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We analyze consequences of trying to replace dark matter and dark energy with models of stochas-
tic spacetime. In particular, we analyze the model put forth by Ref. [1], in which it is claimed that
“post-quantum classical gravity” (PQCG), a stochastic theory of gravity, leads to modified Newto-
nian dynamics (MOND) behavior on galactic scales that reproduces galactic rotation curves. We
show that this analysis has three basic problems: (i) the equations of PQCG do not lead to a new
large scale force of the form claimed in the paper, (ii) the form claimed is not of the MONDian
form anyhow and so does not correspond to observed galactic dynamics, and (iii) the spectrum of
fluctuations is very different from observations.

I. INTRODUCTION

An outstanding problem in modern physics is the suc-
cessful unification of quantum mechanics and gravity. An
interesting approach to this problem has been put for-
ward in Refs. [2–4] in which matter is treated quantum-
mechanically, while gravity is treated classically; this is
dubbed “post-quantum classical gravity” (PQCG). The
coupling is such that gravity becomes effectively stochas-
tic. Whether this framework truly leads to an internally
consistent theory is beyond the scope of this paper.

What is relevant to this paper is the possibility of such
theories leading to large scale testable predictions. Very
interestingly, in Ref. [1] it was claimed that PQCG in-
deed does so, namely that it leads to a new long range
force between matter of the modified Newtonian dynam-
ics (MOND) form; the form that can reproduce galactic
rotation curves [5–8]. While it would be very interest-
ing if the unification of gravity and quantum mechanics
leads to such large scale effects. Here we point out that
the PQCG theory of the form presented in [1] does not
in fact lead to anything like MONDian dynamics. Fur-
thermore, we show that the theory has a very different
spectrum of fluctuations than that observed. Whether
some other variation of this framework improves upon
this is beyond the scope of this paper.

II. THE NEWTONIAN LIMIT OF PQCG

The full PQCG theoretical framework is an interesting
theory in which quantum dynamics of matter and clas-
sical dynamics of gravity are coupled together in a novel
way. Nevertheless, the dynamics can be encoded in an
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action [3]. The full relativistic theory is somewhat com-
plicated. However, for the purpose of studying galactic
dynamics, we only need to pay attention to the low ve-
locity limit of the theory as the characteristic speeds of
gas, stars, and satellites in a galaxy are orders of mag-
nitude slower than the speed of light (we set c = 1). In
Ref. [4], the low velocity limit of the theory is explained
to be given by the following effective action (see Section
VI for some discussion of relativistic corrections)

I = −α
∫
dt d3x

(
∇2Φ− 4πGNρ(x)

)2
(1)

(with additional contributions for the matter degrees of
freedom), where Φ is the gravitational potential, ρ is the
matter mass density, and α > 0 is a constant pre-factor.
This action determines the evolution of a probability dis-
tribution ϱ for the the gravitational field Φ through a
path integral whose integrand is weighted by a factor
∝ exp(I). So configurations that maximize this action I
can dominate the space of paths; we shall refer to these
as the “most probable paths” (MPPs) (in the literature,
it is sometimes just a “typical” path that is called a MPP
accounting for fluctuations around the mean; we return
to this later). The corresponding gravitational potential
is denoted ΦMPP. Stochastic fluctuations around this are
exponentially suppressed, depending on the magnitude
of the dimensionless constant α (see ahead to Section
VB for the issue of absorbing a temporal factor into α to
make this more precise). If α is sufficiently large, then we
can ignore such fluctuations. However, if α is sufficiently
small, we cannot; this latter case shall be analyzed in
Section V.
If no specific boundary conditions are specified, then

the most probable path simply minimizes the factor in
brackets in Eq. (1). This gives the standard Newtonian
potential ΦMPP = ΦN obeying the Poisson equation

∇2ΦN = 4πGNρ(x) (2)

However, if one specifies boundary conditions on Φ and
∇Φ (both because the action is 4th order in derivatives),
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then one is not guaranteed to be able to satisfy the Pois-
son equation. In this case, the extremal path arises from
extremizing Eq. (1). The corresponding Euler-Lagrange
variation readily leads to the equation for ΦMPP

∇4ΦMPP = 4πGN∇2ρ (3)

This is evidently just the standard Poisson equation for
Newtonian gravity; however, it has an additional Lapla-
cian operator on both sides of the equation; we will refer
to it as the modified Newton equation (MNE).

III. SOLUTION OF MODIFIED POISSON
EQUATION WITH SPHERICAL SYMMETRY

For this section and the next, we work under the as-
sumption that the fluctuations are small, leaving us with
the MNE as the relevant equation for Φ assuming some
non-trivial boundary conditions are imposed (then we in-
clude fluctuations in Section V). The MNE is so similar
to the standard Poisson equation for Newtonian gravity
that we should expect very similar behavior with only
subtle differences. However, Ref. [1] claimed that there
are dramatic differences. To unpack this, let us consider
a localized source and consider the region outside of the
source where ρ = 0. In this vacuum region of space, the
equation reduces to

∇4ΦMPP = 0 (in vacuum) (4)

This equation has infinitely many solutions. How-
ever, as a first step, let us consider spherically symmetric
boundary conditions. There is no obvious reason for this
assumption (see Section V for a more general analysis)
but it will be useful to identify some key features.

