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FINITENESS OF THE NUMBER OF IRREDUCIBLE λ-QUIDDITIES OVER A

FINITE COMMUTATIVE AND UNITARY RING

FLAVIEN MABILAT

Résumé. Les λ-quiddités de taille n sont des n-uplets d’éléments d’un ensemble fixé, solutions d’une
équation matricielle apparaissant lors de l’étude des frises de Coxeter. L’étude de ces solutions passe
notamment par l’utilisation d’une notion d’irréductibilité. L’objectif principal de ce texte est de montrer
qu’il y a un nombre fini de λ-quiddités irréductibles lorsque l’on se place sur un anneau commutatif
unitaire fini et d’obtenir dans ce cas une majoration de la taille maximale de ces dernières.

Abstract. λ-quiddities of size n are n-tuples of elements of a fixed set, solutions of a matrix equation
appearing in the study of Coxeter’s friezes. The study of these solutions involves in particular the use
of a notion of irreducibility. The main objective of this text is to show that there is a finite number
of irreducible λ-quiddities over a finite unitary commutative ring and to obtain in this case an upper
bound of the maximal size of them.

« Les choses n’arrivent quasi jamais comme on se les imagine. »
Madame de Sévigné, Lettres.

1. Introduction

Since its apparition at the begining of the 1970s, the concept of Coxeter’s friezes ([3]) has drawn great
attention. Indeed, these objects have been the source of a lot of beautiful results and are closely linked
to many topics (see for example [13]). One of the most important elements of the study of Coxeter’s
friezes over a subset R of a commutative and unitary ring A is the resolution of the following equation
over R :

Mn(a1, . . . , an) :=

(

an −1A

1A 0A

)(

an−1 −1A

1A 0A

)

· · ·

(

a1 −1A

1A 0A

)

= −Id.

Besides, the presence of the matrices Mn(a1, . . . , an) is very interesting since they also appear in the
study of a lot of other mathematical objects, such as Hirzebruch-Jung continued fractions or discrete
Sturm-Liouville equations (see for instance the introduction of [15]).

Moreover, the study of the previous equation naturally leads to consider the generalised equation
below over a subset R of a commutative and unitary ring A 6= {0A} :

(ER) Mn(a1, . . . , an) = ±Id.

We will say that a solution (a1, . . . , an) of (ER) is a λ-quiddity of size n over R. Our objective is to
obtain information about λ-quiddities over different sets. There are several ways to achieve this goal.
The first one, and the most natural, is to look for a general construction of all the solutions of (ER).
In this direction, we have, for example, a recursive construction and a combinatorial description of all
the solutions of (EN∗) (see [15] Theorem 1 and Theorem 2). Another possibility is to find some general
information, such as the number of fixed-size λ-quiddities. Several results of that kind are known (see
[2, 6, 12, 14]). However, here, we will consider a third way. Indeed, to study the solutions of (ER) it
is convenient to introduce a notion of irreducible λ-quiddity which allow us to restrict our attention to
these solutions only (see [4] and the next section).
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A lot of results concerning irreducible λ-quiddities are already known. In particular, we have a
complete list of the irreducible solutions of (ER) over several sets (see section 2.2). However, in most
cases, we do not have such a list and we try in a more modest way to find information about irreducible
solutions. In particular, two main questions arise : Is the number of irreducible λ-quiddities over R finite
? Is the size of irreducible solutions of (ER) bounded ? If R is finite then the two questions are strictly
the same and this is precisely the case we want to deal with here. In particular, we have conjectured in
a previous text that, for all N ≥ 2, (EZ/NZ) has a finite number of irreducible solutions ([8] Conjecture
1). Note that the resolution of (ER) with R = Z/NZ is closely linked to the different writings of the

elements of the congruence subgroup Γ̂(N) := {C ∈ SL2(Z), C = ±Id [N ]}. Indeed, all the matrices of
SL2(Z) can be written in the form Mn(a1, . . . , an), with ai ∈ N∗ (note that in this text N is the set of
all non negative integers). Since this expression is not unique, it is natural to look for all the writings of
this form for a given matrix, or a set of matrices.

Our main objective in this text is to show that the number of irreducible λ-quiddities over a finite
commutative and unitary ring A is finite, which in particular will give us a solution to the conjecture
mentionned in the previous paragraph. Besides, we want to have an upper bound of the size of irreducible
λ-quiddities over A. For a unitary ring A, we set car(A) the characteristic of A and we recall the classical
following property: if A is finite then car(A) 6= 0. In this article, we will prove the following results :

Theorem 1.1. Let (A,+,×) be a finite commutative and unitary ring (different from {0A}) and R ⊂ A
a submagma of (A,+), that is to say a subpart of A closed under +.

i) There is a finite number of irreducible λ-quiddities over R.

ii) Let ℓA be the maximum size of an irreducible λ-quiddity over A.

— If car(A) = 2 then 4 ≤ ℓA ≤ |SL2(A)|
|A| + 2.

