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ABSTRACT

The probability of detecting technosignatures (i.e. evidence of technological activity beyond Earth)
increases with their longevity, or the time interval over which they manifest. Therefore, the assumed
distribution of longevities has some bearing on the chances of success of technosignature searches,
as well as on the inferred age of technosignatures following a first contact. Here, we investigate the
possibility that the longevity of technosignatures conforms to the so-called Lindy’s law, whereby, at
any time, their remaining life expectancy is roughly proportional to their age. We show that, if Lindy’s
law applies, the general tenet that the first detected technosignature ought to be very long lived may
be overruled. We conclude by discussing the number of emitters that had to appear, over the history
of the Galaxy, in order for one of them to be detectable today from Earth.

1. INTRODUCTION

In the modern search for extraterrestrial intelligence
(SETI), the term “technosignature” refers to any re-
motely detectable evidence of technological activity
(Tarter 2006; Socas-Navarro et al. 2021). This is not
limited to the fingerprints of (intentional or uninten-
tional) interstellar communication that have constituted
the goal of traditional radio (Margot et al. 2019) and
optical (Schwartz & Townes 1961; Wright et al. 2018)
searches, but can include many other possible evidences.
For example, the infrared glow emitted by Dyson spheres
or other astroengineering megastructures harvesting the
energy of stars (Dyson 1960; Wright 2020), the signa-
ture of stellar transit from such structures (Wright &
Kipping 2019) or from artificial satellites (Socas-Navarro
2018), and the electromagnetic radiation associated to
such technological activities as asteroid mining (For-
gan & Elvis 2011), artificial illumination on planetary
night-sides (Lingam & Loeb 2017a), atmospheric pol-
lutants (Lin et al. 2014; Kopparapu et al. 2021; Haqq-
Misra et al. 2022a,b), interstellar propulsion (Lingam &
Loeb 2017b), leftover artifacts (Haqq-Misra & Koppa-
rapu 2012; Davies & Wagner 2013), etc.
It has long been recognized that the probability of

detecting a technosignature depends on its longevity, L,
that is, the timespan over which it manifests; in essence,
the probability of detection grows with L, because long-
lasting technosignatures are visible over a larger volume
of space than short-lived ones, and thus have a higher
chance of being intercepted from our location at the
present epoch (Grimaldi 2017; Balbi 2018). Since the
event of detection weighs more favorably technosigna-
tures with large L, it has been recently proposed that
first contact will be with older civilizations than our own

(Kipping et al. 2020). More generally, the longevity of
detected technosignatures could exceed millions of years,
as it is decoupled from both the epoch of their first ap-
pearance and the duration of the civilization that pro-
duced them (Balbi & Ćirković 2021).
Of course, inferring the longevity of a detected tech-

nosignature relies on the underlying probability distri-
bution function (PDF) of L, denoted ρL(L): this is in-
dependent of whether a technosignature is detected or
not. On the other hand, L is an unknown parameter
that has been the subject of much speculation since the
early days of SETI. The difficulty lies mainly in the lack
of an a priori understanding of what would be the typ-
ical duration of technosignatures, even at the order-of-
magnitude level. Actually, it is not even clear that the
notion of “typical” can be applied, since the possible val-
ues of L could be so widely distributed that their average
may not be descriptive at all. Because of such lack of
knowledge about the underlying distribution of L, ρL(L)
is usually taken to be as uninformative as possible. For
example, Balbi & Ćirković (2021) used a log-uniform dis-
tribution of L (ρL(L) ∝ 1/L) which reflects the lack of
information on L even at the order-of-magnitude level,
whereas Kipping et al. (2020) derived a uninformative
PDF of the longevity by adopting an objective Jeffrey’s
prior for the shape parameter of an exponential PDF of
L.
However, a complete agnosticism on the prior distri-