With the assumption of spherical symmetry, the gen-
eral solution of this equation away from r = 0 is

ΦMPP =
κ−1

r
+ κ0 + κ1 r + κ2 r

2 (5)

where κ−1,0,1,2 are constants in space, although it is not
obvious they should be static in time unless static bound-
ary conditions are imposed (see below for more discussion
of time dependence). By comparing to the Newtonian
theory, we can easily identify

κ−1 = −GM (6)

where M is the mass of the source, and so the usual
Newtonian solution is readily recovered for small r. The
κ0 term is a constant and has no direct consequences. Let
us now turn to the next pair of contributions; neither of
these solve the usual Poisson equation in vacuum and
hence are of high interest.

A. Quadratic Term

Let us start by examining the κ2 r
2 term. As Ref. [1]

notes, if we write

κ2 = −Λ

6
(7)

then it can play a similar role to a cosmological constant
Λ. However, this relies upon the important assumption
that is is static in time. Ref. [1] claims that indeed it
should be static as this derives from a relativistic theory.
This argument is unsatisfying as it in fact depends on
the choice of boundary conditions and it is not clear why
one would impose such static boundary conditions in an
expanding universe; naively it could change on the order
the Hubble time or other dynamical timescales in the
problem. But we shall not develop this point further
here.
In any case, if κ2 = −Λ/6 is static, its consequences

can be understood as follows: For very large r the ac-
celeration is −∇ΦMPP ≈ Λ r r̂/3. By equating this to
ẍ = r̈ r̂, we have the differential equation r̈ = Λ r/3. This
simple differential equation has the exponential solution
r ∝ exp(

√
Λ/3 t) as is appropriate for a cosmological con-

stant. While this is amusing, we note that including a
cosmological constant within classical general relativity is
completely standard. So there is nothing obviously new
here. In fact the situation is worse here, as one needs to
impose that κ2 is static and to impose spherically sym-
metry boundary conditions. These assumptions are not
needed in general relativity, as the space-time invariance
of Λ is locked in by internal consistency of the 2 degrees
of freedom of the graviton and local Poincare symmetry.

B. Linear Term

Now let us turn to the term of most interest; the κ1 r
term. This is the term that is claimed to be responsible
for MONDian dynamics in Ref. [1], as we discuss in the
next section. The presence of a linear term is in fact the
first problem in this analysis, as we discuss now. While
it is true that ∇4r = 0 away from r = 0, it is not true
at r = 0 (as already noted in Ref. [1]). Recall that the
Laplacian in spherical coordinates is

∇2 = ∂2r +
2

r
∂r (8)

Let us denote Φ1 ≡ κ1 r, we then have

∇2Φ1 =
2κ1
r

(9)

and in turn we have

∇4Φ1 = −8π κ1 δ
3(x) (10)

Now, while this reproduces the desired ∇4Φ = 0 for non-
zero r, it cannot match onto a localized source. In order
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to obey the MNE in all of space, one would need a mass
density ρ1(x) that obeys

GN∇2ρ1 = −2κ1 δ
3(x) (11)

This would require a mass density that is itself de-
localized as it would need to obey

ρ1 ∝ 1

r
(12)

and hence one would never be in the actual vacuum in
the first place. So, in fact, the new linear term κ1 r is
forbidden when one considers the full solution. Stated
differently, the only situation in which there is a linear
term for ΦMPP is when there is a 1/r mass density pro-
file; but this is already a property of Newtonian gravity
anyhow, and so this is not new after all.

Instead, the most general solution of the MNE equa-
tion can be written as

ΦMPP = ΦN +Φh (13)

where these contributions obey

∇2ΦN = 4πGNρ, ∇4Φh = 0 (14)

where ΦN is the standard potential of Newtonian grav-
ity, and Φh obeys the homogeneous form of the MNE
throughout all space, not just in vacuum. For spheri-
cally symmetric configurations, the only solution for Φh

(apart from a constant) is just the quadratic term

Φh = κ2 r
2 (15)

as already discussed above. So in this theory, the only
new contribution to Newtonian gravity is a cosmological
constant term, but the claimed new linear term is κ1 r is
in fact forbidden.

C. Another Derivation

To be extra careful, let us derive the absence of the
linear term from another point of view. Suppose we take
the MNE (3) and integrate it over a ball of radius R∫

ball

d3x∇4ΦMPP = 4πGN

∫
ball

d3x∇2ρ (16)

By the divergence theorem we can write both sides as a
boundary integral over the sphere of radius R∫

sphere

d2S ∂r(∇2ΦMPP) = 4πGN

∫
sphere

d2S ∂rρ (17)

Now if we are in vacuum ρ = 0 at some finite radius R,
then the right hand side vanishes. Furthermore if we have
spherical symmetry, then the angular integral on the left
hand side is just a factor

∫
sphere

d2S = 4πR2. This leaves

us with the requirement

∂r(∇2ΦMPP)
∣∣∣
r=R

= 0 (in vacuum, R > 0) (18)

