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Abstract—Improper parsing of attacker-controlled input is
a leading source of software security vulnerabilities, especially
when programmers transcribe informal format descriptions in
RFCs into efficient parsing logic in low-level, memory unsafe
languages. Several researchers have proposed formal specification
languages for data formats from which efficient code can be
extracted. However, distilling informal requirements into formal
specifications is challenging and, despite their benefits, new,
formal languages are hard for people to learn and use.

In this work, we present 3DGen, a framework that makes use
of AI agents to transform mixed informal input, including natural
language documents (i.e., RFCs) and example inputs into format
specifications in a language called 3D. To support humans in
understanding and trusting the generated specifications, 3DGen
uses symbolic methods to also synthesize test inputs that can
be validated against an external oracle. Symbolic test generation
also helps in distinguishing multiple plausible solutions. Through
a process of repeated refinement, 3DGen produces a 3D specifica-
tion that conforms to a test suite, and which yields safe, efficient,
provably correct, parsing code in C.

We have evaluated 3DGen on 20 Internet standard formats,
demonstrating the potential for AI-agents to produce formally
verified C code at a non-trivial scale. A key enabler is the use
of a domain-specific language to limit AI outputs to a class for
which automated, symbolic analysis is tractable.

Index Terms—Code Generation, Agentic AI Systems, Trust-
worthy AI programming

I. INTRODUCTION

Improper parsing of attacker-controlled input is a leading
source of software security vulnerabilities,12 especially when
programmers transcribe informal format descriptions into ef-
ficient parsing logic in low-level, memory unsafe languages.
For example, the format of TCP headers is specified in natural
language and packet diagrams in the classic RFCs 793 and
9293; meanwhile, tcp input.c, the TCP header parser in the
Linux kernel was patched to prevent an out of bounds access
in 2019, after being in the kernel for nearly 20 years.

In response, researchers have proposed languages for de-
scribing low-level binary message formats backed by code
generators that yield parsing and serialization tools, e.g.,
Nail [1] and EverParse [2], [3]. EverParse is notable in that it
produces formally verified C code from a format description
language (called 3D), guaranteeing memory safety, functional
correctness, and double-fetch freedom..

In an ideal world, one might hope for specifications to
always be written in domain-specific languages (DSLs) like 3D

1https://cwe.mitre.org/data/definitions/20.html
2https://cwe.mitre.org/data/definitions/502.html

that yield trustworthy executable code. However, more com-
monly, specifications are not entirely formal and come from a
variety of sources, ranging from natural language documents,
diagrams, example code snippets, sample input/output pairs,
etc. Extracting a formal specification from such a variety of
sources requires a significant human effort, typically requiring
a process that involves:

1) Learning a new DSL;
2) Understanding the informal specification;
3) Expressing one’s understanding of the informal specifi-

cation in the DSL;
4) Iterating to refine intent, revisiting the previous steps to

arrive at a desired specification.
This is challenging enough that developers often directly

transcribe informal specifications into executable code in gen-
eral purpose programming languages, leaving the door open
to low-level coding errors that lead to security vulnerabilities.

A. 3DGEN: A Framework for AI-assisted DSL Programming

In this work, we present 3DGEN, a framework that uses AI
agents to assist a human in translating an informal specification
to executable code via a DSL, grounded specifically in generat-
ing binary format parsers using 3D. Our framework is agnostic
to the AI model used, though for our experiments we use GPT-
4 [4]. The core of 3DGEN is an automated intent-refinement
loop which assists a user in constructing a 3D specification that
matches an oracle’s behavior on a set of test inputs. Figure 1
sketches the high-level workflow, whose main elements mirror
the steps outlined above.

1. Teaching a DSL to an agent: 3D is a small language
whose syntax is based on C’s syntax for typedefs, structures,
and unions. Its manual is relatively compact, consisting of
around 2,000 lines of text and around 20 examples. We “teach”
3DGEN about 3D by giving it access to the manual, and the
ability to query parts of the manual based on techniques that
we describe in §III-B.

2 & 3. Digesting informal specifications into 3D: A user gath-
ers a collection of informal specifications, including natural
language documents that describe message formats and sample
test inputs, and presents it to 3DGEN. In turn, our framework,
prompts the underlying agents to generate a 3D specification.

4. Refining intent The 3D compiler analyzes candidate 3D
specifications, providing syntax and type errors that we feed
back to the agents to repair their code until the produced 3D
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Fig. 1: Workflow of 3DGEN

specifications are at least well defined. Next, exploiting the
fact that 3D is a small language with a well-designed formal
semantics, we develop 3DTESTGEN a new symbolic test-case
generator for 3D. This allows us to automatically generate
new test inputs for candidate specifications, and we rely on
various external oracles to decide the intended classification
of an input. Enriching the input with the new test cases, we
repeat the loop.

Having converged with 3DGEN’s help on a given 3D
specification, the user relies on EverParse to generate verified
C code that is guaranteed to parse only all messages that are
well-formed according to the specification.

We evaluate 3DGEN on 20 Internet standard formats, start-
ing from their specification in RFCs. While 3DTESTGEN can
generate tests from candidate specifications, we still require
oracles to label those tests with their desired outcome; specifi-
cally, we use the Wireshark3 network packet analyzer to decide
if a packet should be accepted or not. Interestingly, in 11 cases,
3DGEN discovers constraints specified in RFCs that Wireshark
does not enforce. Additionally, for 7 protocol formats, we
also evaluated 3DGEN’s ability to produce 3D specification
that match the behavior of prior, handwritten specifications
for various formats provided as samples by the authors of
EverParse. In this setting, 3DGEN uncovers 3 cases in which
the human authored specifications were incorrect. That said,
the specifications 3DGEN produces are only as good as the
tests on which it is evaluated. In 2 cases, 3DGEN produces
specifications that agree with Wireshark, but 3DTESTGEN
detects, via symbolic differential testing, that the generated
specification is semantically distinct from a human-authored
EverParse sample—the 3DGEN-produced specification does
not enforce a constraint that it should. As such, we caution
that 3DGEN should not be used to blindly match the behavior
of a legacy tool. Instead, we envision 3DGEN and its symbolic
tools to be used by humans to iteratively refine a natural
language document into a formal specification, while also

3https://www.wireshark.org/docs/man-pages/tshark.html

growing a carefully curated test suite.
A key enabler of our technique is the use of an effectively

analyzable DSL, coupled with a verified code generator, as
a medium of interaction between a user’s informal intent
and AI-generated output. In contrast, directly prompting AI
agents to produce C code from informal specifications would
leave open the question of analyzing ad hoc C code for
safety and security, and with an unclear formal basis against
which to assess code correctness. Further, targeting a DSL
enables us to integrate powerful, fully automated tools like
symbolic test-case generation and differential analysis that
are usually intractable for large, general-purpose languages.
We conjecture that future AI-assisted programming techniques
might also benefit from the use of effectively analyzable DSLs
as intermediate languages.

In summary, we make the following contributions:
1) An architecture for AI-assisted programming using DSLs

coupled with symbolic analysis tools to refine informal
user intent into formal specifications, grounded in the
scenario of binary format parsers.

2) A new symbolic analysis and test generation tool for
the 3D format language, integrated in 3DGEN’s intent
refinement loop.

3) An evaluation of 3DGEN on a suite of 20 binary format
parsers specified in Internet standard RFCs, yielding safe
and secure C code.