bution of L may not always be justified. For example, it
can be argued that, for a broad class of technosignatures,
longevity is necessarily limited by the energy required for
their operation. We term this subclass of technosigna-
tures technoemissions, as they imply some sort of activ-
ity necessary for their operation and maintainance, as
opposed to “passive” technosignatures (such as various
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forms of relic artifacts, pollutants, etc.) that could in
principle last for a long time without direct intervention.
An obvious example of this sort are radio transmitters,
which, for a given power required for interstellar trans-
mission, would consume an amount of energy at least
proportional to L (here we take in consideration also the
energy required for the maintenance of the transmitter
and of all the infrastructures required for its function-
ing). High-gain antennas or intermittent isotropic trans-
mitters require less power (Benford et al. 2010; Gray
2020), but the energy used still grows with longevity.
Dysonian megastructures may in principle radiate for
millions of years or more, but their functioning requires
nevertheless that energy is spent in maintenance over
such long periods of time (even though they may still
be remotely detectable long after the extinction of their
constructors; see Ćirković et al. 2019).
These considerations suggest that, for technosigna-

tures meeting the aforementioned condition (specifically,
energy consumption increasing with longevity in some
unspecified way), we should not expect long-lived ones
to outnumber or be as common as short-lived ones. The
rationale here is that long-lasting technoemissions will
be disfavored because of high energy demands, and their
production will require to overcome substantial techno-
logical challenges (for example by improving efficiency,
by exploiting new sources of energy or new physics dis-
coveries).
While we do not expect all extraterrestrial species to

have overcome such technological challenges, those that
have successfully done so and managed to generate tech-
noemissions for a long time will likely be able to produce
them for a long time in the future as well.
The latter argument suggests that the probability dis-

tribution of longevities can be shaped by the so-called
“Lindy effect”, or “Lindy’s law” (Mandelbrot 1984;
Taleb 2012; Eliazar 2017; Ord 2023): this is a com-
mon (albeit counterintuitive) phenomenon observed in
technology, whereby the future life expectancy of an in-
novation is proportional to its current age, leading to
a longevity that increases with time. In other words,
technologies that have been proved to function for a long
time are expected to also have a long projected duration
(roughly proportional to their current age), and outlive
newly adopted ones. This generates a power-law, fat-
tailed distribution of L of the form:

ρL(L) ∝ L−α, (1)

where the positive definite exponent α weights the
population of long-lasting technoemissions compared to
short-lived ones. For example, α = 1 reduces Eq. (1) to
the uninformative log-uniform PDF mentioned above,
which claims complete ignorance about even the order
of magnitude of L, whereas α > 1 implies that longer
longevities are disfavoured over to shorter ones, in line
with our argument that L is constrained by energy de-
mands.

Of course, in shaping the tecnoemission longevities
in terms of a Lindy process we are implicitly assuming
that alien technologies follow similar evolutionary paths
that terrestrial ones. However, as pointed out by Ord
(2023), the Lindy effect arises from a wide variety of
mechanisms, and can provide useful epistemic guidance
in cases when little information on lifespans exists.
Our main purpose here is to study how the adoption

of such power-law models for ρL(L) reflects on the in-
ferred longevity of technosignatures after a detection.
Our focus on power-law probability distributions also
stems from the observation that they are found to gov-
ern a variety of situations involving ranking, such as city
population, number of citations, word frequency, earth-
quake magnitude, wealth distribution, and so on (see,
e.g., Newman 2005). In addition, as we will see, power-
law distributions are flexible enough to model a wide
range of behaviors for L.
Next, we describe in more detail our statistical model

and explore its consequences.

2. THE MODEL

In formulating our model, we assume that technoemis-
sions are generated by statistically independent sources
located in the Galaxy at random positions r with respect
to the galactic center. In addition, we adopt the rather
reasonable hypothesis that the generation rate of tech-
noemissions is independent of the spatial distribution of
the emitters, so that the expected number of technoe-
missions per unit time and volume can be factorized as
Γ(t)ρE(r), where Γ(t) gives the technoemission rate at a
time t before present and ρE(r) is the PDF of the emitter
position, defined such that ρE(r)dr is the probability of
an emitter being within the element volume dr centered
around r. Here, we assume that ρE(r) is proportional
to the distribution of stars in the galactic thin disk and
adopt the following axisymmetric PDF (Grimaldi 2017;
Grimaldi & Marcy 2018):