Again using spherical symmetry, we can re-write this as

∂r(∂
2
rΦMPP +

2

r
∂rΦMPP)

∣∣∣
r=R

= 0 (in vacuum, R > 0)

(19)
The general solution of this 3rd order differential equa-
tion is

ΦMPP(r) =
κ−1

r
+ κ0 + κ2r

2 (20)

(replacing R→ r for ease of notation), where κ−1, κ0, κ2
are constants. As mentioned above, κ−1 = −GM , κ0
is an irrelevant constant in the Newtonian limit, and κ2
plays a role akin to the cosmological constant under the
assumption that it is static.
However κ1r does not solve Eq. (19) in any sense. If

we try Φ1 = κ1r we obtain

∂r(∂
2
rΦ1 +

2

r
∂rΦ1) = −2κ1

r2
(21)

which in no sense vanishes. Instead we see that this re-
quires ρ ̸= 0 and so we are not in the vacuum. By re-
turning to Eq. (17), we see that this requires

−2κ1
r2

= 4πGN∂rρ (22)

Hence we would require

ρ =
κ1

2πGN r
(23)

(up to a constant). So this requires ρ ∝ 1/r and so we
would definitively not be in the vacuum; so this is not
a black hole solution at all. This confirms the points
already made above.
In fact more generally, if we assume a power law

Φp = κpr
p, we have the requirement to actually be in

the vacuum (away from r = 0) of

∂r(∂
2
rΦp +

2

r
∂rΦp) =

κp(p− 2)p(p+ 1)r−3+p = 0 (in vacuum, r > 0) (24)

Which requires either p = −1, p = 0, or p = 2, which are
the solutions given above in Eq. (20).
Let us stress again that even obtaining the cosmolog-

ical constant-like, κ2 r
2, correction relies upon the as-

sumptions of static corrections, spherically symmetric
boundary conditions, and ignoring fluctuations around
the mean. When including fluctuations and/or relaxing
spherical symmetry, the more general form of the poten-
tial will be determined in Section V, finding corrections
that appear to be incompatible with observations.

IV. (NON)-MONDIAN DYNAMICS

Let us proceed further. Even though the linear
term κ1 r is forbidden when the equation is solved self-
consistently, let us discuss its consequences anyhow, as
this was the second focus of Ref. [1].
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Following Ref. [1], let us compute the acceleration on
scales small enough that the κ2 r

2 is not important; galac-
tic scales. Then we have

ẍ = −∇ΦMPP = −GM
r2

r̂ − κ1r̂ (25)

Neither of these contributions to the acceleration (1/r2

and a constant) look relevant to MONDian dynamics.
The basic idea of MOND in Refs. [5–8] is that there is a

new contribution to the acceleration which is ∝
√
M/r.

It is the
√
M/r law that is able to reproduce asymptot-

ically flat rotation curves and the Tully-Fisher relation
M ∝ v4. There is no evidence that an asymptotically
constant acceleration would be relevant, as it would pro-
duce asymptotic velocity curves growing with radius as√
r, rather than flat (this readily follows from considering

circular behavior with centripetal acceleration a = v2/r).

To overcome this, in Ref. [1] the manipulation was then
to square the above expression

(ẍ)2 =

(
GM

r2
+ κ1

)2

(26)

=
G2M2

r4
+ κ21 +

2GMκ1
r2

(27)

Then by considering the large r region, the first term can
be ignored, giving

(ẍ)2 ≈ κ21 +
2GMκ1
r2

(28)

Then it was indicated that, apart from the constant term,
the remaining 2GMκ1/r

2 term can obtain MOND. By
taking a square root to recover the acceleration, this ap-
pears to give the desired ∝

√
M/r force law of MONDian

dynamics. And the constant pre-factor κ1 is to play the
role of a0/2 of MOND, where a0 ∼ 10−10 m/s2 is the crit-
ical acceleration in which Newton’s law transitions from
1/r2 to 1/r.

However, this procedure is incorrect and is the second
problem in the analysis. One cannot take a sum of two
terms, 1/r2 and constant, square the sum, and note that
there is a cross term whose square root has a geometric
mean of the desired

√
M/r form.

Instead the acceleration is Newton’s GNM/r2 plus a
constant. And there is no evidence that a constant cor-
rection helps to reproduce the observed galaxy rotation
curves. Test particles do not respond to other objects in
a way independent of their distance or mass.

Moreover, as stated in the previous section, the con-
stant (arising from the gradient of the linear κ1 r term) is
actually absent when the MNE is solved properly. Thus,
one in fact only has Newtonian gravity, and one can in-
clude a cosmological constant (from κ2 r

2) if desired by
imposing static and spherically symmetric boundary con-
ditions.

