bypassed [83, 84] saying, Euler equation admits various unphysical weak solutions. Even though, one

may construct a weak solution with compact support in a torus dimension 2, a gravitational equation

which is derived from classical idea

On the other hand, by the theory of general relativity, the following Einstein’s field equation

Gµν + Λgµν = κTµν

is derived where Gµν = Rµν− 1
2Rgµν is the Einstein tensor, gµν is the metric tensor, Λ is the cosmological

constant and κ is the Einstein gravitational constant. Since from this equation, it is claimed the universe

begins abruptly by Big Bang, I feel some analogy with above result.

We investigate the initial-boundary value problem

(NS) ut − ν∆u+ u∇u−∇p = f, div u = 0, u(0, x) = u0(x), u|∂Ω = 0,

or

(E) ut + u∇u−∇p = 0, div u = f, u(0, x) = u0(x), u · n = 0

If we introduce the idea of weak solution for the Euler equation by integration by parts with suitable test

functions, we have a result for Euler equation [27, 28].

Theorem A.1 (Theorem 1.7 of Isett and Oh [72]). (Onsager’s conjecture on manifolds, sharp version).

Let (M, gjk) be a compact Riemannian manifold and I ⊆ R an open interval. Let (uℓ, p) be a weak solution

to the Euler equations on I ×M such that uℓ ∈ L3
t (I;B

1/3
3,c0

(M)) ∩ Ct(I;L
2(M)). Then, conservation of

energy (E) holds.

Analogously, we have

Theorem A.2 (Theorem1.2(Non-uniqueness of weak solutions for (NS))[20]). There exists β > 0, such

that nonnegative smooth function e(t) : [0, T ]→ R≥, there exists v ∈ C0
t ([0, T ];H

β
x (T

3)) a weak solution of

Navier-Stokes equation (NS), such that
∫
T3 dx|v(x, t)|2 = e(t) for all t ∈ [0, T ]. Moreover, the associated

vorticity ∇× v lies in C0
t ([0, T ];L

1
x(T

3)).
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Theorem A.3 (R2: 1993 Scheffer [86]). There exists a weak solution, not identically zero, of (E) in R2,

having compact support in (x, t) ∈ R2 × (0, T ).

Theorem A.4 (T2: 1997 Shnirelman [88]). There exists a weak solution, not identically zero, of (E) in

T2, having compact support in t ∈ (0, T ).

Theorem A.5 (Theorem 1.3 of Buckmaster et al [19]). For any ǫ >, there exists a non-trivial continuous

weak solution v : T3 × R→ R3 of (E), with v ∈ L1(C1/3−ǫ) with compact support in time.

This stands for the collapse of the uniqueness, that is, if there exists very rapidly oscillating exterior

force, then there exists a weak solution having space-time compact support.

Theorem A.6 ([86, 88, 89]). There exists a weak solution u(x, t) ∈ L2(R2×R) such that u(x, t) ≡ 0 for

|x|2 + |t|2 > 1.

Concerning this, the following paragraph suggests us we need to use new test functions to recognize

anomalous phenomena.

[Shnirelman [88]] The weak solution constructed by [86, 88] is not in fact a solution; very

strong external forces are present, but they are infinitely-fast oscillating in space, and

therefore are indistinguishable from zero in the sense of distributions. The smooth test-

functions are not “sensitive” enough to “feel” these forces. This is the fault of sensors,

not of forces.

Theorem A.7 (Theorem1.1 of [100]). Let Ω be a bounded domain in R3 with C2-boundary ∂Ω. Let

u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) be a weak solution of the Navier-Stokes equation for any smooth

test function ϕ ∈ C∞(R+ × Ω) with compact support, and divϕ = 0. In addition, if

u ∈ Lp(0, T ;Lq(Ω)) ∩ Ls(0, T ;Bα,∞
s (Ω))

for any 1
p + 1

q ≤ 1
2 , q ≥ 4, s > 2 and for any 1

2 + 1
s < α < 1. Then, for any t ∈ [0, T ],

∫

Ω

dx|u(t, x)|2 + 2ν

∫ t

0

∫

Ω

dtdx|∇u|2 =

∫

Ω

dx|u0|2.
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[57] ——–, On a construction of the fundamental solution for the free Dirac equation by Hamiltonian path-integral

method –another interpretation of Zitterbewegung, Japanese J.Math.24(1998), pp. 297-334.
[58] ——–, On a “Hamiltonian path-integral” derivation of the Schrödinger equation, Osaka J. Math. 36(1999),

pp. 861-904.
[59] ——–, A partial solution for Feynman’s problem –a new derivation of the Weyl equation, Mathematical

Physics and Quantum Field Theory, Electron.J.Diff.Eqns., Conf.04, 2000, pp. 121-145.
[60] ——–, Definition and characterization of supersmooth functions on superspace based on Fréchet-Grassmann

algebra, https://arxiv.org/pdf/0910.3831.pdf
[61] ——–, What is Onsager conjecture? –has that some relations with the beginning and end of the universe,

OPseminar, 3 September 2016, at Yonago.
[62] ——–, Byproduct of studying Onsager conjecture, can we have a little problem touching ourselves? – what is

the very weak solution of Euler equation?, OPseminar, 15 July 2017, at Ise
[63] ——–, Personal byproduct of studying Onsager conjecture, can we find a quick problem?, OPseminar, 1

September 2018, at Tokushima
[64] ——–, Introduction to Superanalysis and its Applications –as an example of non-commutative analysis, 2018,

in preparation
[65] ——–, Anharmonic oscillator by superanalysis why complex number representation is used in quantum me-

chanics even though observed quantities are real?, OPseminar, Zoom, 28 August 2022.
[66] ——–, A parametrix of FIO type

for the Schrödinger equation
with quartic potentials, in preparation

[67] A. Inoue and T. Funaki, On a new derivation of Navier-Stokes equation, Commun.Math.Phys. 65(1979), pp.
83-90.

[68] A. Inoue and Y. Maeda, On integral transformations associated with a certain Lagrangian– as a prototype of
quantization, J.Math.Soc.Japan 37(1985), pp. 219-244.

[69] ——–, On a construction of a good parametrix for the Pauli equation by Hamiltonian path-integral method –
an application of superanalysis, Japanese J. Math.29(2003) pp. 27-107.

[70] A. Inoue and Y. Nomura, Some refinements of Wigner’s semi-circle law for Gaussian random matrices using
superanalysis, Asymptotic Analysis 23(2000), pp. 329-375.

[71] A. Inoue and M. Wakimoto, On existence of solutions of the Navier-Stokes equation in a time dependent
domain, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), pp. 303-319.

[72] P. Isett and S-J.Oh, A heat flow approach to Onsager’s conjecture for the Euler equations on manifolds,
arXiv: 1310.7947v2

[73] C. Itzykson and J-B. Zuber, Quantum Field Theory, 1979, MaGRAW-HILL INTERNATIONAL EDITIONS,

http://arxiv.org/abs/2009.13281
http://www.ihes.fr/~gromov/PDF/1[107].pdf


DOES THERE EXIST THE APPLICABILITY LIMIT OF PDE 27
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