— If car(A) 6= 2 then max(4, car(A)) ≤ ℓA ≤ |SL2(A)|
2|A| + 2.

Corollary 1.2. i) Let N ≥ 5 and p1, . . . , pr the distinct prime factors of N .

N ≤ ℓZ/NZ ≤
N2

2

r∏

1=1

(

1−
1

p2i

)

+ 2.

ii) Let q the power of a prime number p.

— If p = 2 then 4 ≤ ℓFq
≤ q2 + 1.

— If p 6= 2 then max(4, p) ≤ ℓFq
≤ q2+3

2 .

Theorem 1.1 is proved in section 3.1 while the proof of corollary 1.2 is given in section 3.2.

2. Definitions and preliminary results

The aim of this section is to give the precise definitions of the notions mentionned in the introduction
and to provide some elements which will be useful in the proofs of our main results. To have a complete
view on irreducible λ-quiddities, we will also recall some known results obtained for several precise rings.
In all this section, (A,+,×) is a commutative and unitary rings different from {0A} and R is a submagma
of (A,+). 0A is the identity element of + and 1A is the identity element of ×. If N ≥ 2 and a ∈ Z, we
set a := a+NZ.

2.1. Quiddities. We begin by the precise definition of the concept of λ-quiddity.

Definition 2.1 ([4] definition 2.2). Let n ∈ N∗. The n-tuple (a1, . . . , an) ∈ Rn is a λ-quiddity over R if
(a1, . . . , an) is a solution of (ER), that is to say if it exists ǫ ∈ {±1A} such that Mn(a1, . . . , an) = ǫId.
If there is no ambiguity, we will omit to precise the ring.

Throughout the rest of this text, we will speak indiscriminately of the solutions of (ER) or of the
λ-quiddities over R. To define the notion of irreducibility, we need the two following definitions.
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Definition 2.2 ([4], lemma 2.7). Let (a1, . . . , an) ∈ Rn and (b1, . . . , bm) ∈ Rm. We define the following
operation :

(a1, . . . , an)⊕ (b1, . . . , bm) = (a1 + bm, a2, . . . , an−1, an + b1, b2, . . . , bm−1).

The (n+m− 2)-tuple obtained is the sum of (a1, . . . , an) with (b1, . . . , bm).

Examples. We give here some examples of sums over A = R = Z :

— (1, 2, 3)⊕ (1, 0,−2, 4) = (5, 2, 4, 0,−2);

— (−1, 1, 0, 2)⊕ (2, 2, 2) = (1, 1, 0, 4, 2);

— (2, 1,−, 1, 0,−3)⊕ (2, 3, 1, 1) = (3, 1,−1, 0,−1, 3, 1).

The operation ⊕ is very useful since it has the interesting following property. Let (b1, . . . , bm) a
solution of (ER). (a1, . . . , an)⊕ (b1, . . . , bm) is a λ-quiddity over R if and only if (a1, . . . , an) is a solution
of (ER) (see [4, 16]). Besides, if 0A ∈ R, we have the following equality :

(a1, . . . , an)⊕ (0A, 0A) = (0A, 0A)⊕ (a1, . . . , an) = (a1, . . . , an).

However, ⊕ is neither commutative nor associative (see [16] example 2.1).

Definition 2.3 ([4], définition 2.5). Let (a1, . . . , an) ∈ Rn and (b1, . . . , bn) ∈ Rn. (a1, . . . , an) ∼
(b1, . . . , bn) if (b1, . . . , bn) can be obtained by cyclic rotations of (a1, . . . , an) or of (an, . . . , a1).

∼ is an equivalence relation on the set Rn (see [16] lemme 1.7). Moreover, if (a1, . . . , an) ∼ (b1, . . . , bn)
then (a1, . . . , an) is a solution of (ER) if and only if (b1, . . . , bn) is a λ-quiddity over R (see [4] proposition
2.6).

We can now defined the noton of irreducibility used in the introduction.

Definition 2.4 ([4], définition 2.9). A λ-quiddity over R (c1, . . . , cn) (n ≥ 3) is said to be reducible if
there exists a λ-quiddity over R (b1, . . . , bl) and an m-tuple (a1, . . . , am) ∈ Rm such that

— (c1, . . . , cn) ∼ (a1, . . . , am)⊕ (b1, . . . , bl);

— m ≥ 3 and l ≥ 3.

A λ-quiddity over R is said to be irreducible if it is not reducible.

Remark. We suppose 0A ∈ R. (0A, 0A) is never considered as an irreducible solution of (ER).

We set ℓR ∈ N ∪ {+∞} the maximum size of an irreducible λ-quiddity over R. In the next two
subparts, we will give some preliminary information about ℓR.

2.2. Some classification results. The objective of this subsection is to gather some classification
results already known concerning irreducible λ-quiddities. We begin by the case A = Z.

