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Achieving dense connectivities is a challenge for most quantum computing platforms today, and a
particularly crucial one for the case of quantum annealing applications. In this context, we present
a scalable architecture for quantum annealers defined on a graph of degree d = 3 and containing
exclusively 2-local interactions to realize an all-to-all connected Ising model. This amounts to an
efficient braiding of logical chains of qubits which can be derived from a description of the problem
in terms of triangles. We also devise strategies to address the challenges of scalable architectures,
such as the faster shrinking of the gap due to the larger physical Hilbert space, based on driver
Hamiltonians more suited to the symmetries of the logical solution space. We thus show an alterna-
tive route to scale up devices dedicated to classical optimization tasks within the quantum annealing
paradigm.

Introduction - Quantum annealing (QA) [1–3] is an
analog form of quantum computation which encodes the
solution to a certain problem in the ground state of a final
Hamiltonian Hf . This is done by preparing the ground
state of a trivial Hamiltonian H0 and interpolating to-
wards Hf following

H(t) = (1− λ(t))H0 + λ(t)Hf , (1)

where λ(0) = 0 and λ(tf ) = 1 with tf being the total
time of the anneal.

An interesting Hamiltonian in the context of annealing
applications is the Ising model

Hising = Hf =
∑
i

hiσ
z
i +

∑
j>i

Jijσ
z
i σ

z
j , (2)

which is relatively simple to implement in a number of
quantum computing platforms, such as superconducting
quantum circuits [4, 5] or neutral atoms [6, 7]. The cost
function of many relevant classical problems can be cast
in the shape of (2), often requiring all-to-all interactions.
However, establishing a dense connectivity among all
qubits remains a challenging task, since the hard-wiring
of all the necessary links is not scalable due to crosstalk
and packing issues within the chip. Based on [8], it was
proposed in [9, 10] to make up for the required connec-
tivity by establishing chains of qubits that represent the
same logical variable. This is then implemented in a fixed
family of graphs within which one searches for an opti-
mal embedding, an approach known as minor embedding.
Another alternative [11] is switching to the description
of the problem in terms of parities between the original
variables. This allows to encode the original cost func-
tion into single-qubit terms at the expense of additional
4- and 3-body interactions (or 2-local interactions medi-
ated by qutrits), which are harder to achieve experimen-
tally (however, some proposals do exist [12]). Recently, a

new method based on perturbative gadgets has been pro-
posed for realizing all-to-all connectivity [13], but which
comes at the cost of interaction strengths of O(N6) for
an N -qubit problem.
In this letter, we provide a novel architecture that en-

ables the encoding of arbitrary Ising models, while requir-
ing only 2-local interactions, where every qubit is linked
to other 3 qubits at most. We develop this architec-
ture step by step from a decomposition of the original
problem in terms of triads of qubits, and in doing so we
naturally arrive at a family of alternative formulations of
the original problem of independent interest, which were
previously pointed out in [14, 15]

Triangle decomposition of the Ising problem - In order
to kick-start the description of our encoding organically,
we first consider the less general class of Z2-symmetric
classical Ising models for a system of size N , described
as:

HZ2
=

∑
i,j

Jijσ
z
i σ

z
j (3)

The starting point of this construction is the fact
that the energy of an all-to-all connected Hamiltonian
of the shape (3) can be described as the sum of the

energies of single triangles with edges j△ij , as long as

Jij =
∑

△⊃{i,j} j
△
ij .

HZ2 =
∑
△

H△ (4)

H△ = j△ij σ
z
i σ

z
j + j△ikσ

z
i σ

z
k + j△jkσ

z
jσ

z
k for {i, j, k} ⊂ △

(5)

To describe the encoding of triangular cells we employ
2 qubits, since this is enough to describe the energetically
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q0q1 00 01 10 11
l0l1l2 000, 111 110, 001 011, 100 101, 010

q0q1 00 01 10 11
q2 0 1 0 1 0 1 0 1

l0l1l2 000 111 110 001 011 100 101 010

TABLE I. Encoding of logical triangle configurations (li vari-
ables) in physical spins (qi) for the Z2-symmetric case (a) and
non-symmetric case (b) including local fields, which includes
an additional sign qubit q2.

distinct states of the model due to inversion symmetry.
This is illustrated in Table Ia.

a)

b)

Without loss of generality, we adopt the convention of
always labeling the all-parallel configuration as “00”. In
the following description, we refer to the space in which
we are representing triangles in terms of pairs of spins as
the physical representation, while the original model is
referred to as the logical representation.