II. PROBLEM FORMULATION

Ramananandro et al. [2] present EverParse, a library
of parser and serializer combinators in the F⋆ pro-
gramming language. They prove that every well-typed
program assembled from their parser combinators pro-
duces a parser that is the inverse of the correspond-
ing serializer, i.e., ∀s. parse (serialize s) == Some s and
∀b v. parse b == Some v =⇒ serialize v == b. Parsers for for-
mats that satisfy this mutual inverse property are particularly
relevant in security-critical settings. EverParse combinators are
themselves embedded within a fragment of F⋆ called Low* [5],
which supports transpilation to C via a tool called Karamel.

Swamy et al. [3] present a DSL built on top of EverParse
combinators called 3D, a language similar to C’s language
of type definitions, with typedefs, structures, and unions.
3D allows users to express a variety of “tag-length-value”
style formats, which are commonly used in many networking
protocols and other variable-length formats.

Internet RFCs often specify tag-length-value formats in
natural language in an ad hoc way. For example, the TCP
RFC 793 specifies the format of TCP options as follows:
There are two cases for the format of an option:

Case 1: A single octet of option-kind.
Case 2: An octet of option-kind, an octet of
option-length, and the actual option-data octets.
...
Currently defined options include
(kind indicated in octal):

Kind Length Meaning

2



---- ------ -------
0 - End of option list.
1 - No-Operation.
2 4 Maximum Segment Size.

...

Maximum Segment Size

+--------+--------+---------+--------+
|00000010|00000100| max seg size |
+--------+--------+---------+--------+
Kind=2 Length=4

Maximum Segment Size Option Data: 16 bits
...

To produce a parser for a TCP option in 3D, one starts by
specifying the format declaratively. Here’s one way to do it,
defining an OPTION as a structure with two fields: a byte field
Kind with a constraint that restricts its values to 0, 1, and 2;
and a payload field of type OPTION_OF_KIND(Kind), a type that
depends on the value of the Kind field.

typedef struct _OPTION {
UINT8 Kind {

Kind == 0x00 ||
Kind == 0x01 ||
Kind == 0x02

};
OPTION_OF_KIND(Kind) payload;

} OPTION;

The type OPTION_OF_KIND, a casetype in 3D, represents
a form of union type in C, where the parameter Kind dis-
criminates the case of the union. When Kind is 0 or 1, the
payload is empty, and when the Kind is 2, the payload has
type MAX_SEG_SIZE.

casetype _OPTION_OF_KIND(UINT8 Kind) {
switch (Kind) {

case 0x00: unit case0; /*unit: empty payload*/
case 0x01: unit case1; /*unit: empty payload*/
case 0x02: MAX_SEG_SIZE case2;

}
} OPTION_OF_KIND;

Finally, the type MAX_SEG_SIZE is a structure, with one byte
for the Length and 2-bytes for an unsigned 16-bit big-endian
integer for the MaxSegSize.

typedef struct _MAX_SEG_SIZE {
UINT8 Length;
UINT16BE MaxSegSize;

} MAX_SEG_SIZE;

From this specification, EverParse (in its simplest mode)
generates a C program with the following signature, a function
CheckOption which, when called with a byte buffer Input

containing at least Length bytes, checks that Input contains
a valid representation of OPTION, returning an error code
recording success, or details about where and why validation
failed.

EVERPARSE_ERROR_CODE CheckOption(
UINT8* Input,
UINT64 Length)

A 3D user turning an ad hoc description from an RFC to a
specification must convince themselves that they have captured

the intent of the RFC—a process that typically involves careful
review combined with testing. While 3D was designed to be
used by C programmers and benefits from its resemblance
to C, the constructs it offers, including type dependency,
value constraints, parameterization, case analysis, etc. take
effort to learn and use correctly. Further, while EverParse
guarantees that the generated C code is memory safe, free from
bugs that trigger undefined behaviors, and faithfully parses
exactly the specified format, the source specification is still
subject to audit. For example, one could easily have specified
UINT16 MaxSegSize, forgetting a convention that networking
protocols like TCP typically use big-endian integers—users
need assistance in specification testing and validation.

Swamy et al. [3] report that 3D has been used to specify a
suite of networking protocols used in production software at
Microsoft, including in the kernel of the Windows 11 release.
They report using 3D to specify “137 structs, 22 casetypes,
and 30 enum type definitions” in around 5,000 lines of 3D
specifications, stating that “describing those message formats
required careful specification engineering and discovery” over
a period of 18 months. With 3DGEN, we seek to lower this
overhead, making 3D accessible to non-experts by directly
synthesizing specifications from informal intent, and to offer
systematic testing tools to assist with validation.

III. THE 3DGEN APPROACH

In this Section, we make precise the workflow in Figure 1,
showing how we derive a 3D specification from RFCs and
tests. We start by describing the algorithm abstractly, pa-
rameterized by several non-deterministic choices, AI-based
components, and a test generator for 3D. We then describe
an agent-based implementation of the AI-based components,
and 3DTESTGEN, a new symbolic test generator for 3D.

A. 3DGEN: An Abstract Algorithm

We assume the 3D DSL is equipped with the following
functions:
• 3DSYNCHK: A syntax and type checker function, given

a specification p checks for syntax as well as type
constraints imposed by the 3D language.

• 3DEXEC: An execution function; for any 3D specifica-
tion p that satisfies 3DSYNCHK(p), given a packet i,
3DEXEC(p, i) returns true iff the specification p accepts
the packet i. Concretely, we use EverParse to compile p
to C code and execute it on i.

• 3DDoc: Natural language documentation about the 3D
language and examples, provided as a manual.

Algorithm 1 takes as input an RFC document, function
LblImpl that is used to classify packets, as well as a (possibly
empty) seed sets of positive and negative packets, I+0 and
I−0 . The desired 3D specification p should accept the positive
packets I+0 and reject I−0 . The algorithm returns a set of
possible candidate 3D specifications CandProgs, along with
an augmented set of positive (I+) and negative (I−) packets,
generated by 3DTESTGEN and labeled using LblImpl, ensur-
ing that every specification in CandProgs is consistent with the
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augmented set of packet inputs. Formally, I+0 ⊆ I+, I−0 ⊆ I−,
and for each p ∈ CandProgs, 3DEXEC(p, i+) = true for each
i+ ∈ I+, and 3DEXEC(p, i−) = false for each i− ∈ I−.

The algorithm iterates non-deterministically, accumulating
state which records all relevant information to be fed to an
LLM in st, initialized to the 3DDoc, the RFC, and the seed
tests. At each iteration, it performs one of the following two
actions non-deterministically: (i) augment CandProgs with a
new well-formed 3D specification p by querying an LLM
(lines 5–13); or, (ii) augment the labeled packets in I+ and
I− using 3DTESTGEN and LABELINPUTS (lines 14–17).
Finally, at lines 18–26, candidates in CandProgs that are not
consistent with the labeled packets are pruned, and any failing
candidate/test pairs are added to the state (line 20).

To generate a candidate program p, at line 6 we
QUERYLLM with the accumulated state—this step is imple-
mented using agents, as described in Section III-B. If p fails
the 3DSYNCHK, we update the state with the error, and retry.

The 3D symbolic test generator 3DTESTGEN takes as input
a set of well-formed candidate programs that satisfy the current
I+∪I−, and outputs new (unlabeled) packets by symbolically
analyzing the programs in CandProgs; we describe the precise
implementation in Section III-C. We then use LblImpl to
label each packet as positive or negative—concretely, we
use Wireshark as an implementation of LblImpl. Details of
LABELINPUTS is present in Section IV-C.