ρE(r) =
exp(−r/rs) exp(−|z|/zs)

4πr2szs
(2)

where r is the radial distance from the galactic center, z
is the height from the galactic plane, rs = 8.15 kly, and
zs = 0.52 kly.
Since our analysis will focus on the temporal depen-

dence of Γ(t) rather than on its absolute value, we in-
troduce the (unconditional) PDF of t defined as ρt(t) =

Γ(t)/N̄ , where N̄ =
∫ TG

0
dtΓ(t) gives the average num-

ber of emitters ever existed since the birth of the Galaxy
TG ∼ 1010 yr ago. Here, we mainly adopt two models
for ρt(t): a PDF uniform in t, which corresponds to as-
suming a stationary rate in the interval 0 ≤ t ≤ TG, and
a PDF that is uniform in the logarithm of t, ρt(t) ∝ 1/t,
in the interval t ∈ [Tmin, TG], where Tmin ̸= 0 makes the
log-uniform prior integrable. Since Tmin is not expected
to be smaller than the travel time of a photon from the
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nearest extrasolar system, ≈ 1 yr, in the following we
take Tmin = 1 yr.
As already pointed out in previous studies (Grimaldi

2017; Balbi 2018; Grimaldi & Marcy 2018; Balbi &
Ćirković 2021), a necessary condition for any technoe-
mission to be potentially detectable is that it must be
located within our past light cone, that is, for a signal
generated in r at time t to be observable, the following
condition must be fulfilled:

t− L ≤ |r− ro|/c ≤ t, (3)

where |r − ro| is the distance of the emitter from the
Earth, located at the vector position ro (with |ro| ≃ 27
kly), and c is the speed of light. We note that in the
case of isotropic technoemissions, Eq. (3) is equivalent
to requiring that at present time the Earth is within
a spherical shell region of outer radius ct and thick-
ness cL filled by the emitted electromagnetic radiation
(Grimaldi 2017; Grimaldi & Marcy 2018).
The causal constraint of Eq. (3) introduces a selection

effect for the observable technoemissions, which can pro-
foundly alter the expected longevity of a detected signals
relative to the expected L coming from the underlying
distribution ρL(L). Indeed, as pointed out in Balbi &

Ćirković (2021), from Eq. (3) it follows that only tech-
nosignals of longevity greater than t − |ro − r|/c are
detectable in principle, which leads to two important
consequences. First, it introduces a correlation between
the otherwise statistically independent variables L and
t and, second, it filters out those signals that are too
short-lived to cross our planet, depending on the emit-
ter distance and the time of emission. The very event of
detection, therefore, promotes long-lived techoemissions
over short-lasting ones, as quantitatively confirmed by
Monte Carlo simulations in Balbi & Ćirković (2021) and
by a Bayesian analysis in Kipping et al. (2020), thereby
implying that the first contact will likely be with an
older technology than our own.
As remarked in the Introduction, however, there are

arguments suggesting that energy and cost constraints
and expected lifetimes of technologies might actually
make long-lived technoemissions a priori less likely than
short-lived ones, leading one to wonder what would then
be the longevity of a detected signal and the age of
its emitter. To address this issue, we assume that a
search for technosignatures has been successful in de-
tecting a signal coming from an emitter within a dis-
tance Ro from Earth. Although Ro depends on both
the technoemission characteristics and detector specifi-
cations (Grimaldi & Marcy 2018), in the following we
treat it as a free parameter representing the maximum
distance the hypothetical search is able to sample.
We follow Balbi & Ćirković (2021) and equate the

probability of detecting an emission of longevity L gen-
erated at time t with the joint probability that the
technoemission fullfils the causal condition (3) and that

|r− ro| ≤ Ro:

P (t, L;D) =

∫
drρE(r)θ(Ro − |r− ro|)ft,L(r− ro), (4)

where ft,L(r− ro) = 1 if Eq. (3) is satisfied and ft,L(r−
ro) = 0 otherwise, θ(x) is the Heaviside step function,
andD indicates the event of detection, whose probability
of occurrence is obtained by marginalizing Eq. (4) over
the underlying distributions ρL(L) and ρt(t) = Γ(t)/N̄ :

P (D) =

∫
dtρt(t)

∫
dLρL(L)P (t, L;D). (5)

Finally, partial marginalization of Eq. (4) with respect
to t and L and the use of Bayes’ theorem allow us to
write the PDFs of, respectively, L and t, conditional on
the detection:

ρL(L|D) =
ρL(L)

∫
dtρt(t)P (t, L;D)

P (D)
, (6)

ρt(t|D) =
ρt(t)

∫
dLρL(L)P (t, L;D)

P (D)
. (7)

Note that the above equations can be viewed as a
Bayesian inference of L and t, where ρL(L) and ρt(t)
are identifiable as the prior PDFs from which the poste-
riors ρL(L|D) and ρt(t|D) are inferred, given the event
of detection.
As mentioned in the Introduction, we take the under-

lying PDF of the longevity to be shaped by the Lindy
effect and adopt for ρL(L) the following power-law dis-
tribution:

ρL(L) =

{
λL−α Lmin ≤ L ≤ Lmax

0 otherwise
(8)

where λ = (1 − α)/(L1−α
max − L1−α

min ) is a normalization
constant, and Lmin = 1 yr and Lmax = 109 yr are lower
and upper limits on L which we introduce to make ρL(L)
normalizable to unity for any choice of α. Recall that
α > 1 implies a scenario in which small values of L are
favored over large ones, as should be expected if the
longevity of technoemissions is constrained by energy
demands. In the following, however, we will treat the
exponent α as a free, positive parameter to illustrate
its effect on the longevity distribution inferred from a
detection event.

3. RESULTS

We start our analysis by first exploring the scenario
in which ρt(t) is uniform in t (ρt(t) = ρt), since in this
case ρL(L|R0) can be calculated analytically. The inte-
gration over t appearing in Eqs. (5) and (6) can indeed
be performed exactly, yielding:

ρL(L|Ro) =
ρL(L)L

⟨L⟩
=

(2− α)L1−α

L2−α
max − L2−α

min

, (9)
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Figure 1. PDF of technoemission longevity L (top row) and starting time t of emissions (bottom row) calculated under the

assumption that the unconditional PDF of t is uniform over the interval [1, 1010] yr. Panels (a)-(c) show the conditional, Eq. (9)

and unconditional, Eq. (8), PDFs of L for three values of the exponent α, whereas panel (d) shows the corresponding values of

L∗ such that L ≤ L∗ with 95 % probability. Panels (e) and (f) show the PDF of t calculated numerically for different values of

α and (e) for Ro large enough to encompass the entire galaxy and (f) for Ro = 100 ly. Panel (g) shows the values of t∗ such

that t ≤ t∗ with 95 % probability calculated for different values of Ro.

where ⟨L⟩ =
∫
dLLρL(L) is the unconditional average

longevity and the second equality stems from using for
ρL(L) the power-law form of Eq. (8). It is apparent from
Eq. (9) that the probability of detecting a technoemis-
sion is proportional to its longevity, regardless of the
observational radius Ro and the spatial distribution of
the emitters. This is a consequence of using a station-
ary emission rate, whereas, as shown in the following, a
log-uniform ρt(t) does not yield such simple scaling.
As a consequence of ρL(L|Ro) ∝ LρL(L), the event

of detection can entail a significant weight shift of
ρL(L|Ro) from small to large L compared to the un-
conditional PDF, as shown in Figs. (1)(a)-(b) for α = 1
and α = 2. However, for α = 3 (Fig. 1(c)) the uncondi-
tional PDF becomes so skewed toward small values of L
that the causal constraint has little effect on ρL(L|Ro).
Borrowing a Bayesian terminology, we can say that for
sufficiently large α the prior ρL(L) is so informative that
completely determines the posterior ρL(L|Ro).