We can determine the Hamiltonian Hphysical
△ acting on

a physical qubit pair that reproduces the correct ener-
gies by solving a simple 4 × 4 linear system. Following
Table Ia. we find:

Hphysical
△ = h0σ

z
q0 + h1σ

z
q1 + Jσz

q0σ
z
q1 (6)

where h0 = j01, h1 = j02, J = j12. (7)

Consistency conditions among triangles - In order to
ensure that the separate triangular cells refer to a log-
ical state in the original model, we enforce some con-
straints. These can be deduced from the realization that
shared edges among triangles, also referred to as inter-
acting edges from here on, must be consistent with each
other: if the configuration of one cell is such that the
shared edge holds parallel spins, this must also be the
case for other triangular cells that contain said edge. It
is easy to check that, for the encoding illustrated in Ta-
ble. Ia., this can always be achieved by the means of
strong 2-local ferromagnetic interactions, as long as ev-
ery cell has at least one edge that is not shared with any
other cell. This non-interacting edge is labeled with the
“11” configuration in order to avoid the need for many-
body terms. With this, the full physical Hamiltonian
embedding the logical problem is:

Hp =
∑
△

Hphysical
△ +Hconstraints (8)

Hconstraints =
∑

p∈{△}

∑
q∈{△}
q>p

JP (I − σz
pi
σz
qj ) (9)

where i, j can be 0 or 1 depending on the internal la-
beling of the triangular cell configurations. For suffi-
ciently strong ferromagnetic penalties JP , the Hamilto-
nian (8) exactly encodes the spectrum of the original
HZ2

in its low-energy eigenspace. We note that the gen-
eration of strong enough ferromagnetic interactions as

system size grows is an issue that presents itself in all
penalty-enforced embedding. Some studies on the scal-
ability of penalties have been carried out for the minor
embedding and LHZ cases, showing linear [16, 17] and
up to quadratic [17] penalty growth in the range of prob-
lems and system sizes examined; similar results are ex-
pected for the present scheme due to its similarities with
them. We tackle this limitation further on in this paper
by proposing driver Hamiltonians that ease these penalty
strength requirements.

Scaling up the construction - For an arbitrary graph of
size N we can always find some family of decompositions
in terms of triangles such that every edge is accounted
for at least once, and such that all triangles hold a non-
interacting edge. This is achieved by choosing all the
triangles such that they have a selected node k∗ in com-
mon. Starting from a single triangular cell, the graph
can be increased from size η to η + 1 according to this
criterion as follows: for the addition of each new node
i = η + 1, we include the triangles that complete the
missing links to restore full connectivity by selecting the
triads {i, k, k∗}, where k = 1, ..., k∗ − 1, k∗ + 1, ..., η is
one of the remaining older nodes. With this scheme, the
addition of an η-th qubit adds η − 2 new triangles, and
thus 2(η−2) physical qubits, such that the total number
of qubits n required by the physical implementation is:

n = 2

N−2∑
η=1

η = (N − 1)(N − 2) (10)

To complete the algorithmic formulation of the con-
struction, we consider the inclusion of the full coupling
strength between two qubits in the first triangular cell
where it appears, and set it to zero in the following
triangular cells that contain said edge. We note that
this choice is valid because it satisfies the condition
Jij =

∑
△ j△ij . With this, the procedure to build the

full hardware graph can be rephrased as follows. First,
we choose the selected node k∗, i.e., the logical vari-
able to be involved in all the triangles. Then, we ar-
range the pairs of physical qubits representing triangular
cells as follows: the first (top-most) row contains the cell
(0, 1, k∗), with k∗ being the selected node, the second
row contains (0, 2, k∗) and (1, 2, k∗), etc., skipping over
k∗. The resulting graph is illustrated in Fig. 1 for the case
of N = 5 and k∗ = 2. Following the consistency condi-
tions previously described, we end up with strong fer-
romagnetic links connecting neighboring cells that share
an edge in such a way that every physical qubit is con-
nected to at most other 3, taking into account the link
that connects the pair of physical qubits within each cell.