V. FLUCTUATIONS

In an updated version of Ref. [1], the status of the
linear term has been demoted from a vacuum solution (as
we showed it is not) to just be a representative possible
fluctuation from the path integral. However, while it is
true that all paths can contribute to the path integral, a
term of the form ∝ r is of no more significance than any
other power, as it does not solve the equation of motion.
As can be seen in Eq. (24), it is as arbitrary as all sorts
of other power laws, such as r3 or r4 or 1/r2 or 1/r3, etc,
which do not solve the equation either.
In fact the situation is even much worse: there is no

reason for the fluctuations to be spherically symmetric
or even approximately so. In order to actually study the
properties of the fluctuations, we need to return to the
probability density function. A careful analysis of this
will show a third problem in the analysis.
A general potential configuration can be written as

Φ = ΦN + ϕ (29)

where ΦN is the usual Newtonian potential obeying the
standard Poisson equation ∇2ΦN = 4πGNρ and ϕ is a
perturbation. By inserting this into the action of Eq. (1)
we have

I = −α
∫
dt d3x

(
∇2ϕ(x)

)2
(30)

Exponentiating this ∼ eI and integrating gives a proba-
bility update rule (see ahead to Eq. (33) for the precise
statement of this).

We see that the matter density ρ has dropped out of
this. As an application; if there is a black hole, there is no
reason for the fluctuation ϕ to be spherically symmetric
with a singular function ϕ ∝ r (non-differentiable around
r = 0) as the location of the black hole is not present in
this expression. Of course, if there is a non-zero ϕ present
in the early universe, matter may be attracted to local
minima in it, but it will not be exactly at the minimum,
nor will it be singular like r.

A. Boundary Conditions

Let us make a note on boundary conditions here. We
could go a step further and decompose

ϕ = Φh + ϕ̃ (31)

where Φh obeys ∇4Φh = 0 as introduced earlier. One
can use Φh to enforce boundary conditions, while leaving
ϕ̃ to obey trivial boundary conditions; ϕ̃|bdy = 0 and

∇ϕ̃|bdy = 0. (Under the assumptions of static, spherically
symmetric boundary conditions, we can have Φh = κ2 r

2

modulo corrections from ρ, as discussed above.) If we
do this, then one can readily use integration by parts to
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write the action as

I = −α
∫
dt d3x

((
∇2Φh(x)

)2
+
(
∇2ϕ̃(x)

)2
)

(32)

The fact that there is no linear term in ϕ̃ is precisely
what the Euler-Lagrange variation ensures. When expo-
nentiated, the first term is just a constant prefactor that
implements boundary conditions, while the second term
gives a probability distribution rule for fluctuations ϕ̃.
This shows that the probability distribution for fluctua-
tions ϕ̃ are in fact uncorrelated with Φh (such as κ2 r

2.)
In Ref. [1] even the κ2 r

2 gets treated probabilistically
and therefore it is not really a fixed boundary condition.
In this case, we should actually just return to ϕ as the
generic form of any fluctuation about the Newtonian po-
tential ΦN and study the full distribution.

B. Full Distribution

Let us now examine in some detail the actual distribu-
tion. Often probability distributions can have interest-
ing temporal dependence through the dt integral, giving
a rule for how to update the distribution from an initial
time ti to a final time tf , as

ϱ(ϕ; tf ) = N
∫
Dϕ exp

[
−α

∫ tf

ti

dt d3x(∇2ϕ(x))2
]
ϱ(ϕ; ti)

(33)
whereN is a normalization constant. However, in Ref. [1]
it is suggested that it should be static in this Newtonian
regime. As mentioned earlier, one may anticipate im-
portant temporal variation on the Hubble time as the
universe expands or on other dynamical time scales. So
a static assumption is not clearly justified.

In fact as written the form presented is not well de-
fined, as there are no time derivatives in this action. This
means that in the path integral each moment in time is
decoupled from the others. By breaking up the integral

over time into a Riemann sum
∫ tf
ti
dt → ϵ

∑f
i , where

ϵ = dt is the time step, we see that the probability distri-
bution factorizes and so all earlier times become unim-
portant. In the continuum ϵ = dt → 0 limit, we then
have an un-normalized distribution, unless one sends the
factor α → ∞ to compensate. If one does this, or if one
simply introduces a hard cut off in time (ϵ remains fi-
nite), then one can normalize the distribution, but one
should expect the distribution to jump around in time
in an uncorrelated fashion. It could be that when one
includes the contribution to the path integral from the
(quantum) matter degrees of freedom, the situation is al-
tered; we do not develop this issue further here. But we
do consider relativistic corrections in Section VI, which
can provide time derivatives.

For now, we shall proceed as is done in Ref. [1] by ig-
noring the dt integral and the temporal dependence. If
there are no prior fixed boundary conditions, then the

probability distribution for a fluctuation ϕ at any mo-
ment in time is the Gaussian distribution

ϱ(ϕ) = Ñ exp

[
−αT

∫
d3x(∇2ϕ)2

]
(34)

where αT ∼ α ϵ has units of length (we set c = 1 here; if
we reinstate factors of c, it has units of time4/length3).
We note that technically one must implement some

boundary conditions on ϕ, or otherwise this distribution
is not normalizable, since if we shift ϕ → ϕ + ψh, where
∇2ψh = 0 obeys the Laplace equation, there is no change
in probability. If boundary conditions are enforced on the
scale of our horizon, it can have an impact on comparable
scales, but should not be relevant on the scale of individ-
ual galaxies as they are orders of magnitude smaller than
the Hubble scale. However if we imagine implementing
the boundary conditions on a scale much larger than our
horizon, there should be no change in the bulk distribu-
tion, and so these details will be unimportant. We shall
assume this simpler setup in the following.