To see more quantitatively how α affects the longevity
of a detected signal, we introduce L∗ defined as the
longevity such that L ≤ L∗ with 95 % probability. For
a detected signal, this is obtained by requiring that the
integral of Eq. (9) in the interval [Lmin, L

∗] be equal to
0.95, which by isolating L∗ yields:

L∗ =
[
L2−α
min + 0.95(L2−α

max − L2−α
min )

] 1
2−α . (10)

The formula for the unconditional L∗ is obtained by
replacing 2−α with 1−α in Eq. (10). Figure 1(d) shows
that for α ≲ 1 both the unconditional and conditional
L∗ are equally large (∼ 109 yr), whereas in the interval
1 ≲ α ≲ 2 the conditional L∗ exceeds by several orders
of magnitude the rapidly decreasing unconditional L∗.
It is in this range of α that the event of detection has its
strongest selection effect. Finally, upon an increase of α
beyond α = 2, the conditional L∗ rapidly drops toward
Lmin = 1 yr, following asymptotically L∗ = 201/αLmin.
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Figure 2. PDFs of L (top row) and t of (bottom row) calculated numerically using an unconditional distribution of emission

starting times that is log-uniform over the interval [1, 1010] yr. In panels (a) and (b) the conditional PDF of L (solid lines) is

plotted different α and Ro values. Panel (c) shows the resulting L∗ for several observation radii Ro. Panels (d) and (e) show

the PDF of t calculated numerically for different values of α and (d) for Ro large and (e) for Ro = 100 ly. Panel (f) shows the

values of t∗ calculated for different values of Ro.

At this point, it is worth noting that Lindy’s law with
α > 2 arises from assuming that the future lifetime
expectancy of technoemissions is proportional to their
current age (see the Appendix). Should the duration
of technoemissions meet this requirement, therefore, we
should not expect first contact to occur with very long-
lived signals. For example, already for α = 3, we find
from Eq. (10) that the longevity of a detected signal is
smaller than 20 yr, with 95 % probability (to be com-
pared to a unconditional longevity smaller than about
4.5 yr). However, as shown by Eliazar (2017), an alter-
native mathematical definition of the Lindy effect can
be formulated through the median (instead of the av-
erage) future lifespan being proportional to the current
age. In this case, the power-law distribution of L would
have an exponent α > 1.
We turn now our attention to the conditional PDF of t

and its evolution with α, shown in Fig. 1(e) for Ro large
enough to encompass the entire galaxy and in Fig. 1(f)
for Ro of only 100 ly. Two features are apparent. First,

for α = 1 and regardless of the observation distance
Ro, the starting time of a detected signal is broadly dis-
tributed around 3×108 yr, as found by the Monte Carlo
simulations of Balbi & Ćirković (2021). This means that
among the technoemissions that do not have preferred
scale on L, those that can be detected likely have very
large longevities and were generated several millions of
years ago. The second result is that by increasing α,
the age t of a detectable signal can be considerably re-
duced, as the weight of ρt(t|D) is gradually transferred
to much smaller times, eventually forming a single peak
centered around 3×104 yr for Ro large and ∼ 102 yr for
Ro = 100 ly. This is understood by recognizing that for
α > 2 the technoemissions are so short lived (as shown
by the dashed line in Fig. 1(c)) that the causal con-
straint of Eq. (3) selects only values of t near |r− ro|/c,
whose most probable value for the emitter distribution
of Eq. (2) is at min(3× 104yr, Ro/c).
The starting emission times of a detectable signal are

summarized in Fig 1(g), where we show the computed
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time t∗ such that t ≤ t∗ with 95 % probability. Two
regimes are evident: for α ≲ 2, where the longevity is
expected to be very large, t∗ conditioned to the event
of detection is about 109 yr, whereas for α ≳ 2 the
conditional t∗ rapidly drops by several orders of magni-
tude toward times that depend on the sampled distance
Ro. From the evolution of L∗ and t∗ with α shown in
Figs. 1(d) and 1(g), we conclude therefore that the event
of detection per se does not necessarily imply that first
contact will be with very long lasting and very old tech-
noemissions, and that relatively young and short-lived
signals have the highest probability of being detected
once α ≳ 2.
The assumption of a stationary emission rate (that