Algorithm 1 3DGEN Algorithm
Input: RFC, LblImpl, I+

0 , I−
0

Output: CandProgs, I+, I−

1: (I+, I−)← (I+
0 , I−

0 )
2: st← {3DDoc, RFC, I+, I−}
3: CandProgs← {}
4: for ∗ do
5: if ∗ then
6: p← QUERYLLM(st)
7: se← 3DSYNCHK(p)
8: if se ̸= SUCCESS then
9: st← st ∪ {(p, se)}

10: continue
11: end if
12: CandProgs← CandProgs ∪ {p}
13: end if
14: if ∗ then
15: I′ ← 3DTESTGEN(CandProgs, I+ ∪ I−)
16: (I+, I−)← (I+, I−) ∪ LABELINPUTS(I′, LblImpl)
17: end if
18: for q ∈ CandProgs do
19: for all i ∈ I+ ∪ I− do

20: if
∨( i ∈ I+ ∧ ¬3DEXEC(q, i)

i ∈ I− ∧ 3DEXEC(q, i)

)
then

21: st← st ∪ {(q, i)}
22: CandProgs← CandProgs \ {q}
23: break
24: end if
25: end for
26: end for
27: end for
28: return CandProgs, I+, I−

B. Agent Based Implementation

Constructing a prompt for an LLM from the diverse in-
formation in Algorithm 1’s accumulated state is non-trivial.
It involves choosing relevant sections of natural language
documentations from several pages of RFC, 3DDoc, relevant

examples, failing tests to focus on, etc. Composing a single
monolithic prompt with all relevant context needed to solve
a task is often impossible, given the restricted token context-
window for LLMs.

Instead, research shows that LLM-based agents significantly
extend the capabilities of standalone LLMs by equipping them
with the abilities needed to solve tasks in a self-directed
fashion, such as long-term planning, reasoning [6], conversing
with other LLMs, using tools, and retrieving information
critical to task resolution [7]. Agents demonstrate improved
performance and generalization of task resolution abilities
for a number of increasingly complex and real-world tasks
[8], [9]. Furthermore, orchestrating multiple agents that are
instructed to cooperate together, can scale up the capabilities
of a single agent by decomposing tasks, improving factuality
and reasoning [10], and validation [11].

Motivated by these findings, we design an agent system
based on the AutoGen [12] multi-agent framework. AutoGen
allows the instantiation of multiple agents, each unique in their
task description, access to tools and inputs, and instructed to
cooperate together to achieve a solution. We choose to use a
multi-agent framework over a single agent, to decompose tasks
and reduce overall input in the context window, shielding other
agents from unrelated intermediate reasoning steps involved
in distinct task refinement loops. In the AutoGen multi-agent
setup agents converse in a group chat setting, critiquing and
reflecting on task progress based on conversation history,
and adapting from feedback. AutoGen provides the multi-
agent conversation framework as a high level abstraction,
requiring only meta prompts and tool customization from
the user. The agent framework designed for 3DGEN is not
reliant on one particular LLM, however we use GPT4-32k
across all experiments. The 3DGEN multi-agent framework is
implemented concretely as three distinct agents:

1) Planner Agent: the planner agent is a tool-backed agent
that orchestrates the multi-agent conversation. In Auto-
Gen it is instantiated as the group chat manager. It has
access to the meta task prompt, descriptions of the other
two agents, and the ability to invoke tools 3DSYNCHK
and 3DEXEC, and communicate the results to the other
agents.

2) 3D Developer Agent: the 3D developer agent is tasked
with generating 3D code based on instructions com-
municated from the other two agents. This agent has
access to the full 3D language manual 3DDoc, a set
of task examples, and high level tips about generating
syntactically correct 3D code.

3) Domain Expert Agent: the domain expert agent is tasked
with communicating specifications to the 3D Developer
Agent, and critiquing generated 3D code. It has access
to all domain-relevant documents needed to solve the
problem. In this work, the domain expert agent has access
to an RFC, the network protocol specification document
needed to solve the task, and examples of the task.

All three agents communicate via an inter-agent group chat,
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until one of two termination conditions are met: either the out-
put of 3DEXEC indicates that the generated 3D specification
passes on the test set, or the maximum number of iterations,
as set by the user, have been completed. The control flow of
task resolution follows the paradigm provided in AutoGen, and
is entirely conversation-driven, i.e. the participating agents’
decisions on which agents to send messages to and the
procedure of computation are functions of the inter-agent
conversation. An example of control flow is as follows: 1)
the Domain Expert agent communicates the relevant parts of
the RFC specification to the 3D Developer Agent 2) the 3D
Agent generates a candidate specification 3) the Planner Agent
makes a call to 3DSYNCHK and communicates the result to
the group 4) the 3D Agent reflects on a syntax error reported
by the Planner and refines the specification. One example of
the control flow is later shown in Figure 2.

C. 3DTESTGEN: Symbolic Test Case Generation

In this section, we discuss our implementation of the
3DTESTGEN sub-routine of Algorithm 1. Our test (packet)
generator, called 3DTESTGEN, is implemented as an extension
of the EverParse toolchain, and is grounded in the formal
semantics of 3D. 3DTESTGEN encodes 3D programs into the
SMT-LIB version 2 language (a.k.a. SMT2) [13], relying on
SMT-solver Z3 [14] to produce test cases. Given a 3D program
p, to obtain positive (resp. negative) test cases, 3DTESTGEN
encodes the semantics of p to Z3 and asks for models of the
existential predicate: ”does there exist a sequence of bytes
that makes p succeed (resp. fail)”. Z3 returns with one of the
following answers:
• SAT: Z3 finds a model to satisfy predicate, including a

concrete sequence of bytes that makes the parser succeed
(resp. fail)

• UNSAT: the predicate is unsatisfiable, which means that
p always fails (resp. succeeds)

• UNKNOWN: Z3 times out. While there may be multiple
causes to Z3 timeout; in our case, this happens rarely.

Further, given two 3D programs p1 and p2, 3DTESTGEN
can also produce differential test cases by asking Z3 to find a
sequence of bytes that satisfy p1 but not p2. If Z3 returns
UNSAT, then there are no such test cases: every packet
satisfying p1 also satisfies p2. Separately, we can ask Z3 the
same satisfiability question but with p1 and p2 swapped. If Z3
returns UNSAT for both ways, then the 3D programs p1 and p2
accept and reject the exact same packets: they are semantically
equivalent. We do not bound the size of packets.

The semantics of a 3D program is represented
by a pure F⋆ function whose (simplified) signature
is a value of type parser t, a function of the form
(input:seq byte) → option (t * nat) which when applied to
an input sequence of bytes may fail returning None, or
succeed with Some (v, n), where v is the parsed value (of
type t) and n is the number of bytes of the input that were
consumed.

As described in §II, EverParse provides combinators, library
functions that allow combining simpler parsers to build more

complex ones in a correct-by-construction way. For example,
the following 3D program defines a message data format
specification as a structure of two unsigned 8-bit integer fields,
first and second, where first has a constraint on its value:

typedef struct _message {
UINT8 first { first > 42 };
UINT8 second;

} message;

The semantics of that 3D program is modeled in F⋆ by the
following message parser parse message as an application
of the parse pair combinator:

let parse message =
parse pair (parse refine parse uint8 (λ first → first > 42))

parse uint8

where parse pair, defined in EverParse, has a higher-order
type parser t1 → parser t2 → parser (t1 * t2). Operationally,
the code above first checks that the input sequence contains
at least one byte; then parses the first byte using parse uint8
and reads it into the variable first; then advances the posi-
tion in the input by one byte; then checks that first < 42;
then tries to read and return the next byte. If any of the
checks fail, the parser returns None. Otherwise, it returns
Some ((first, second), 2), a pair containing the two bytes that
were read and 2 to indicate that two bytes were consumed.

