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Abstract

We propose an analytical solution for approximating the gradient of the Evidence Lower
Bound (ELBO) in variational inference problems where the statistical model is a Bayesian
network consisting of observations drawn from a mixture of a Gaussian distribution em-
bedded in unrelated clutter, known as the clutter problem. The method employs the
reparameterization trick to move the gradient operator inside the expectation and relies
on the assumption that, because the likelihood factorizes over the observed data, the vari-
ational distribution is generally more compactly supported than the Gaussian distribution
in the likelihood factors. This allows efficient local approximation of the individual like-
lihood factors, which leads to an analytical solution for the integral defining the gradient
expectation. We integrate the proposed gradient approximation as the expectation step in
an EM (Expectation Maximization) algorithm for maximizing ELBO and test against clas-
sical deterministic approaches in Bayesian inference, such as the Laplace approximation,
Expectation Propagation and Mean-Field Variational Inference. The proposed method
demonstrates good accuracy and rate of convergence together with linear computational
complexity.

1 Introduction

Variational inference provides a viable, deterministic alternative to stochastic sampling
methods, such as Markov chain Monte Carlo (MCMC), for approximating the generally
intractable marginal likelihood in Bayesian inference problems, as discussed in Blei et al.
(2017). This is achieved by introducing a variational distribution as approximation to the
posterior density and then minimizing the Kullback-Leibler (KL) divergence between the
two, thus turning the inference problem into an optimization problem over the parameters
of the variational distribution (Jordan et al. (1999), Bishop (2006), Zhang et al. (2019)).
The minimization of the KL divergence is realized through maximization of a lower bound
on the log marginal likelihood, known as the Evidence Lower Bound (ELBO), and the aim
is that ELBO might be tractable or easy to approximate where the marginal likelihood is
not. This is not always the case, however, and particularly for the clutter problem Minka
(2001b) points out that ELBO is neither tractable nor easy to approximate analytically .

The clutter problem is a toy Bayesian inference problem described in Minka (2001a) that
has a statistical model defined by a Bayesian network where the observations are generated
from a mixture of a Gaussian distribution with known covariance embedded in unrelated
clutter. It can also be viewed as a model for measuring a physical quantity where the
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measurements are corrupted by Gaussian noise and outliers, and in that respect may be
useful in embedded applications at the edge or in safety-critical applications such as self-
driving cars and industrial processes where undetected outliers in the sensory data have the
potential to cause catastrophic failure of the system.

A classical approach for solving the intractability problem of ELBO is to use the mean-
field approximation as described in Bishop (2006), which is based on the assumption that
the variational distribution factorizes over the latent variables. However, in the case of
the clutter problem the assumption holds poorly, which results in low accuracy of the
approximation, demonstrated in Minka (2001a).

Another approach, popularized more recently in Paisley et al. (2012) and Kingma and
Welling (2014) circumvents the intractability of ELBO by employing stochastic approxima-
tion of the ELBO gradient rather than of ELBO itself. This is applicable in cases where
computation of the marginal likelihood is not required and we are only interested in maxi-
mizing ELBO to optimize the parameters of the variational distribution. Since the definition
of ELBO can be regarded as an expectation over the variational distribution, the central
premise of this method is to convert the gradient of the expectation into an expectation of
a gradient and then stochastically approximate the expectation. In Paisley et al. (2012) the
conversion is achieved by using the identity ∇ψq(θ|ψ) = q(θ|ψ)∇ ln q(θ|ψ), where q(θ|ψ) is
the variational distribution, θ comprises the latent variables and ψ represents the parame-
ters of the variational distribution. This approach is known as the log-derivative trick or the
score function estimator and while broadly applicable, typically suffers from a high variance
of the estimated gradient (Jankowiak and Obermeyer (2018)). To avoid the high variance
issue, Kingma and Welling (2014) adopt a different approach and perform the conversion
by employing a reparameterization of the variational distribution in which the latent vari-
able is expressed in terms of a differentiable transformation of an auxiliary random variable
with independent distribution. This approach is known as the reparameterization trick or
the pathwise gradient estimator and while not as broadly applicable as the score function
estimator, generally exhibits lower variance (Jankowiak and Obermeyer (2018)).

The stochastic approximation of the ELBO gradient has a primary advantage in that it
is broadly applicable and can work with high dimensional latent spaces (Ranganath et al.
(2014)), which best benefits application in complex, offline inference problems where the
stochastic nature of the method and its usually high computational cost are not an issue. In
contrast, real time embedded applications at the edge and safety-critical applications require
fast and deterministic inference algorithms. To address this need we propose a method that,
in the context of the clutter problem and based on the reparameterization trick, analytically
approximates the ELBO gradient and provides a solution for maximizing ELBO by inte-
grating the approximation as the expectation step in an EM (Expectation Maximization)
algorithm. The proposed approximation is tested against classical deterministic approaches
in Bayesian inference, such as the Laplace approximation, Expectation Propagation and
Mean-Field Variational Inference, and demonstrates good accuracy and rate of convergence
together with linear computational complexity. The main target application of the method
is modelling of 1D sensor readings corrupted by approximately Gaussian noise and outliers
within the domain of embedded real time systems and safety critical systems.
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2 Preliminaries

2.1 ELBO Definition

Let X be a set of observations and Z a set of latent variables with a joint distribution
p(X,Z). We are interested in approximating the posterior distribution p(Z|X) and the
marginal likelihood p(X). For any variational probability distribution q(Z) the log marginal
likelihood can be written as follows, as described in Bishop (2006):

ln p(X) = L(q(Z)) + KL(q(Z)||p(Z|X)) (1)

L(q(Z)) =
∫
q(Z) ln

{
p(X,Z)

q(Z)

}
dZ (2)

KL(q(Z)||p(Z|X)) = −
∫
q(Z) ln

{
p(Z|X)

q(Z)

}
dZ (3)

Since KL(q(Z)||p(Z|X)) is the KL divergence and is always positive, it follows that maximiz-
ing L(q(Z)) is equivalent to minimizing KL(q(Z)||p(Z|X)). As such, the quantity L(q(Z))
is a lower bound on the log marginal likelihood and is known as ELBO.

