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Abstract

The notion of Laplacian of a graph can be generalized to simplicial complexes and hypergraphs,
and contains information on the topology of these structures. Even for a graph, the consideration of
associated simplicial complexes is interesting to understand its shape. Whereas the Laplacian of a
graph has a simple probabilistic interpretation as the generator of a continuous time Markov chain
on the graph, things are not so direct when considering simplicial complexes. We define here new
Markov chains on simplicial complexes. For a given order k, the state space is the set of k-cycles that
are chains of k-simplexes with null boundary. This new framework is a natural generalization of the
canonical Markov chains on graphs. We show that the generator of our Markov chain is the upper
Laplacian defined in the context of algebraic topology for discrete structure. We establish several key
properties of this new process: in particular, when the number of vertices is finite, the Markov chain
is positive recurrent. We study the diffusive limits when the simplicial complexes under scrutiny are
a sequence of ever refining triangulations of the flat torus. Using the analogy between singular and
Hodge homologies, we express this limit as valued in the set of currents. The proof of tightness and
the identification of the limiting martingale problem make use of the flat norm and carefully controls
of the error terms in the convergence of the generator. Uniqueness of the solution to the martingale
problem is left open. An application to hole detection is carried.
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1 Introduction

Exploring and understanding complex structures such as graphs is a difficult and rich problem that has
motivated an abundant literature in the last years. Random walks are one of the many tools used to
study the connectivity of a graph. For instance, the PageRank algorithm [42] uses invariant measures of
random walks to highlight central nodes of graphs. Random walks on graphs are also used to provide
distances between nodes by considering the expected time required for the walk to travel between nodes.
This metric is called the commute distance and has been used in a large number of applications such
as graph embedding [57], semi-supervised learning [61], clustering [58] and many more, see for instance
the introduction of [54] for a more complete list. Finally, diffusions of random walks on graphs is at the
center of the diffusion maps graph embedding approach [11].
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The reason random walks on graphs are so tightly linked to the connectivity structure of the graph
can be found in their generators. Consider a finite non-oriented graph G = (V,E) consisting of the (finite)
sets of vertices V and edges E determining the pairs of vertices that are connected. The adjacency matrix
A of G is defined as the matrix whose entry at line u and column v is 1 if and only if (u, v) is an edge of
G, which we will denote by u ∼ v. For any u ∈ V and for any function f from V to R, the generator of
the random walk is

Af(u) =
∑
v∼u

(
f(v)− f(u)

)
= −

(
D −A

)
f(u), (1)

where D is the diagonal matrix containing the degrees of the vertices. Thus, the generator of the random
walk is the opposite of the Laplacian of the graph, L = D − A. It is well-known that this Laplacian
contains information regarding the connectivity structures of the graph. For instance, the dimension
of its kernel is equal to the number of connected components of the graph while, more generally, small
eigenvalues indicate almost disconnected components [53].
But connectivity is only a fraction of the topological information contained in complex structures. For
instance, let us consider a circular-like graph presented in Figure 1(a). Such a topological structure is not
well described through connectivity. More generally, graphs are not suited to deal with such structures
since adding a single node to the graph creates another artifact circle which is not an actual feature of
the data, see Figure 1(b). The correct structures one should use to deal with higher-order topology are
simplicial complexes. The definition of simplicial complexes is recalled later, but a natural simplicial
complex associated with a graph is its Rips-Vietoris simplicial complex [8] obtained by adding to the pair
(V,E) the set S2 of all triangles whose edges belong to E, the set of all tetrahedrons S3 whose triangles
belong to S2 etc. For instance, adding a triangle in the previous example, we recover a circular structure
(see Figure 1(c)). This notion of circular structure is formalized by the concepts of homology classes and
Betti number which we present in Section 2.1.

We are interested in generalizing the notion of random walks on graphs to random walk on simplicial
complexes, hoping they can be used to derive new algorithms for topological data analysis by general-
izing algorithms such as PageRank. Furthermore, providing a probabilistic interpretation of topological
properties of simplicial complexes is important since there is a growing literature on the subject in recent
years. While the relations between graphs and simplicial complexes are considered in [13], papers more
focused on the simplicial complexes themselves include for example studies of the Betti numbers and
volume-like computation for random clique complexes built over the Erdös-Rényi graphs [30, 31, 41] or
Čech and Vietoris-Rips complexes built over stationary point processes [1, 12, 59], or computation of
convex hulls of simplicial complexes [22].

It is already known that the graph Laplacian D − A is a specific instance of the more general com-
binatorial Laplacian, introduced by Eckmann [15]. In a similar way that the graph Laplacian contains
information regarding the connectivity of the graph, these combinatorial Laplacians describe the structure
of the homology groups of the simplicial complex and are related to higher order Betti numbers. Since the
generator of random walks on nodes of graphs is equal to the opposite graph Laplacian, it was proposed
in [32, 43, 44, 46] to define random walks on simplicial complexes as random walks with generators equal
to the opposite of the combinatorial Laplacians. As the combinatorial Laplacian is defined as a sum of
two operators, called up-Laplacian and down-Laplacian, such an approach leads to defining two different
random walks from which it is not clear how to generalize graph analysis algorithms. For instance, if a
combinatorial Laplacian is associated to two different random walks and thus to two different invariant
measures, which one should be preferred to obtain an equivalent of PageRank for simplicial complexes?

In this paper, we propose to define a random walk on a simplicial complex in a totally different
way. More precisely, we consider a random walk on the space of cycles of the simplicial complex whose
transitions are given by the very definition of homology groups which, incidentally, has the opposite of
the combinatorial up-Laplacian as generator. In particular, similarly to how a random walk on a graph
cannot leave a given connected component, which is a homology class of dimension 0, our random walk
is bound to stay in the homology class of its initial state.

Let us detail our random walk in the case of a simplicial complex of order 2 (a general and precise
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description is given in the paper). Recall that a simplicial complex C of dimension 2 is a collection of
vertices V , of edges E and of triangles T such that the edges of the triangles belong to E and the vertices
of the edges belong to V . Define the oriented edge from u to v as [u, v]. The cycles are defined as chains,
i.e. elements of the vector space spanned by E+ the set of edges with positive orientation:

C1 =
{ ∑

[u,v]∈E+

λ[u,v][u, v], with ∀[u, v] ∈ E+, λ[u,v] ∈ R
}
,

with the constraint that they have no border. Defining, the boundary map ∂ for edges by ∂[u, v] = v−u,
and for triangles by ∂[u, v, w] = [v, w] − [u,w] + [u, v], a chain σ ∈ C1 is a cycle if ∂σ = 0. Our random
walk (Xt)t∈R+

is a continuous time Markov chain whose state space consists of oriented cycles. Given
its current state σ, we consider all the triangles that are adjacent to σ (i.e. that share at least an edge
with the cycle). The jump rate is the number of these triangles, weighted by the number of their edges
common to σ. When there is a jump, say at time t, we chose randomly one of these triangles, say τ , with
a probability proportional to the number of their edges common with σ and the Markov chain jumps
from Xt− = σ to Xt = σ − ∂τ . Heuristically this deletes the common edges and replaces them with the
other edges of the triangle. For example in Fig. 1(c), starting from the circle, we delete the edge adjacent
to the triangle and replace it with the two other edges. The state thus remains a cycle.

More precisely the generator of this random walk is:

Af(σ) =
∑
τ∈S2

(
f(σ − ∂τ)− f(σ)

)
⟨∂τ, σ⟩+, (2)

where x+ denotes the positive part of x and ⟨∂τ, σ⟩ corresponds to the number of edges that τ and σ have

in common (with a sign corresponding to the orientation). When f is a linear function, Af(σ) = −L↑
1f(σ)

where L↑
1 is the up-Laplacian of order 1. The natural questions are whether the random walk is recurrent

and whether we can derive diffusive scaling limits.

After recalling notions of homological and algebraic topology in Section 2, the general random walk
(of order k ≥ 0) is introduced and studied in Section 3. The case k = 0 is the ‘usual’ random walk,
and k = 1 corresponds to the generator described in (2). Concerning the recurrence or transience of this
Markov chain, a difficulty is that the cycle can have loops: for k = 1 and example (2), even if the number
of vertices is finite, the state space C1 is infinite. It is shown in Theorem 20 that under simple conditions,
the random walk is recurrent and admits a unique invariant measure. For the usual random walk that
jumps from vertices to neighboring vertices, the invariant measure puts weights on vertices u ∈ V that
are proportional to their degrees. Such result is not true any more for higher dimensions.

When the simplicial complex is embedded into a geometrical space (for instance, considering the
vertices in Rd), we discuss in Section 4 the convergence of the rescaled random walk to a continuous
process on a set of continuous paths. Because computations become complicated, we focus on the case
of a triangulation of the torus for the sake of simplicity. We study the convergence of the random walk
generator, and the limit involves the Hodge operator. The tightness is then obtained by an Aldous-
Rebolledo criterion. We identify all the limiting values as solutions of the same martingale problem, but
uniqueness of the solution is still left open. Finally, in Section 5, we use the invariant measure of our
random walk to provide a generalization of the PageRank algorithm to the simplicial complexes which
highlights the boundaries of topological structures.

2 Preliminaries

2.1 Simplicial complexes

As explained in the introduction, a natural generalization of graphs requires to consider simplicial com-
plexes and adopt considerations from the field of homological and algebraic topology. For further reading
on algebraic topology, see [3, 24, 40]. While graphs model binary relations, simplicial complexes represent
higher order relations.
Given a finite or denumerable set of vertices V , a k-simplex is an unordered subset {v0, v1, . . . , vk}
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(a) (b) (c)

Figure 1: Example where simplicial complexes are the correct structure to capture the topology of the data, and

in particular detect a circular structure. (a): Data drawn from a circular structure. (b): Neighborhood graph

structure, that reveals two different circular structures: a triangle and a circle. (c): A simplicial complex recovers

the topology of the data.

where vi ∈ V and vi ̸= vj for all i ̸= j. The faces of the k-simplex {v0, v1, . . . , vk} are defined as all the
(k − 1)-simplexes of the form {v0, . . . , vj−1, vj+1, . . . , vk} with 0 ≤ j ≤ k. The cofaces of a k-simplex
τ are all the (k + 1)-simplexes of which τ is a face. A simplicial complex C is a collection of simplexes
which is closed with respect to the inclusion of faces, i.e. if {v0, v1, . . . , vk} is a k-simplex of C, then all
its faces are in the set of (k− 1)-simplexes of C. We denote by Sk(C) the set of k-simplexes of C. In the
sequel, when there is no ambiguity, we will drop the dependency on C and simply write Sk. Sk can be
viewed as a subset of V k+1 which itself can be embedded in Nk+1. By convention, S0 = V consists of all
the vertices. S1 of all the edges {v0, v1} of C linking two vertices v0 and v1 ∈ V , v0 ̸= v1. S2, S3 are the
set of all triangles and tetrahedra of C etc. Then,

C =
⋃
k≥0

Sk.

One can define an orientation on simplexes by defining an order on vertices. The oriented k-simplexes
are denoted with square brackets, with the convention that:

[v0, . . . , vi, . . . , vj , . . . , vk] = −[ v0, . . . , vj , . . . , vi, . . . , vk],

for 0 ≤ i, j ≤ k. Each simplex may thus appear in two species: positively or negatively oriented.
We denote by S+

k (respectively S−
k ) the set of positively (respectively negatively) oriented k-simplexes

containing all simplices [v0, . . . , vk] such that v0 < v1 < · · · < vk. For an oriented edge [u, v] (going from
u to v), we call u (resp. v) the ego (resp. alter) of the edge. Also, when [u, v] ∈ S1, we will write v ∼ u.

Example 1 (Cech complex). For V = {vi, i = 1, · · · , n} n points in Rd (or in a metric space), and
R > 0, the Čech complex Čech(V,R) of radius R is defined as follows: S0 = {vi, i = 1, · · · , n} and, for
any k > 0, [vi0 , vi1 , · · · , vik ] belongs to Sk whenever

k⋂
m=0

B(vim , R) ̸= ∅.

This complex has the property that its topological features, as defined below, reflect that of the geometric
set ∪iB(vi, R).

Example 2 (Rips-Vietoris complex). Unfortunately, the construction of the Čech complex is exponen-
tially hard so it is very common to work with the Rips-Vietoris complex. The simplicial complex Rips(V,R)
has the same vertices V and edges as the Čech complex, but for k ≥ 2, {vi0 , · · · , vik} belongs to Sk when-
ever all the possible pairs made by choosing two points among {vi0 , · · · , vik} belong to the set S1 of edges
of Rips(V,R). Otherwise stated, the Rips-Vietoris is fully determined by the vertices and edges of the
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Čech complex. This graph is called the skeleton of the Rips-Vietoris. Though a priori coarser than the
Čech complex, the Rips-Vietoris is not that far since (see [8])

Rips(V,R) ⊂ Čech(V,R) ⊂ Rips(V, 2R).

2.2 Chains and co-chains

For each integer k, Ck is the R-vector space spanned by the set S+
k of k-simplexes of V : an element

σ ∈ Ck is called a chain or k-chain and can be uniquely written as

σ =
∑
τ∈S+

k

λτ (σ) τ, (3)

where all but a finite number of {λτ (σ) ∈ R, τ ∈ S+
k } are non null. We define the support of σ to be:

suppσ = {τ ∈ S+
k , λτ (σ) ̸= 0}. (4)

Equations (3) and (4) amount to define a scalar product that makes Ck a Hilbert space and {τ, τ ∈ S+
k }

an orthonormal basis of Ck. We can thus consider the canonical norm on the set Ck of k-chains by taking

∥σ∥2Ck
= ∥

∑
τ∈S+

k

λτ (σ) τ∥2Ck
=

∑
τ∈S+

k

|λτ (σ)|2.

Let Ck be the topological and algebraic dual of Ck:

Ck =
{
f : Ck → R, linear and continuous

}
and any element of Ck is called a cochain. Because Ck is a Hilbert space, so is Ck. Note that Ck and Ck

are isomorphic and that any element τ ∈ Sk can be viewed either as an element of Ck or as an element
of Ck by identification by the canonical isometries between an Hilbert space and its dual (see Example 3
below). When it will be convenient, we will indifferently manipulate chains or cochains in what follows
as it is the most intuitive depending on the situation. In particular, given any f ∈ Ck and any σ ∈ Ck,
we will write

f(σ) = ⟨f, σ⟩Ck,Ck
.

Also, any function from Sk to R can be associated canonically with a function from Ck to R.