We would like to encode parse message to Z3, but
SMT2 does not directly support higher-order functions like
parse pair. So, at the heart of 3DTESTGEN is a specialization
pass over the 3D parser-combinator AST to turn it into a first-
order program.

For starters, the SMT2 semantics of a 3D program is given
in the context of an uninterpreted function Input representing
the input byte sequence on which the parser operates. The
assertion below constrains Z3 to pick models for the Input

array where every element is a byte in the range [0, 256).
(declare−fun Input (Int) Int)
(assert (forall ((i Int))

(and (<= 0 (Input i)) (< (Input i) 256))))

Next, we encode a 3D program as an SMT2 State

transforming function, where the State records (among
other things) the remaining size of the Input byte se-
quence (remaining−input−size); the number of bytes read
so far (current−pos); whether or not the parser has failed
(has−failed); and the value they return (return−value).

We start by showing a simplified encoding of parse_uint8:
(define−fun parse−uint8 ((s0 State)) State

(if (and (not (has−failed s0))
(> (remaining−input−size s0) 0))

(success−state
(Input (current−pos s0)) ;; return value.
(incr (current−pos s0)) ;; new position.
(decr (remaining−input−size s0))) ;; new remaining size.

(fail−state s0)))

Next, we show the encoding of the parse message
parser, where 3DTESTGEN has inlined the parse pair and
parse refine higher-order combinators from the 3D AST. This
representation of the parse−message is adequate for test-case
generation.

5



(define−fun parse−message ((s0 State)) State
(let ((s1 (parse−uint8 s0)))

(if (has−failed s1) s1
(if (> (return−value s1) 42)

(parse−uint8 s1)
(fail−state s1)))))

Given a query such as the following, which con-
strains the initial state init and asserts that message
parser parse−message does not fail when applied to init,
Z3 can produce models for the Input variable and its
length in bytes, yielding a positive test case; to gener-
ate a negative test case, we would assert instead that
(has−failed (parse−message init)). Since the input byte se-
quence can be arbitrarily long, we do not constrain its initial
size.

(declare−fun init () State) ;; initial state.
(assert (and (not (has−failed init))

(= 0 (current−pos init))))
(assert (not (has−failed (parse−message init))))
(check−sat)
(eval (remaining−input−size init)) ;; input size from model.
(eval (Input 0)) ;; retrieve first input byte.

If Z3 returns a model, then 3DTESTGEN can iteratively
query Z3 for further distinct models with additional appropri-
ate assertions to avoid duplicates. However, with this encoding,
Z3 generates models that may not cover all possible branches.
Our implementation uses a more sophisticated encoding to
track which branches of a specification are covered by a given
test case, allowing us to systematically generate tests that cover
all branches up to a user-provided branch depth. We provide
more details in the Appendix.

Leveraging the existing semantics of 3D and its compact,
structured language of parser combinators, our implementation
of 3DTESTGEN took less than 3 person-weeks and around
2000 lines of F⋆, OCaml, and SMT2.

IV. EXPERIMENTAL SETUP

A. Network Protocols

We evaluate 3DGEN on 20 network protocols specified in
IETF standards. Table I lists each protocol and a short descrip-
tion and the specific RFC number. We include the length of the
RFC in pages, as a rough measure of complexity, though RFCs
contain a lot of information beyond the description of the
format—the number in parenthesis, when present, shows the
number of pages in the RFC concerned with header formats.

B. Generating Specifications with 3DGEN

To evaluate 3DGEN’s ability to translate natural language
specifications into 3D format specifications, we use it to
generate 5 candidate specifications for the protocols in Table I.
We deem a generation successful if the produced specification
correctly classifies a test set of generated packets labeled by
Wireshark. We report a pass@5 metric, which counts the
number of successful generations out of 5 runs. To evaluate
how well agents in the 3DGEN multi-agent framework are able
to understand the natural language specifications contained in
the network protocol RFC, as well as its ability to learn 3D

# Protocol RFC
(Version)

Length
(Pages) Description

1 UDP* 768 3 User Datagram Protocol
2 ICMPv4 * 792 21 Internet Control Message Protocol
3 VXLAN* 7348 22 Virtual eXtensible Local Area Network
4 IPV6* 2460 39 (24) Internet Protocol version 6
5 IPV4* 791 45 (12) Internet Protocol version 4
6 TCP* 793 85 (10) Transmission Control Protocol
7 Ethernet* 7348 22 Ethernet II Frames in VXLAN
8 GRE 2784 9 Generic Routing Encapsulation
9 IGMPv2 2236 24 Internet Group Managment Protocol

10 DHCP 2131 45 (4) Dynamic Host Configuration Protocol
11 DCCP 4340 129 (14) Datagram Congestion Control Protocol
12 ARP 826 10 Address Resolution Protocol
13 NTP 5905 110 (4) Network Time Protocol
14 NBNS 1002 84 (6) NetBIOS Name Service
15 NSH 8300 40 (8) Network Service Header
16 TFTP 1350 11 Trivial File Transfer Protocol
17 RTP 3550 104 (3) Transport Protocol for Real-Time Applications
18 PPP 1661 52 (11) Point-to-Point Protocol
19 TPKT 2126 25 ISO Transport Service on top of TCP
20 OSPF 5340 94 (13) Internet Official Protocol Standards

TABLE I: Dataset of protocols and corresponding RFCs. * denotes
protocols for which there is a human written 3D specification. Page
numbers in ( ) indicate the length of the extracted RFC.

syntax, we explore the number of refinement loops needed to
generate 1) a syntax- and type-correct solution as determined
by 3DSYNCHK and 2) a semantically correct solution with
respect to the test set, as determined by 3DEXEC. In addition,
we highlight common mistakes made by the agents, as well as
several instances where the agent is able to learn constraints
from the RFC that are not enforced by the Wireshark.

For each protocol we instantiate 3DGEN, using GPT-4-
32k as the underlying LLM, at temperature 1.0. We set the
number of specifications to generate to 5 and the max number
of syntax or packet refinements to 15 per attempt. If the
agents are able to produce a specification that passes before
15 refinements, the agent loop is terminated. We observe
that allowing more refinement loops within the 3DGEN agent
conversation flow does not always lead to a successful attempt
at generating a specification. On the other hand, reducing the
number of refinement loops often does not give the agents
enough attempts at solving the problem. This is especially
true when the protocol is more complex, requiring the agents
to produce a longer specification, for example in the case of
ICMP, where there are 8 distinct message types for which the
agent must generate a 3D specification.

For each protocol, we download the RFC from the IETF
Data Tracker4 as a text file to provide as input in the 3D
Developer agent prompt. In some cases, the full RFC is
prohibitively long, and would exhaust the GPT-4-32k token
window. Since we are only interested in the part of the
specification related to the header data format, in such cases
we manually extract the pages of the RFC related to the
data format specification, (usually labeled in a section called
“Header Specification”). The length of the extract pages is
denoted in ( ) in Table I.In the future, we plan to explore
building a retrieval tool specific to RFC extraction.