2.2 Clutter Problem Definition

The clutter problem is a toy Bayesian inference problem described in Minka (2001a) that
has a statistical model defined by a Bayesian network where the observations are generated
from a mixture of a Gaussian distribution with known covariance embedded in unrelated
clutter. In this case, unrelated means that the clutter distribution is independent from the
Gaussian distribution in the mixture. The observation density is given by:

p(x|µ) = (1− w)N (x;µ,Σg) + wPc(x) (4)

where w is the probability of having a clutter sample and Pc(x) is the clutter distribution,
both of which are known. If we have a set of independent observations X = {x1, ..., xn}
and p(µ) is the prior distribution over µ, then the joint distribution of X and µ becomes:

p(X,µ) = p(µ)
∏
i

p(xi|µ) (5)

Since the joint distribution is a product of sums, we can not really use belief propagation
because the belief state for µ is a mixture of 2n Gaussians (Minka (2001a)), which makes
the computational complexity prohibitive in cases of more than a few observations.

Applying variational inference to the problem produces the following expression for
ELBO, where q(µ) is the variational distribution:

L(q(µ)) =
∫
q(µ)

∑
i

lnLi(µ|xi)dµ+

∫
q(µ) ln p(µ)dµ−

∫
q(µ) ln q(µ)dµ (6)

and Li(µ|xi) = (1− w)N (µ;xi,Σg) + wPc(xi) are the likelihood factors. Due to the terms
lnLi(µ|xi), which are logarithms of sums, ELBO is not directly analytically tractable in
this case and has to be approximated.
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2.3 The Reparameterization Trick

As described in Kingma andWelling (2014), the reparameterization trick involves expressing
the latent variable in terms of a differentiable transformation of an auxiliary random variable
with independent distribution, which results in moving the gradient operator inside the
expectation. Let z be a continuous latent variable having a distribution qϕ(z), where ϕ
are the parameters of the distribution. The latent variable can be expressed as z = gϕ(ϵ),
where gϕ is the differentiable transformation and ϵ is the auxiliary random variable having
an independent distribution q0(ϵ). Using the reparameterization trick, an expectation over
qϕ(z) can be reformulated as follows:

Eq[f(z)] =

∫
qϕ(z)f(z)dz =

∫
q0(ϵ)f(gϕ(ϵ))dϵ (7)

For the case of a univariate normal distribution z ∼ qϕ(z) = N (µ, σ2) a valid reparameteri-
zation is z = µ+σϵ (Kingma and Welling (2014)), where ϵ is the auxiliary random variable
having a standard normal distribution ϵ ∼ q0(ϵ) = N (0, 1).

3 Analytical Approximation of the ELBO Gradient

We develop the proposed method in the context of the clutter problem for one dimensional
observation data. In this case ELBO takes the form as specified in equation (6), where
xi are one dimensional and the Gaussian distribution in the likelihood factors is therefore
univariate with variance vg. We use the reparameterization trick to move the gradient op-
erator inside the expectation, with the goal of eliminating the logarithms that are otherwise
difficult to directly approximate analytically. The method then relies on the assumption
that, because the likelihood factorizes over the observed data, the variational distribution
is generally more compactly supported than the Gaussian distribution N (µ;xi, vg) in the
likelihood factors. We use the more casual meaning of the term ”support” to refer to the
region where the function is meaningfully different from zero and in the case of Gaussian
functions a more compact support is equivalent to smaller variance. The smaller support
region of the variational distribution allows efficient local approximation of the individual
likelihood factors with exponentiated quadratics by employing Taylor series expansion be-
cause the error of the local approximation remains relatively low within the small support
region. As a result of the approximation with exponentiated quadratics the integral defining
the gradient expectation becomes tractable and can be solved analytically. It is important
to note that while the approximation of each likelihood factor is local, the resulting approx-
imation of the gradient is not because the local point for each likelihood factor is different.
We use the proposed gradient approximation to maximize ELBO by integrating it in the
expectation step of an EM algorithm (Dempster et al. (1977)), which is described in section
4. The rest of this section is organized into three subsections that develop the main steps
of the proposed solution (applying the reparameterization trick, locally approximating the
likelihood factors and analytically solving the expectation integrals), a subsection where we
briefly discuss possible extension to multidimensional data and a subsection where we exam-
ine the applicability to non-Gaussian distributions. We start by restricting the variational
distribution q(µ) to the family of normal distributions N (µq, vq) and assume a conjugate
prior p(µ) = N (µp, vp).
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3.1 Applying the Reparameterization Trick

Using the reparameterization trick for the case of a univariate normal distribition we have
µ = µq +

√
vqϵ and the ELBO gradient can be expressed as follows:

∇L(q(µ)) =
∫
q0(ϵ)

∑
i

∇ lnLi(ϵ|(xi−µq)/
√
vq)dϵ+∇

∫
q(µ) ln p(µ)dµ−∇

∫
q(µ) ln q(µ)dµ

(8)
where the gradient operator is over the parameters of the variational distribution µq and
vq, and Li(ϵ|(xi − µq)/

√
vq) = (1 − w)N (ϵ; (xi − µq)/

√
vq, vg/vq)/

√
vq + wPc(xi) are the

reparameterized likelihood factors. Applying the gradient operator to the logarithms and
carrying out the integration in the tractable terms the expression for the ELBO gradient
becomes:

∇L(q(µ)) =
∫
q0(ϵ)

∑
i

∇Li(ϵ|(xi − µq)/
√
vq)

Li(ϵ|(xi − µq)/
√
vq)

dϵ− 1

2
∇(µp − µq)

2

vp
+

1

2
∇ ln

vq
vp

− 1

2
∇vq
vp

(9)

Executing the gradient operator over µq and taking the sum outside the integral we obtain:

Gµq =
∂L(q(µ))
∂µq

= −√
vq
∑
i

∫
q0(ϵ)πi(ϵ)