Example 3. To illustrate the two assertion above, let us consider the case k = 0. We can identify the
vertex v ∈ S0 = V ⊂ C0 to the function

v∗ : C0 → R
v 7→ 1

u ̸= v 7→ 0.

Then, we can extend any function φ : V → R to a function φ ∈ C0 by

φ
(∑
v∈V

λvv
)
:=

∑
v∈V

λvφ(v).

2.3 Boundary and coboundary maps

For any integer k, the boundary map ∂k is the linear transformation ∂k : Ck → Ck−1 which acts on basis
elements [v0, . . . , vk] ∈ Sk as

∂k[v0, . . . , vk] =

k∑
i=0

(−1)i[v0, . . . , vi−1, vi+1, . . . , vk], (5)
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v0

v1

v2 v0

−

v2

+

[v0, v1] + [v1, v2]
∂2−→ [v2] − [v0]

v0

v1

v2 v0

v1

v2

[v0, v1, v2]
∂3−→ [v1, v2] − [v0, v2]

+[v0, v1]

v0

v1

v2
v3

Filled Empty
v0

v1

v2

v3

[v0, v1, v2, v3]
∂4−→

+[v1, v2, v3]

−[v0, v2, v3]

+[v0, v1, v3]

−[v0, v1, v2]

a) b) c)

Table 1: Examples of boundary maps. From left to right. An application over 1-simplexes. Over a 2-simplex.

Over a 3-simplex, turning a filled tetrahedron to an empty one.

and ∂0 is the null function. Examples of such operations are given in Table 1.
The maps (∂k, k ≥ 1) link the spaces Ck’s as follows:

. . .
∂k+2−→ Ck+1

∂k+1−→ Ck
∂k−→ . . .

∂2−→ C1
∂1−→ C0. (6)

It can then easily checked that for any integer k,

∂k ◦ ∂k+1 = 0. (7)

In topology, a sequence of vector spaces and linear transformations satisfying (6) and (7) is called a chain
complex. Equation (7) implies that Bk = im ∂k+1 ⊂ ker ∂k = Zk, for k ≥ 0, and we can define the k-th
homology vector space Hk as the quotient vector space,

Hk = ker ∂k/ im ∂k+1. (8)

The k-th Betti number of C is defined as its dimension:

βk = dimHk = dim
(
ker ∂k

)
− dim

(
im ∂k+1

)
. (9)

Notice that an element of C1 is a sum of edges. It belongs to ker ∂1 whenever these oriented edges
form a cycle, in the sense of graph theory. So elements of ker ∂k are called k-cycles.

The Fig. 2.3 illustrate the chain complex described above.

0 00

Ck

Zk

Bk

Ck+1 Ck−1

∂k+1−→
∂k−→

Figure 2: A chain complex showing the sets Ck, Zk and Bk.

Example 4. Let us consider the case of k = 0 again to illustrate (9). Since ∂0 ≡ 0, we have ker ∂0 = V .
Also, we have im ∂1 = {u − v, [u, v] ∈ S1}. Hence, H0 = span(V )/{u − v, [u, v] ∈ S1} consists of
equivalence classes of vertices which can be linked by a path in the graph. We thus recover that β0 is
the number of connected components of the graph. Recall that the latter number also corresponds to the
number of zeros in the spectrum of the graph Laplacian (1).
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Remark 5. An element of ker ∂1 which is not in im ∂2 is a cycle which cannot be written as the boundary
of a sum of triangles in S2.
For instance, if

S1 = {[ab], [bc], [cd], [ad]} and S2 = ∅,

then the cycle
[ab] + [bc] + [cd]− [ad]

which corresponds to the edges of a 4-gone, cannot be written as a sum of triangles since S2 is empty.
Thus β1 = 1 in this case.

As Ck and Ck are Hilbert spaces, we can define the coboundary map ∂∗k : Ck−1 −→ Ck as the adjoint
of ∂k: namely for f ∈ Ck−1, ∂∗kf ∈ Ck is defined by its action over a k-chain by

(∂∗kf)[v0, · · · , vk] =

k∑
i=0

(−1)i⟨f, [v0, · · · , vi−1, vi+1, · · · , vk]⟩Ck−1,Ck−1
= f

(
∂k[v0, · · · , vk]

)
. (10)

We will set by convention ∂∗0 ≡ 0.

Remark 6 (Interpretation of the coboundary map in the case k = 1). Recall that C0 is generated as a
R-vector space by the points v ∈ V . Let us denote by {v∗, v ∈ V } the corresponding dual basis of C0:
v∗(v) = 1 and v∗(w) = 0 for w ̸= v. Hence, following (10), we have for any function f ∈ C0,

∂∗1f [v0, v1] = f(v1)− f(v0).

In particular, if f = w∗ for w ∈ V ,

(∂∗1w
∗)([v0, v1]) = −⟨w∗, v0⟩C0,C0

+ ⟨w∗, v1⟩C0,C0
=


0 if w ̸= v0, v1

−1 if w = v0

1 if w = v1.

The above computation shows that the coboundary of a vertex w gives a weight 1 (resp. -1) to oriented
edges having w as alter (resp. ego), i.e. arriving at (resp. departing from) w. The coboundary map can
then be interpreted in terms of fluxes.

Example 7. Let us consider an example with four vertices: a, b, c and d. Consider that the edge [a, b]
belongs to the two triangles [a, b, c] and [a, b, d]. Locally, the matrix representation of ∂2 looks like



[a, b, c] [a, b, d]

[a, b] 1 1
[a, c] −1 0
[a, d] 0 −1
[b, c] 1 0
[b, d] 0 1

.
The matrix representation of ∂∗2 is of course the transposed of the matrix representing ∂2 and recalling
that we have identified C1 (resp. C2) to its dual C1 (resp C2),

∂∗2 [a, b] = [a, b, c] + [a, b, d] =
∑
τ∈S+

2

⟨[a, b]∗, ∂2τ⟩C1,C1
τ. (11)

The bracket on the right hand side counts the occurrence of the edge [a, b] among the faces of τ . Otherwise
stated, the coboundary of an edge is the sum of the triangles which contain it, respecting its orientation.

As before, the k-th cohomology vector space, denoted by Hk, is defined as

Hk = ker ∂∗k/ im ∂∗k−1 (12)

and is the dual of Hk.
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2.4 Combinatorial Laplacian

A crucial notion for the following is that of combinatorial Laplacian (see [19, 38] for details). We know
that

Ck+1 Ck Ck−1

Ck+1 Ck Ck−1

∂k+2 ∂k+1 ∂k ∂k−1

∂∗
k+2 ∂∗

k+1 ∂∗
k ∂∗

k−1

where the two tips arrows mean that we have an isometric isomorphism between the two concerned
Hilbert spaces. Since we have identified the spaces Ck and Ck for any k ∈ N, we may consider

L↑
k := ∂k+1∂

∗
k+1 : Ck

∂∗
k+1−−−→ Ck+1

∂k+1−−−→ Ck (13)

and

L↓
k := ∂∗k∂k : Ck

∂k−→ Ck−1
∂∗
k−→ Ck. (14)

These latter operators are called respectively the upper and lower Laplacians (of order k). The combi-
natorial Laplacian of order k is defined as

Lk : Ck −→ Ck
σ 7−→

(
∂k+1∂

∗
k+1 + ∂∗k∂k

)
(σ) = L↑

k(σ) + L↓
k(σ).

(15)

By definition, all these three operators are self-adjoint, non-negative and compact. Their eigenvalues
are thus real and non-negative. Furthermore, the combinatorial Hodge theorem [20] says that

Theorem 8. For any k ∈ N, we have

Ck = im ∂k+1 ⊕ im ∂∗k ⊕ kerLk. (16)

It follows that
kerLk ≃ Hk. (17)

In particular, the k-th Betti number is the dimension of the null space of Lk:

βk = dimker(Lk). (18)

Remark 9. The combinatorial Laplacian of order 0 corresponds to the graph Laplacian. Since we set by
convention ∂0 ≡ 0, L0 = L↑

0 = ∂1∂
∗
1 . The map ∂1 maps edges to vertices and its matrix representation

is exactly the so-called incidence matrix B of the graph (V,S1): for V = {v0, · · · vk} and for (ej) an
enumeration of the set of oriented edges S+

1 ,

Bij =


1 if vi is the ego of ej

−1 if vi is the alter of ej

0 otherwise.

Thus, L0 = BBt is such that

(L0)ij =


deg(vi) if i = j,

−1 if vi is adjacent to vj,

0 otherwise.

The map L0 from C0 into itself is characterized for v ∈ V by:

L0v
∗ = −

∑
w∈V :[vw]∈S1

(w∗ − v∗) =
∑

w∈V :[vw]∈S1

∂1[vw].

8



Thus, for a function f =
∑

v∈V λvv
∗ ∈ C0,

−L0f(u) =−
∑
v∈V

λvL0v
∗(u)

=
∑
v∈V

λv
∑

w∈V :[vw]∈S1

(w∗ − v∗)(u)

=
∑
v∼u

λv − λuCard(w ∼ u)

=
∑
v∼u

(
f(v)− f(u)

)
= Af(u). (19)

Thus as mentioned above, −L0 appears as the generator A of the continuous time random walk on the
graph (V,S1) as defined in (1).

To describe Lk, we need to introduce the notion of lower and upper adjacency for k-simplexes. Two
k-simplexes are said to be upper adjacent whenever they are two faces of a common k + 1 simplex of C.
Two k-simplexes are said to be lower adjacent whenever they are cofaces of a common k−1 simplex. For
a simplex τ , its upper degree, deg↑(τ), is the number of simplexes which are upper adjacent to it. Two
upper adjacent simplexes are said to be similarly oriented if the orientation they would inherit from their
common higher order simplex coincides with their orientation. They are said to be dissimilarly oriented
otherwise. The lower degree deg↓(τ) is the number of simplexes which are lower adjacent to τ . Two lower
adjacent simplexes are similarly oriented whenever they induce the same orientation to their intersection.

Example 10. For instance, two edges are upper adjacent if they are part of a common triangle and they
are lower adjacent if they share a vertex.

The lower and upper adjacency matrix are defined as it can be expected. For τ and τ ′ ∈ Sk,

A
↑/↓
k (τ, τ ′) =


1 if τ and τ ′ are upper/lower adjacent and similarly oriented,

−1 if τ and τ ′ are upper/lower adjacent and dissimilarly oriented,

0 otherwise.

Consider also Dk the diagonal matrix whose entries are the upper degrees of each k-simplex.

We can compute the matrix of the combinatorial Laplacian of order k (15). Then (see [38]),

Lk = L↑
k + L↓

k =
(
Dk −A↑

k

)
+
(
(k + 1) Id+A↓

k

)
.

The map L↑
k has the features of a generator of a Markov process. Indeed, considering back the com-

putation in Remark 9, we see that the upper Laplacian can be explained in terms of upper-adjacency.
For a vertex u (k = 0), we consider all the edges that are upper-adjacent to u, choose one with u as
ego and jump to the alter of this edge. This can be generalized for larger orders k ≥ 0: we consider all
the k + 1 simplexes that are adjacent to a given k simplex τ , choose one at random that will determine
the next movement (this shall be precised in the sequel). Associating to L↑

k a Markov chain provides
a probabilistic interpretation to this operator which can help understand it better. In Parzanchevski
and Rosenthal [43], a connection between this random walk Y and homology is made by considering the
‘expectation process’ defined for an oriented edge e ∈ S1 by Et(e) = P(Yt = e)−P(Yt = −e).
As to the map L↓

k, Mukherjee and Steenbergen [39] proposed a similar random walk exploiting the lower-

adjacency, but the generator L↓
k does not correspond to the generator of a Markov process. These authors

introduce killings to deal with this problem.

However, the following result says that as long as we are concerned with spectral properties, we can
retrieve the information about L↓

k by looking at L↑
k−1 (see [62]):

Theorem 11. Let λ > 0 and f be an eigenvector of L↑
k−1. Then, ∂∗kf is a λ-eigenvector of L↓

k. Con-

versely, if g is a λ-eigenvector of L↓
k, then ∂kg is a λ-eigenvector of L↑

k−1.

9



Proof. If f satisfies L↑
k−1f = λf , then

L↓
k(∂

∗
kf) = ∂∗k∂k∂

∗
kf = ∂∗kL

↑
k−1f = λ∂∗kf.

The proof is similar for the converse. ■

This means that it is reasonable to look only at the maps L↑
k as long as we are interested in properties

related with the spectral decomposition of these operators.

3 Random walk

The idea behind the dynamics of our random walk is the following. The usual random walk on a graph
goes from vertex to vertex. The generator of the continuous time random walk can be written as

Af(u) =
∑
v∼u

f(v)− f(u) =
∑

v∈V :[uv]∈S1

f(u+ ∂1[uv])− f(u). (20)

In the next dimension, k = 1, points are replaced by edges and edges by triangles. If we follow
Parzanchevski and Rosenthal [43, 44] or Kaufman and Oppenheim [32], a natural edge-valued random
walk consists in jumping from the current edge e to a uniformly chosen upper-adjacent edge. These
‘higher-order’ random walks can be extended to k ≥ 1. Mukherjee and Steenbergen proposed a similar
random walks exploiting the lower-adjacency. But if we look for an analogue of (20), another way is
to add the boundary of a triangle to an edge, which gives a combination of edges, i.e. a 2-chain. It is
thus natural not to restrict to edges, but to consider a random walk that takes its values in C2 or more
generally Ck.

Recall that in (8), the homology space Hk = ker ∂k/ im ∂k+1, a natural way to explore the homology
classes of Hk is to start with an element of ker ∂k and then have transitions in im ∂k+1. Proceeding so, the
random walk will remain in the homology class of its initial element, in the same way as the usual random
walk remained in the connected component of its initial condition. Let us now describe the transitions
and generator of this random walk.

3.1 Generator of the chain-valued random-walk

In what follows, k ≥ 1 is fixed.

Space of test functions. To define the generator of the random walk, we first introduce a space of
functions on which it will operate.

Definition 12. Consider D the space of functions from Ck to R of the form

F (σ) = f
(
⟨η1, σ⟩Ck,Ck

, · · · , ⟨ηm, σ⟩Ck,Ck

)
(21)

for some m ≥ 1, (η1, · · · , ηm) some elements of Ck and f measurable and bounded from Rm into R.
We define the support of F as:

suppF =

m⋃
i=1

supp ηi,

where we recall that supp ηi is defined in (4).

Lemma 13. The space D is separating in B(Ck), the Banach space of bounded measurable functions from
Ck to R, equipped with the sup-norm.