Theorem 2.5 ([4] Theorem 3.1 and 3.2). i) The set of irreducible λ-quiddities over Z is

{(1, 1, 1), (−1,−1,−1), (a, 0,−a, 0), (0, a, 0,−a), a ∈ Z− {−1, 1}}.

ii) The only irreducible λ-quiddities over N are (1, 1, 1) and (0, 0, 0, 0).

Theorem 2.6. The set of irreducible λ-quiddities over N∗ is {(1, . . . , 1) ∈ (N∗)3n, n ∈ N∗}.

Proof. This an easy consequence of the combinatorial description of the solutions of (EN∗) given in
Theorem 1 of [15]. For a detailled proof see [10] proposition 4.2.1.

�

These two theorems give us interesting information about irreducible λ-quiddities over infinite sets :

— It exists infinite rings such that ℓA 6= +∞.

— We can find an infinite set R such that the number of irreducible λ-quiddities over R is finite.

— It exists sets R′ ⊂ R such that ℓR 6= +∞ and ℓR′ = +∞.

Theorem 2.7 ([11] Theorem 2.8). Let I a set containing at least two elements and (Ai) a family of
commutative and unitary rings. We suppose that at least two different Ai have zero characteristic. Let
n ≥ 3. It exists an irreducible λ-quiddity of size n over

∏

i∈I Ai.

We also have information about finite rings. In particular, we have a precise classification of the
irreducible solutions of (EZ/NZ) in the cases 2 ≤ N ≤ 6 (see [8] Theorem 2.5).

3



Theorem 2.8. i) ([8] Theorem 2.5) The irreducible λ-quiddities over Z/4Z are : (1, 1, 1), (−1,−1,−1),
(0, 0, 0, 0), (0, 2, 0, 2) ,(2, 0, 2, 0) and (2, 2, 2, 2).

ii) ([11] Theorem 2.6) The irreducible λ-quiddities over (Z/2Z)× (Z/2Z) are (up to cyclic rotations):

— ((1, 1), (1, 1), (1, 1));

— ((0, 0), (0, 0), (0, 0), (0, 0)), ((0, 0), (0, 1), (0, 0), (0, 1)), ((0, 0), (1, 0), (0, 0), (1, 0)),
((1, 0), (0, 1), (1, 0), (0, 1));

— ((1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0)), ((0, 1), (0, 1), (0, 1), (0, 1), (0, 1), (0, 1)).

iii) ([11] Theorem 2.7) The irreducible λ-quiddities over F4 := (Z/2Z)[X]

<X2+X+1>
are (up to cyclic rotations) :

— (1, 1, 1);

— (0, 0, 0, 0), (0, X, 0, X), (0, X + 1, 0, X + 1);

— (X,X,X,X,X), (X + 1, X + 1, X + 1, X + 1, X + 1);

— (X,X + 1, X,X + 1, X,X + 1);

— (X,X,X + 1, X + 1, X,X,X + 1, X + 1);

— (X,X,X + 1, X,X,X + 1, X,X,X + 1), (X + 1, X + 1, X,X + 1, X + 1, X,X + 1, X + 1, X).

This result show us that finite rings having the same cardinality can have a very different list of
irreducible λ-quiddities. In particular, ℓA does not only depend of |A|.

2.3. Preliminary results. The aim of this subpart is to collect several results which will be useful in
the next section. First, we give the solutions of (ER) of small size (see for example [9] section 3.1) :

Lemma 2.9. — (ER) has no solution of size 1.

— (0A, 0A) is the only λ-quiddity over A of size 2.

— (1A, 1A, 1A) and (−1A,−1A,−1A) are the only λ-quiddities over A of size 3. Besides, they are
irreducible.

— The set of solutions of (ER) of size 4 is {(−a, b, a,−b) ∈ R4, ab = 0A}∪ {(a, b, a, b) ∈ R4, ab =
2× 1A}.

— Solutions of (EA) of size greater than 4 containing ±1A are reducible.

— A solution of (EA) of size 4 is irreducible if and only if it does not contain ±1A.

— Solutions of (EA) of size greater than 5 containing 0A are reducible.

The following result is an easy consequence of lemma 2.9.

Proposition 2.10. Let (G,+) an infinite subgroup of an infinite ring (A,+,×). There is infinitely
many irreducible λ-quiddities over G.

Proof. Since (G,+) is a group, 0A ∈ G. For all g ∈ G − {−1A, 1A}, (0A, g, 0A,−g) is an irreducible
λ-quiddity over G.

�

Now, we will give some elements about the cardinality of the special linear group over a finite ring.
We begin by recall the two classical following results.

Theorem 2.11. Let q a power of a prime number. |SL2(Fq)| = q(q2 − 1).

Proposition 2.12. Let n ∈ N∗ and A1, . . . , An n commutative and unitary rings. SL2(A1 × . . .× An)
is a group isomorphic to SL2(A1)× . . .× SL2(An).