ϵ− (xi − µq)/
√
vq

vg
dϵ+

(µp − µq)

vp
(10)

where

πi(ϵ) =
(1− w)N (ϵ; (xi − µq)/

√
vq, vg/vq)/

√
vq

(1− w)N (ϵ; (xi − µq)/
√
vq, vg/vq)/

√
vq + wPc(xi)

(11)

Performing the same for the gradient over vq results in the expression:

Gvq =
∂L(q(µ))
∂vq

= −1

2

[∑
i

∫
q0(ϵ)πi(ϵ)

ϵ(ϵ− (xi − µq)/
√
vq)

vg
dϵ− 1

vq
+

1

vp

]
(12)

3.2 Local Approximation of the Likelihood Factors

To construct an analytical expression for the ELBO gradient we need to be able to analyti-
cally approximate the integrals in equation (10) and (12). If we can efficiently approximate
the term q0(ϵ)πi(ϵ) with a Gaussian then both integrals become tractable. Conveniently,
q0(ϵ) and the numerator of πi(ϵ) are both Gaussian and therefore their product is also
Gaussian, which we denote ρi(ϵ):

ρi(ϵ) = (1− w)
1√

2(vg + vq)π
exp

(
−1

2

(xi − µq)
2

vg + vq

)
N (ϵ; ϵi, vi) (13)

where ϵi =
√
vq(xi − µq)/(vg + vq) and vi = vg/(vg + vq). Since we have assumed that

q(µ) is more compactly supported than N (µ;xi, vg), it follows that q0(ϵ) is also more com-
pactly supported than N (ϵ; (xi − µq)/

√
vq, vg/vq) and therefore ρi(ϵ) is more compactly

supported than N (ϵ; (xi− µq)/
√
vq, vg/vq) as well. Consequently, the reparameterized like-

lihood factors Li(ϵ|(xi − µq)/
√
vq), which are the denominators in πi(ϵ), can be efficiently

5
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Figure 1: Local approximation of the reparameterized likelihood factors

approximated locally with exponentiated quadratics as illustrated in figure 1. The quadrat-
ics are determined by a second order Taylor series expansion of the logarithm of the factors
calculated at the point ϵi and the approximation is specified by the following expressions:

Li(ϵ) ≈ L̃i(ϵ) = exp

(
1

2
ln(Li(ϵ))′′|ϵ=ϵi(ϵ− ϵi)

2 + ln(Li(ϵ))′|ϵ=ϵi(ϵ− ϵi) + lnLi(ϵi)
)

(14)

ln(Li(ϵ))′′|ϵ=ϵi = πi(ϵi)
(
(1− πi(ϵi))

(
ϵi − (xi − µq)/

√
vq
)2
vq/vg − 1

)
vq/vg (15)

ln(Li(ϵ))′|ϵ=ϵi = −πi(ϵi)
(
ϵi − (xi − µq)/

√
vq
)
vq/vg (16)

where we have used Li(ϵ) for short of Li(ϵ|(xi − µq)/
√
vq).

It is interesting to note that the approximations of the reparameterized likelihood factors
look remarkably similar to the approximate terms t̃i(θ) in Minka (2001b). This is not a
coincidence since both have the same functional form of exponentiated quadratic and both
approximate likelihood factors. However, t̃i(θ) is a global approximation and is defined as
a scaled ratio between the new variational distribution and the old t̃i(θ) = Zqnew(θ)/q(θ)
Minka (2001b). In contrast, L̃i(ϵ) is a local approximation and is determined by the second
order Taylor series expansion of lnLi(ϵ) at ϵi. Furthermore, the two are used in very different
contexts and for different purpose.

3.3 Analytically Solving the Integrals

Since both ρi(ϵ) and L̃i(ϵ) are exponentiated quadratics, the product ρi(ϵ)/L̃i(ϵ) is also an
exponentiated quadratic and after some rearranging can be expressed as follows:

q0(ϵ)πi(ϵ) ≈ ρi(ϵ)/L̃i(ϵ) = πi(ϵi)
√
v̂iAiN (ϵ; ϵ̂i, v̂i) (17)

6
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where

v̂i = vg

/[
(1− πi(ϵi))

(
πi(ϵi)vg

(
xi − µq
vg + vq

)2

+ 1

)
vq + vg

]
(18)

ϵ̂i =
√
vq (1− πi(ϵi)v̂i)

xi − µq
vg + vq

(19)

Ai = exp

[
−1

2

(
1− πi(ϵi)

2v̂i
)
vq

(
xi − µq
vg + vq

)2
]

(20)

It can be verified that N (ϵ; ϵ̂i, v̂i) is a proper Gaussian because v̂i is strictly positive.

Alternatively, the Laplace approximation can also be used to locally approximate q0(ϵ)πi(ϵ)
by finding its mode and computing the variance at the mode. However, finding the mode of
q0(ϵ)πi(ϵ) requires in itself iterative approximation, which would add significant complexity
to the whole method because it has to be performed for each data point.

Next, to compute the integrals in equation (10) and (12) we substitute q0(ϵ)πi(ϵ) with
its approximation from equation (17). Carrying out the integration over ϵ and rearranging
we obtain:

Gµq ≈ G̃µq =
∑
i

Bi
xi − µq
vg

+
µp − µq
vp

(21)

Gvq ≈ G̃vq =
1

2

[
−
∑
i

Ci
1

vg
+
∑
i

Di
(xi − µq)

2

vg

1

vg + vq
+

1

vq
− 1

vp

]
(22)

Bi = πi(ϵi)
√
v̂iAi

vg + πi(ϵi)v̂ivq
vg + vq

(23)

Ci = πi(ϵi)
√
v̂iAiv̂i (24)

Di = (1− πi(ϵi)v̂i)Bi (25)

Equations (21) and (22) represent an analytical approximation of the ELBO gradient
over the parameters of the variational distribution and are illustrated in figure 2.