Proof. Since Ck can be embedded as a closed subset of l2(Nk+1), it is a separable Hilbert space, we can
consider a dense sequence (ηn, n ≥ 1) and

Fm = σ{⟨ηi, .⟩Ck,Ck
, i = 1, · · · ,m}.

Since Ck is an Hilbert space, its Borel σ-field is equal to ∨mFm, hence the result. ■

10



Transition kernel. Let us explain the transition of our chain-valued random walk. For the sake of
simplicity, imagine here that k = 1. Assume that we are in a state σ ∈ C1 (a cycle for k = 1). Because
transitions are in im ∂2, let us consider an element of this space, say ∂2τ for τ ∈ S2 (a triangle). ∂2τ
defines a possible transition if τ is upper-adjacent to σ, i.e. if τ and σ share at least one edge. All the
possible transitions from σ are obtained by letting τ vary in S2. The more τ and σ have edges in common
and the more τ will be likely to define the next step of the random walk and we thus need to define a
weight to account for this.

For a k-chain σ ̸= 0 and an oriented (k + 1)-simplex τ ∈ Sk+1, define the number of common faces
between σ and ∂k+1τ by:

w (σ, ∂k+1τ) = ⟨(∂k+1τ)
∗, σ⟩+Ck,Ck

where x+ = max(x, 0) for x ∈ R. For another chain σ′, we say that σ and σ′ are adjacent (in the sense
that the random walk can reach σ′ from the state σ) and write

σ ∼ σ′ ⇐⇒ ∃τ ∈ Sk+1, w (σ, ∂k+1τ) > 0 and σ′ = σ − ∂k+1τ. (22)

Finally, let us define the weight of the transition from σ to σ′:

K(σ, σ′) =


1 if σ = σ′ = 0

w (σ, σ − σ′) if σ ∼ σ′

0 otherwise.

(23)

Example 14. In Figure 3, we see how a difference of orientations is simply reflected in the value of the
scalar product. Note also that w(σ, σ − σ′) can be viewed as a scalar product that counts the number of
edges of the triangle which are adjacent to the chain with the good orientations.

v1 v2

v3

η

v1 v2

v3

η

v1

v3

Figure 3: Different cases of orientations: τ = [v1v2v3]. Here σ is a 1-chain, not necessarily a cycle. (a) In this

case, σ = [v1v2] + [v2v3] and w(σ, ∂2τ) = 2, which is the number of edges in common between σ and τ . (b) Here,

σ = [v1v2]− [v2v3] and w(σ, ∂2τ) = 0. So τ is never chosen for defining the transition to the next step here. (c)

In the case (a), the next step is σ′ = [v1v2] + [v2v3]− ∂2τ = [v1v3].

Generator of the random walk Let us define by (A, D(A)) the generator of the continuous-time
random walk.

Definition 15 (Cycle-valued random walk). Let D(A) be the set of functions F such that |
∑

σ′∼σ

(
F (σ′)−

F (σ)
)
K(σ, σ′)| < +∞. For F ∈ D(A), we can define

AF : Ck −→ R

σ 7−→
∑
σ′∼σ

(
F (σ′)− F (σ)

)
K(σ, σ′).

Let us consider a Lipschitz continuous function F from Ck to R, i.e. such that there exists cF > 0
such that for any σ, σ′ ∈ Ck, such that σ ∼ σ′, we have

|F (σ)− F (σ′)| ≤ cF ∥σ − σ′∥Ck
= cF ∥∂k+1τ∥Ck

= cF
√
k + 2,

11



because the boundary of τ ∈ Ck+1 contains k+2-k simplexes. Moreover, we remark that if σ and σ′ ∈ Ck,

σ ∼ σ′ =⇒ K(σ, σ′) ≤
√
k + 1∥σ∥Ck

.

Indeed, σ′ − σ has k + 1 faces of weight 1, so K(σ, σ′) is bounded by the sum of the weights of the faces
of σ. Hence, ∣∣∣∣∣∑

σ′∼σ

(
F (σ′)− F (σ)

)
K(σ, σ′)

∣∣∣∣∣ ≤ cF (k + 2) ∥σ∥Ck
,

from which we deduce that F ∈ D(A).
It is immediate that (see Ethier and Kurtz [17, Chapter 4, Section 2 and Chapter 8, Section 3]):

Theorem 16. The map A of domain D(A) generates a strong Feller continuous Markov process X =
(Xt)t≥0 on Cb(Ck,R), the set of continuous bounded functions on Ck. The set A = D ∩ Cb(Ck,R) is a
core for X.

Remark that the process X is a continuous-time pure jump process and admits a representation with
a discrete-time Markov chain and exponentially distributed clocks attached with each possible transitions
(see e.g. [17, Chapter 4, Section 2]).

Theorem 17. For any t > 0, Xt remains in the same homology class as X0. Moreover, if X0 ∈ ker ∂k,
then for any t ≥ 0, Xt belongs to ker ∂k.

Proof. At each change of state, we add to X an element of im ∂k+1. Since ∂k ◦ ∂k+1 = 0, we add only
elements of ker ∂k to X0, hence Xt always belongs to ker ∂k and the homology class does not change along
the dynamics of X. ■

We can precise the link between A and L↑
k. Note that they cannot be equal since A operate on

functions of chains whereas L↑
k operates on cochains Ck, i.e. linear functions of chains. However we will

see that A, −Lk and −L↑
k coincide when restricted to ker ∂k.

Theorem 18. We have for every ζ ∈ ker ∂k, and for any σ ∈ Ck,

Aζ(σ) = −L↑
kζ(σ) = −Lkζ(σ). (24)

Proof. From (15), we have:

Aζ(σ) =
∑
σ′∼σ

(
ζ(σ′)− ζ(σ)

)
K(σ, σ′). (25)

By the definitions of the ∼ relation (22) and of K (23):∑
σ′∼σ

(
ζ(σ′)− ζ(σ)

)
K(σ, σ′) =−

〈
ζ,

∑
τ∈Sk+1

⟨(∂k+1τ)
∗, σ⟩+Ck,Ck

∂k+1τ
〉
Ck,Ck

=−
〈
∂∗k+1ζ,

∑
τ∈Sk+1

⟨(∂k+1τ)
∗, σ⟩+Ck,Ck

τ
〉
Ck+1,Ck+1

=−
〈
∂∗k+1ζ,

∑
τ∈Sk+1

⟨τ∗, ∂∗k+1σ⟩+Ck,Ck
τ
〉
Ck+1,Ck+1

=− ⟨∂∗k+1ζ, ∂
∗
k+1σ⟩Ck+1,Ck+1

=− ⟨∂k+1 ◦ ∂∗k+1ζ, σ⟩Ck+1,Ck+1

=− L↑
kζ(σ). (26)

When σ ∈ ker ∂k, L
↓
k(τ) = 0. This concludes the proof. ■
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Figure 4: Example illustrating the occurrence of edges with weights greater than 1 in the triangulation of
the torus. Imagine a cycle that is composed of the blue-green curve, and then the red-orange curve. If
the red edge is selected to determine the next step of the chain, and if the lower triangle adjacent to it is
chosen, then the green edge will have a weight equal to two.

3.2 Non-explosion and recurrence of the chain on finite simplicial complexes

In contrast with the 0-dimensional case, there is no reason why the state space of the stochastic process
X should be finite in the general case, even when Sk is, since the weights λτ in (3) can be unbounded. For
a cycle random walk, this means for instance, that the cycle can do loops and go several times through
the same edge. Even in a simple structure such as the triangulation of the torus, this can happen.

Fortunately, the dynamics of the random walk tend to limit its length.

Definition 19. For a k-chain σ, we denote R(σ), the recurrence class of σ, consisting of all the k-chains
which can be attained by X starting from σ.

Theorem 20. Suppose Sk+1 is finite and X0 is a k-cycle. Then, the process (Xt)t≥0 on R(X0) is
non-explosive, recurrent and admits a unique invariant measure π. Furthermore,∫

Ck

∥σ∥2Ck
dπ(σ) <∞.

Proof. To prove the result, we are going to show that ∥.∥2Ck
is a Lyapunov function for A. Let Pker, Pim :

Ck → Ck be the projection operators of k-chains to kerL↑
k and imL↑

k respectively. For σ ∈ R(X0) we
have

(A∥.∥2Ck
)(σ) =

∑
τ∈Sk+1

(∥σ − ∂k+1τ∥2Ck
− ∥σ∥2Ck

)K(σ, σ − τ)

=
∑

τ∈Sk+1

(−2⟨(∂k+1τ)
∗, σ⟩Ck,Ck

+ ∥∂k+1τ∥2Ck
)K(σ, σ − τ)

= 2⟨Aσ∗, σ⟩Ck,Ck
+ (k + 2)

∑
τ∈Sk+1

⟨(∂k+1τ)
∗, σ⟩+Ck,Ck

= −2
〈
L↑
kσ

∗, σ
〉
Ck,Ck

+ (k + 2)
∑

τ∈Sk+1

〈
τ∗, ∂∗k+1σ

〉+
Ck,Ck

. (27)

The factor k + 2 in the third line comes from the fact that ∥∂k+1τ∥2Ck
= k + 2. For the fourth equality,

we have used Theorem 18 from which:

⟨Aσ∗, σ⟩Ck,Ck
= −

〈
L↑
kσ

∗, σ
〉
Ck,Ck

.

Since Sk is finite, L↑
k is a finite dimensional operator with positive discrete eigenvalues. Thus, denoting

by λm the smallest positive eigenvalue of L↑
k, we have〈

L↑
kPimσ

∗, Pimσ
〉
Ck,Ck

≥ λm∥Pimσ∥2Ck .

13



On the other hand, by Cauchy-Schwarz inequality:∑
τ∈Sk+1

⟨(∂k+1τ)
∗, σ⟩+Ck,Ck

=
∑

τ∈Sk+1

〈
τ∗, ∂∗k+1σ

〉+
Ck+1,Ck+1

≤ |Sk+1|1/2
 ∑

τ∈Sk+1

〈
τ∗, ∂∗k+1σ

〉2
Ck+1,Ck+1

1/2

= |Sk+1|1/2∥∂∗k+1σ∥Ck+1 . (28)

Then:
∥∂∗k+1σ∥2Ck+1 = ⟨∂∗k+1σ

∗, ∂∗k+1σ
∗⟩Ck+1,Ck+1 = ⟨L↑

kσ
∗, σ∗⟩Ck,Ck ≤ λM∥σ∥2Ck

, (29)

where λM is the largest eigenvalue of L↑
k. (28) and (29) imply that:∑

τ∈Sk+1

⟨(∂k+1τ)
∗, σ⟩+Ck,Ck

≤
√
λM |Sk+1| ∥σ∥Ck

. (30)

Now, since the transitions of X are in imL↑
k, we have that

∀σ ∈ R(X0), σ = PkerX0 + Pimσ

thus
∥Pimσ∥2Ck

= ∥σ∥2Ck
− ∥PkerX0∥2Ck

.

Combining everything together, we have

(A∥.∥2Ck)(σ) ≤ −2
〈
L↑
kPimσ

∗, Pimσ
〉
Ck,Ck

+ (k + 2)|Sk+1|1/2λ1/2M ∥σ∥Ck

≤ −2λm∥Pimσ∥2Ck
+ (k + 2)|Sk+1|1/2λ1/2M ∥σ∥Ck

≤ −2λm∥σ∥2Ck
+ (k + 2)|Sk+1|1/2λ1/2M ∥σ∥Ck

+ 2λm∥PkerX0∥2Ck

≤ −λm∥σ∥2Ck
+ ((k + 2)|Sk+1|1/2λ1/2M ∥σ∥Ck

− λm∥σ∥2Ck
) + 2λm∥PkerX0∥2Ck

≤ −λm∥σ∥2Ck
+

(k + 2)2|Sk+1|λM
4λm

+ 2λm∥PkerX0∥2Ck
, (31)

where the last inequality comes from the fact that the function

x 7→ (k + 2)|Sk+1|1/2λ1/2M x− λmx
2

reaches its maximum at x = (k + 2)|Sk+1|1/2λ1/2M /(2λm) at which point the value of the function is
(k + 2)2|Sk+1|λM/(4λm). Thus, ∥.∥2Ck

is a Lyapunov function for A and the results then follow by
applying Theorems 2.1, 4.2 and 4.3 from Meyn and Tweedie [37]. ■

The computation (31) in the proof of Theorem 20 can be further exploited to show that the expectation
of the square norm remains bounded along the chain:

Corollary 21. Suppose that Sk+1 and E
(
∥X0∥2Ck

)
are finite. Then, for T > 0, and for any t ∈ [0, T ],

E
(
∥Xt∥2Ck

)
≤

[
(1 + 2λmT )E

(
∥X0∥2Ck

)
+ T

(k + 2)2|Sk|λM
4λm

]
e−λmt. (32)

Proof. For M > 0, let us consider the stopping time SM = inf{∥Xt∥2Ck
> M}. Using Itô’s formula [26,

Th.5.1 P.66]:

E
(
∥Xt∧SM

∥2Ck

)
=E

(
∥X0∥2Ck

)
+ E

(∫ t∧SM

0

(
A∥.∥2Ck

)
(Xs)ds

)
≤E

(
∥X0∥2Ck

)
− λm

∫ t

0

E
(
∥Xs∧SM

∥2Ck

)
ds

+ T
[ (k + 2)2|Sk+1|λM

4λm
+ 2λm∥PkerX0∥2Ck

]
≤
[
E
(
∥X0∥2Ck

)
+ T

(k + 2)2|Sk+1|λM
4λm

+ 2λmTE
(
∥PkerX0∥2Ck

)]
e−λmt,
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by Gronwall’s lemma. Because the right hand side does not depend onM , we deduce that limM→+∞ SM =
+∞ almost surely and the result follows. ■

We can go a little further. For any k + 1-simplex τ , let deg↓(τ) be the lower adjacency degree of τ
given by

deg↓(τ) =
∑

τ ′∈Sk+1,τ ′ ̸=τ

|⟨
(
∂k+1τ

)∗
, ∂k+1τ

′⟩Ck,Ck
|. (33)

The quantity in the sum corresponds to the number of faces that τ and τ ′ have in common, so deg↓(τ)
counts the number of k-simplexes (with multiplicity) that share a face with τ .

Theorem 22. Let k ∈ N. Let σ1, . . . , σβk
∈ Ck be a basis of Hk and let τ1, . . . , τn ∈ S+

k+1 be the k + 1-

simplexes of our simplicial complex. Suppose that there exists σ ∈ Ck and (λτ , τ ∈ S+
k+1) ∈ {−1, 0, 1}S

+
k+1

such that such that
X0 = σ +

∑
τ∈S+

k+1

λτ∂k+1τ.