Incorporation of local fields - We can simulate a gen-
eral Ising model like the one in Eq. (2) by slightly mod-
ifying the current construction: due to the symmetry
breaking, now an additional physical qubit is required
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FIG. 1. Full hardware graph representing a sparse realiza-
tion of Eq. (2) for N = 5, which also corresponds to a sparse
realization of Eq. (3) for N = 5 in the absence of the sign
qubits. Blue dotted circles group the qubits representing a
single cell, corresponding to the triad of qubits in blue closest
to it. The purple dashed links correspond to strong ferromag-
netic connections among sign qubits. Orange and (dashed)
green color-coding corresponds to the {Jij} and {hi} of the
logical problem. In this illustration, k∗ = 2.

for the description of each triangle. We refer to the lat-
ter as a sign qubit, and it indicates whether the parallel
spins are pointing upwards or downwards (represented by
q2 in Table Ib.). The single-cell Hamiltonian giving the
right energy contributions can be found by solving the
8×8 linear system, in accordance with what was done in
the Z2-symmetric case.

The consistency conditions regarding sign qubits imply
that they are ferromagnetically coupled to the sign qubits
of their neighboring cells. However, following again the
rule of including the full local field on the first appear-
ance, the only sign qubits that maintain some connectiv-
ity with the rest of their cell are those corresponding to
the left-most diagonal. Thus, the remaining sign qubits
are expendable and can be spared by collapsing ferro-
magnetic links. The resulting scheme is illustrated for
N = 5 in Fig. 1.

We highlight that if the logical chains are allowed to
be of length N − 1 instead of N − 2, the incorporation of
local fields can be done within the same structure as the
one described in the absence of local fields.

Driver Hamiltonians for scalability - Two issues arise
when embedding a problem within a larger Hilbert space
by means of some constraints: the preservation of the
logical ground state as the ground state of Hp (which
amounts to enforcing the constraints strongly enough)
and the scaling of the minimal gap, since it now decreases
with the physical system size n rather than the original
logical system size N . The standard driver Hamiltonian
for annealing H0 = Hstd = −

∑
i σ

x
i encodes no infor-

mation about the feasible solution subspace, and is thus
expected to render a search through a space much larger

than necessary. This makes the computation less efficient
and translates into an exponentially decreasing minimal
gap in comparison to the fully connected model. This
was also pointed out in the SQA study benchmarking
the performance of minor embedding vs. LHZ in [18].
However, we do have information about the rele-

vant subspace to explore: it is the space spanned by
{|0⟩⊗l, |1⟩⊗l} within each chain, which we will refer to as
the logical subspace L. The collection of optimal driver
Hamiltonians for the annealing of Hp [19] should thus
commute with the operator O describing the restriction
to this subspace [20, 21], i.e., [O,H0] = [O,Hp] = 0,
[H0, Hp] ̸= 0, and also induce hopping between all re-
gions of the solution space. Notice that for our archi-
tecture O =

∑
ck∈C

∑
i∈ck

σz
i σ

z
i+1. These conditions au-

tomatically solve both of the previously described issues
by removing the need for constraints and making the an-
nealing of the embedded problem equivalent to that of
the fully connected model. However, a Hamiltonian of
these characteristics for the class of Hp at hand will have
highly nonlocal terms [22], rendering its physical imple-
mentation impractical.

In order to find more feasible alternatives, we relax
the previous conditions such that the commutation of the
driver with the constraint is no longer satisfied, but such
that the low-energy subspace of the driver has a higher
overlap with the logical subspace L. The easiest driver to
implement that would fulfill the previous requirement is
the ferromagnetic transverse-field Ising model (TFIM):

H0 = HTFIM =
∑
ck∈C

hck
TFIM (11)

hck
TFIM = −

∑
i

σx
i − JZZ

∑
i∈ck

σz
i σ

z
i+1 (12)

This Hamiltonian is degenerate for JZZ ≥ 1, with the
ground subspace spanning the logical space of interest.
Notably, HTFIM preserves the total parity of the sys-
tem [23], as [hck