3.4 Extension to Multidimensional Data

Let M be the dimensionality of the data. Since the data space can be scaled and rotated
arbitrarily, we can assume without loss of generality that the multivariate Gaussian in the
observation density is spherical. Consequently, the gradient over the mean of the variational
distribution is separable and can be broken into M one dimensional gradients along the
principal axes of the ellipsoid defining the variational distribution. Similarly, the gradient
over the diagonal elements of Σq is also separable and can be broken intoM one dimensional
variance gradients along the principal axes. However, efficiently determining the off-diagonal
elements of Σq is not trivial and a possible approach can be to adjust the principal axes
by employing principal component analysis in an iterative optimization scheme, essentially
breaking the multidimensional problem into multiple single dimensional ones.

7
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3.5 Applicability to Non-Gaussian Distributions

The main restriction for the applicability of the proposed approximation to non-Gaussian
distributions comes from the reparameterization trick, which does not easily generalize to
other common distributions, such as the gamma or beta. While a number of methods have
been proposed to circumvent that problem (Ruiz et al. (2016), Figurnov et al. (2018)), these
have been developed with stochastic approximation of the expectation in mind and are not
readily applicable to analytical integration. A possible solution for this limitation can be
to approximate the target distribution with a Gaussian mixture and extend the proposed
ELBO gradient approximation to handle Gaussian mixtures.

4 Maximizing ELBO

To test the proposed analytical approximation of the ELBO gradient we integrate it in the
expectation step of an EM algorithm for ELBO maximization, as specified in algorithm
1. The approximation allows the expectation step to be applied directly on the ELBO
gradient rather than on ELBO itself. In the maximization step we then derive update rules
for optimization of the variational distribution parameters µq and vq through fixed-point
iteration. Our aim is to construct linear update rules by keeping constant, with respect
to the current values of µq and vq, all terms that are limited in range. For each update
rule convergence is briefly examined by demonstrating that the update is in the direction of
the local maximum stationary point but we leave a detailed convergence analysis for future
work.

Since the approximation relies on the assumption that the variational distribution is
more compactly supported than the Gaussian distribution in the likelihood factors, to sat-
isfy that condition during the first few iterations when vq is large we introduce a substitute
for vg, denoted v̂g, and initialize it tomax(2vq, vg). The factor 2 is chosen because it provides
acceptable worst case error of the approximation. The substitute v̂g is then gradually re-
duced with each iteration of the algorithm according to the rule v̂g = max(min(vq, v̂g/2), vg)
until it reaches the value of vg. The value of v̂g is used in place of vg in all expressions of
the gradient approximation and the update rules but for clarity purposes we do not specify
it explicitly. In addition, to prevent vq from breaking the assumption of compact support
it is constrained by the rule vq = min(vq,max(vg, v̂g/2)) at the end of each iteration.

4.1 Update Rule for the Mean

We start by examining the terms that make up Bi as defined in equation (23). These are
πi(ϵi),

√
v̂i, Ai and (vg + πi(ϵi)v̂ivq)/(vg + vq). If we assume that the probability for a

non-clutter data point is greater than zero, it can be readily deduced from its definition
in equation (11) that the term πi(ϵi) is limited to the range (0, 1]. It follows then that
v̂i falls within the range (0, 1] and therefore so does

√
v̂i. Since πi(ϵi) ∈ (0, 1] and v̂i ∈

(0, 1], it follows that (1 − πi(ϵi)
2v̂i) ∈ [0, 1) and therefore Ai ∈ (0, 1] because it is an

exponent with a negative argument. Since πi(ϵi) ∈ (0, 1] and v̂i ∈ (0, 1], it also follows
that (vg + πi(ϵi)v̂ivq)/(vg + vq) ∈ (0, 1]. Consequently, since Bi is a product of the above
terms, it follows that Bi is limited to the range (0, 1]. Therefore, to derive the update
rule for the mean µq we keep Bi constant with respect to the current value of µq. Setting

8
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Algorithm 1 EM with analytical approximation of the ELBO gradient

1. Input: data xi, size n, w, Pc(xi), vg, µp, vp

2. Initialize µq =
∑

i xi/n, vq =
∑

i(xi − µq)
2/n+ vg, v̂g = max(2vq, vg)

3. For t = 1 to convergence or maximum number of iterations

(a) Expectation step: approximate the ELBO gradient and compute πi(ϵi), v̂i, Ai,
Bi, Ci and Di

(b) Maximization step: update the parameters of the variational distribution µq and
vq according to the update rules

(c) update v̂g = max(min(2vq, v̂g/2), vg), constrain vq = min(vq,max(vg, v̂g/2))

the approximate gradient G̃µq equal to zero in equation (21) we then solve the resulting
equation for µq:

µ(t+1)
q =

∑
iBi(µ

(t)
q )xi/vg + µp/vp∑

iBi(µ
(t)
q )/vg + 1/vp

(26)

where µ
(t+1)
q is the updated value and µ

(t)
q is the current value. The corresponding update

function is presented in figure 2 and is defined by the linear expression:

Ĝµq =
∑
i

Bi(µ
(t)
q )

xi − µq
vg

+
µp − µq
vp

(27)

To confirm that µq is updated in the direction of the local maximum we demonstrate that the

slope of the update function Ĝµq is negative. Let µ∗q be the local maximum stationary point

(G̃µq(µ
∗
q) = 0 and ∂G̃µq(µq)/∂µq|µq=µ∗q < 0). If G̃µq(µ

(t)
q ) > 0 it follows that µ∗q > µ

(t)
q ,

since G̃µq is the gradient. At the same time, if G̃µq(µ
(t)
q ) > 0 and the slope of Ĝµq is

negative it follows that µ
(t+1)
q > µ

(t)
q , and therefore the update is in the direction of the

local maximum. Similarly, if G̃µq(µ
(t)
q ) < 0 it follows that µ∗q < µ

(t)
q and µ

(t+1)
q < µ

(t)
q ,

and therefore the update is again in the direction of the local maximum. Since we already
established that Bi is positive, it follows from equation (27) that the slope of Ĝµq is negative
and therefore µq is always updated in the direction of the local maximum.