If we have for all τ ∈ S+
k+1 that:

deg↓(τ) ≤ k + 2− |⟨
(
∂k+1τ

)∗
, σ⟩Ck,Ck

|, (34)

then X has a finite state space and for any t ≥ 0, there exists (λτ (t), τ ∈ S+
k+1) ∈ {−1, 0, 1}S

+
k+1 such that

Xt = σ +
∑

τ∈S+
k+1

λτ (t)∂k+1τ. (35)

This theorem ensures that under condition (34), the state space is finite and the chain does not ‘loop’
on itself too much as in the example of Fig. 4. This has direct consequences to determine its recurrence
or to bound its length. In particular, if our simplicial complex is a triangulation of Rd with some holes,
then (34) is verified for any chain σ surrounding one (or several) holes.

Proof of Theorem 22. By the very definition of X, for T1 the first jump time of X, there exist (λτ (T1), τ ∈
S+
k+1) such that

XT1
= σ +

∑
τ∈S+

k+1

λτ (T1)∂k+1τ.

and |λτ (T1)− λτ | ≤ 1 for any τ ∈ S+
k+1. First, consider η ∈ S+

k+1 such that λη = 1. We have

⟨(∂k+1η)
∗, X0⟩Ck,Ck

= ⟨(∂k+1η)
∗, σ⟩Ck,Ck

+
∑

τ∈S+
k+1

λτ ⟨(∂k+1η)
∗, ∂k+1τ⟩Ck,Ck

≥ −|⟨(∂k+1η)
∗, σ⟩Ck,Ck

|+ (k + 2)−
∑
τ ̸=η

|⟨(∂k+1η)
∗, ∂k+1τ⟩Ck,Ck

| ≥ 0,

by our assumption (34) and by the definition of deg↓(τ) in (33). Thus,

K
(
X0, X0 + ∂k+1η

)
= w(X0,−∂k+1η) = max

(
0,−⟨(∂k+1η)

∗, X0⟩Ck,Ck

)
= 0. (36)

Hence, λη(T1) that was equal to 1 before the jump event can not increase and must be equal to 0 or to
1 after the jump.

Proceeding similarly for the simplexes η ∈ S+
k+1 for which λη = −1, we obtain that λτ (T1) ∈ {−1, 0, 1}

for any τ ∈ S+
k+1. The proof is then concluded by induction with respect to the steps of the embedded

discrete time Markov chain. ■

Remark 23. If the chain X on a finite simplicial complex starts from a state τ ∈ im ∂k+1 then it is
absorbed by the null chain in finite time.
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It is well known that for random walks on undirected graphs, the stationary distribution gives to each
vertex a weight proportional to its degree, i.e. to the number of edges it is adjacent to. In a way, the
stationary measure highlights central nodes with respect to the 0-dimensional topology structure (i.e.
connectivity). While we are not able to directly compute the stationnary measure of our random walk,
we would expect it to also highlight the topology of the simplicial complex. In Section 5, we will see that,
empirically, the stationnary measure of our random walk on edges tends highlight homology structures
(in our case holes) by giving much weight to edges bordering the holes present in the homology class
of our starting point. In practice our random walk would thus favor small chains circling the homology
structure present in its homology class.

Example 24. To get some insights on how the situation can be complex when the state space is infinite,
let us have a look at the random walk on the triangulation of the plane from which we have removed one
triangle, so that the chain never dies. After a trillion of iterations, we get a graph similar to that of
Figure 5 (a).

1

0 1000 2000 3000 4000 5000

0

5000

10000

15000

20000

25000

30000

(a) (b)

Figure 5: (a) A realization of X after 2 trillions steps. The removed triangle is in red (center of the image). (b)

The number of times X touches the removed triangle, by packets of ten thousands steps. Simulation by M. Glisse.

The support of the process X is composed of several disconnected components, each of them may
contain some holes. The isolated components are going to either die or merge with the component which
contains the removed triangle. Provided that this is meaningful, if we look at the number of triangles which
are inside the chain, it can increase or decrease by 1 with equal probability at each step. This means that
it follows the law of a symmetric random walk, which is thus null recurrent. However, when the chain
touches the boundary of the removed triangle, there is a drift only in the positive sense which ruins this
reasoning. The simulation represented on Figure 5 (b) shows that X touches the removed triangle very
often.

4 Convergence

When dealing with random walks, it is natural to investigate their continuous diffusive limits. Here, we
choose to embed our graph into another space and consider geometric random graphs (as is done e.g.
in [59]). Limits of random walks on graphs drawn on a manifold have been considered for instance in
[49, 21, 23, 25, 47] or [48], but the literature deals only with the convergence of generators as the latter is
the key for applications in machine learning. In this section, we also study the tightness of the distribu-
tions of the random walks and show that the limiting values of the correctly rescaled cycle random walk
are the diffusion solutions to a same martingale problem associated with the limit of the combinatorial
Laplacian. As we will see in the computation done in this section, things can become quickly intricate,
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and this is why we focus here on a particular case: we consider the scaling limits of the cycle random
walk on the triangulation of the flat torus.

We denote by T2 the flat torus, which we embed into R2 as the rectangle [0, 2] × [0,
√
3] where the

opposite edges are identified. Let ϵn = 1/n and consider

Vn =
{
(2kϵn, 2l

√
3 ϵn), 0 ≤ k < n, 0 ≤ 2l < n

}
⋃{

((2k + 1)ϵn, (2l + 1)
√
3 ϵn), 0 < 2k + 1 ≤ 2n, 0 < 2l + 1 ≤ n

}
,

the set of vertices of the regular triangulation of mesh 2ϵn and denote by Tn the triangulation based on
Vn, see Figure 6. We consider the simplicial complex Cn composed of all the triangles of Tn, their edges
and their vertices Vn.

0 1

24

3

2ϵn

Figure 6: Regular triangulation of the flat torus. 0 := (0, 0), 1 := (2ϵn, 0), 2 := (ϵn,
√
3ϵn), 3 :=

(ϵn,−
√
3ϵn), 4 := (−ϵn,

√
3 ϵn)

We will study here the cycle random walk (Xn
t )t≥0 (correctly renormalized, as will be seen in the

sequel) on this simplicial complex Cn and the sequence of these random walks for n ∈ N. More precisely,
let us denote by Sn

2 the set of triangles with vertices in Vn and edge lengths 2ϵn, and Cn
1 the set of chains

associated with this triangulation.
The generator of our random walk in (15), that we reformulate here for the cycle random walk on the

torus, is given, for σ ∈ Cn
1 and for F a continuous and bounded test function from Cn

1 to R, by:

AnF (σ) = ϵ−2
n

∑
τ∈Sn

2

(
F (σ − ∂2τ)− F (σ)

)
w(σ, ∂2τ). (37)

A convenient class of test functions will be precised later in (44). Let us explain this generator. The
rescaling of space is automatic since the number of points on the torus increases and the distance between
two connected point is 2ϵn which tends to zero. Starting from a cycle σ, we look at every (oriented) tri-
angle that is adjacent to the cycle. The weight w(σ, ∂2τ) defined in (23) indicates how many edges (with
multiplicity) are shared by η and τ . At rate w(σ, ∂2τ), the triangle τ (of area in ϵ2n) is chosen and its
boundary is subtracted to the cycle, entailing the deletion of the shared edges and the inclusion of the
new other edges so that the path remains a cycle.
Time is accelerated in ϵ−2

n , which can be understood from the estimate of Proposition 25 below. This
explains the ϵ−2

n at the beginning of the expression of An.

In this example, H1 is of dimension 2, and with the notation of Theorem 22, we can choose as a basis
of H1:

σ1 =

n−2∑
k=0

[(2kϵn, 0), (2(k + 1)ϵn, 0)], σ2 =

n−2∑
l=0

[(lϵn, l
√
3ϵn), ((l + 1)ϵn, (l + 1)

√
3ϵn)].

Notice that if the initial condition Xn
0 is of the form (35) with µ1 > 0 or µ2 > 0, then the condition (34)

is not satisfied and the state space might be infinite (even if the set of vertices is finite), since a cycle can
“loop” on itself and the edge weights can be more than 1 as seen on Fig. 4.
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4.1 Spectral properties of L↑
1

Recall that Cn is simplicial complex that is explored and S1(C
n) is its set of edges. Before studying

the cycle random walk on the triangulation of the 2-dimensional torus, let us give some insight into the
spectral properties of L↑

1. To do this, we use the simple edge-valued random walk jumping between upper
adjacent edges similar to the one defined in Parzanchevski and Rosenthal [43, 44]. The transition kernel
of this random walk is

∀e, e′ ∈ S1(C
n),K(e, e′) =


1
5 if e = −e′
1
5 if e ̸= e′ and e is upper adjacent to −e′

0 otherwise.

Or, equivalently,

∀e, e′ ∈ S1(C
n),K(e, e′) =

1

5
⟨(I − L↑

1)e
∗, e′⟩Ck,Ck

Using standard analysis tool on this random walk gives the following result.

Proposition 25. Let λnm be the smallest non-zero eigenvalue of the 1-dimensional up-Laplacian on the
simplicial complex Cn. We have

λnm = O(ϵ2n).

Proof. By Corollary 1 in Diaconis and Stroock [14], we have that the smallest non-zero eigenvalue of L↑
1,

denoted λnm, is bounded from below by

λnm ≥ 2|S+
1 (Cn)|

25dnbn
,

where dn is the diameter of the state space and bn is the maximum number of geodesic paths going
through a given edge. Since we are triangulating the 2-dimensional torus, we have that

|S+
1 (Cn)| = O(ϵ−2

n ) and dn = O(ϵ−1
n ).

In order to bound bn, let us note that the total number of geodesic path is |S+
1 (Cn)|2 while their maximum

length is dn. Thus, the sum of the lengths of all geodesic paths is of order dn|S+
1 (Cn)|2. Finally, since

our triangulation is symmetric the geodesic paths must be distributed among all edges, therefore

bn = O
(
dn|S+

1 (Cn)|2

|S+
1 (Cn)|

)
= O(ϵ−3

n ),

which concludes the proof. ■

The result of Proposition 25 gives us indications on the rescaling needed for our random walk to
converge to some continuous limit. Next, we investigate the state space in which the convergence should
be established.

4.2 From chains to currents

In the same way that Vn was embedded into T2, we need to embed the spaces of 1-chains into a bigger
continuous space. The natural proposition is to consider chains as currents, which are duals of linear
forms on the torus. We first recall some notation and refer to [5, Chapters 5 and 6], especially on
differential forms and their integrals. Recall also that we focus in this section on 1-chains and thus
will not need to introduce k-forms in their whole generality, but only forms for k ∈ {0, 1, 2}. Denote
by T ∗

xT2 the tangent vector space on the torus at x. The spaces ΛkT ∗
xT2 are the spaces of alternating

k-linear forms on T ∗
xT2. Note that Λ0T ∗

xT2 = R (so that 0-forms are continuous real functions on the
torus), Λ1T ∗

xT2 = T ∗
xT2. For k = 2, Λ2T ∗

xT2 is the set of bilinear real functions ϕ on T ∗
xT2, such that

∀u1, u2 ∈ T ∗
xT2, ϕ(u1, u2) = −ϕ(u2, u1). It is then classical to define by T ∗T2 = ∪x∈T2

T ∗
xT2 the tangent

bundle of the torus, and to let ΛkT ∗T2 = ∪x∈T2Λ
kT ∗

xT2 be the disjoint union of the spaces ΛkT ∗
xT2.

We denote by Ck,p(T2) = Cp(T2,Λ
kT ∗T2) the set of differential k-form of class Cp on T2. The space of

continuous 1-differential forms is denote by C1(T2) and C1,p(T2) is dense in C1(T2). Notice that C1(T2)
is separable (see [5, Th.5.1.5 P.147]).
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Definition 26. Let us denote by dx1 and dx2 the canonical basis of the space of linear forms on T ∗T2.
For a continuous 1-differential form ϕ ∈ C1(T2), we can write

ϕ = ϕ1 dx1 + ϕ2 dx2, (38)

where ϕ1 and ϕ2 are continuous functions on the torus, i.e. they can be viewed as the restriction over
[0, 1]2 of continuous (1, 1)-periodic functions:

ϕ(x1 + l1, x2 + l2) = ϕ(x1, x2)

for any pair of integers (l1, l2) ∈ Z2. We set

∥ϕ∥C1 = ∥ϕ1∥∞ + ∥ϕ2∥∞.

It topological dual is the set of currents, denoted by C1. It inherits the Banach norm:

∥p∥C1 = sup
ϕ∈C1

|⟨p, ϕ⟩C1,C1 |
∥ϕ∥C1

. (39)

By the previous definition and the preceding remarks, (C1, ∥.∥C1
) is a Polish space.

Recall that for two functions ϕ and φ ∈ T ∗
xT2, ϕ ∧ φ ∈ Λ2T ∗

xT2 is defined for all u1, u2 ∈ T ∗
xT2 by:

ϕ ∧ φ(u1, u2) = ϕ(u1)φ(u2)− φ(u1)ϕ(u2). (40)

In particular, the 2-form dx1 ∧ dx2 is a volume form on T2 that is canonically associated with the
Lebesgue measure on T2 and allows to integrate differential forms (see Chapter 6 of [5], for example).

As a particular case of application, let us mention the following useful definition:

Definition 27. We denote by P, the set of paths, i.e. the piecewise differentiable maps from [0, 1] into
T2. This set can be viewed as a subspace of C1. For ϕ ∈ C1, the curvilinear integral of ϕ along an element
p ∈ P is a linear map and we denote by ⟨p, ϕ⟩ the integral

∫
p
ϕ, with

|⟨p, ϕ⟩| =
∣∣∣∣∫

p

ϕ

∣∣∣∣ ≤ ∥ϕ∥C1
∥p∥C1 .

The definition 27 allows us to see 1-chains as paths by embedding the abstract graph into a geometric
graph on the torus.

In particular, for a cycle σ constructed on Tn,∣∣⟨σ, ϕ⟩C1,C1

∣∣ = ∣∣∣∣∫
σ

ϕ

∣∣∣∣ ≤ ∥ϕ∥C1 2ϵn
∑
e∈Tn

|λe(σ)|, (41)

with the notation of (3). Since the λe(σ) are integers, the right hand side is upper-bounded by ∥σ∥2C1
(in

discrete norm). As a consequence:
∥σ∥C1

≤ 2ϵn∥σ∥2C1
. (42)

Notice that when λe ∈ {−1, 0, 1}, the right hand side of (41) is equal to 2ϵn∥σ∥2C1
, which is the metric

length of the chain σ.
Keeping in mind Donsker’s theorem, we expect that the length of the diffusive limit cycle is infinite

in the same way as the standard Brownian motion has infinite variation. Therefore, we will also require
for what follows additional regularity assumptions on the differential forms.