is, a constant ρt(t)) is questionable in several respects,
not least the fact that the habitability of the galaxy
is itself a function of time. Adopting a PDF of t that
reproduces the main feature of the temporal dependence
of the galactic habitable zone of Lineweaver et al. (2004)
(i.e., the age of planets suitable to host complex life is
normally distributed, with mean 5.5 Gyr and standard
deviation of 2 Gyr, with a fiducial interval of 4 Gyr for
the appearance of a technological species; see also Balbi
& Ćirković (2021)) essentially replicates the results of
Fig. 1, whereas assuming a log-uniform PDF of t leads
to some quantitative changes but does not substantially
alter the conclusions reported above. First, in contrast
with the case of a constant ρt(t), the conditional PDF
of the longevity depends on the sampled distance Ro,
as summarized in Figs. 2(a)-(c). In addition, we find
that the selection effect of Eq. (3) is less effective in
promoting large conditional longevities, as seen by the
L∗ versus α plot of Fig. 2(c). Second, compared to the
case ρt(t) = constant, an increase of α entails a more
rapid weight shift of the conditional PDF of t toward
min(3× 104yr, Ro/c), as shown in Fig. 2(d)-(f).

4. DISCUSSION AND CONCLUSIONS

The main conclusion of our analysis is that assum-
ing different power-law shapes for the probability dis-
tribution of technosignature longevities has a sizable ef-
fect on the most likely duration of detected technosigna-
tures. We confirmed previous findings that showed that
the expected longevity of detected technosignatures will
generally be very large (Kipping et al. 2020; Balbi &

Ćirković 2021), but we showed that this is strictly true
only for rather uniformative priors, with α not too dif-
ferent from 1. In particular, we found that in the regime
1 ≲ α ≲ 2 the most likely technoemissions to be detected
have L ∼ 109 yr (with 95% confidence).
However, when we make the reasonable assumption

that short-lived technoemissions vastly outnumber the
long-lived ones (as it is the case if their operation has
an energy or maintenance cost that increases with time),
then the first to be detected will likely have a relatively
short L. This starts to become apparent for power-law
distributions with α ≳ 2 (characteristic of a Lindy ef-

fect behavior); for α > 3 the preference for large L es-
sentially disappears, with the most likely to be detected
having L much smaller than ∼ 102 yr (at 95% confi-
dence; Fig. 1(d)). This is a significant departure from
previous studies.
The selection effect is further reduced if we assume

that the epoch of appearance of technosignatures over
the history of the Galaxy has a log-uniform (rather than
uniform) distribution in t. In this case, already in the
regime α ≳ 1 the most likely detected longevity is well
below ∼ 109 yr, regardless of the radius of the surveyed
volume (Fig. 2c).
A final point is worth discussing; namely, what is the

number of emitters N̄ that had to appear, over the his-
tory of the Galaxy, in order that, typically, one of them
satisfies the condition of Eq. (3), and is therefore de-
tectable today from Earth? The answer, again, depends
on the assumed distribution of L, and is obtained by
requiring that N̄P (D) = 1, where P (D) is the detection
probability given in Eq. (5). Figure 3 shows

N̄ =
1

P (D)
(11)