4.2 Update Rule for the Variance

We start by multiplying equation (22) with vq to eliminate vq in the denominator. The

resulting function G̃vqvq is illustrated in figure 2 and can be expressed as follows:

G̃vqvq =
1

2

[
−

(∑
i

Ci
1

vg
+

1

vp

)
vq +

∑
i

Di
(xi − µq)

2

vg

vq
vg + vq

+ 1

]
(28)

Next, we examine the terms Ci and Di. Since we already established that πi(ϵi) ∈ (0, 1],
v̂i ∈ (0, 1] and Ai ∈ (0, 1], it follows from the definition of Ci in equation (24) as a product

9
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Figure 2: Analytical approximation of the ELBO gradient over the mean µq (left panel)
and variance vq (right panel) of the variational distribution

of these terms that Ci ∈ (0, 1]. Since πi(ϵi) ∈ (0, 1], v̂i ∈ (0, 1] and Bi ∈ (0, 1], it follows
that (1− πi(ϵi)v̂i) ∈ [0, 1) and consequently Di ∈ [0, 1). In addition, the term vq/(vg + vq)
is also limited to the range [0, 1). Therefore, to derive the update rule for the variance vq
we keep the terms Bi, Ci, Di and vq/(vg + vq) constant with respect to the current value of

vq. Setting the approximate gradient G̃vq equal to zero, we then solve the resulting linear
equation, obtaining the following update rule for the variance:

v(t+1)
q =

(∑
i

Di(v
(t)
q )

(xi − µq)
2

vg

v
(t)
q

vg + v
(t)
q

+ 1

)/(∑
i

Ci(v
(t)
q )

1

vg
+

1

vp

)
(29)

where v
(t+1)
q is the updated value and v

(t)
q is the current value. The corresponding update

function is presented in figure 2 and is formulated by the linear expression:

Ĝvq =
1

2

[
−

(∑
i

Ci(v
(t)
q )

1

vg
+

1

vp

)
vq +

∑
i

Di(v
(t)
q )

(xi − µq)
2

vg

v
(t)
q

vg + v
(t)
q

+ 1

]
(30)

To confirm that vq is updated in the direction of the local maximum we verify that the

slope of Ĝvq is negative. Since we already established that Ci is positive, it follows from

equation (30) that the slope of Ĝvq is negative and therefore vq is always updated in the
direction of the local maximum.

In addition, we demonstrate that equation (29) produces valid updates (v
(t+1)
q > 0) by

examining the update function at vq = 0. In that case the term (
∑

iCi(v
(t)
q )/vg+1/vp)vq is

equal to zero because Ci(v
(t)
q ) is finite. Since Di ∈ [0, 1) and vq/(vg + vq) ∈ [0, 1), it follows

that the term (
∑

iDi(v
(t)
q )(xi − µq)

2/vg)v
(t)
q /(vg + v

(t)
q ) ⩾ 0. Consequently, the update

function Ĝvq is strictly positive at vq = 0 and since, as already established, its slope is

negative, it follows that the root v
(t+1)
q is strictly positive and therefore is a valid update

for vq.

10
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Figure 3: Testing the ELBO gradient analytical approximation (ELBO GAA) against clas-
sical deterministic approaches for a sample size of 20 data points

5 Comparative Testing

We test the proposed method for analytical approximation of the ELBO gradient against
classical deterministic approaches such as the Laplace approximation, expectation propa-
gation and mean-field variational inference. Our implementation of the Laplace approxi-
mation and mean-field variational inference is based on the description of the algorithms
in Bishop (2006) and for expectation propagation we use Minka (2001a). The test data is
generated from the clutter problem observation density as defined in equation (4), for one
dimensional data and using the same parameters as specified in Minka (2001b): w = 0.5,
Pc(x) = N (x;µc = 0, vc = 10), Gaussian distribution in the observation density N (x;µ =
2, vg = 1), number of data points n = 20 and we also assume the same prior distribution
p(µ) = N (µ;µp = 0, vp = 100). The aim is to determine how well the proposed method ap-
proximates the posterior distribution p(µ|X) in comparison to the other three methods. As
a measure of goodness of approximation we use the KL divergence between the variational
distribution and the posterior, KL(q(µ)||p(µ|X)) = ln p(X)−L(q(µ)). This is calculated by
numerically evaluating the log marginal likelihood ln p(X) and the evidence lower bound
L(q(µ)) for each method. In addition, a baseline of best achievable approximation is pro-
vided for reference by numerically maximizing ELBO. We denote the mean of the baseline
variational distribution µ̄q and use it to define absolute error rates |µq − µ̄q| for the means
of the tested variational distributions.

The result of one test with 20 data points is presented in figure 3. A data sample
with a rather skewed posterior is selected to give the tested methods a challenge. To
summarize the test results, the proposed method scores second behind EP in terms of KL
divergence and absolute error of the mean, beating both mean-field variational inference
and the Laplace approximation by a significant margin. It also demonstrates a good rate of
convergence, slightly worse than MF and Laplace. Furthermore, in contrast to EP, which can
fail to converge (Minka (2001a)) or in certain circumstances can produce negative vq (Minka

11
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Figure 4: Testing the proposed approximation (ELBO GAA) against classical deterministic
approaches for sample sizes of 5 (left), 10 (middle) and 100 (right) data points

(2001b)), the proposed method appears to not suffer from problems with convergence and
as demonstrated in section 4.2 is guaranteed to have strictly positive vq.

An interesting observation is that just before convergence is reached the KL divergence
of the proposed method increases slightly. This is easily explained. The optimization of the
variational distribution parameters is performed with respect to the local maximum station-
ary point defined by the approximate ELBO gradient, which is slightly different from the
stationary point of the real ELBO gradient due to the imperfection of the approximation.
As a result, when the parameters are far away from the two stationary points, updating
them towards the appproximate stationary point means also a decrease in the distance to
the real stationary point and hence a reduction of the KL divergence. However, when the
parameters are very close to the real stationary point updating them towards the appprox-
imate stationary point may in some cases increase the distance to the real stationary point
and hence increase the KL divergence.