Recall that C1,p denotes the set of 1-differential forms of class Cp, i.e. for which the functions ϕ1 and
ϕ2 in (38) are Cp. In the sequel, we will consider p ∈ {1, 2, 3}. Since we are on the compact torus, these
derivatives are bounded.

19



Definition 28. Let us embed C1,3 with the norm:

∥ϕ∥C1,3 = ∥ϕ∥C1 +

2∑
i=1

(∥∥ ∂ϕi
∂x1

∥∥
∞ +

∥∥ ∂ϕi
∂x2

∥∥
∞

+
∥∥∂2ϕi
∂x21

∥∥
∞ +

∥∥∂2ϕi
∂x22

∥∥
∞ +

∥∥ ∂2ϕi

∂x1∂x2

∥∥
∞ +

∥∥∂3ϕi
∂x31

∥∥
∞ +

∥∥ ∂3ϕi

∂x21∂x2

∥∥
∞ +

∥∥ ∂3ϕi

∂x1∂x22

∥∥
∞ +

∥∥∂3ϕi
∂x32

∥∥
∞

)
.

Its topological dual is denoted by C1,3 and embedded with the Banach norm:

∥σ∥C1,3 = sup
ϕ∈C1,3

|⟨σ, ϕ⟩C1,3,C1,3 |
∥ϕ∥C1,3

. (43)

The space (C1,3, ∥.∥C1,3
) is Polish and contains C1 and P. Remark that if σ ∈ C1, then the bracket in

the numerator of the right hand side of (43) is equal to ⟨σ, ϕ⟩C1,C1 . In the sequel, we are interested in
limit theorems for the sequence of cycle random walks viewed as a C1,3-valued random process.

A function F : C1,3 → R is said to be cylindrical if it is of the form:

F (σ) = f
(
⟨σ, ϕ1⟩C1,3,C1,3 , · · · , ⟨σ, ϕk⟩C1,3,C1,3

)
(44)

for some ϕ1, · · · , ϕk ∈ C1,3 and f a continuous real function of class C1 with compact support from Rk

into R. Let B be the Banach space of bounded continuous functions from C1,3 to R equipped with
the sup-norm. The set of cylindrical functions is a set of continuous functions on C1,3 that is closed
under addition and separates points C1,3. For the latter point, we can notice with arguments similar
to [36, Lemma A.1] that the topology generated on C1,3 by these functions is the same as the one of
finite-dimensional convergence. These properties will be useful in the next section, when establishing the
convergence of the cycle-random walk on the triangulation of the torus supported on Vn.

4.3 Hodge operator

For 0 ≤ k ≤ 1 (since we work on the 2d-torus) and p ≥ 1, there exists a unique linear operator d from
Ck,p(T2) into Ck+1,p−1(T2), called exterior differentiation (see [5, Prop. 5.2.9.1]), such that:
(i) d ◦ d = 0
(ii) for k and k′-forms ϕ and φ, d(ϕ ∧ φ) = dϕ ∧ φ+ (−1)kϕ ∧ dφ,
(iii) for ϕ ∈ C1(T2,R), dϕ : X 7→ T ∗X is the derivative of ϕ:

dϕ(x) =
∂ϕ

∂x1
(x)dx1 +

∂ϕ

∂x2
(x)dx2. (45)

For ϕ ∈ C1,1(T2), there exists two C1(T2,R) functions ϕ1 and ϕ2 such that ϕ(x) = ϕ1(x) dx1 +
ϕ2(x) dx2. The exterior derivative of ϕ, dϕ ∈ C2,0(T2), is then:

dϕ =dϕ1 ∧ dx1 + dϕ2 ∧ dx2

=
∂ϕ1

∂x2
dx2 ∧ dx1 +

∂ϕ2

∂x1
dx1 ∧ dx2

=
(∂ϕ2
∂x1

(x)− ∂ϕ1

∂x2
(x)

)
dx1 ∧ dx2. (46)

Definition 29. The Hodge transform of forms is the linear transformation defined by its action on a
basis of differential forms:

∗1 = dx1 ∧ dx2, ∗ dx1 = dx2, ∗ dx2 = − dx1, ∗( dx1 ∧ dx2) = 1.

Definition 30. The Rham-Hodge operator is then defined by

L = L↑ + L↓ where L↑ = ∗d ∗ d and L↓ = d ∗ d ∗ .
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Proposition 31. Let ϕ ∈ C1,2(T2), with ϕ = ϕ1 dx1 + ϕ2 dx2. We have

L↑
(
ϕ
)
=

(
ϕ122 − ϕ212

)
dx1 +

(
ϕ211 − ϕ112

)
dx2 (47)

L↓
(
ϕ
)
=

(
ϕ111 + ϕ212

)
dx1 +

(
ϕ112 + ϕ222

)
dx2. (48)

where fi is a shortcut for the partial derivative of f with respect to the variable xi.

Proof. Using Def. 29 and (46),

∗dϕ =
∂ϕ2

∂x1
− ∂ϕ1

∂x2
. (49)

Then, by (45),

d ∗ dϕ =
(∂2ϕ2
∂x21

− ∂2ϕ1

∂x1∂x2

)
dx1 +

( ∂2ϕ2

∂x1∂x2
− ∂2ϕ1

∂x22

)
dx2

=
(
ϕ211 − ϕ112

)
dx1 +

(
ϕ212 − ϕ122

)
dx2

Using again Def. 29 gives (47). Proceeding similarly provides the expression of L↓ϕ. ■

Notice that the Rham-Hodge operator appears also as the Witten Laplacian in the literature for
0-forms (e.g. [34, 56]), which relates to the generator of diffusions on manifolds [4, 16, 33, 51] – in our
case, the Brownian motion on the torus T2. For 1-forms, [16, 33] provide probabilistic reprensentations
(different from ours) of the semigroups associated with the Rham-Hodge operator by mean of Feynman-
Kac formulas and using the diffusions obtained for 0-forms.

Proposition 32. The operator L↑ is closable, dissipative and there exists λ > 0 such that λ Id−L↑ is one-
to-one. As a consequence, L↑, whose domain contains C1,2, generates a strongly continuous contraction
semi-group. Moreover, the martingale problem associated to L↑ is well posed.

Proof. First, let us prove that L↑ is closable, dissipative and that there exists λ > 0 such that λ Id−L↑

is one-to-one.

By (47), for ϕ ∈ C1,2,

⟨L↑ϕ, ϕ⟩ =
∫
T2

∂

∂x2

(
ϕ12 − ϕ21

)
ϕ1 dx1 dx2 −

∫
T2

∂

∂x1

(
ϕ12 − ϕ21

)
ϕ2 dx1 dx2.

By integration by parts, taking into account the periodicity of ϕ1 and ϕ2, we get

⟨L↑ϕ, ϕ⟩ =−
∫
T2

(
ϕ12 − ϕ21

)
ϕ12 dx1 dx2 +

∫
T2

(
ϕ12 − ϕ21

)
ϕ21 dx1 dx2

=−
∫
T2

(
ϕ12 − ϕ21

)2

dx1 dx2.

This means that L↑ is symmetric and negative (hence dissipative). Integrating by parts a second time
yields, for any ψ ∈ C1,2,

⟨L↑ϕ, ψ⟩ = ⟨ϕ, L↑ψ⟩.
Hence, if ϕn → 0 and L↑ϕn → η, we get ⟨η, ψ⟩ = 0 for any ψ ∈ C1,2. By density, this entails η = 0.
Hence, L↑ is closable. We still denote by L↑ its extension, whose domain dom(L↑) contains at least C1,2.

Consider the basis of L2(T2,C) given by

en,m(x1, x2) = e2iπnx1e2iπmx2 , n,m ∈ Z.

For i = 1, 2, we have in L2(T2,C),

ϕi =
∑

n,m∈Z

cin,m en,m.
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Furthermore,

ϕ122 − ϕ212 = −4π2
∑

n,m∈Z

(c1n,mm
2 − c2n,mmn) en,m,

ϕ211 − ϕ112 = −4π2
∑

n,m∈Z

(c2n,mn
2 − c1n,mmn) en,m.

Thus solving L↑ϕ = −4π2λϕ amounts to find the cin,m’s such that

c1n,m(m2 − λ)− c2n,mmn = 0,

−c1n,mmn+ c2n,m(n2 − λ) = 0.

For λ negative irrational, this system admits the null form as unique solution, hence for such a λ,
L↑ − 4π2λ Id is one-to-one and the third condition is satisfied.

According to [17, Th.2.12 P.16], the operator L↑ hence generates a strongly continuous contraction
semi-group on C1,3. Moreover, by [17, Th.4.1 P.182], uniqueness holds for the martingale problem asso-
ciated with L↑. ■

4.4 Cycle random walk on the torus

4.4.1 Rescaled random walk on cycles

Consider the random walk Xn with generator (37). It is a continuous-time jump process with values in
Cn
1 ⊂ C1,4 (the latter space does not depend on n), which we recall is a Polish space. The set D(R+,C1,4)

is embedded with the Skorokhod distance and is itself Polish (e.g. [28]). To prove the convergence, we
will use the explicit expression of Xn as the solution of a stochastic differential equation driven by Poisson
point measures. Let Nn(ds, dθ, dτ) be a Poisson point measure on R+×R+×Sn

2 with intensity measure
ds⊗ dθ ⊗ n(dτ) where n(dτ) is the counting measure on Sn

2 .

Xn
t =Xn

0 −
∫ t

0

∫
R+

∫
Sn
2

∂2τ 1{θ≤w(Xn
s−

,∂2τ)}Nn(ds, dθ, dτ). (50)

In the sequel, we will study the convergence of the sequence of accelerated processes:

X
(n)
t = Xn

ϵ−2
n t
. (51)

Figure 7: Simulations of the cycle-valued random walk on the simplicial complex composed of all the triangles

of Tn. Simulation by Paul Melotti.
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4.4.2 Conjectures

As the random cycle at any time t can have loops and use several times the same edge, one of the
main difficulty in studying limit theorems for (Xn

t )t≥0 lies in controlling its size. Indeed, for the usual
convergence of random walks to the Brownian motion, we expect that the number of edges and the length
of the curve tend to infinity.
We instead consider the flat norm of X ∈ C1 (see [18, p.4]) that is defined as:

∥X∥F := inf
∆∈C2

∥X − ∂2∆∥C1
+ ∥∆∥C2

. (52)

Roughly speaking, the infimum in the definition of the flat norm is over all the ∆ ∈ C2 such that ∂2∆ is
close to X and that have a small area ∥∆∥C2

. In the following, we will need the following conjecture:

Conjecture 33. For all T > 0, we require the following control on the flat norm of our process:

lim
n→+∞

E
(
sup
t≤T

∥X(n)
t ∥F

)
< +∞ (53)

Notice that with some modification of the support of the cycle-valued chain, we can show easily that
the conjecture holds. If we introduce

σ0 =
[
(0, 0), (2ϵn, 0)

]
+
[
(2ϵn, 0), (ϵn,

√
3ϵn)

]
+
[
(ϵn,

√
3ϵn), (0, 0)

]
, and τ0 = [(0, 0), (2ϵn, 0), (ϵn,

√
3ϵn)],

then, for the simplicial complex C̃n := Cn \ τ0, H1 is of dimension 3 with the basis {σ0, σ1, σ2} and
a chain starting in the homology class of σ0 satisfies the condition (34). This ensures that ∆n

t can be
chosen as a combination of triangles with weights in {−1, 0, 1} and also, it is possible to choose ∆n

t such

that X
(n)
t − ∂2∆

n
t = X

(n)
0 . Therefore

∥∆n
t ∥C2

≤ 2
√
3,

which is the area of T2. In this case, (53) is satisfied as soon as

E
(
∥X(n)

0 ∥C1

)
< +∞, (54)

a condition that depends only on the initial condition. However, rather than working on such a perforated
torus we chose to stick with the random walk on the complete torus, since it is a more natural space,
at the price of Conjecture 33. Another possible direction to avoid the Conjecture would be to consider
chains with coefficients in Z/2Z.

As we mentioned earlier, we expect the length of our process to explode as n goes to infinity. Still,
our control on the flat norm of the process can be used to obtain an (exploding) bound on its length.

Lemma 34. For any 1-chain σ of the simplicial complex Cn, we have

∥σ∥C1
≤ 2

√
3∥σ∥F
ϵn

.

Proof. By the definition of the flat norm, there must exists a 1-cycle σ0 ∈ C1 and ∆ ∈ C2 such that
σ = σ0 + ∂2∆ and

∥σ∥F = ∥σ0∥C1
+ ∥∆∥C2

.

Since σ is a 1-chain of the simplicial complex Cn, σ0 is also a 1-chain of Cn and ∆ a 2-chain of Cn. We
thus have ∆ =

∑
τ∈Sn

2
λττ , where ∀τ ∈ Sn

2 , λτ ∈ R and

∥∆∥C2
=

√
3ϵ2n

∑
τ∈Sn

2

|λτ |.

Therefore,

∥∂2∆∥C1 ≤
∑
τ∈Sn

2

|λτ |∥∂2τ∥C1 = 6ϵn
∑
τ∈Sn

2

|λτ | =
2
√
3∥∆∥C2

ϵn
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and

∥σ∥C1
≤ ∥σ0∥C1

+ ∥∂2∆∥C1
≤ 2

√
3(∥σ0∥C1 + ∥∆∥C2)

ϵn
,

which concludes the proof. ■

As a consequence of this result, Conjecture 33 implies that

lim
n→+∞

E
(
sup
t≤T

ϵn∥X(n)
t ∥C1

)
< +∞.. (55)

We can also control the norms ∥.∥C1,4
under the Conjecture 33 and obtain non-exploding bounds.