C. Power Spectrum

It is convenient to switch to Fourier space, giving

p(ϕ) = Ñ exp

[
−αT

∫
d3k

(2π)3
k4|ϕk|2

]
(35)

Such a Gaussian distribution is characterized by its 2-
point correlation function

⟨ϕk ϕ∗k′⟩ = (2π)3δ3(k− k′)Pϕ(k) (36)

where the power spectrum Pϕ(k) is read off to be

Pϕ(k) =
1

2αT k4
(37)

We note that since this is all derived in the Newtonian
approximation, we only expect it to apply on sub-horizon
scales, i.e., k ≳ H0 the Hubble constant.
In position space, the corresponding 2-point correla-

tion function is

⟨ϕ(x)ϕ(y)⟩ =

∫
d3k

(2π)3
eik·(x−y)Pϕ(k) (38)

=

∫
d ln k

sin(kL)

kL

k3 Pϕ(k)

2π2
(39)

where L = |x − y| is the distance between 2 points of
interest. Here the lower end of the k integral should be
cut off at k ∼ H0, while the upper end of the integral
doesn’t obviously need to be cut off since it is sufficiently
UV soft (we shall revisit this when studying the acceler-
ation below).
To get some intuition for this, we see that the char-

acteristic fluctuation in ϕ on a scale k ∼ 1/L is (the
standard deviation per log interval)

σk =

√
k3 Pϕ(k)

2π2
=

1

2π
√
αT k

(40)
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In Ref. [1] the value of αT is taken to be

αT ∼ 0.01/
√
Λ ∼ 0.01/H0 (41)

This was selected to ensure that the variance of κ2 is of
the right order of magnitude. (This follows from set-
ting ϕ = κ2 r

2, inserting into the above distribution
(34) to obtain ϱ(ϕ) ∝ exp(−36αT V κ

2
2), with volume

V = (4π/3)H−3
0 , giving ⟨κ22⟩ = H3

0/(96παT ). By de-
manding the standard deviation is of the order of the
observed κ2 = −Λ/6 and using the fact that the ob-
served cosmological constant is a significant fraction of
the energy of the present universe, Λ ∼ 3H2

0 , we obtain
the above αT ).

1. Dark Energy Behavior

In this full analysis, we see that this corresponds to
having fluctuations be O(1) on the scale of the horizon
k ∼ H0. This allows one to try to claim that one has a
kind of dark energy. However, we see here that there is
no reason for such a fluctuation to be spherically sym-
metric, or precisely of the quadratic form κ2 r

2, unless
one imposes this constraint by hand. Hence one is not in
fact actually recovering a kind of cosmological constant
as a likely fluctuation. In stark contrast, O(1) fluctua-
tions on the scale of the horizon are more statistically
likely to lead to black hole formation.

2. Large Scale Structure

Moreover, on sub-horizon scales, we can test if this
spectrum of fluctuations is compatible with observations.
The concordance model (CM) in cosmology with baryons,
dark matter, and dark energy has a spectrum of fluc-
tuations for Φ = ΦN (deterministic, but arising from
∇2ΦN/a

2
s = 4πGρ̄mδm = 3H2Ωmδm/2 due to inhomo-

geneous matter δρm = ρ̄m δm drawn from some distribu-
tion). This is known to be nicely compatible with ob-
servations. In linear theory, it takes on the form (for a
review, see Ref. [9])

PCM(k, as) =
9π2

2
δ2H Ω2

m,0

kns−4

Hns−1
0

T 2(k)

(
D(as)

asD(1)

)2

(42)
where as is the scale factor with as = 1 today, D(as) is
the so-called growth factor, and Ωm,0 ≈ 0.25 is today’s
fraction of matter in the CM. The overall amplitude of
fluctuations δH and the spectra tilt ns are measured to
be

δH ≈ 5× 10−5, ns ≈ 1 (43)

(with ns = 0.96 − 0.97 the more precise value). The so-
called transfer function takes on the approximate asymp-

totic forms

T (k) =

{
1, k ≲ keq
12k2

eq

k2 ln
(

k
8keq

)
, k ≫ keq

(44)

(up to wiggles from baryon-acoustic-oscillations) where
the break is provided by the scale of matter-radiation
equality

keq ≈ 0.073Mpc−1Ωm,0h
2 (45)

Using the fact that ns is close to 1, we have the spectrum
today as = 1 of

PCM(k) ∼ 10−8 k−3 T 2(k) (46)

Importantly, this spectrum is consistent with a range
of cosmological surveys (for example, see Section 4 of
Ref. [10] for a review). By using the fact that baryons
respond to the gravitational potential through a = −∇Φ
in the CM, one obtains the observed spectrum given in
Figure 1. The spectrum plotted is not quite PCM, but a
re-scaled version given by

Pm,CM(k) =
4

9Ω2
m,0H

4
0

k4 PCM(k) (47)