Figure 4 illustrates the performance of the tested algorithms for 5, 10 and 100 data
points. As can be observed, the proposed method performs well for all three cases and for
the case of 5 data points even comes out the best in terms of KL divergence.

In terms of computational complexity, the proposed method is linearly dependent on
the number of data points n just like the other three methods. However, the number of
exponentiation operations is 2n versus n for EP, MF and Laplace. Furthermore, there
are also n square roots and the number of arithmetic operations is generally larger. An
advantage of the proposed method is that it is a parallel algorithm and can be easily
vectorized, provided the hardware has a vector processing unit. This is in contrast to EP,
which is a serial algorithm, while MF and Laplace are also parallel algorithms. To give a
rough illustration of computational requirements we measure execution times for 20 data
points on a standard desktop machine within the Octave environment with serial execution
and vectorization. The results are presented in figure 5 and also include stochastic gradient

12
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Figure 5: Execution times for the proposed method (ELBO GAA) in comparison to classical
deterministic approaches and stochastic gradient descent (SGD) for 20 data points
with serial execution (left panel) and vectorization (right panel)

descent (SGD) as a point of comparison to stochastic methods. SGD is implemented using
the ELBO gradient by employing the reparameterization trick and is vectorizable as well.
The hyperparameters of SGD are tuned for achieving fast convergence where we use 3
samples to compute the gradient expectation and the learning rate starts at 1.0 with a
decay factor of 0.97.

6 Conclusion

We describe a method for analytical approximation of the ELBO gradient in the context of
the clutter problem. The approximation is integrated into the expectation step of an EM al-
gorithm for ELBO maximization and update rules for optimizing the variational parameters
are derived. We test the proposed method against classical deterministic approaches such as
the Laplace approximation, expectation propagation and mean-field variational inference,
and the method demonstrates good accuracy and rate of convergence for both small and
large number of data points. The computational complexity is linearly dependent on the
number of data points, but the number of mathematical operations is somewhat larger com-
pared to the other three algorithms in the test. We provide limited convergence analysis for
the update rules of the developed EM algorithm and, while empirical data suggests conver-
gence is reliable, a detailed analytical proof of convergence is a primary research task for the
future. Another area where the proposed method requires further work is the extension to
multidimensional data observations and the handling of non-Gaussian distributions. While
the proposed method provides a solution for the maximization of ELBO by optimizing the
variational distribution parameters it does not offer a means to calculate the actual value
of ELBO and as a result can not be used for model selection.
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Appendix A. Approximating the Terms q0(ϵ)πi(ϵ) with a Gaussian

Substituting πi(ϵ) with its definition from equation (11) we have:

q0(ϵ)πi(ϵ) = q0(ϵ)
(1− w)N (ϵ; (xi − µq)/

√
vq, vg/vq)/

√
vq

(1− w)N (ϵ; (xi − µq)/
√
vq, vg/vq)/

√
vq + wPc(xi)

(31)

Since both q0(ϵ) and (1−w)N (ϵ; (xi − µq)/
√
vq, vg/vq)/

√
vq are Gaussian, their product is

conveniently also Gaussian, wich we denote ρi(ϵ):

ρi(ϵ) = (1− w)
1√

2(1 + vg/vq)vqπ
exp

(
−1

2

(0−
(
xi − µq)/

√
vq
)2

1 + vg/vq

)
N (ϵ; ϵi, vi) (32)

where ϵi =
√
vq(xi − µq)/(vg + vq) and vi = vg/(vg + vq). Rearranging and simplifying

equation (32) we obtain:

ρi(ϵ) = (1− w)
1√

2(vg + vq)π
exp

(
−1

2

(xi − µq)
2

vg + vq

)
N (ϵ; ϵi, vi) (33)

The denominator of πi(ϵ) is the reparameterized likelihood factor Li(ϵ) = (1−w)N (ϵ; (xi−
µq)/

√
vq, vg/vq)/

√
vq +wPc(xi) and, because of the assumption for compact support of the

variational distribution, it can be efficiently approximated locally at the point ϵi with an
exponentiated quadratic, where the quadratic is derived by a second order Taylor series
expansion of lnLi(ϵ) at ϵi:

Li(ϵ) ≈ L̃i(ϵ) = exp

(
1

2
ln(Li(ϵ))′′|ϵ=ϵi(ϵ− ϵi)

2 + ln(Li(ϵ))′|ϵ=ϵi(ϵ− ϵi) + lnLi(ϵi)
)

(34)

ln(Li(ϵ))′′|ϵ=ϵi = πi(ϵi)
(
(1− πi(ϵi))

(
ϵi − (xi − µq)/

√
vq
)2
vq/vg − 1

)
vq/vg (35)

ln(Li(ϵ))′|ϵ=ϵi = −πi(ϵi)
(
ϵi − (xi − µq)/

√
vq
)
vq/vg (36)

Deriving ln(Li(ϵ))′ is straightforward and for ln(Li(ϵ))′′ we use the product rule of deriva-
tives:

(ln(Li(ϵ))′)′ = −
(
πi(ϵ)

′ (ϵ− (xi − µq)/
√
vq
)
+ πi(ϵ)

(
ϵ− (xi − µq)/

√
vq
)′)

vq/vg (37)

We then apply the product rule of derivatives also to πi(ϵ)
′ and rearrange:

πi(ϵ)
′ = −πi(ϵi)(1− πi(ϵi))

(
ϵ− (xi − µq)/

√
vq
)
vq/vg (38)

Replacing πi(ϵ)
′ back in equation (37) we obtain:

ln(Li(ϵ))′′ = −
(
−πi(ϵi)(1− πi(ϵi))

(
ϵ− (xi − µq)/

√
vq
)2
vq/vg + πi(ϵ)

)
vq/vg (39)

ln(Li(ϵ))′′ = πi(ϵ)
(
(1− πi(ϵ))

(
ϵ− (xi − µq)/

√
vq
)2
vq/vg − 1

)
vq/vg (40)
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Next we substitute ϵi in the numerator of πi(ϵi) with its definition
√
vq(xi − µq)/(vg + vq)

and simplify the resulting expression:

(1− w)
√
vq

N
(
ϵi;

(xi − µq)√
vq

,
vg
vq

)
=

(1− w)√
2vgπ

exp

(
−1

2

(
√
vq
xi − µq
vg + vq

− xi − µq√
vq

)2 vq
vg

)
(41)

(1− w)
√
vq

N
(
ϵi;

(xi − µq)√
vq

,
vg
vq

)
=

(1− w)√
2vgπ

exp

(
−1

2

(
vq

vg + vq
− 1

)2 (xi − µq)
2

vg

)
(42)

(1− w)
√
vq

N
(
ϵi;

(xi − µq)√
vq

,
vg
vq

)
= (1− w)

1√
2vgπ

exp

(
−1

2

vg(xi − µq)
2

(vg + vq)2

)
(43)

We then rewrite equation (34) by completing the square inside the exponent, where for
simplicity we have defined ai = ln(Li(ϵ))′′|ϵ=ϵi and bi = ln(Li(ϵ))′|ϵ=ϵi :

L̃i(ϵ) = exp

(
1

2

(ϵ− (ϵi − bi/ai))
2

1/ai

)
exp

(
−1

2

b2i
ai

)
Li(ϵi) (44)

The product ρi(ϵ)/L̃i(ϵ) can be formulated then as follows:

ρi(ϵ)

L̃i(ϵ)
=(1− w)

1√
2(vg + vq)π

exp

(
−1

2

(xi − µq)
2

vg + vq

)
1√
2viπ

exp

(
−1

2

(ϵ− ϵi)
2

vi

)
exp

(
−1

2

(ϵ− (ϵi − bi/ai))
2

1/ai

)
exp

(
1

2

b2i
ai

)
/Li(ϵi) (45)

Substituting vi in
√
2viπ with vg/(vg + vq) we cancell out the terms (vg + vq) and sub-

stituting exp
(
−(1/2)(xi − µq)

2/(vg + vq)
)
with exp

(
−(1/2)(xi − µq)

2(vg + vq)/(vg + vq)
2
)

the expression for the product ρi(ϵ)/L̃i(ϵ) becomes:

ρi(ϵ)

L̃i(ϵ)
=(1− w)

1√
2π

1√
2vgπ

exp

(
−1

2

vg(xi − µq)
2

(vg + vq)2

)
exp

(
−1

2

vq(xi − µq)
2

(vg + vq)2

)
exp

(
−1

2

(ϵ− ϵi)
2

vi

)
exp

(
−1

2

(ϵ− (ϵi − bi/ai))
2

1/ai

)
exp

(
1

2

b2i
ai

)
/Li(ϵi) (46)

Since (1− w)
(
1/
√
2vgπ

)
exp

(
−(1/2)vg(xi − µq)

2/(vg + vq)
2
)
is the numerator of πi(ϵi) as

defined in equation (43) and Li(ϵi) is the denominator, the product ρi(ϵ)/L̃i(ϵ) is simplified
to the following:

ρi(ϵ)

L̃i(ϵ)
=

1√
2π
πi(ϵi) exp

(
−1

2

vq(xi − µq)
2

(vg + vq)2
+

1

2

b2i
ai

)
exp

(
−1

2

(ϵ− ϵi)
2

vi

)
exp

(
−1

2

(ϵ− (ϵi − bi/ai))
2

1/ai

)
(47)
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We then carry out the multiplication of the two exponentiated quadratics:

ρi(ϵ)

L̃i(ϵ)
=

1√
2π
πi(ϵi)Ai exp

(
−1

2

(ϵ− ϵ̂i)
2

v̂i

)
(48)

v̂i = vi(1/ai)/(vi + 1/ai) (49)

ϵ̂i = (ϵi/ai + (ϵi − bi/ai)vi)/(vi + 1/ai) (50)

Ai = exp

[
−1

2

(
vq(xi − µq)

2

(vg + vq)2
− b2i
ai

+
b2i

a2i (vi + 1/ai)

)]
(51)

Expanding and rearranging equations (49), (50) and (51) we obtain:

v̂i = 1/(ai + 1/vi) (52)

v̂i = vg/(aivg + vq + vg) (53)

v̂i = vg

/[
πi(ϵi)

(
(1− πi(ϵi))

(
ϵi − (xi − µq)/

√
vq
)2
vq/vg − 1

)
vq + vq + vg

]
(54)

v̂i = vg

/[
(1− πi(ϵi))

(
πi(ϵi)

(
ϵi − (xi − µq)/

√
vq
)2
vq/vg + 1

)
vq + vg

]
(55)

v̂i = vg

/[
(1− πi(ϵi))

(
πi(ϵi)(xi − µq)

2 (vq/(vg + vq)− 1)2 /vg + 1
)
vq + vg

]
(56)

v̂i = vg
/[
(1− πi(ϵi))

(
πi(ϵi)vg(xi − µq)

2/(vg + vq)
2 + 1

)
vq + vg

]
(57)

ϵ̂i = (ϵi/vi + ϵiai − bi)/(ai + 1/vi) (58)

ϵ̂i = ϵi − biv̂i (59)

ϵ̂i = ϵi + πi(ϵi)v̂i
(
ϵi − (xi − µq)/

√
vq
)
vq/vg (60)

ϵ̂i =
(√
vq + πi(ϵi)v̂i

(√
vq − (vg + vq)/

√
vq
)
vq/vg

)
(xi − µq)/(vg + vq) (61)

ϵ̂i =
√
vq (1− πi(ϵi)v̂i) (xi − µq)/(vg + vq) (62)

Ai = exp

[
−1

2

(
vq(xi − µq)

2

(vg + vq)2
+
b2i /a

2
i − b2i (vi + 1/ai)/ai

vi + 1/ai

)]
(63)

Ai = exp

[
−1

2

(
vq(xi − µq)

2

(vg + vq)2
− b2i vi/ai
vi + 1/ai

)]
(64)

Ai = exp

[
−1

2

(
vq(xi − µq)

2

(vg + vq)2
− b2i v̂i

)]
(65)