Proof. We consider the following application :

ψ : SL2(A1 × . . .×An) −→ SL2(A1)× . . .× SL2(An)(

(ai)1≤i≤n (bi)1≤i≤n

(ci)1≤i≤n (di)1≤i≤n

)

7−→

((

ai bi

ci di

))

1≤i≤n

.

ψ is a group isomorphism.
�
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Theorem 2.13 ([7] 3.24, pages 211-215). Let N ≥ 2 and p1, . . . , pr the distinct prime factors of N .

|SL2(Z/NZ)| = N3
r∏

i=1

(

1−
1

p2i

)

.

We will also use an expression of the coefficients of Mn(a1, . . . , an). For this, we set K−1 = 0, K0 = 1
and for i ≥ 1 and (a1, . . . , ai) ∈ Ai :

Ki(a1, . . . , ai) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a1 1

1 a2 1

. . .
. . .

. . .

1 ai−1 1

1 ai

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Ki(a1, . . . , ai) is the continuant of a1, . . . , ai. By induction, we have the following equality (see for
example [10] proposition 4.3.2) :

Proposition 2.14. (a1, . . . , an) ∈ An. Mn(a1, . . . , an) =

(
Kn(a1, . . . , an) −Kn−1(a2, . . . , an)

Kn−1(a1, . . . , an−1) −Kn−2(a2, . . . , an−1)

)

.

Lemma 2.15. Let A a commutative and unitary ring. Let n ≥ 1 and (a1, . . . , an) ∈ An such that
Kn(a1, . . . , an) = ǫ ∈ {±1A}. We set x = ǫKn−1(a2, . . . , an) and y = ǫKn−1(a1, . . . , an−1).

Mn+2(x, a1, . . . , an, y) = −ǫId.

Proof. Mn+2(x, a1, . . . , an, y) =

(
Kn+2(x, a1, . . . , an, y) −Kn+1(a1, . . . , an, y)
Kn+1(x, a1, . . . , an) −Kn(a1, . . . , an)

)

.

We have the two following equalities :

— Kn+1(x, a1, . . . , an) = xKn(a1, . . . , an)−Kn−1(a2, . . . , an) = ǫx− ǫx = 0A;

— Kn+1(a1, . . . , an, y) = yKn(a1, . . . , an)−Kn−1(a1, . . . , an−1) = ǫy − ǫy = 0A.

Since det(Mn+2(x, a1, . . . , an, y)) = 1A, Kn+2(x, a1, . . . , an, y) = −ǫ. So, Mn+2(x, a1, . . . , an, y) = −ǫId.
�

We have seen that R′ ⊂ R does not imply in general ℓR′ ≤ ℓR. However, this is true if we only consider
commutative and unitary rings.

Proposition 2.16. Let A, B two commutative and unitary rings such that A is a subring of B. ℓA ≤ ℓB.

Proof. Let n := ℓA. It exists (a1, . . . , an) ∈ An an irreducible λ-quiddity over A. Since A ⊂ B,
(a1, . . . , an) is a solution of (EB). Suppose it is reducible over B. It exists m, l ≥ 3, (b1, . . . , bm) ∈ Bm

and (c1, . . . , cl) a λ-quiddity over B such that

(a1, . . . , an) ∼ (b1, . . . , bm)⊕ (c1, . . . , cl) = (b1 + cl, b2, . . . , bm−1, bm + c1, c2, . . . , cl−1).

In particular, (c2, . . . , cl−1) ∈ Al−2 and (b2, . . . , bm−1) ∈ Am−2. Besides, it exists α ∈ {±1B} = {±1A}
such that Ml(c1, . . . , cl) = αId. By proposition 2.14,

0B = Kl−1(c1, . . . , cl−1) = c1Kl−2(c2, . . . , cl−1)−Kl−3(c3, . . . , cl−1) = −αc1 −Kl−3(c3, . . . , cl−1).

Hence, c1 = −αKl−3(c3, . . . , cl−1). Since (c3, . . . , cl−1) ∈ Al−3 and A is a ring, c1 ∈ A. Similar argments
show cl ∈ A. Hence, (c1, . . . , cl) is a λ-quiddity over A. Besides, (b1 + cl, bm + c1) ∈ A2. Thus,
(b1, bm) ∈ A2. So, (a1, . . . , an) is reducible over A. Since this is not the case, (a1, . . . , an) is irreducible
over B and ℓB ≥ n.

�

Remark. It exists rings A,B verifying A ⊂ B, A 6= B and ℓA = ℓB. For instance, Z ( Z[π] and
ℓZ = ℓZ[π] = 4 ([9] Theorem 2.7).

3. Lower and upper bounds for ℓA

In a section dedicated to the well-known “pigeon-hole principle”, M. Aigner and G. Ziegler say :
“Some mathematical principles, [. . . ], are so obvious that you might think they would only produce
equally obvious results.” and, immediately after, they precise “It ain’t necessarily so” (see [1] page 131).
Reading these few lines gave us the idea used in what follows and the proof develloped below provides
an example which illustrates Aigner and Ziegler’s words.
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3.1. Proof ot theorem 1.1. Let (A,+,×) a finite commutative and unitary ring different from {0A}
and R a submagma of (A,+).

i) Since A is finite, car(A) = p 6= 0. Let x ∈ R (R 6= ∅). Since R is closed under +, 0A =
∑p

i=1 x ∈ R.