On the other hand, by performing this re-scaling of
PQCG in eq. (37), one has

Pm,ϕ(k) =
2

9Ω2
m,0H

4
0 αT

≈ 1013
(
0.01/H0

αT

)
(h−1Mpc)3

(48)
i.e., a flat spectrum. (In the CM, Pm,CM is physically
interpreted as the “matter power spectrum”, while in
PQCG it does not directly have this interpretation as
the fluctuations ϕ have no source. But what we observe
are the effects of the gravitational potential, and so this
factor of (4k4/(9Ω2

m,0H
4
0 ) can be viewed as just a conve-

nient re-scaling.)
We see that the prediction from PQCG of a flat power

spectrum in the Pm(k) variable is very different from the
observed power in Figure 1. By comparing Eqs. (37) and
(46), if αT ∼ 0.01/H0 as chosen in Ref. [1], then the
power in PQCG is ≈ 10 orders of magnitude too large
on the scale of the horizon. And furthermore, it remains
far too large even for modes that are several orders of
magnitude within the horizon. This spectrum is clearly
ruled out by observations.
To get some intuition for its impact, consider a test

particle (baryon) subject to this new acceleration: a =
|∇ϕ|. The typical value for this on a scale L is

a ∼ σk/L ∼
√
k/αT /(2π) (49)

We should compare this to the characteristic acceleration
normally experienced by a particle in a standard FLRW
universe from matter

aFLRW =
GMenc

L2
=

1

2
ΩmH

2L ∼ H2/k (50)
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FIG. 1. Observed power spectrum of fluctuations from a range
of observations extracted to today. This Figure is taken from
Ref. [10]. This can be understood as the gravitational poten-
tial Φ fluctuations, but with a re-scaled factor, according to
Eq. (47). By comparison, the PQCG makes a prediction of a
flat spectrum, whose amplitude is controlled by the parameter
αT , as given in Eq. (48). Both the amplitude (for anything
near the suggested αT ∼ 0.01/H0) and the shape are clearly
incompatible with observations.

(in a matter era). The typical scales on which a re-
gion collapses away from the cosmic expansion is when
a ≳ aFLRW. By comparing these last 2 expressions at
the present epoch H = H0, we see that if αT ∼ 0.01/H0,
then collapse can occur for all sub-horizon modes k ≳ H0.
Thus leading to a radically altered universe, looking noth-
ing at all like ours.

3. Galactic Behavior

Alternatively, one could try to avoid these huge fluc-
tuations on large scales by increasing αT by at least 10
orders of magnitude to be

αT ≳ 108/H0 (51)

so that these fluctuations are no larger than the observed
fluctuations on the scale of the horizon today. However
this leads to a spectrum that is then much lower than
the observed spectrum on sub-horizon scales due to the
faster fall off (1/k4 versus 1/k3). For k ≫ keq it does not
have the observed break in the spectrum (and could then
potentially be too large depending on αT ). By comparing
the flat prediction of PQCG in Eq. (48) to the observed
spectrum of Figure 1, we see that it is clearly different.

Moreover, it is also much lower on galactic scales, since
the actual spectrum is enhanced relative to the linear
theory summarized above due to nonlinear dynamics. In
typical halos like the milky way Φ ∼ 10−6, while this
theory would then be bounded by σk ≲ 10−5

√
H0/k;

so for k ≫ 102H0 (which is true for known galaxies

whose flattened rotation curves start around ∼ 10 kpc)
then σk ≪ Φ. For known galaxies whose flattened ro-
tation curves start around r ∼ 10 kpc, one might esti-
mate k ∼ 2π/(4 × 10 kpc) (so that r ∼ 10 kpc corre-
sponds to a quarter wavelength), then k/H0 ∼ 106, giv-
ing σk/Φ ≲ 10−2. Thus making these fluctuations too
small to directly explain galactic rotation curves.
Also, for these large values of αT , it means that this

mechanism would be completely irrelevant for mimick-
ing dark energy as a stochastic fluctuation. Dark energy
would then have to merely arise from an imposed bound-
ary condition provided by Φh and the statistical fluctua-
tions in this setup become cosmologically irrelevant.

4. Small Scale Behavior

On much smaller scales, there is another problem. The
2-point correction function for a test particle’s (baryon)
acceleration a = −∇ϕ is

⟨a(x) · a(y)⟩ =

∫
d ln k

sin(kL)

kL

k3 Pa(k)

2π2
(52)

=
1

8παTL
(53)

where we used Pa(k) = k2 Pϕ(k) = 1/(2αT k
2). This is

just the more precise version of the earlier estimate in
Eq. (49). (Here the infrared part of the integral is soft,
so we extended the integral to k → 0.) We note that if we
were to compute the variance in a particle’s acceleration
by taking y → x (i.e., L → 0) this diverges. Hence
this theory is again not well defined. However, one can
imagine a cut off kUV on the UV k-modes to regulate this
(perhaps near the Planck scale or so).
For a collection of nearby particles, separated by a

scale L above the cut off, this formula tells is that their
stochastic relative acceleration can be quite large. For
earth based Cavendish-type tests of gravitation, the ac-
celeration is suppressed by a factor of M the mass of the
source. However, in this theory there is no suppression
by the mass of the source. So even though this is a con-
tribution to the acceleration that on small distances, only
rises as a ∝ 1/