4https://datatracker.ietf.org
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C. Generating a Labeled Test Set for each Protocol

We build a test suite consisting of a mixture of real-
world packet captures and synthetically generated tests by
3DTESTGEN, where we use Wireshark to decide if the packet
should be considered valid or not. For each protocol, we
collected a small number of real world packets from various
sources on the Internet and retain only those that Wireshark
considers valid—we discard the negative cases, since they
are sometimes arbitrarily malformed. For synthetic tests, we
run one iteration of the 3DGEN loop seeded with the real-
world packets. This produces a single candidate specification
on which we run 3DTESTGEN to generate 200 test cases.
We configure 3DTESTGEN to fully explore a trace with 100
branch points, and observed that while many examples have
a large number of branches (e.g., ICMP has 82 branches),
none of them have more than 100 branches. We then collect at
least two examples from each branch point, until we reach 200
examples. This gives us some confidence that the generated
test suite is diverse, though its completeness is limited by the
quality of the specification on which 3DTESTGEN is executed.
We then use Wireshark to label the tests, obtaining both
positive and negative test cases.

Using Wireshark to label packets comes with its own chal-
lenges. For starters, Wireshark is a protocol analyzer typically
used for diagnostics and experimentation and, by design, does
not always enforce all constraints when validating a packet.
Wireshark does not implement a dissector for a single RFC,
but rather for a family of RFCs. Thus, a dissector may be
more permissive compared to a given RFC, perhaps because
a related RFC mandates such a behavior—our experiments in
Section V uncover many such unenforced constraints. To label
a test case produced by 3DTESTGEN, we rely on a Wireshark
feature called Export PDU, which allows validating a given
packet header without encapsulating it within outer protocol
headers. Two exceptions were Ethernet, which does not re-
quire outer encapsulation; and TFTP which is not supported
by Export PDU. We wrapped TFTP headers generated by
3DTESTGEN with a dummy UDP header. For Ethernet, IPv4,
IPv6, VXLan, TCP, and UDP, we also had to generate dummy
payloads to prevent Wireshark from raising trivial errors. We
also had to disable checksums, since this is not enforced at
the level of the formats. As such, using Wireshark as a labeler
for 3DTESTGEN outputs involved a non-trivial effort.

D. Handwritten 3D Specifications

The EverParse GitHub5 repository contains 3D specifica-
tions for seven network protocols, written by the authors of
EverParse. Protocols with an existing handwritten 3D speci-
fication are marked with a * in Table I. In Section V-C we
use 3DTESTGEN to compare the specifications generated by
3DGEN to the seven handwritten specifications. We report if
any of the specifications produced by 3DGEN are semantically
equivalent to the handwritten specifications, and otherwise use
the generated set of tests to identify the cause(s) of differences.

5https://github.com/project-everest/everparse

V. RESULTS

A. Capabilities of 3DGEN

In this section, we present experimental evidence to answer
the following central question underpinning our work:
RQ1: Can 3DGen produce format specifications for networks
protocols standardized in RFCs?

Table II details results of 3DGEN on our dataset of 20
network protocols, We report the pass@5 metric, the average
number of syntax refinement, and packet feedback refinement
loops across all attempts.

At a first glance, 3DGEN is able to generate a passing
specification for 9/20 protocols, with a pass@5 = 45%. For
two protocols, such as UDP and IGMP, 3DGEN generates a
passing specification in all 5 attempts, requiring an average
of 0.3 syntax refinements and 0 packet refinements for UDP,
and 3.8 and 0 for IGMP respectively. For the other seven,
IPV4, DHCP, DCCP, ARP, NTP, NBNS, and NSH, 3DGEN
can generate at least one passing specification, but is not
successful in all 5 attempts.

For the remaining 11 protocols, 3DGEN is unable to gen-
erate a specification that passes on the test set labeled by
Wireshark. We investigate the cause of the errors and find
in all cases that 3DGEN generates a specification that is
consistent with the header format described in the RFC, but
that Wireshark labels packets as valid despite there being
constraint violations, i.e., Wireshark does not fully enforce
the RFC. In some cases, Wireshark emits a warning about
these violations, which can be filtered on a case-by-case basis.
However, this is not a straightforward task as some warnings
do not impact the data format specification, e.g., Wireshark
emits a warning when a packet indicates the TCP connection
is reset. Besides, in most cases a warning is not reported.

Using the RFC as a guide, two authors manually identified
tests that Wireshark labels too permissively and corrected the
labels. Using these corrected labels, we checked if any of the
3DGEN generated specifications already pass on this modified
test set, or else restart the 3DGEN loop with the corrected tests.
Protocols for which 3DGEN is able to generate a specification
that passes on the corrected test set are denoted as (1*) in
Table II—3DGEN is able to generate at least one candidate
specification that is consistent with the labels in all cases.

1) Labeler and RFC disagreement
We look more closely at examples where Wireshark is

too permissive: Table III details the cause(s) of disagreement
between the Wireshark labels and the constraints specified by
the RFC in each case.

For example, for RTP, RFC 35506 states that the version

field is 2 bits and “The version defined by this specification
is two (2)”. Although the RFC does not indicate a strong
constraint that the version field must be set to 2, a large number
of negative packets in the RTP test set include version numbers
other than 2. Wireshark labels these packets as acceptable,
however the 3DGEN agent consistently generates a specifica-
tion with UINT16BE Version:2 {Version == 2}. In this case, the

6https://www.ietf.org/rfc/rfc3550.txt
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Fig. 2: Example of a packet refinement loop by the 3DGEN agent
for VXLAN RFC 7348

agent is unable to learn from feedback about why a test with
a different version value should pass, because Wireshark does
not provide any warning. Enforcing this constraint by changing
the Wireshark label to negative allows the specification to pass
all tests.

Similarly for TFTP, RFC 13507 states that a TFTP header
contains a 2 byte opcode field and enumerates 5 possible
opcode values. 3DGEN always produces a specification con-
straining the value of the opcode field to one of the 5 values in
the RFC. Wireshark does not label packets with other opcode
values as malformed. When we manually label tests with
incorrect opcode fields as negative, the specification generated
by 3DGEN passes on the test set.

In the case of GRE, RFC 27848 states “The Version Number
field MUST contain the value zero”. However, Wireshark does
not enforce version constraints on GRE, likely because the for
the PPTP variant of GRE, the version field is set to 1, and
Wireshark uses the same dissector for all GRE versions.

In the case of IPV6, the generated specification consistently
fails to reject packets labeled as malformed by Wireshark. The
IPV6 NextHeader field indicates the value of the encapsulated
packet, however the RFC focuses only on the constraints of
a single layer, not of any encapsulated packets. In contrast,
Wireshark validates packet contents across layers and rejects
packets that don’t encapsulate the next layer correctly.