We set l := |SL2(A)|, l is well defined since A is finite. Besides, l ≥ 4. Let n ∈ N∗ such that
n ≥ l + 1 ≥ 5 and (a1, . . . , an) ∈ Rn. We consider the matrices Mk(a1, . . . , ak), with 1 ≤ k ≤ n. We
have n > l objects belonging to a set that contains only l elements. Hence, by the pigeon-hole principle,
it exists 1 ≤ i < j ≤ n such that :

Mi(a1, . . . , ai) =Mj(a1, . . . , aj) =Mj−i(ai+1, . . . , aj)Mi(a1, . . . , ai).

Since Mi(a1, . . . , ai) is invertible (det(Mi(a1, . . . , ai)) = 1A), we have :

Mj−i(ai+1, . . . , aj) = Id.

So, (ai+1, . . . , aj) is a solution of (ER) whose size is 1 ≤ j − i ≤ n− 1. We consider three cases :

— If j − i ≥ 3 then we have following equality :

(a1, . . . , an) ∼ (aj , . . . , an, a1, . . . , aj−1) = (0A, aj+1, . . . , an, a1, . . . , ai, 0A)
︸ ︷︷ ︸

n−(j−i)+2≥3

⊕(ai+1, . . . , aj).

(if j = n then (a1, . . . , an) ∼ (an, a1 . . . , an−1) = (0A, a1, . . . , ai, 0A)⊕ (ai+1, . . . , an).)

— If j − i = 2 then, by lemma 2.9, ai+1 = ai+2 = 0A and we have :

(a1, . . . , an) ∼ (ai+3, . . . , an, a1, . . . , ai+2) = (ai+3, . . . , an, a1, . . . , ai)
︸ ︷︷ ︸

n−2≥3

⊕(0A, 0A, 0A, 0A).

(if i = n− 2 then (a1, . . . , an) = (a1, . . . , an−2)⊕ (0A, 0A, 0A, 0A).)

— By lemma 2.9, the case j − i = 1 is impossible.

Hence, we can written (a1, . . . , an) as a sum of an u-tuple with a solution of (ER) of size v with u, v ≥ 3.
So, a λ-quiddity whose size is greater or equal to l + 1 is reducible. Since R is finite (as a subpart of a
finite set), we conclude that the number of irreducible λ-quiddties over R is finite.

ii) We setH :=

{(

1A x

0A 1A

)

,

(

−1A x

0A −1A

)

, x ∈ A

}

. H is a subgroup of SL2(A). We set (SL2(A)/H)d

the set of the right cosets of H and

l := |(SL2(A)/H)d| =
|SL2(A)|

|H |
=

{
|SL2(A)|

|A| if car(A) = 2;
|SL2(A)|

2|A| if car(A) 6= 2.

Let n ∈ N∗ such that n ≥ l + 3 and (a1, . . . , an) ∈ An. We consider the right cosets H Mk(a1, . . . , ak),
with 1 ≤ k ≤ n− 2. We have n− 2 > l objects belonging to a set that contains only l elements. Hence,
by the pigeon-hole principle, it exists 1 ≤ i < j ≤ n− 2 such that :

H Mi(a1, . . . , ai) = H Mj(a1, . . . , aj).

So, M =Mj(a1, . . . , aj)(Mi(a1, . . . , ai))
−1 ∈ H . However, we have the following equalities :

M = Mj(a1, . . . , aj)(Mi(a1, . . . , ai))
−1

= Mj−i(ai+1, . . . , aj)Mi(a1, . . . , ai)(Mi(a1, . . . , ai))
−1

= Mj−i(ai+1, . . . , aj).

Hence, Mj−i(ai+1, . . . , aj) ∈ H . Thus, by proposition 2.14, Kj−i(ai+1, . . . , aj) = ǫ = ±1A. We set
x = ǫKj−i−1(ai+2, . . . , aj) ∈ A and y = ǫKj−i−1(ai+1, . . . , aj−1) ∈ A. By lemma 2.15, (x, ai+1, . . . , aj , y)
is a solution of (EA). Its size is equal to 3 ≤ j − i+ 2 ≤ n− 1. We have the following equality :

(a1, . . . , an) ∼ (aj+1, . . . , an, a1, . . . , aj) = (aj+1 − y, . . . , an, a1, . . . , ai − x)⊕ (x, ai+1, . . . , aj , y).

Hence, we can written (a1, . . . , an) as a sum of an u-tuple with a solution of (EA) of size v with u, v ≥ 3.
So, a λ-quiddity over A whose size is greater or equal to l + 3 is reducible. Hence, ℓA ≤ l + 2.