Proposition 35. Under the Conjecture 33, we have for any T > 0

sup
n∈N

E
(
sup
t≤T

∥X(n)
t ∥C1,4

)
< +∞. (56)

Proof. Let n ∈ N and let ∆n ∈ Cn
2 be a chain of triangles. We have:

∥X(n)
t ∥C1,4 = sup

f∈C1,4

⟨X(n)
t , f⟩C1,4,C1,4

∥f∥C1,4

≤ sup
f∈C1,4

⟨X(n)
t − ∂2∆

n, f⟩C1,4,C1,4

∥f∥C1,4

+ sup
f∈C1,4

⟨∆n, ∂∗2f⟩C2,3,C2,3

∥f∥C1,4

≤∥X(n)
t − ∂2∆

n∥C1,4
+ ∥∆n∥C2,3

(57)

by using that
∥∂∗2f∥C2,3 ≤ ∥f∥C1,4 , (58)

by (46). Taking the infinimum in the right hand side with respect to ∆n, we obtain the flat norm ∥X(n)
t ∥F

and we conclude with the Conjecture 33. ■

4.4.3 Main result

Let us first introduce a notation. For a sequence σ ∈ C1, let σ̃ be the measure defined for any ψ ∈ C(T2,R)
and any sequence (σn)n≥1 converging to σ such that lim supn→+∞ ϵn∥σn∥C1

< +∞, by:

⟨σ̃, ψ⟩ = lim
n→+∞

ϵn⟨σn, ψ⟩. (59)

This measure is a kind of uniform measure along the cycle σ (whose length is possible infinite).

The main result of this section is that:

Theorem 36. Assume that the Conjecture 33 holds and that the initial conditions (X
(n)
0 )n≥1 converge

in probability and in C1,4 to a limit X0 and are such that:

sup
n∈N

E
(
∥X(n)

0 ∥C1,4

)
< +∞. (60)

The limiting values (Xt)t∈R+ in D(R+,C1,4) of the sequence of random walks (X(n))n≥1 all solve the
martingale problem in C(R+,C1,4) associated with the generator A, defined for functions Fϕ : σ ∈
C1,4 7→ F (⟨σ, ϕ⟩C1,4,C1,4) by:

AFϕ(σ) = F ′
(∫

σ

ϕ
) ∫

σ

L↑ϕ+ 3F ′′
(∫

σ

ϕ
)〈
σ̃,

(
∗ dϕ

)2〉
, (61)

More precisely, the process:

Mt := Fϕ

(
Xt

)
− Fϕ

(
X0

)
−

∫ t

0

AFϕ(Xs)ds, (62)
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is a square integrable real-valued martingale with predictable quadratic variation process:

⟨M⟩t = lim
n→+∞

ϵ−2
n

∫ t

0

∑
τ∈Sn

2

⟨∂2τ, ϕ⟩2
(
F ′(⟨X(n)

u , ϕ⟩
)2
w(X(n)

u , ∂2τ) du (63)

=

∫ t

0

F ′
ϕ(Xu)

2
(∫

T2

(∂ϕ2
∂x1

− ∂ϕ1

∂x2

)2
X̃u( dx1, dx2)

)
du,

where X̃ is defined in (59).

Notice that if F is linear (for instance F (x) = x), the second term in (61) disappears and we recover
L↑ in the first term.

The end of this Section 4 is devoted to the proof of Theorem 36. We first show that the generators
of these random walks converge in C1,4 to the closure of (A,C1,4). Then, we prove the tightness of the
sequence of distributions of the X(n)’s on C1,4. The uniqueness of the limiting martingale problem solved
by the limiting values remains open.

4.5 Proof of Theorem 36

The proof of Theorem 36 is divided into several steps. We first start with some preliminary computation
in Section 4.5.1. In Section 4.5.2, we show that the generators An restricted to functions Fϕ(σ) = ⟨σ, ϕ⟩
converge to L↑. The difficulty here is to control the error carefully so that we can show tightness of the
sequence of distributions of (X(n)) in Section 4.5.3 and convergence of the generators An to A in Section
4.5.4.

4.5.1 Preliminary estimates

Let us first establish some estimates that will be needed.

Lemma 37. Let ϕ ∈ C1,4, with ϕ(x) = ϕ1(x)dx1 + ϕ2(x)dx2, and let τ ∈ Sn
2 . Without loss of generality,

we can assume (by a change of coordinates) that τ = [021] (see Fig. 6). Then,

⟨∂2τ, ϕ⟩C1,4,C1,4 =
√
3ϵ2n

(
ϕ21(0, 0)− ϕ12(0, 0)

)
+

√
3ϵ3n

(
ϕ211(0, 0)− ϕ112(0, 0)

)
+ ϵ3n

(
ϕ212(0, 0)− ϕ122(0, 0)

)
+O(ϵ4n) (64)

=

√
3

2
ϵn

∫ 2ϵn

0

(
ϕ21(x1, 0)− ϕ12(x1, 0)

)
dx1 +O(ϵ3n). (65)

Proof. Using the Stoke’s formula (e.g. [5, Th.6.2.1]):

⟨∂2τ, ϕ⟩ =
∫
τ

dϕ =

∫
τ

(
ϕ21 − ϕ12

)
dx1 ∧ dx2,

where the exterior derivative of ϕ, dϕ, has been computed in (46). We then obtain the result using Lemma
46 in Appendix with H(x1, x2) = ϕ21(x1, x2)− ϕ12(x1, x2), that is of class C2 under our assumption. ■

Lemma 38. Let H : T2 → R be C3. Let us consider the edge [0, 1] and the two adjacent triangles [021]
and [031] where the vertices 0, 1, 2 and 3 have coordinate (0, 0), (ϵn,

√
3ϵn) and (2ϵn, 0) (see Figure 6).

Then, as ϵn goes to 0,

ϵ−2
n

∫
τ+

H(x1, x2) dx2 dx1 + ϵ−2
n

∫
τ−
H(x1, x2) dx2 dx1 =

∫ 2ϵn

0

3c(x1, 0)H2(x1, 0) dx1 +O(ϵ3n) (66)

where c(x) = minx′∈Vn

(
∥x−x′∥

ϵn

)2

.
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Proof. We have:

A := ϵ−2
n

∫
τ+

H(x1, x2) dx2 dx1 + ϵ−2
n

∫
τ−
H(x1, x2) dx2 dx1

=ϵ−2
n

∫ ϵn

0

∫ √
3x1

0

(
H(x1, x2)−H(x1,−x2)

)
dx2 dx1

+ ϵ−2
n

∫ 2ϵn

ϵn

∫ √
3(2ϵn−x1)

0

(
H(x1, x2)−H(x1,−x2)

)
dx2 dx1.

For a given point (x1, x2), a Taylor expansion gives that, for some ξx1,x2
∈ (0, x2),

H(x1, x2) = H(x1, 0) + x2H2(x1, 0) +
x22
2
H22(x1, 0) +

x32
6
H222(x1, ξx1,x2

), (67)

H(x1,−x2) = H(x1, 0) + x2H2(x1, 0) +
x22
2
H22(x1, 0) +

x32
6
H222(x1, ξx1,−x2

). (68)

Thus:

A =ϵ−2
n

∫ ϵn

0

∫ √
3x1

0

(
2x2H2(x1, 0) +

x32
6
(H222(x1, ξx1,x2

) +H222(x1, ξx1,−x2
))
)
dx2 dx1

+ ϵ−2
n

∫ 2ϵn

ϵn

∫ √
3(2ϵn−x1)

0

(
2x2H2(x1, 0) +

x32
6
(H222(x1, ξx1,x2

) +H222(x1, ξx1,−x2
))
)
dx2 dx1

=

∫ ϵn

0

3
(x1
ϵn

)2
H2(x1, 0) dx1 +

∫ 2ϵn

ϵn

3
(2ϵn − x1

ϵn

)2
H2(x1, 0) dx1 +O(ϵ3n).

■

4.5.2 Convergence of the generators for linear maps

From the above lemma, we can show that the generators An converge to L↑. The limiting generator
is defined for twice differentiable 1-forms, but for establishing convergences, we will require some more
regularity and will consider C1,4.

Proposition 39. For any 1-cycle σ and for a function ϕ ∈ C1,4(T2), we have

An(⟨σ, ϕ⟩) =
∫
σ

L↑ϕ+O(ϵn∥σ∥F ),

where ∥.∥F is the flat norm defined in (52).

Proof. Consider a cycle σ, we have

An(⟨σ, ϕ⟩) =
∑
e∈σ

ϵ−2
n

(
⟨e− ∂2τ

+, ϕ⟩C1,3,C1,3 − ⟨e, ϕ⟩C1,3,C1,3

)
+ ϵ−2

n

(
⟨e− ∂2τ

−, ϕ⟩C1,3,C1,3 − ⟨e, ϕ⟩C1,3,C1,3

)
=
∑
e∈σ

−ϵ−2
n

(
⟨∂2τ+, ϕ⟩C1,3,C1,3 + ⟨∂2τ−, ϕ⟩C1,3,C1,3

)
= −

∑
e∈σ

ϵ−2
n

(∫
τ+

dϕ+

∫
τ−
dϕ

)
, (69)

where for each edge e ∈ σ, we denote by τ+ and τ− the adjacent cofaces, which have different orientations.
Then, in view of (46), taking H(x1, x2) = ϕ21(x1, x2)−ϕ12(x1, x2) (which is of class C3 by our assumptions)
in Lemma 38, we obtain

An(⟨σ, ϕ⟩) =
∫
σ

3cL↑ϕ+O(ϵ2n∥σ∥C1)

and, by Lemma 34,

An(⟨σ, ϕ⟩) =
∫
σ

3cL↑ϕ+O(ϵn∥σ∥F ).
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Now, let σ0 and ∆ be a cycle and a 2-chain (in the simplicial complex Cn) such that

σ = σ0 + ∂∆.

We have

An(⟨σ, ϕ⟩) =
∫
σ0

3cL↑ϕ+

∫
∂∆

3cL↑ϕ+O(ϵn∥σ∥F ). (70)

Consider an edge e ∈ σ0. Since∫
e

3c de =3
(∫ ϵn

0

x2

ϵ2n
dx+

∫ 2ϵn

ϵn

(2ϵn − x)2

ϵ2n
dx

)
= 2ϵn =

∫
e

de,

we can use a Taylor expansion on L↑ϕ at the barycenter of e which we denote by G to obtain∫
e

3cL↑ϕ =

∫
e

3cL↑ϕ(G) +O(ϵ3n) =

∫
e

L↑ϕ(G) +O(ϵ3n) =

∫
e

L↑ϕ+O(ϵ3n).

This yields for the first term in the right hand side of (70) that∫
σ0

3cL↑ϕ =

∫
σ0

L↑ϕ+O(ϵ2n∥σ0∥C1).

Now let us consider the second term in the right hand side of (70). For a smooth kernel K on R2, define:

Kn(x) =
1

h2n
K
( x
hn

)
.

Then, we have ∫
∂∆

3cL↑ϕ =

∫
∂∆

3(Kn ∗ c)L↑ϕ+

∫
∂∆

3(c−Kn ∗ c)L↑ϕ. (71)

First, remark that for hn sufficiently small, ∥c−Kn ∗ c∥∞ ≤ ϵ2n. So for the second term in the rhs of (71),∫
∂∆

3(c−Kn ∗ c)L↑ϕ = O(ϵ2n∥∆∥C2).

Let us consider the first term in the rhs of (71). Since (Kn ∗ c)L↑ϕ is a C1 differential form (thanks to
the smoothing of c by Kn), we can use Stokes’ Theorem to obtain∫

∂∆

3(Kn ∗ c)L↑ϕ =3

∫
∆

d((Kn ∗ c)L↑ϕ)

=3

∫
∆

(Kn ∗ c) dL↑ϕ+ 3

∫
∆

(∂Kn ∗ c
∂x1

(L↑ϕ)2 − ∂Kn ∗ c
∂x2

(L↑ϕ)1
)
dx1dx2, (72)

by using (46).

The computation now depends on details shown in Lemma 47 in Appendix (and leading to (73) and
(74)). Let τ be a triangle of ∆ with barycenter denoted again by G. By a Taylor expansion of dL↑ϕ at
G, we have ∫

τ

3(Kn ∗ c)dL↑ϕ =

∫
τ

3(Kn ∗ c)dL↑ϕ(G) +O(ϵ4n)

=
5

3

∫
τ

dL↑ϕ(G) +O(ϵ4n). (73)
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Furthermore, taking hn sufficiently small and using another Taylor expansion for (L↑ϕ)1 and (L↑ϕ)2

at G = (G1, G2), we obtain, using Lemma 47,

3

∫
τ

(∂Kn ∗ c
∂x1

(L↑ϕ)2 − ∂Kn ∗ c
∂x2

(L↑ϕ)1
)
dx1 dx2

=3
∂

∂x1
(L↑ϕ)2(G)

∫
τ

(x1 −G1)
∂Kn ∗ c
∂x1

dx1 dx2 − 3
∂

∂x2
(L↑ϕ)1(G)

∫
τ

(x2 −G2)
∂Kn ∗ c
∂x2

dx1 dx2 +O(ϵ4n)

=− 2

3

∫
τ

dL↑ϕ(G) +O(ϵ4n).

(74)

From (72), (73) and (74), and using another Taylor expansion around G,

3

∫
τ

d
(
(Kn ∗ c)L↑ϕ

)
=

∫
τ

dL↑ϕ(G) +O(ϵ4n) =

∫
τ

dL↑ϕ+O(ϵ4n).

Hence, using Stokes’s theorem once more,∫
∂∆

3cL↑ϕ =

∫
∂∆

L↑ϕ+O(ϵ2n∥∆∥C2).

Finally, the result follows from taking the σ0 and ∆ achieving the flat norm. ■

4.5.3 Tightness of the sequence (X(n))

The main result of this section is:

Proposition 40. Let us work under the assumptions of Theorem 36. The distributions of the X(n)’s
form a tight family in the set of probability measures on D(R+,C1,4).

Once Proposition 40 is proved, since C1,4 is Polish, we will obtain that the sequence of distributions
of Xn’s is relatively compact for the weak convergence, by Prohorov’s theorem [7, Th.5.1 P.59].

Proof of Proposition 40. First recall that as a direct consequence of the Banach-Alaoglu theorem, see e.g.
[45] or [9, Th. III.15], the unit ball in C1,4 is a compact set with respect to the weak-* topology. This
and Proposition 35 hence imply that the marginals of X(n) are tight. Thus, it only remains to check the
tightness of the distributions of the real-valued càdlàg processes F (X(n)

. ) for test functions F of the form
(44) (see [28, Theorem 3.1]). For this, we can use Aldous-Rebolledo’s criterion [2, 29].