2) Agent Mistakes
From Table II, we observe that the agents frequently make

syntax mistakes, despite having access to the language manual
for the 3D language. However, given that 3D is not yet a
widely used DSL, syntax mistakes from a model like GPT-4
are anticipated. We observe that the agents struggle most with
using correct 3D bitfield notation. Using only the primitives

7https://datatracker.ietf.org/doc/html/rfc1350
8https://datatracker.ietf.org/doc/html/rfc2784

that 3D supports (UINT8, UINT16, UINT32, UINT64 and their BE
counterparts) and refraining from using reserved keywords like
‘type’ as identifier names also require refinement steps. On the
other hand, the agents are able to easily learn some other 3D
specific constructs, such as the consume−all notation. We also
observe that semantic mistakes, i.e., incorrect specifications,
can stem from the agent’s difficulty in understanding the
natural language in the RFC document. Figure 2 shows one
such example for VXLAN. The RFC describes the fields in
the header in natural language, and also provides an ASCII
diagram. However, the natural language description of the
fields do not indicate the order in which the different values
should occur in the VXLAN header, and without the ASCII
diagram a reader would not be able to correctly interpret the
RFC. The agent first produces a specification which is then
executed using 3DEXEC, resulting in a parsing error on the
flags field, for one of the tests in the test set. Then the agent
reflects on the result of 3DEXEC and determines that the
parsing failed due to the mis-ordering of the Reserved and
I fields. It then refined the specification by flipping the order
of the fields (4) and produces a candidate that passes on all
tests. Interestingly, the language in the RFC first describes the
I flag and then says specifies the values of the other 7 bits,
without indicating that there are 4 reserved bits, followed by
an I bit, followed by the remaining 3 bits. Ambiguities in the
RFC language may cause the agent to misinterpret the true
intent.

Result 1: 3DGEN is able to generate syntactically correct 3D
code, and learn from mistakes to refine specifications. Even in
the presence of a noisy labeler and non-exhaustive tests, 3DGen
enables users to leverage the generated specifications to align the
test set with the RFC, yielding specifications that pass all aligned
tests for all 20 network protocols.

Protocol Accepted
(x/5)

Avg. Syntax
Refinements

Avg. Packet
Refinements

UDP 5 0.3 0
ICMP 0 (1∗) 7.5 6
VXLAN 0 (2∗) 7.6 7.4
IPV6 0 (1∗) 7.8 2.0
IPV4 2 4 11
Ethernet 0 (1∗) 11.4 4.6
TCP 0 (2∗) 10.2 2.5
GRE 0 (1∗) 10.4 4.6
DHCP 2 8.2 0
DCCP 1 14.25 0.75
TPKT 0 (1∗) 5.0 6.6
ARP 3 4.8 1.8
NTP 3 7.4 3
NBNS 1 4.6 4
IGMP 5 3.8 0
NSH 1 11.0 2.0
TFTP 0 (1∗) 11 1
RTP 0 (1∗) 3 12
PPP 0 (1∗) 7.6 5
OSPFv3 0 (1∗) 13.6 2

pass@5: (45%) pass*@5: (100%)

TABLE II: Results of 3DGEN for 20 network protocols. * denotes
protocols for which the test labels were adjusted to be consistent with
the RFC.
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Protocol Detected RFC vs Wireshark Disagreement Wireshark
Message

ICMP Header length constraints None

Ethernet Ethertype payload length None

VXLAN
Reserved bits must be 0
I flag must be 1
Header must be 8 bytes

None
None
None

IPV6 Payload Length exceeds framing length Warning

GRE Reserved0 must be zero
Version number must be zero

None
None

TFTP Opcode fields must be between 0-5 None

TCP Window fields must not be zero
ACK number must be consistent with ACK flag

Warning
Warning

TPKT Version field must be 3
Reserved field must be 8 bits

None
None

PPP
Code field must be between 1-11
Length field must be 1 octet, at least size 4
Data must be constrained by Length

None
None
None

RTP Version must be 2 None

OSPF
Version field must not be 3
Reserved field must be 0
Header length must be 16 bytes

None
None
None

TABLE III: Constraints specified in the RFC, that wireshark does
not enforce.

B. Distinguishing Candidates with Differential Testing

In many cases, 3DGEN produces multiple specifications that
are compatible with the test set. In this section, we aim to
answer the following question:
RQ2: How do candidate format specifications generated for
the same protocol differ?

We make use of 3DTESTGEN to help us answer this
question, in particular its differential testing feature, to find
tests that distinguish specifications or prove them semantically
equivalent. Distinguishing tests, if any, can be surfaced to
the user, along with feedback from 3DTESTGEN localizing
semantic differences in 3D specifications, to help the user
identify their desired specification.

Table IV shows protocols for which 3DGEN generates mul-
tiple candidate specifications, and the results of 3DTESTGEN’s
differential testing between every pair of candidates, with a de-
scription of the differences found, if any. Out of 8 protocols, 7
have at least two semantically distinct specifications, whereas
for VXLAN the two candidates are semantically equivalent.

For example, for ARP, 3DGEN generates 3 candidate spec-
ifications, two which are semantically equivalent, whereas the
third mistakenly adds a field to the end of the ARP header
UINT8 remainder[:consume-all]. This field consumes the rest
of the data in the packet and is often used for optional variable
length fields. The ARP RFC 826 does not describe such a field,
and the specification is incorrect but passes the test set because
there is no negative-label test for which there is additional data
at the end of the ARP header.

3DGEN generates two candidate specifications for IPV4,
and 3DTESTGEN find a test that distinguishes them. One spec-

Protocol # Candidates # Distinct
Candidates Divergent Fields

UDP 5 2 Optional Data[:consume-all] field

IPV4 2 2 Additional constraints on Flag values

VXLAN 2 1 None

DHCP 2 2 options field length
Additional constraints on Flags field

ARP 3 2 Incorrect additional remainder[:consume-all] field

NTP 3 3 Additional constraints on LeapIndicator, Status, Type fields

IGMP 5 3 Optional OtherFields[:consume-all]

TCP 2 2 Constraints on Options field

TABLE IV: Semantically distinct candidate specifications

ification has a field: UINT16BE flags:3 { flags == Reserved0

|| flags == DF || flags == MF }, where Reserved0, DF, MF are
equal to 0, 1, and 2, which is consistent with the RFC. The
second specification has the same field as UINT16BE Flags:3
and does not enforce constraints on the value. While these
constraints should be added to be consistent with the RFC,
the test set did not contain a test violating this constraint, thus
both specifications were able to pass the test set.

In both the cases of ARP and IPV4, 3DTESTGEN labels
the one specification as more permissive than the other, e.g.
for IPV4 every test that passes on the first specification also
passes on the second, but not the other way around. For both of
these cases, the stricter specification correctly implements the
RFC. Thus, a user of 3DGEN could decide to always accept the
stricter specification as a pruning heuristic between candidates.

Result 2: Multiple distinct specifications may be produced by
3DGEN for a single protocol, and the degree to which they diverge
is dependent on the quality and coverage of the test suite on which
they are evaluated. 3DTESTGEN helps by finding differentiating
tests or by grouping equivalent candidates, allowing users to focus
on a semantic differences exhibited by concrete test cases.

C. 3DGEN vs. Human Written Specs

The authors of EverParse provide specifications for 7 out of
the 20 protocols we ran 3DGEN on. In this section, we ask:
RQ3: How do format specifications generated by 3DGEN
compare to handwritten specifications?

As before, we use 3DTESTGEN’s differential testing to se-
mantically compare 3DGEN’s specifications to the handwritten
ones, with the results in Table V. For IPV6 and Ethernet,
3DTESTGEN proves that the specifications are equivalent,
though syntactically distinct.