√
L, rather than Newton’s inverse square

law, the fact that there is noM suppression means it can
be relatively large on small scales.
For example, in Ref. [11] objects of massM ∼ 30 gm at

a distance of r ∼ 30mm have been measured and found
to agree with Newton’s law to good precision (there are
multiple updates to smaller distances, but we take this
as an informative starting point). This is an acceleration
of

aN =
GM

r2
≈ 2× 10−9 m/s

2
(54)

On the other hand, if we consider the stochastic contri-
bution above on the same scale L = 30mm, we have√

⟨a · a⟩L=30mm ≈ 9× 103√
αT H0

m/s
2

(55)
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Hence this is orders of magnitude too large. In order for
this new, as yet unobserved, stochastic contribution to be
smaller than the observed acceleration, we have a much
tighter bound on αT of

αT ≳ 2× 1025/H0 (56)

For these extremely large values of αT (compare to the
αT ∼ 0.01/H0 chosen in Ref. [1]) the effects on cosmologi-
cal scales are completely irrelevant as the power spectrum
is reduced by some 27 orders of magnitude.

Perhaps by including temporal stochastic behavior (see
next section) the net effect on acceleration will be re-
duced, thus allowing for smaller values of αT ; but this
is highly unlikely to change this conclusion so drastically
that anything close to αT ∼ 0.01/H0 becomes allowed.
An alternative to avoid this conclusion would be to

lower the UV cut off so much that any sub-galactic fluc-
tuations are suppressed (i.e., take kUV ∼ kgalaxy). But
then such a theory of gravity is not useful over a wide
range of scales (table-top, solar system, etc) for which it
is already well studied, and the UV problems of quantum
gravity are not addressed at all.

VI. TEMPORAL STOCHASTICITY

The temporal dependence of the fluctuations is some-
thing that should also be carefully addressed. As men-
tioned earlier, the theory may conceivably lead to changes
on the Hubble time or other dynamical times. In fact, as
discussed earlier, the path integral suggests that the dis-
tribution should in fact jump significantly from one time
step to the next. This could lead to altered constraints
in the problems identified above. On the one hand, some
constraints could be weakened due to temporal variation
getting partially washed out through temporal averag-
ing. On the other hand, some constraints could be be
strengthened due to a new kind of, as yet unseen, tem-
poral jitter in the behavior of gravity. All this deserves
careful consideration.

A. Relativistic Corrections

As a step in this direction, let us reinstate relativistic
corrections. The full action proposed is

I = −α̂
∫
dt d3x

√
−g

[
(Gµν − 8πGNTµν)

2

−β(G− 8πGNT )
2
]

(57)

where Gµν is the Einstein tensor, Tµν is the energy-
momentum tensor, and α̂, β are constants. To study
the fluctuations, we can expand around the solution of
Einstein’s equations as

gµν = gµν,E + hµν (58)

where gµν,E obeys the Einstein field equations Gµν,E =
8πGNTµν and hµν is a fluctuation. Let us consider scalar
fluctuations in the metric as

hµν = 2ϕ δµν (59)

Then working to quadratic order, we obtain

I = −α
∫
dt d3x

[
(∇2ϕ)2 − 2b∇2ϕ ϕ̈/3 + b (ϕ̈)2

]
(60)

where α = 4(1 − β)α̂, b = 3(1 − 3β)/(1 − β). Here one
demands β < 1/3 (or the stronger constraint β ≤ 0)
for positivity of b, along with α > 0. Note that one
picks up time derivatives here; such terms are in fact
suppressed by factors of 1/c if we reinstate units by re-

placing ϕ̈ → ϕ̈/c2. This means that when inserted into
the path integral, it is better behaved in the sense that
the distribution will not jump around at every instant.
By passing to Fourier space, we can compute the 2-

point correlation function in time as

⟨ϕk(t)ϕ∗k′(t′)⟩ = (2π)3δ3(k− k′)Qϕ(k; t, t
′) (61)

where the “power spectrum” Q, including temporal cor-
relations, is

Qϕ(k; t, t
′) =

∫
dω

(2π)

e−iω(t−t′)

α(k4 − 2b k2 ω2/3 + b ω4)
(62)

We note that for b > 0 there are no poles along the real ω
line; this corresponds to correlations being exponentially
suppressed in time.
This integral can be carried out using the residue the-

orem. The full details are not so important, but the
qualitative structure is

Qϕ(k; t, t
′) =

e−a c k |t−t′|

αk3
f(a c k |t− t′|) (63)

where a > 0 is an O(1) number (assuming O(1) values
of β) and f is a periodic function with period 1 and
an O(1) amplitude. We have instated a factor of c into
the exponent to highlight the role that c is playing here.
the exponential factor shows that (up to an O(1) factor)
there is only temporal correlation for a period of time

Tk =
1

a c k
(64)

for the mode of interest. If we were to take the c → ∞
limit, i.e., the Newtonian limit, this becomes

Qϕ(k; t, t
′) ∼ 1

αk4
δ(t− t′) (65)

i.e., the fluctuations become uncorrelated in time in this
Newtonian limit, as we already discussed below Eq. (33).
At the equal time t = t′ the power spectrum

Pϕ(k) = Qϕ(k; t, t) (66)
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would be formally infinite as this is where the delta-
function hits. This again reinforces the points made ear-
lier, as we defined a new parameter αT ∼ α ϵ where ϵ was
some temporal cut off, to give the power P ∼ 1/(αT k

4).
These steps were needed to obtain the kind of static anal-
ysis of Ref. [1] who ignored the temporal integral.