Starting from (50), we have:

F (⟨Xn
ϵ−2
n t
, ϕ⟩) =F (⟨Xn

ϵ−2
n s

, ϕ⟩)

+

∫ ϵ−2
n t

ϵ−2
n s

∫
R+

∫
S2
n

(
F
(
⟨Xn

u−
, ϕ⟩ − ⟨∂2τ, ϕ⟩

)
− F (⟨Xn

u−
, ϕ⟩)

)
1{θ≤w(Xn

u−
,∂2τ)}N(du, dθ, dτ)

=F (⟨X(n)
s , ϕ⟩) +An

ϵ−2
n t

−An
ϵ−2
n s

+Mn
ϵ−2
n t

−Mn
ϵ−2
n s

, (75)

where An is a predictable finite variation process

A
(n)

ϵ−2
n t

= ϵ−2
n

∫ t

0

∑
τ∈S2

n

(
F
(
⟨X(n)

u , ϕ⟩ − ⟨∂2τ, ϕ⟩
)
− F (⟨X(n)

u , ϕ⟩)
)
w(X(n)

u , ∂2τ)du, (76)

and where Mn is a square integrable martingale started from 0 and with quadratic variation:

⟨Mn⟩ϵ−2
n t = ϵ−2

n

∫ t

0

∑
τ∈Sn

2

(
F
(
⟨X(n)

u , ϕ⟩ − ⟨∂2τ, ϕ⟩
)
− F (⟨X(n)

u , ϕ⟩)
)2

w(X(n)
u , ∂2τ)du. (77)
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Aldous-Rebolledo’s criterion tells us to show that the real-valued processes (An
ϵ−2
n t

) and (⟨Mn⟩ϵ−2
n t) satisfy

the Aldous criterion [2]. Let δ > 0 and let σ and σ′ be two stopping times such that σ ≤ σ′ ≤ σ+ δ. For
η > 0, by Markov’s inequality and Proposition 39:

P
(
|An

ϵ−2
n σ′ −An

ϵ−2
n σ

| ≥ η
)
≤1

η

(
E
[ ∫ σ′

σ

F ′(⟨X(n)
u , ϕ⟩)An(⟨., ϕ⟩)(X(n)

u ) du
]
+ E

[
|Rn(σ, σ

′)|
])

≤1

η

(
E
[ ∫ σ′

σ

∥F ′∥∞
(∣∣⟨L↑ϕ,X(n)

u ⟩
∣∣+ C1ϵn∥X(n)

u ∥F
)
du

]
+ E

[
|Rn(σ, σ

′)|
])

(78)

where for s and t

|Rn(s, t)| =

∣∣∣∣∣∣12ϵ−2
n

∫ t

s

∑
τ∈Sn

2

⟨∂2τ, ϕ⟩2F ′′(⟨X(n)
u , ϕ⟩ − θτ ⟨∂2τ, ϕ⟩

)
w(X(n)

u , ∂2τ)du

∣∣∣∣∣∣
≤C2∥F ′′∥∞ sup

s≤u≤t

(
ϵn∥X(n)

u ∥C1

)
× |t− s|

≤C2∥F ′′∥∞ sup
s≤u≤t

(
∥X(n)

u ∥F
)
× |t− s|.

Now, using that for ϕ ∈ C1,4, L↑ϕ ∈ C1,2 and that C1,2 ⊂ C1,4,∣∣⟨L↑ϕ,X(n)
u ⟩

∣∣ ≤ ∥X(n)
u ∥C1,2

∥L↑ϕ∥C1,2 ≤ C∥X(n)
u ∥C1,4

∥ϕ∥C1,4 ,

for a constant C (that will change from line to line). Under the Conjecture 33, and by Proposition 35,

P
(
|⟨An

σ′ , ϕ⟩ − ⟨An
σ, ϕ⟩| ≥ η

)
≤Cδ
η

(79)

that can be made as small as wished by setting δ sufficiently small.

For the predictable quadratic variation process of ⟨Mn⟩, using similar computation with a Taylor
expansion at the order 1, we have:

E
(∣∣⟨Mn⟩ϵ−2

n t − ⟨Mn⟩ϵ−2
n s

∣∣) ≤Cϵ−2
n

∫ t

s

E
[ ∑
τ∈Sn

2

(
ϵ4n∥F ′∥2∞

)
w
(
X(n)

u , ∂2τ
)
du

]
≤Cδ∥F ′∥2∞ sup

s≤u≤t
∥X(n)

u ∥F . (80)

Under Conjecture 33,

P
(
|⟨Mn⟩ϵ−2

n σ′ − ⟨Mn⟩ϵ−2
n σ| ≥ η

)
≤C
η
∥F ′∥2∞ × δ. (81)

This concludes the proof of Proposition 40 and of Theorem 36. ■

4.5.4 Convergence of the generators (2)

Let us consider a limiting value X̄ of the tight sequence (X(n)) in D(R+,C1,4) and a subsequence (again
denoted by (X(n)) for the sake of notation) that converges in distribution to X̄. By Skorokhod represen-
tation theorem (see e.g. [6, Th. 6.7 p.70]) it is possible to assume that the convergence is almost sure.

Notice that the sequence (X(n)) is in fact C-tight (see [27, p.561]) as for all T > 0 and for all η > 0,

lim
n→+∞

P
(
sup
t≤T

∥X(n)
t −X

(n)
t− ∥C1,4 > η

)
= lim

n→+∞
P
(
∥∂2[012]∥C1,4 > η

)
= 0, (82)
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where [012] stands for the triangle in Fig. 6 whose norm is of order ϵn and smaller than η for n sufficiently
large. The limiting values are then in C(R+,C1,4).

Recall that the unit ball of C1,4 is compact, and hence we can find a denumerable dense family of
functions (ϕk)k∈N of C1,4.

Proposition 41. Let us work under the assumptions of Theorem 36. For F (x) = x and for ϕk ∈ C1,4,
k ∈ N, as introduced above the Proposition, let us denote by Mn,k the martingale defined in (75). This
real-valued martingale is tight and converges in distribution to the martingale W (k) ∈ C(R+,R) started
at zero and with predictable quadratic variation:

⟨W (k)⟩t := lim
n→+∞

ϵ−2
n

∫ t

0

∑
τ∈Sn

2

⟨∂2τ, ϕk⟩2w(X(n)
u , ∂2τ)du. (83)

Moreover, it is possible to define a martingale measure (Wt(dσ))t∈R+
such that for all k ∈ N,

W
(k)
t =

∫
C1,4

ϕk(σ)Wt(dσ).

Proof. Adapting the computation of the previous section, we can show that not only the sequence (X(n))
is tight, but also the joint sequence (X(n),Mn,k, k ∈ N). Let us consider a limiting value (X̄,W (k), k ∈ N)
of the tight sequence (X(n),Mn,k, k ∈ N) and a subsequence (again denoted by (X(n),Mn,k, k ∈ N) for
the sake of notation) that converges in distribution to (X̄,W (k), k ∈ N). We conclude by applying [27,
Theorem 2.4 P.487]. By the Skorokhod representation theorem (see e.g. [6, Th. 6.7 p.70]) it is possible to
assume that the convergence is almost sure. Linearity then implies the existence of a martingale measure
(see [55]). ■

Recall now that the test functions characterizing the convergence of our generators have been defined
in (44). For ϕ ∈ C1 and F ∈ C(R), we will denote Fϕ(σ) = F (⟨σ, ϕ⟩).

Corollary 42. Let us work under the assumptions of Theorem 36. Consider the martingale Mn defined
for any functions F ∈ C2

b (R,R) and ϕ in (75). The sequence of real-valued martingales (Mn) converges
in distribution to the centered martingale W ∈ C(R+,R) with predictable quadratic variation:

⟨W ⟩t :=
∫ t

0

F
′2
(
⟨X̄u, ϕ⟩

)
d⟨Wu, ϕ⟩. (84)

Proof. Recall the bracket of the martingale Mn computed in (77). We have:

lim
n→+∞

⟨Mn⟩ϵ−2
n t = lim

n→+∞
ϵ−2
n

∫ t

0

∑
τ∈Sn

2

(
F
(
⟨X(n)

u , ϕ⟩ − ⟨∂2τ, ϕ⟩
)
− F (⟨X(n)

u , ϕ⟩)
)2

w(X(n)
u , ∂2τ)du

= lim
n→+∞

ϵ−2
n

∫ t

0

F
′2
(
⟨X(n)

u , ϕ⟩
) ∑
τ∈Sn

2

⟨∂2τ, ϕ⟩2w(X(n)
u , ∂2τ)du+O

(
ϵ4n sup

u≤t
∥X(n)

u ∥F
)
,

by using Taylor’s formula as in (78). The result is then a consequence of Conjecture 33 and of (83). ■

We are now almost in position to show that the limiting solution X solves the martingale problem
associated with A. Notice that in (61), we have several equivalent formulation of the last term. This is
stated in the following corollary, whose proof is postponed to Appendix C. The proof is similar to the
one of Proposition 39 and based on Taylor expansions.
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Corollary 43. For Xu ∈ C1,4, recall the definition of X̃u in (59). We have:∫ t

0

F ′′
(∫

Xu

ϕ
)〈
X̃u,

(
∗ dϕ

)2〉
du =

∫ t

0

F ′′
(∫

Xu

ϕ
)∫

T2

(∂ϕ2
∂x1

− ∂ϕ1

∂x2

)2
X̃u( dx1, dx2) du

= lim
n→+∞

ϵ−2
n

∫ t

0

F ′′
(∫

X
(n)
u

ϕ
) ∑

τ∈Sn
2

⟨∂2τ, ϕ⟩2 w(X(n)
u , ∂2τ) du

=

∫ t

0

F ′′
(∫

Xu

ϕ
)
d⟨Wu, ϕ⟩

Proposition 44. Let us consider ϕ ∈ C1,4 and F ∈ C3
b (R) and recall the definition of A in (61). Then,

for k ∈ N, for 0 ≤ t1 ≤ . . . tk ≤ s < t, and Φ1, . . .Φk bounded continuous functions of C1,4,

lim
n→+∞

E
[(
F (⟨X(n)

t , ϕ⟩)− F (⟨X(n)
s , ϕ⟩)−

∫ t

s

AFϕ

(
X(n)

u

)
du

) k∏
i=1

Φi(X
(n)
ti )

]
= 0. (85)

Proof. Let us consider s < t. Using (50) and Itô’s formula [26, Th.5.1 P.66] for jump processes, we have
that for every n ∈ N:

E
[(
F (⟨X(n)

t , ϕ⟩)− F (⟨X(n)
s , ϕ⟩)−

∫ t

s

AnFϕ

(
X(n)

u

)
du

) k∏
i=1

Φi(X
(n)
ti )

]
= 0. (86)

Using a Taylor expansion, we have for some θ ∈ (0, 1):

F
(
⟨X(n)

u , ϕ⟩ − ⟨∂2τ, ϕ⟩
)
= F (⟨X(n)

u , ϕ⟩)− ⟨∂2τ, ϕ⟩ F ′(⟨X(n)
u , ϕ⟩)

+
1

2
⟨∂2τ, ϕ⟩2 F ′′(⟨X(n)

u , ϕ⟩) + 1

6
⟨∂2τ, ϕ⟩3F (3)

(
⟨X(n)

u , ϕ⟩ − θ⟨∂2τ, ϕ⟩
)
. (87)

As a result,

∣∣ ∫ t

s

AnFϕ(X
(n)
u )du−

∫ t

s

AFϕ(X
(n)
u )du

∣∣
=
∣∣∣ϵ−2

n

∫ t

s

∑
τ∈Sn

2

(
Fϕ(X

(n)
u − ∂2τ)− Fϕ(X

(n)
u )

)
w(X(n)

u , ∂2τ) du−
∫ t

s

F ′(⟨X(n)
u , ϕ⟩)

∫
X

(n)
u

L↑ϕ du

− lim
n→+∞

ϵ−2
n

∫ t

s

F ′′
(∫

X
(n)
u

ϕ
) ∑

τ∈Sn
2

⟨∂2τ, ϕ⟩2 w(X(n)
u , ∂2τ) du

∣∣∣
≤
∫ t

s

∣∣∣F ′
ϕ(X

(n)
u )

(
An(⟨X(n)

u , ϕ⟩)− ⟨X(n)
u ,L↑ϕ⟩

)
du

∣∣∣+ ∣∣∣1
2
ϵ−2
n

∫ t

s

F ′′(⟨X(n)
u , ϕ⟩

) ∑
τ∈Sn

2

⟨∂2τ, ϕ⟩2w(X(n)
u , ∂2τ) du

− lim
n→+∞

ϵ−2
n

∫ t

s

F ′′
(∫

X
(n)
u

ϕ
) ∑

τ∈Sn
2

⟨∂2τ, ϕ⟩2 w(X(n)
u , ∂2τ) du

∣∣∣+O(ϵ3n∥σ∥C1)

≤C∥F ′∥∞ϵn∥σ∥F +O(1) +O(ϵ2n∥σ∥F ),

which converge in expectation to zero when n→ +∞ under Conjecture 33. Then, the announced result
is deduced because the functions Φi are bounded. ■

Let us now conclude. In view of Theorem 8.2 in [17, p.226], given the result of Proposition 44, every
limiting process X̄ of the sequence (Xn) is a solution of the martingale problem associated with A. If
there is a unique solution to this martingale problem, then the whole sequence converges to this solution.
The uniqueness problem is left open. This concludes the proof of Theorem 36.
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5 Application

A straightforward application of our random walk is the enumeration of the elements of kerLk (i.e. chains
which are cycles) with information only on the simplexes (i.e. the basis of Ck). Start with any cycle and
let the random walk run to obtain a partial list of the chains which are in the homology class of the initial
chain. The longest the run, the longest the list.

An avatar of this simple algorithm is to use the Markov chain in the context of the simulated annealing
algorithm. This heuristic is devised to minimize an energy function through a random walk in the state
space trying to avoid local minimums. We here focus on 1-chains but the procedure could be applied as
is to higher order simplexes.

As we have seen above, the dimension of the kernel of L1 is the Betti number β1. Furthermore, any
element of kerL1 can be seen geometrically as a closed path (i.e. a cycle) which surrounds one or several
holes, see Figure 8.

Figure 8: A simplicial complex with β1 = 2 and a cycle which surrounds the two holes.

It is important for some applications to be able to precise the holes locations, in order for instance
to refill them (see e.g.[52]). The first idea which comes to mind is to find a closed path around each
hole with minimum length. The algebraic representation of the geometric problem does not contain any
information about the Euclidean length of a path so this definition of length cannot be used here. We
thus have to rely on the algebraic length of a path, namely, the sum of the weight of each edge in a chain:

U(σ) =
∑
τ∈S+

1

∣∣⟨τ∗, σ⟩C1, C1

∣∣ .
For reasons which will be explained below, it is not always possible to define U(σ) as the number of edges
in σ. We here have

Theorem 45. For k ≥ 0, let us consider the vector

ω(t) =
(
P
(
⟨τ∗, Xt⟩Ck,Ck

= 1 |X0

)
, τ ∈ Sk

)
.