By lemma 2.9, (0A, 0A, 0A, 0A) is an irreducible λ-quiddity over A. So ℓA ≥ 4. Since A is finite,
car(A) > 0. We suppose car(A) ≥ 4. To obtain the majoration ℓA ≥ car(A), we will adapt the proof of
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theorem 2.6 of [8]. For all m ∈ N, we set mA = m× 1A.

By induction, we have, for all m ∈ N, the following equality : Km(2A, . . . , 2A) = (m + 1)A. Indeed,
K0 = 1A and K1(2A) = 2A and if we suppose it exits m ≥ 1 such that Km(2A, . . . , 2A) = (m+ 1)A and
Km−1(2A, . . . , 2A) = mA then

Km+1(2A, . . . , 2A) = 2AKm(2A, . . . , 2A)−Km−1(2A, . . . , 2A) = (2m+ 2)A −mA = (m+ 2)A.

By induction, we obtain the desired formula.

So, by proposition 2.14, Mcar(A)(2A, . . . , 2A) = Id. Suppose this λ-quiddity is reducible. It exists
u, v ≥ 3, (b1, . . . , bu) ∈ Au and (c1, . . . , cv) a λ-quiddity over A such that :

(2A, . . . , 2A) = (b1, . . . , bu)⊕ (c1, . . . , cv) = (b1 + cv, b2, . . . , bu−1, bu + c1, c2, . . . , cv−1).

Hence, c2 = . . . = cv−1 = 2A. So, by proposition 2.14, we have :

±1A = Kv−2(c2, . . . , cv−1) = Kv−2(2A, . . . , 2A) = vA − 1A.

Thus, car(A) divides v or (v − 2). These two cases are impossible since 3 ≤ v ≤ car(A) + 2− u.

Hence, (2A, . . . , 2A) ∈ Acar(A) is an irreducible solution of (EA) and so ℓA ≥ car(A).
�

3.2. Applications. If we compile the results of theorem 1.1 and the cardinalities recalled in theorems
2.11 and 2.13, we obtain corollary 1.2. Besides, we can modify the proof of theorem 1.1 i) to have the
following result :

Proposition 3.1. Let A a finite commutative and unitary ring and x ∈ {−1A, 0A, 1A}. It exists kx ∈ N∗

such that for all n ≥ kx and for all n-tuple (a1, . . . , an) ∈ An, it exists 1 ≤ i ≤ n and 1 ≤ j ≤ n− i + 1
such that Ki(aj , . . . , aj+i−1) = x.

Proof. We set l := |SL2(A)|, l is well defined since A is finite. Let n ∈ N∗ such that n ≥ 3l + 1 and
(a1, . . . , an) ∈ An. We consider the matrices Mk(a1, . . . , a3k+1), with 0 ≤ k ≤ l. We have l + 1 > l
objects belonging to a set that contains only l elements. Hence, by the pigeon-hole principle, it exists
0 ≤ i < j ≤ l such that :

M3i+1(a1, . . . , a3i+1) =M3j+1(a1, . . . , a3j+1) =M3(j−i)(a3i+2, . . . , a3j+1)M3i+1(a1, . . . , a3i+1).

Since, M3i+1(a1, . . . , a3i+1) is invertible, we have :

M3(j−i)(a3i+2, . . . , a3j+1) = Id.

So, by proposition 2.14, we have :

— K3(j−i)(a3i+2, . . . , a3j+1) = 1A;

— K3(j−i)−2(a3i+3, . . . , a3j) = −1A;

— K3(j−i)−1(a3i+2, . . . , a3j) = 0A.

Besides, 1 ≤ 3(j − i)− 2 and 3(j − i) ≤ n.
�

Remark. This result cannot be extented to another element of a finite commutative and unitary ring
A. For instance, we can consider, for all n ∈ N∗, (0A, . . . , 0A) ∈ An. Indeed, we have :

— if i ≡ ±1[4], Ki(0A, . . . , 0A) = 0A;

— if i ≡ 2[4], Ki(0A, . . . , 0A) = −1A;

— if i ≡ 0[4], Ki(0A, . . . , 0A) = 1A.

In [11] section 3.3, we have introduced the following open problem :

Problem. Let I a set. Find necessary and sufficient conditions on I such that there is a finite number
of irreducible λ-quiddities over

∏

i∈I Z/2Z.
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Theorem 1.1 give us a sufficient condition. Indeed, if I is a finite set, A =
∏

i∈I Z/2Z is a finite
ring and so theorem 1.1 guarantees that the number of irreducible λ-quiddities over A is finite. Besides,
thanks to proposition 2.12, we have the following inequality :

ℓ∏r
i=1

Z/2Z ≤
1

2r

(
r∏

i=1

6

)

+ 2 = 3r + 2.

We now give some numerical applications of theorem 1.1. In the table below, we give the exact value of

ℓA obtained with a computer (see [6] section 5.2) and the value of θA =

{
|SL2(A)|

|A| + 2 if car(A) = 2;
|SL2(A)|

2|A| + 2 if car(A) 6= 2.