calculated as a function of the exponent α for uniform
in t (Fig. 3(a)) and log-uniform in t (Fig. 3(b)) distri-
butions of the unconditional starting times of emission.
In both cases, N̄ increases by several orders of magni-
tude as α goes from α ≲ 1, where it takes only a few
long-lived technoemissions to have typically one detec-
tion, to α ≳ 2, where there must be many short-lived
ones for one to be detectable. In particular, if the epoch
of appearance is uniformly distributed over the history
of the Galaxy (Fig. 3(a)), then N̄ ≈ 1010 for α ≳ 2 and
Ro such that the entire Milky Way is sampled. This
would imply a constant rate of about one technoemis-
sion per year generated over the last ≈ 10 Gyr, as seen
in Fig. 4 for α = 3, where we show that a similar rate
would also occur during the last ≈ 3 Gyr if the PDF of
t followed a normal distribution. Although high, rates
of this magnitude do not exceed those of some natural
astrophysical phenomena, such as star formation and no-
vae in the Milky Way. For a log-uniform emission rate,
Fig. 3(b), we find that N̄ can be reduced by several or-
ders of magnitude compared to the previous scenarios.
However, since in this case ρt(t) ∝ 1/t, the rate would
be such that 20 % of the total number of emissions ever
produced, N̄ ≈ 5 × 105, must be generated only in the
last 100 yr.
Reducing the sampled volume inevitably increases N̄ ,

as seen in Fig. 3 for different values of Ro, leading to
exceedingly high emission rates. This is because P (D)
becomes small for reduced Ro, thus leading N̄ to in-
crease in order to have one detectable technoemission,
especially if α is large. It is worth pointing out, how-
ever, that if the emitters were less uniformly distributed
than the density profile of Eq. (2), different estimates of
N̄ would then be expected. Assuming for example that
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Figure 3. Number of technoemissions ever generated over the history of the Galaxy as a function of the longevity exponent α.

N̄ is calculated from Eq. (11) using a uniform in t (a) and a log-uniform in t (b) probability disribution of the time of occurrence

of technoemissions. Results are shown for different values of the sampled radius Ro.
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Figure 4. Technoemission rates calculated from Γ(t) =

N̄ρt(t) for uniform, log-uniform, and normally distributed

PDFs of t. For all cases, N̄ is calculated for the entire galaxy

and for α = 3.

our planet belongs to a more or less localized cluster of
planets harboring technological species, then N̄ could
be greatly reduced, in analogy to what would happen
to the number of biospheres in a panspermia scenario
(Balbi & Grimaldi 2020).

APPENDIX

A. LINDY’S LAW

Lindy’s law derives from the empirical observation
that the future lifetime of non-perishable things such
as technology increases with its current age. Here we
show that if we assume that the future life expectancy
of technoemissions is proportional to their current age,
then the PDF of their longevities follows the power-law
of Eq.(6) with α > 2. In the following derivation, we
adapt the formulation of Eliazar (2017) to our notation.

We denote ρL(L) the unconditional PDF of the
longevity, which we treat as a random variable XL de-
fined in the interval [Lmin, Lmax]. The corresponding
complementary cumulative distribution function (also
known as survival function) is PL(L) =

∫∞
L

dsρL(s),
from which we have also that ρL(L) = −P ′

L(L). In
terms of the random variable XL, Lindy’s law can be
formulated as:

E[XL − L|XL ≥ L] = aL (A1)
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where a is a positive constant of proportionality. The
left-hand side of (A1) can be written in terms of ρL and
PL as follows:

E[XL − L|XL ≥ L]=

∫∞
L

ds(s− L)ρL(s)∫∞
L

dsρL(s)

=−
∫∞
L
ds sP ′

L(s)

PL(L)
− L. (A2)

Equating the right-hand sides of Eqs. (A1) and (A2),
and derivating the resulting equation with respect to L
we obtain:

LP ′
L(L) = (1 + a)PL(L) + (1 + a)LP

(
LL), (A3)

which can be rearranged to obtain the following differ-
ential equation for PL:

P ′
L(L)

PL(L)
= −1 + a

a

1

L
, (A4)

whose solution is PL(L) ∝ L−(1+1/a), and hence using
ρL(L) = −P ′

L(L):

ρL(L) ∝ L−α, (A5)

where α = 2 + 1/a. Since a > 0, we obtain therefore
α > 2.

REFERENCES

Balbi, A. 2018, Astrobiology, 18, 54,

doi: 10.1089/ast.2017.1652

Balbi, A., & Grimaldi, C. 2020, Proceeding of the National

Academy of Sciences, 117, 21031,

doi: 10.1073/pnas.2007560117
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