The Ck-valued process (ω(t), t ≥ 0) satisfies the differential equation

d

dt
ω(t) = −L↑

kω(t). (88)
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It is shown in [38] that the solution of the differential equation

d

dt
ω(t) = −Lkω(t). (89)

converges as t goes to infinity towards ω∞ ∈ kerLk. An element of kerLk is a cycle and the numerical
experiments of [38] tend to show that the weights of ω∞ are heavier around the hole.

Proof. For τ a given k-simplex, consider the function

Θτ : Ck −→ R

σ 7−→ ⟨τ∗, σ⟩+Ck,Ck
.

If σ is a simple chain, Θτ (σ) = 1 whenever τ (taking care of the orientation) belongs to the support of σ
and 0 otherwise, i.e.

Θτ (σ) = 1suppσ(τ).

The function Θτ is not a linear function but we can proceed as in the proof of Theorem 18 to establish
that

AΘτ (σ) = −L↑
kΘτ (σ)

by noticing that for σ′ ∼ σ, σ′ differs from σ only by the boundary of a (k + 1)-simplex and hence:

Θτ (σ)−Θτ (σ
′) = Θτ (σ − σ′).

We conclude by the Chapman-Kolmogorov equations for continuous time Markov chains. ■

Then, our first hope was that by letting the random walk run, the most visited edges would be located
around the holes. Our numerical experiments showed disappointing results probably because of a too
slow convergence.

The determination of a shortest path around some hole has strong reminiscence with the so-called
minimum cycle bases in graphs (see [35] and references therein) but the algorithms developed there
cannot be used here since they, by essence, cannot take into account the topological features like holes.
For instance, the Horton’s collection algorithm starts by computing all the shortest cycles C(v, e) which
start at a vertex v and contains an edge e containing v. Then, it computes some linear combinations
of these cycles to find a minimum weight bases. We immediately see that there is no guarantee that
these linear combinations are in the convenient homology class since this information is not contained
in {C(v, e), v ∈ S0, e ∈ S1}. Moreover, the number of paths is usually so huge that even a polynomial
algorithm in the number of paths would be unrealistic. We here resort to a simulated annealing (SA for
short) algorithm where the energy function to be minimized is simply U as defined above. There is no
guarantee that the SA algorithm is not stuck in a local minimum of U but in practice, it works pretty
well.

We initiate the SA algorithm with an element τ0 of kerL1 and a temperature T0. We fix some
α ∈ (0, 1). Assume that the SA algorithm has already made m steps with m = 0, · · · . The new
temperature is Tm+1 = T0α

m+1. We apply a transition of our Markov chain from the chain σm and get
a chain σ′. If U(σ′) < U(σm) then σm+1 = σ′. If U(σ′) > U(σm), the new state is σ′ with probability

exp

(
−U(σ′)− U(σm)

Tm+1

)
and σm+1 = σm with the complementary probability. We stop the algorithm when the temperature is
below a predefined threshold and we expect that at this time, the state of the algorithm yields a short
path around one or several holes.

In the situation of Figure 8, we know easily a path (i.e. a chain with unit weights) around the two
holes. After a few iterations of the SA algorithm, we obtain a very neat answer to our problem illustrated
in Figure 9.

It is not always feasible to describe simply a path around the holes. Then, we can use as σ0 an
element of kerL1 obtained from the Smith normal form of L1 (we must be careful not to work with
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Figure 9: The result of the SA algorithm with a manually defined initial chain.

floating numbers since the computations error quickly propagate and the final result is no longer a cycle).
The price to pay for such a generality is that the weights of the components of σ0 are usually very large
integers and almost no edge has a zero weight, see the left picture of Figure 10. After the SA algorithm
has been run, the edges around the hole have a much greater weight meanwhile the other edges see their
weight almost unchanged or even decreased. It remains to remove the uninteresting edges by a cut-off
procedure to have a good location of the hole.

Figure 10: Another simplicial complex with β1 = 1. The width of the edge and the darkness of the blue
color are proportional to the weight of the edge given by the Smith normal form of L1. On the left, some
edges not adjacent to the hole have a relative great weight. After the SA has been run, these weights are
no longer so important and the edges around the hole are much heavier.

According to the results of [10, 50], one can show (see [60]) that there exists an optimal cooling
scheme, i.e. an optimal α, such that

sup
σ0∈kerL1

Pσ0(U(σm) > minU) ≤ c

m1/L

where L = max{U(σ), σ in the homology class of σ0}. On the examples we test our SA algorithm with,
the localisation was obtained much faster.
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A A technical Lemma for integrating a function H(x1, x2) on
small triangles of the torus

Lemma 46. Let H : T2 → R be C3. Let us consider a triangle of Tn. Without loss of generality, we
can assume (by a change of coordinates) that it is the triangle [021] whose vertices have coordinate (0, 0),
(ϵn,

√
3ϵn) and (2ϵn, 0). Then, as ϵn goes to 0,∫

[021]

H(x1, x2) dx2 dx1 =−
√
3H(0, 0)ϵ2n −

(√
3H1(0, 0) +H2(0, 0)

)
ϵ3n

−
(7√3

6
H11(0, 0) +

√
3

2
H22(0, 0) + 2H12(0, 0)

)
ϵ4n +O(ϵ5n)

=−
√
3

2
ϵn

∫ 2ϵn

0

H(x1, 0) dx1 +O(ϵ3n). (90)

Proof. Using Fubini’s theorem and taking into account the orientations,

M1 :=

∫
[021]

H(x1, x2) dx2 dx1

= −
∫ ϵn

0

∫ x1

√
3

0

H(x1, x2) dx2 dx1 −
∫ 2ϵn

ϵn

∫ √
3(2ϵn−x1)

0

H(x1, x2) dx2 dx1,

=: −I − II.

A Taylor expansion gives

H(x1, x2) = H(0, 0) + x1H1(0, 0) + x2H2(0, 0) + x21H11(0, 0) + x22H22(0, 0) + 2x1x2H12(0, 0)

+ x31r111(x1, x2) + x21x2r112(x1, x2) + x1x
2
2r122(x1, x2) + x32r222(x1, x2) (91)

where the remainder terms r111, r112, r122 and r222 satisfy:

sup
x1,x2∈[0,1]2

(
|r111(x1, x2)|, |r122(x1, x2)|, |r122(x1, x2)|, |r222(x1, x2)|

)
< +∞,

with a bound that we can chose to depend only on H. Then, injecting (91) in I,

I =H(0, 0)

∫ ϵn

0

x2
√
3 dx1 +H1(0, 0)

∫ ϵn

0

x21
√
3 dx1 +H2(0, 0)

∫ ϵn

0

3x21
2

dx1

+H11(0, 0)

∫ ϵn

0

x31
√
3 dx1 +H22(0, 0)

∫ ϵn

0

x31
√
3 dx1 + 2H12(0, 0)

∫ ϵn

0

x1

∫ x1

√
3

0

x2 dx2 dx1 +RI
n,

=

√
3

2
H(0, 0)ϵ2n +

(√3

3
H1(0, 0) +

1

2
H2(0, 0)

)
ϵ3n +

(√3

4
H11(0, 0) +

√
3

4
H22(0, 0) +

3

4
H12(0, 0)

)
ϵ4n +RI

n,

(92)

where the remainder term RI
n satisfies RI

n = O(ϵ5n). A similar computation shows that:

II =

√
3

2
H(0, 0)ϵ2n +

(2√3

3
H1(0, 0) +

1

2
H2(0, 0)

)
ϵ3n

+
(11√3

12
H11(0, 0) +

√
3

4
H22(0, 0) +

5

4
H12(0, 0)

)
ϵ4n +RII

n , (93)

with RII
n = O(ϵ5n). The results stems from the addition of (92) and (93). ■
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B A technical lemma for integrating the function c and its
derivatives on small triangles of the torus

Lemma 47. Consider the triangle [021] (with the notation of Fig. 6) whose barycenter is G = (ϵn, ϵn/
√
3).

We have: ∫
[021]

c(x1, x2)dx1 dx2 =
5

9
ϵ2n
√
3,∫

[021]

(x1 − ϵn)c(x1, x2)dx1 dx2 = 0,∫
[021]

∂c

∂x1
(x1, x2)dx1 dx2 = 0,∫

[021]

(x1 − ϵn)
∂c

∂x1
(x1, x2)dx1 dx2 = −2

9
ϵ2n
√
3, (94)∫

[021]

(
x2 −

√
3

3
ϵn
) ∂c
∂x1

(x1, x2)dx1 dx2 = 0. (95)

Proof. Let us denote by C1, C2 and C3 the Voronoi cells associated with the three vertices (see Fig. 11).

0 1

2

G

H

C1 C2

C3

Figure 11: Triangle [012]. 0 := (0, 0), 1 := (2ϵn, 0), 2 := (ϵn,
√
3ϵn), 3 := (ϵn,−

√
3ϵn).

We have:

c(x1, x2) =
1

ϵ2n
×


x21 + x22 on C1

(x1 − 2ϵn)
2 + x22 on C2

(x1 − ϵn)
2 + (x2 − ϵn

√
3)2 on C3.

and,

∂c

∂x1
(x1, x2) =

1

ϵ2n
×


2x1 on C1

2(x1 − 2ϵn) on C2

2(x1 − ϵn) on C3.

By symmetry, ∫
[021]

c(x1, x2)dx2dx1 =6×
∫ ϵn

0

∫ x1/
√
3

0

x21 + x22
ϵ2n

dx2dx1

=
6

ϵ2n

∫ ϵn

0

( x31√
3
+

x31
9
√
3

)
dx1

=
6

ϵ2n

10

9
√
3

ϵ4n
4

=
5

9
ϵ2n
√
3. (96)
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Let us now compute the fourth equality. We have:∫
[021]

(x1 − ϵn)
∂c

∂x1
(x1, x2)dx2 dx1 =

3∑
i=1

∫
Ci

(x1 − ϵn)
∂c

∂x1
(x1, x2)dx2 dx1. (97)

By symmetry, the integrals on the cells C1 and C2 are the same and:∫
C1

(x1 − ϵn)
∂c

∂x1
(x1, x2)dx2 dx1 =

∫ ϵn/2

0

∫ x1

√
3

0

2x1
ϵ2n

(x1 − ϵn)dx2 dx1

+

∫ ϵn

ϵn/2

∫ ϵn
√
3/2−(x1−ϵn/2)/

√
3

0

2x1
ϵ2n

(x1 − ϵn)dx2 dx1

=− 1

8
ϵ2n
√
3. (98)

For the cell C3:∫
C3

(x1 − ϵn)
∂c

∂x1
(x1, x2)dx2 dx1 =

2

ϵ2n

∫ ϵn
√
3/2

ϵn/
√
3

∫ ϵn+
√
3(x2−ϵn/

√
3)

ϵn−
√
3(x2−ϵn/

√
3)

(x1 − ϵn)
2dx1 dx2

+
2

ϵ2n

∫ ϵn
√
3

ϵn
√
3/2

∫ ϵn+
1√
3
(ϵn

√
3−x2)

ϵn− 1√
3
(ϵn

√
3−x2)

(x1 − ϵn)
2dx1 dx2

=
2

ϵ2n

∫ ϵn
√
3/2

ϵn/
√
3

2

3
× 3

√
3
(
x2 −

ϵn
√
3

3

)3
dx2 +

2

ϵ2n

∫ ϵn
√
3

ϵn
√
3/2

2

3

( 1√
3

(
ϵn
√
3− x2

))3

=

√
3

ϵ2n

(ϵn√3

2
− ϵn

√
3

3

)4
+

1

9
√
3ϵ2n

9ϵ4n
24

=
( 1

9× 24
+

1

3× 24

)
ϵ2n
√
3 =

1

36
ϵ2n
√
3.

(99)

Gathering (97), (96) and (99),∫
[021]

(x1 − ϵn)
∂c

∂x1
(x1, x2)dx2 dx1 = −2

9
ϵ2n
√
3. (100)

The second, third and fifth equalities of (94) stem from the fact thatG is the barycenter of the triangle. ■

C Proof of Corollary 43

We can now prove Corollary 43 that is useful for the computation of the generator in Section 4.5.4:

Proof of Corollary 43. The first equality is just the definition of ∗ dϕ, see (49).

Let us consider the second equality. For a cycle σ ∈ C1,4, let us consider the term

ϵ−2
n

∑
τ∈Sn

2

⟨∂2τ, ϕ⟩2w(σ, ∂2τ) =ϵ−2
n

∑
e∈σ

(
⟨∂2τ+, ϕ⟩2 + ⟨∂2τ−, ϕ⟩2

)
=2ϵ2n

∑
e∈σ

⟨∂2τ+, ϕ⟩2

where τ+ and τ− are the triangles adjacent to the edge e ∈ σ. Without loss of generality, consider
e = [01] in the notation of Fig. 6. We deduce from (65) that:

⟨∂2τ+, ϕ⟩2 =
3

2
ϵ3n

∫ 2ϵn

0

(
ϕ21(x1, 0)− ϕ12(x1, 0)

)2
dx1 +O(ϵ5n).
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As a consequence:

ϵ−2
n

∑
τ∈Sn

2

⟨∂2τ, ϕ⟩2w(σ, ∂2τ) =2ϵ−2
n

∑
e∈σ

[3
2
ϵ3n

∫
e

(
ϕ21 − ϕ12

)2
de+O(ϵ5n)

]
=3ϵn

∑
e∈σ

∫
e

(
ϕ21 − ϕ12

)2
de+O(ϵ2n∥σ∥C1).

The first term can be interpreted as the integral of e 7→
∫
e

(
ϕ21 − ϕ12

)
de with respect to the measure

ϵn
∑

e∈σ δe that puts a weight ϵn on each edge of the cycle σ. Under Conjecture 33, we can conclude

when we consider the cycle X
(n)
u at a time u instead of σ. This proves the second equality.

The last equality is a consequence of Proposition 41. ■
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[49] N. Garćıa Trillos, M. Gerlach, M. Hein, and D. Slepcev. Error estimates for spectral convergence of the graph Laplacian
on random geometric graphs toward the Laplace-Beltrami operator. Foundations of Computational Mathematics,
20:827–887, 2020.
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