A Z/7Z Z/8Z Z/9Z Z/10Z Z/11Z Z/12Z Z/13Z Z/14Z Z/15Z Z/16Z

ℓA 9 8 12 12 19 15 25 20 26 24

θA 26 26 38 38 62 50 86 74 98 98

A F8 Z/2Z× F4 Z/2Z× Z/2Z× Z/2Z Z/3Z× Z/3Z F9 F16 Z/17Z Z/18Z F25 F32

θA 65 47 29 34 42 257 146 110 314 1025

Note that ℓZ/3Z×Z/3Z = 12 ([11] section 4.1.3).

3.3. A refinement of theorem 1.1 in the case A = F9. The aim of this section is to find a better
upper bound for ℓF9

. In the previous subpart, we have shown that ℓF9
≤ 42. Now, we will prove ℓF9

≤ 32.
To do this, we will follow the proof of theorem 1.1 ii) but we will choose another subgroup.

Proposition 3.2. ℓF9
≤ 32.

Proof. H := SL2(F3) is a subgroup of SL2(F9). We set (SL2(F9)/H)d the set of the right cosets of H
and l := |(SL2(F9)/SL2(F3))d| = 30.

Let n ∈ N∗ and (a1, . . . , an) ∈ Fn
9 such that n ≥ l + 3 and (a1, . . . , an) is a λ-quiddity. We con-

sider the right cosets H Mk(a1, . . . , ak), with 1 ≤ k ≤ n− 2. We have n− 2 > l objects belonging to a
set that contains only l elements. Hence, by the pigeon-hole principle, it exists 1 ≤ i < j ≤ n − 2 such
that :

H Mi(a1, . . . , ai) = H Mj(a1, . . . , aj).

So, M =Mj(a1, . . . , aj)(Mi(a1, . . . , ai))
−1 ∈ H , that is to say Mj−i(ai+1, . . . , aj) ∈ H .

If j − i = 1 then ai+1 ∈ F3 = {0, 1,−1}. By lemma 2.9, (a1, . . . , an) is reducible.

Now, we suppose j − i ≥ 2. The elements of H cannot have three coefficients equal to 0. Thus
Kj−i(ai+1, . . . , aj) = ±1 or Kj−i−1(ai+2, . . . , aj) = ±1 or Kj−i−1(ai+1, . . . , aj−1) = ±1.

We suppose Kj−i(ai+1, . . . , aj) = ǫ = ±1.

We set x = ǫKj−i−1(ai+2, . . . , aj) ∈ F9 and y = ǫKj−i−1(ai+1, . . . , aj−1) ∈ F9. By lemma 2.15,
(x, ai+1, . . . , aj , y) is a solution of (EF9

). Its size is equal to 4 ≤ j − i + 2 ≤ n − 1. We have the
following equality :

(a1, . . . , an) ∼ (aj+1, . . . , an, a1, . . . , aj) = (aj+1 − y, . . . , an, a1, . . . , ai − x)
︸ ︷︷ ︸

n−(j−i)≥3

⊕(x, ai+1, . . . , aj, y).

Hence, (a1, . . . , an) is reducible.

We suppose Kj−i−1(ai+1, . . . , aj−1) = ǫ = ±1.
8



We set x = ǫKj−i−2(ai+2, . . . , aj−1) ∈ F9 and y = ǫKj−i−2(ai+1, . . . , aj−2) ∈ F9. By lemma 2.15,
(x, ai+1, . . . , aj−1, y) is a solution of (EF9

). Its size is equal to 3 ≤ j − i + 1 ≤ n − 2. We have the
following equality :

(a1, . . . , an) ∼ (aj , . . . , an, a1, . . . , aj−1) = (aj − y, . . . , an, a1, . . . , ai − x)
︸ ︷︷ ︸

n−(j−i)+1≥4

⊕(x, ai+1, . . . , aj−1, y).

Hence, (a1, . . . , an) is reducible.

If Kj−i−1(ai+2, . . . , aj) = ǫ = ±1, the proof is the same as above.

Hence, ℓA ≤ l + 2 = 32.
�

3.4. A still open problem. In most situations, we consider irreducible λ-quiddities over infinite sub-
groups (and even more precisely subgroups of (C,+)) or over finite rings. For the first case, there are
a lot of possible situations and generaly we have to consider each subgroup separately. For the second
case, theorem 1.1 gives us a precise answer to the problem of the finiteness of the number of irreducible
solutions. Hence, we could consider that the general question of the finiteness of the number of irre-
ducible λ-quiddities over a fixed set is closed. However, there is still a case that deserves our attention.
Indeed, theorem 1.1 does not solve the problem of the finiteness of the number of irreducible λ-quiddities
over a finite submagma R 6= {0A} of an infinite ring A (note that this case implies that car(A) 6= 0).
Obviously, if it exists a finite subring B of A containing R then theorem 1.1 give us the solution, but we
can find several situations in which it is impossible to do such a reduction.