For UDP, ICMP, and VXLAN, we use 3DTESTGEN to
identify tests that distinguish the handwritten and generated
specifications. In all three cases, the root cause is incorrect or
missing constraints in the handwritten specifications, demon-
strating that even experts make mistakes when interpreting
RFCs as 3D, and that 3DGEN can help in ensuring consistency
with RFCs. For UDP, the handwritten specification is missing
a constraint on the Length field that exists in the 3DGEN
specification. For ICMP, the Unused Bytes field is too short,
misinterpreting the 32 bytes as 32 bits. Similarly, in VXLAN,
the VXLanID is two bytes short. After correcting the hand-
written specification, 3DTESTGEN proves them equivalent to
the 3DGEN generated specifications. Pull requests with the
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revised specifications were merged into EverParse for all three
protocols.

On the other hand, for TCP and IPV4, the 3DGEN spec-
ification is missing constraints that exist in the handwritten
specification. For TCP, although the produced specification
passes on the set of tests, it is underconstrained and does
not include a condition checking if the SYN flag is set to 1
and it does not implement all possible constraints for different
Max Segment Size payloads. Instead it includes size constraints
that are general to all options.

For IPV4, there are missing constraints on the IHL,
TotalLength, and Options fields, which indicates that tests
labeled by Wireshark do not capture these constraints. We ex-
plore whether 3DGEN would be able to generate an equivalent
specification, if it had access to a set of tests that can capture
the missing constraints. To do this, we use 3DTESTGEN
to generate positive and negative tests from the handwritten
specification, guaranteeing that tests exercising the constraints
will be included in the test set. With these tests, 3DGEN
is able to produce two passing specifications that contain
the missing constraints, after an average of 11 syntax and
4 packet refinements. The generated specifications are both
semantically equivalent to the handwritten specification.

Result 3: 3DGEN is able to produce 3D specifications semantically
equivalent to human written 3D. In addition, using our framework
we were able to uncover three bugs in existing handwritten 3D
code for UDP, ICMP, and VXLAN, highlighting the difficulties in
translating RFCs into correct implementations.

Protocol Equivalent? Root Cause Divergence After H.S. Fix

UDP H.S. Missing constraint on Length field ✓
ICMP H.S. UNUSED BYTES type too short ✓
VXLAN H.S. VXLanID field too short ✓
IPV6 ✓ None n/a
IPV4 G.S Missing value constraints on IHL, TotalLength n/a
Ethernet ✓ None n/a
TCP G.S. Missing constraints on options payload n/a

TABLE V: Comparison of 3DGEN generated specifications to hand-
written specifications (denoted H.S.). We list the cause(s) of diver-
gence, and where applicable, we correct the handwritten specification.

VI. RELATED WORK

LLMs have enabled generating code from informal natural
language requirements, and have shown ability to generate
human like code on benchmark problems [15], [16] – however,
they come with no guarantees, and have been known to contain
bugs and security errors [17]. Alphacode [18] and CodeT [19]
have used tests to cluster and rank generated code to improve
the empirical accuracy on benchmarks; however they do not
add trust to the generated code as the natural language does
not impose any correctness checks.

On the other hand, classical program synthesis [20] for-
mulates the problem of generating code that meets a formal
specification. However, these techniques are limited due to
lack of availability of formal specifications, along with the
intractable theoretical complexity of the synthesis. Lately,
program synthesis has been applied in restricted domains with

input-output examples as specifications [21], constrained by
restrictions on syntax (e.g., SyGuS [22]). These restrictions
make it difficult to apply them for new domains with formal
guarantees. Office Domain Specific Language (ODSL) [23]
has been proposed as an intermediate layer for LLMs to
translate natural language user commands to programs over
Office APIs. Although it shares our motivation for using 3D
as a DSL, generated programs from ODSL do not have any
formal guarantees since the generated programs lack a formal
notion of correctness and there is no symbolic encoding of
programs in ODSL into a logical formula.

Closer to our setting, Ticoder [24] uses LLMs to partially
formalize user-intent as tests. Unlike 3DGEN, TiCoder requires
a user in the loop to validate each test, relies on an LLM-
based test generation that cannot be as exhaustive as our
symbolic technique and cannot provide any formal guarantees
on the generated code. Endres et al. [25] generate declarative
postconditions in Java and Python using LLMs and evaluate
the quality of specifications offline using validation tests, but
do not generate tests or verified code. Misu et al. [26] generate
formal specifications and code that satisfies such specifications
in Dafny programming language using LLMs, but there is no
automation in helping the user establish the correctness of the
specifications.

All these approaches are evaluated for a simple setup
where the requirements are present as a few line docstrings,
and do not require problem decomposition or the translation
of requirements from complex documents such as RFCs.
SAGE [27] uses natural language processing (NLP) techniques
to translate informal requirements in RFCs into protocol
implementations semi-automatically. SAGE extracts and sur-
faces ambiguities in RFCs through an intermediate logical
form, that are resolved by the user, before generating code.
Unlike 3DGEN, SAGE can generate protocol implementation
in addition to the parser; however, the generated code may
have functional and security bugs, as it lacks formal specifi-
cations. Extending 3DGEN and the 3D language to support
full protocol implementation would be interesting avenue for
future work.

VII. CONCLUSION

Programming in natural language using AI is a powerful
new capability. But, for AI-based program synthesizers to
be truly useful, they must also be trustworthy. We believe
coupling AI programming assistants with symbolic tools to
support intent formalization and refinement, as well guarantees
about generated outputs, is a key step towards fully realizing
their potential. We have explored this idea, showing it is
possible to synthesize verified binary format parsers from
specification documents using AI agents, while providing
symbolic test-case generators to help both humans and AIs
confirm and refine intent, and verification tools to ensure that
intent is preserved down to executable C code. As a next
step, we plan to evaluate our approach through user studies to
assess whether tools like 3DGEN more easily enable humans
to author correct-by-construction programs in new DSLs.
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APPENDIX

A. Branch coverage with 3DTestGen

In this supplement, we briefly cover how 3DTestGen pro-
duces tests that achieve branch coverage.

Recall the message parser from Section III of the paper.
It has has two branches and four paths: fail to parse the first
byte; fail because the first byte is less than 42; fail to parse
the second byte; success.

Thus, to query Z3 for models that achieve a form of branch
coverage, we instrument our encoding with branch tags—
in practice, 3DTestGen does not instrument every branch,
heuristically only picking branches of interest, focusing on
those that involve value constraints and casetypes.

Next, we introduce a global uninterpreted function,
branch− trace, representing a trace of branches to be taken.
The State argument to an encoded parser also contains a
branch − index component which records a position in the
branch trace. For a given branch trace, the encoding forces the
parser to follow that trace of branches. By querying Z3 while
fixing the branch trace, we obtain models of the Input that
also are compatible with the trace, i.e., the Input is a byte
sequence that forces the parser to follow the branch trace.
Then, by simply enumerating the traces up to a user-specified
branch depth in a depth-first fashion, we get Z3 to generate a
diversity of Input models that achieve branch coverage.

We show a fragment of the parse message parser encoding
augmented with branch tags below. Note how each branch
of the constraint check for x > 42 is taken only if the
corresponding branch tag in the trace also permits it (0 if the
constraint holds, 1 if it does not.)

(define−fun parse−message ((s0 State)) State
(let ((s1 (parse−uint8 s0)))

(if (has−failed s1) s1
(if (and (> (return−value s1) 42)

(= 0 (branch−trace (branch−index s1))))
(parse−uint8 (incr−branch−index s1))
(if (and (not (> (return−value s1) 42))

(= 1 (branch−trace (branch−index s1))))

Now, to generate models that explore a given trace of
branches, we add the following assertions to the query to
constrain the prefix of the branch trace recorded by the parser.