Ai = exp

[
−1

2

(
vq(xi − µq)

2

(vg + vq)2
− πi(ϵi)

2

(√
vq(xi − µq)

vg + vq
− xi − µq√

vq

)2

v2q/v
2
g v̂i

)]
(66)

Ai = exp

[
−1

2

(
vq(xi − µq)

2

(vg + vq)2
− πi(ϵi)

2

(
vq

vg + vq
− 1

)2

vq/v
2
g v̂i(xi − µq)

2

)]
(67)

Ai = exp

[
−1

2

(
vq(xi − µq)

2

(vg + vq)2
− πi(ϵi)

2v̂i
vq(xi − µq)

2

(vg + vq)2

)]
(68)

Ai = exp

[
−1

2

(
1− πi(ϵi)

2v̂i
)
vq

(
xi − µq
vg + vq

)2
]

(69)
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Since 0 ⩽ πi(ϵi) ⩽ 1, it follows that 0 < v̂i ⩽ 1 and therefore equation (48) represents a
proper Gaussian which results in the final expression for ρi(ϵ)/L̃i(ϵ) as a Gaussian approx-
imation of q0(ϵ)πi(ϵ):

q0(ϵ)πi(ϵ) ≈ ρi(ϵ)/L̃i(ϵ) = πi(ϵi)
√
v̂iAiN (ϵ; ϵ̂i, v̂i) (70)

v̂i = vg

/[
(1− πi(ϵi))

(
πi(ϵi)vg

(
xi − µq
vg + vq

)2

+ 1

)
vq + vg

]
(71)

ϵ̂i =
√
vq (1− πi(ϵi)v̂i)

xi − µq
vg + vq

(72)

Ai = exp

[
−1

2

(
1− πi(ϵi)

2v̂i
)
vq

(
xi − µq
vg + vq

)2
]

(73)

Appendix B. Solving the Integrals

To compute the integral in equation (10) we substitute q0(ϵ)πi(ϵ) with its approximation
from equation (17):

Gµq ≈ G̃µq = −√
vq
∑
i

πi(ϵi)
√
v̂iAi

∫
N (ϵ; ϵ̂i, v̂i)

ϵ− (xi − µq)/
√
vq

vg
dϵ+

(µp − µq)

vp
(74)

Modifying the term ϵ − (xi − µq)/
√
vq to (ϵ − ϵ̂i) + (ϵ̂i − (xi − µq)/

√
vq) and recognizing

that
∫
N (ϵ; ϵ̂i, v̂i)(ϵ − ϵ̂i)dϵ = 0 while (ϵ̂i − (xi − µq)/

√
vq) is a constant with regards to ϵ,

we carry out the integration:

G̃µq = −√
vq
∑
i

πi(ϵi)
√
v̂iAi

ϵ̂i − (xi − µq)/
√
vq

vg
+

(µp − µq)

vp
(75)

Next, we substitute ϵ̂i with its definition from equation (19) and rearrange:

G̃µq = −
∑
i

πi(ϵi)
√
v̂iAi

(
vq (1− πi(ϵi)v̂i)

vg + vq
− 1

)
xi − µq
vg

+
(µp − µq)

vp
(76)

Further rearranging, we obtain the final expression for G̃µq :

G̃µq =
∑
i

Bi
xi − µq
vg

+
(µp − µq)

vp
(77)

Bi = πi(ϵi)
√
v̂iAi

vg + πi(ϵi)v̂ivq
vg + vq

(78)

To compute the integral in equation (12) we substitute q0(ϵ)πi(ϵ) with its approximation
from equation (17):

Gvq ≈ G̃vq = −1

2

[∑
i

πi(ϵi)
√
v̂iAi

∫
N (ϵ; ϵ̂i, v̂i)

ϵ(ϵ− (xi − µq)/
√
vq)

vg
dϵ− 1

vq
+

1

vp

]
(79)
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Modifying the term ϵ(ϵ− (xi−µq)/
√
vq) to ((ϵ− ϵ̂i)+ ϵ̂i)((ϵ− ϵ̂i)+ (ϵ̂i− (xi−µq)/

√
vq)) we

recognize that
∫
N ϵ̂i(ϵ; ϵ̂i, v̂i)(ϵ − ϵ̂i)

2dϵ = v̂i,
∫
N (ϵ; ϵ̂i, v̂i)(ϵ − ϵ̂i)dϵ = 0,

∫
N (ϵ; ϵ̂i, v̂i)(ϵ −

ϵ̂i)(ϵ̂i − (xi − µq)/
√
vq)dϵ = 0 and ϵ̂i(ϵ̂i − (xi − µq)/

√
vq) is a constant with respect to ϵ.

Carrying out the integration in equation (79) then results in the following expression:

G̃vq = −1

2

[∑
i

πi(ϵi)
√
v̂iAiv̂i/vg +

∑
i

πi(ϵi)
√
v̂iAi

ϵ̂i(ϵ̂i − (xi − µq)/
√
vq)

vg
− 1

vq
+

1

vp

]
(80)

Next, we substitute ϵ̂i in ϵ̂i(ϵ̂i − (xi − µq)/
√
vq) with its definition from equation (19) and

rearrange:

ϵ̂i

(
ϵ̂i −

xi − µq√
vq

)
= (1− πi(ϵi)v̂i)

vq (1− πi(ϵi)v̂i)− vg − vq
vg + vq

(xi − µq)
2 1

vg + vq
(81)

ϵ̂i

(
ϵ̂i −

xi − µq√
vq

)
= − (1− πi(ϵi)v̂i)

vg + πi(ϵi)v̂ivq
vg + vq

(xi − µq)
2 1

vg + vq
(82)

Substituting equation (82) back in equation (80) we obtain the final expression for G̃vq :

G̃vq =
1

2

[
−
∑
i

Ci
1

vg
+
∑
i

Di
(xi − µq)

2

vg

1

vg + vq
+

1

vq
− 1

vp

]
(83)

Ci = πi(ϵi)
√
v̂iAiv̂i (84)

Di = (1− πi(ϵi)v̂i)Bi (85)
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