For instance, we choose two positive integers N and k, with N ≥ 2. We consider the two classi-
cal following sets A := (Z/NZ)[X ] and R := (Z/NZ)k[X ] := {P ∈ A, deg(P ) ≤ k}. A is an infinite ring
and R is a finite submagma of A. Besides, it does not exist a finite subring B of A containing R. Indeed,
a ring containing R necessarily contains X l for all l ∈ N.

In some cases, we can easily conclude. Indeed, consider for instance the sets A := (Z/2Z)[X ] and
R := {0, X}. A and R verify the desired conditions. For all n ∈ N∗, (X, . . . , X) ∈ Rn is not a λ-quiddity
over R (since deg(Kn(X, . . . , X)) = n). Hence, a λ-quiddity over R necessarily contains 0. Thus, the
only irreducible λ-quiddities over R are (0, 0, 0, 0), (0, X, 0, X) and (X, 0, X, 0). However, the general
following problem remains open.

Problem. Let R a finite submagma of an infinite ring. Do we have ℓR < +∞ ? If the answer is no,
can we characterise the submagma R for which ℓR < +∞ ?

References

[1] M. Aigner, G. Ziegler, Proofs from THE BOOK, Second edition, Springer-Verlag Berlin Heidelberg GmbH, 2001.

[2] C. Conley, V. Ovsienko, Quiddities of polygon dissections and the Conway-Coxeter frieze equation, Annali della Scuola
Normale Superiore di Pisa, Vol. 24 no. 4, (2023), pp 2125-2170.

[3] H. S. M. Coxeter, Frieze patterns, Acta Arithmetica, Vol. 18, (1971), pp 297-310.

[4] M. Cuntz, A combinatorial model for tame frieze patterns, Munster J. Math., Vol. 12 no. 1, (2019), pp 49-56.

[5] M. Cuntz, T. Holm, Frieze patterns over integers and other subsets of the complex numbers, J. Comb. Algebra., Vol.
3 no. 2, (2019), pp 153-188.

[6] M. Cuntz, F. Mabilat, Comptage des quiddités sur les corps finis et sur quelques anneaux Z/NZ, Annales de la Faculté
des Sciences de Toulouse, to appear, arXiv:2304.03071, hal-04057675.

[7] S. Francinou, H. Gianella, S. Nicolas, Exercices de mathématiques-Oraux X-ENS, algèbre 2, Cassini, Enseignement Des
Mathématiques, 2009.

[8] F. Mabilat, Combinatoire des sous-groupes de congruence du groupe modulaire, Annales Mathématiques Blaise Pascal,
Vol. 28 no. 1, (2021), pp. 7-43. doi : 10.5802/ambp.398. https://ambp.centre-mersenne.org/articles/10.5802/ambp.398/.

[9] F. Mabilat, λ-quiddité sur Z[α] avec α transcendant, Mathematica Scandinavica, Vol. 128 no. 1, (2022), pp 5-13,
https://doi.org/10.7146/math.scand.a-128972.

[10] F. Mabilat, Combinatoire des sous-groupes de congruence : des fractions continues à la description des sous-groupes

de congruence, Phd thesis, Université de Reims Champagne-Ardenne, (2022), https://theses.fr/2022REIMS052.

[11] F. Mabilat, λ-quiddités sur des produits directs d’anneaux, hal-04190487, arXiv:2308.15848.

9

http://arxiv.org/abs/2304.03071
http://arxiv.org/abs/2308.15848


[12] F. Mabilat, Some counting formulas for λ-quiddities over the rings Z/2mZ, Bulletin of the Australian Mathematical
Society, to appear, arXiv:2402.09968.

[13] S. Morier-Genoud, Coxeter’s frieze patterns at the crossroad of algebra, geometry and combinatorics, Bull. Lond.
Math. Soc., Vol. 47 no. 6, (2015), pp 895-938.

[14] S. Morier-Genoud, Counting Coxeter’s friezes over a finite field via moduli spaces, Algebraic combinatoric, Vol. 4 no.
2, (2021), pp 225-240.

[15] V. Ovsienko, Partitions of unity in SL(2,Z), negative continued fractions, and dissections of polygons, Res. Math.
Sci., Vol. 5 no. 2, (2018), Article 21, 25 pp.

[16] M. Weber, M. Zhao, Factorization of frieze patterns, Revista de la Unión Matemática Argentina, Vol. 60 no. 2, (2019),
pp 407-415.

Email address: flavien.mabilat@univ-reims.fr

10

http://arxiv.org/abs/2402.09968

	1. Introduction
	2. Definitions and preliminary results
	2.1. Quiddities
	2.2. Some classification results
	2.3. Preliminary results

	3. Lower and upper bounds for A
	3.1. Proof ot theorem 1.1
	3.2. Applications
	3.3. A refinement of theorem 1.1 in the case A=F9
	3.4. A still open problem

	References