(assert (= (branch−index init) 0)) ;; start from index 0.
;; take the first branch in message.
(assert (and (= (branch−trace 0) 0)))
;; make at least as many choices as branch−depth.
(assert (>= (branch−index (parse−message init))

branch−depth))

B. Comparing code produced by 3DGen to Handwritten Spec-
ifications

We report the high level characteristics of code produced
by 3DGEN in Table VI. For each characteristic (Lines of
code (LOC), number of constraints, etc.) we report the mean
across all valid specifications generated by 3DGEN in the first
column. In the last two columns, we compare characteristics

Metric (mean) All Protocols 3DGEN H.S.

LOC (3D) 26.2 33.14 60
Fields 15.7 22.5 24.1
Constraints 3.4 4 5.14
Casetypes 0.3 0.42 0.42
Structs 2.75 4.14 4.14
Bitfields 3.35 4.71 4.71
Enum 0.15 0.00 0.42
Consume-all 0.71 0.42 0.28

TABLE VI: Highlevel characteristics of code produced by 3DGen.
Mean is reported across all specifications. For the subset for which a
handwritten spec exists, the last two columns compare characteristics
between generated specifications (G.S.) and handwritten specifica-
tions (H.S.).

of the generated specification to the correct handwritten spec-
ification, if applicable, across all protocols. Table VII contains
the full breakdown of metrics for each protocol.

In general, we observe that handwritten specifications have
on average, more lines of code (ignoring comments and empty
lines), than code generated by 3DGEN. This could be due to
formatting and stylistic choices. For example, in Figure 4, the
handwritten specification adds extra lines around the version
constraint, and extracts the version number into a defined
variable, where the 3DGEN spec uses a constant.

While the mean is the same, we observe that the number of
bitfields can vary between the generated and handwritten spec-
ifications. An example of this can be seen in Figure 4, where
the handwritten specification divides the TrafficClass and
FlowLabel fields. The 3DGEN specification combined both of
these fields into one TrafficClassF lowLabel field of the
appropriate size. There is no constraint on the value of this
field in either specification, therefore, both specifications are
semantically equivalent. On the other hand, Figure 3 shows
an example of semantically equivalent specification where
3DGEN represented the V lanTag field with three bitfield
variables PCP , DEI , and V ID.

Interestingly, both 3DGEN and the handwritten specifica-
tions contain the same number of casetypes, with a mean of
0.42 across the seven specifications for which a handwritten
spec exists. The number of constraints in the 3DGEN spec-
ification is lower than that of the handwritten specifications,
which follows from observations in RQ3, Table V, where the
IPV6 and TCP specifications are missing constraints.

C. Syntactic Characteristics of code produced by 3DGEN

Results of RQ3 in this work, as well as results from
related work in the domain, confirm that accurately translating
nuanced and often ambiguous RFC specifications into correct
code by hand is an error prone task and often laborious
task. Table VII contains several syntactic metrics of the code
generated by 3DGEN for each protocol. Though these syntactic
metrics may not serve as an ideal proxy for the complexity
of a protocol’s data format specification, they do give some
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Fig. 3: Semantically equivalent 3D specification for Ethernet II frames in VXLAN. (Left) Handwritten Specification, (Right) 3DGEN
Specification.

Fig. 4: Semantically equivalent 3D specification for IPV6. (Left) Handwritten Specification, (Right) 3DGEN Specification.
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# Protocol LOC (C) LOC (3D) Fields Constraints Casetypes Structs Bitfields Enum Consume-all

1 UDP 158 7 4 1 0 1 0 0 0
H.S. 158 8 4 1 0 1 0 0 0

2 ICMPv4 1208 99 72 11 1 12 0 0 2
H.S. 2119 164 61 6 1 13 0 3 1

3 VXLAN 296 16 10 7 0 3 5 0 0
H.S. 266 10 7 6 0 1 3 0 0

4 IPV6 341 10 7 1 0 1 2 0 0
H.S. 427 16 7 1 0 1 3 0 0

5 IPV4 544 30 25 5 0 3 15 0 0
H.S. 534 35 15 5 0 2 6 0 0

6 TCP 615 45 27 3 1 5 8 0 1
H.S. 1445 161 64 17 1 8 21 0 1

7 Ethernet 352 25 13 0 1 4 3 0 0
H.S. 353 26 11 0 1 3 0 0 0

8 GRE 309 22 12 0 1 3 3 0 1
9 IGMPv2 223 10 4 4 0 1 0 0 0

10 DHCP 838 25 18 5 0 3 0 0 0
11 DCCP 491 38 17 0 1 3 4 1 1
12 ARP 530 12 10 0 0 1 0 0 0
13 NTP 497 35 15 3 0 2 3 0 1
14 NBNS 416 17 15 14 0 1 10 0 0
15 NSH 486 24 16 1 0 4 8 0 1
16 TFTP 304 43 15 7 1 1 0 0 4
17 RTP 320 17 13 1 0 2 6 0 1
18 PPP 270 20 6 1 0 1 0 1 1
19 TPKT 232 6 4 3 0 1 0 0 0
20 OSPF 351 23 11 1 0 3 0 1 1

TABLE VII: Syntactic metrics of 3D code produced by 3DGEN and the handwritten specification (H.S.) for each of the 20 protocols used
in this work.

insight into the relative complexity and structural elements of
the generated code.

We report both the lines of 3D code generated by 3DGEN
as well as the lines of C code automatically generated from
the 3D specification by Everparse. Overall, we observe a
modest range of lines of 3D code generated for the 20 selected
protocols, 3DGEN generated as little as 6 (TPKT) and at most
99 (ICMP) lines of code. Intuitively, the number of fields
follows overall lines of code, ranging from 4 (IGMP, TPKT)
to 72 (ICMP). Although we observe only a modest numbers of
lines of 3D code generated, the lines of auto-generated C code
to correctly parse these specifications is considerably larger—
we comment more on this shortly.

The number of structs, bitfields, enums, and consume-all
types used varies based on the protocol specification. The
number of value constraints can indicate increasing nuance
in the data specification. For example, NBNS spans 17 lines
of code but contains 14 constraints, as measured by boolean
operators. This is because of the 10 bitfields, 8 have value
constraints defined in the NBNS RFC 1002. The NM_FLAGS
field defines value constraints for each flag of either 0 or
1. The casetypes field appears to be a reliable indicator if
the protocol contains multiple message types, however for the
protocols studied there is never more than one casetype needed

to specify the data type.
Interestingly, the number of lines of C code produced for

each of the formats is several factors larger than the size of
the 3D specification, for several reasons. First, designed as
as declarative specification language, 3D is inherently more
compact than imperative C code that implements a parser,
e.g., the parser implementation has to repeatedly check if
there is enough space left in the input buffer to parse the
next field. Further, the C code includes various features that
are important for a practical parser, including error handling
logic—such error handling is not present in individual 3D
specifications and is instead baked into the definition of the
3D language. This points to the benefit of using a compact
specification language as a target for AI-generation—many
features can be incorporated into the language definition, rather
than having the programmer specify them repeatedly for every
program. Directly generating, say, 1K lines of C code for an
ICMP parser, even if it could be AI-generated, would pose
a difficult program verification problem; using a DSL like
3D enables analysis such as symbolic test-case generation to
systematically test and refine AI generated code, and correct-
by-construction code generation ultimately yields verified C
code.
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