By keeping α a finite parameter of the theory and prop-
erly tracking the time dependence, we see that relativis-
tic effects regulate the temporal correlation function then
away from a delta-function to the exponential factor. We
can think of this as the replacement

δ(t− t′) → a c k

2
e−a c k|t−t′| (67)

as these 2 functions have the same form in the c → ∞
limit.

At equal times in the relativistic theory, we have

Pϕ(k) =
f(0)

αk3
(68)

with f(0) an O(1) number. So one can draw the fluc-
tuations from this scale invariant spectrum at a given
moment in time, but bearing in mind that they will de-
viate away from this by an O(1) amount on the time scale
Tk ∼ 1/(c k), the light crossing time over a wavelength.
By considering the standard deviation per log interval it
is now

σk =

√
k3 Pϕ(k)

2π2
∼ 0.1√

α
(69)

So to obtain a kind of dark energy like contribution,
one would take

α ∼ 0.01 (70)

so that fluctuation are O(1) on the scale of the horizon
(this is the analogue of taking αT ∼ 0.01/H0 in Ref. [1]
that we described earlier, when the temporal integral was
ignored). For these horizon scale modes, the correlation
time-scale Tk ∼ 1/(c k) is of order the Hubble time. So
the value of this putative dark energy would fluctuate on
the Hubble time, potentially changing from positive to
negative, etc. Such behavior is not

More problematically, this also means the spectrum is
≈ 10 orders of magnitude too large for sub-horizon scales;
compare to the observed spectrum in Eq. (46). Again this
is clearly ruled out.

If one raises α considerably to α ∼ 108, then while a
scale invariant spectrum may at first sight seem promis-
ing, it does not have the observed break in the spectrum
at matter-radiation equality; compare to Figure 1 for the
related variable Pm = 4k4/(9Ω2

m,0H
4
0 )Pϕ(k).

On galactic scales, a new problem is that these tem-
poral correlations means that there is a radical change
in the gravitational field on the order the light-crossing
time Tk ∼ 1/(c k). So therefore even if stars were to be
orbiting in this stochastic gravitational field that. Ref. []

proposes replaces dark matter and provides the galactic
rotation curves, the stars orbits would drastically change
on a light crossing time. So for example, for flattened ro-
tation curves starting at r = 10 kpc, after ≈ 30, 000 years
the stars would likely start orbiting in a completing dif-
ferent direction as the gravitational field has completely
changed. This temporal change in Φ would likely dis-
rupt halos as there would just be an incoherent mess in
the gravitational potential on times longer than any light
crossing times.
Finally, if we consider small scale experiments. If we

consider the 2-point correlation function for acceleration
of test particles, and for simplicity treat the f as slow,
we have

⟨a(x, t) · a(y, t′)⟩ =

∫
d ln k

sin(kL)

kL

k3Qa(k, t, t
′)

2π2
(71)

∼ f(0)

2π2α(L2 + a2 c2 (t− t′)2)
(72)

(in fact there is an O(1) correction from the details of
f , but that it is not essential here). Note that if we
now consider the equal-time 2-point correlation function
it rises with small L as 1/L2, rather than just 1/L as
seen earlier in Eq. (53). By again considering a table-top
Cavendish experiment at L = 30mm, we have

√
⟨a · a⟩L=30mm ≈

7× 1017
√
f(0)√

α(1 + τ2)
m/s

2
(73)

where τ = a2c2(t − t′)2/L2. At a given moment in time
τ = 0, this suggests that to avoid being larger than the
observed value of ∼ 2 × 10−9m/s2, one requires the ex-
traordinarily large value α ≳ 1053. However, since the
experiment takes place over a period of time much longer
than the light crossing time, one should consider the fac-
tor that there is some temporal suppression through the
above τ factor. However the temporal suppression here is
only power law, with

√
⟨a · a⟩ ∝ 1/τ at times longer than

the light crossing time. So while the residual bound on α
may be several orders of magitude lower than 1053 it is
highly unlikely to be anywhere near the kinds of values,
like α ∼ 0.01 for non-trivial cosmological consequences
to be allowed.
In addition, there have been other works, such as

Ref. [12], explicitly suggesting that aspects of gravita-
tional theory, such as Newton’s constant GN , vary in
time stochastically in order to give rise to dark energy.
Such a proposal could be ruled out by lunar ranging mea-
surements, which constrain GN to change by at most a
small amount on the Hubble time [13].
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