TFIM,⊗i∈ckσ
x
i ] = 0 ∀ck, which aids the

preparation of an even GHZ state in the case of in each
chain feasible by annealing to HTFIM from the standard
initial Hamiltonian Hstd. In this manner we can bias
our initial ground state towards L by approaching the
ferromagnetic phase as much as possible. The analyti-
cal solution of the transverse Ising chain [24] (see more
modern reviews in [25, 26] and references therein) shows
that the gap between the even ground state and the first
even excited state tends to ∆TFIM

∞ (JZZ)) = 2(1 − JZZ)
in the thermodynamic limit in the paramagnetic phase,
i.e., for JZZ ≤ 1. Thus, the limit on the performance of
this driver for large system sizes will be given by its gap,
since there will be a minimum gap size for the prepa-
ration of the ground state of H0. This minimum gap
is determined by the noise limitations of the annealing
device, e.g., thermal excitation.

The decay of the projection of the ground state |GS⟩
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of (12) onto L can be fitted to an exponential of the form
⟨PL⟩GS = ⟨GS|PL|GS⟩ = 2−βl+c, with PL = |0⟩⊗l⟨0|⊗l+
|1⟩⊗l⟨1|⊗l and l the length of the chain. Notice that for
Hstd, β = 1 and c = 1. Thus, a smaller β exponent
indicates a bias towards the logical subspace; the smaller
β, the greater the bias. The comparison of β vs. ∆∞ for
this model is presented in Fig. 2, where the β coefficients
have been fitted from DMRG simulations of up N = 100.

Following the intuition that the presence of σxσx terms
will enlarge the gap and thus offer more favorable routes
to approach the ferromagnatic phase, we now consider
the following driver Hamiltonian:

H0 = HXYZ =
∑
ck∈C

hck
XYZ (13)

hck
XYZ = −

∑
i

σx
i − JZZ

∑
i∈ck

(σz
i σ

z
i+1 + ασx

i σ
x
i+1) (14)

The previous driver is nothing but the XYZ model, which
is integrable in the absence of local fields [27]. In this
latter case, it has been shown to present a ferromagnetic
phase in the z-direction for α < 1

2 [28]. We numerically
study the model in (14) with DMRG in order to eval-
uate β(JZZ, α) and find its gap in the thermodynamic
limit. For the latter purpose we consider the following
fitting function: ∆(l) = Ae−γll−Ω + ∆∞, where the ex-
ponential is mean to capture the behaviour away from
the phase transition, where the gap reaches its value in
the thermodynamic limit faster, and the algebraic decay
corresponds to the behaviour of the gap near the phase
transition. Details on these fits can be found in [29].
Fig. 2 shows how appropriate combinations (α, JZZ) can
further reduce β with respect to the TFIM driver. As
it can be appreciated, tuning the relative strength of the
XX couplings allows for achieving a greater bias towards
L for equal gap sizes, at the cost of increasing the energy
scale. In this manner, for high enough energy scales we
can achieve a reduction of about an order of magnitude
in β with respect to Hstd.

Discussion - We have obtained a simple hardware
graph of maximum degree d = 3 and 2-local interactions
that is sufficient to encode any arbitrary Ising problem.
By building the architecture from a decomposition of the
original problem, a dual interpretation of the resulting
graph is achieved: one in terms of consistent triangu-
lar cells and one in terms of chains of logical variables.
The full architecture, incorporating local fields, requires
n = N(N − 2) physical qubits and c = N(3N − 5)/2
couplers, out of which cFM = N(N − 2) will anneal to
a strong ferromagnetic coupling. The sparsity of the
graph also implies less crosstalk to keep under control,
an important scalability feature. Achieving strong cou-
plings without compromising coherence is a challenging
task, but one that needs to be tackled nonetheless for
any embedding strategy that enables scalability. In the
particular case of superconducting technology, already

FIG. 2. Decay coefficient of the projection onto L, β, vs.
the gap in the thermodynamic limit ∆∞ for different values
of JZZ. Solid lines correspond to the fit to a polynomial of
second order, and error bars are too small to be appreciated.
The inset shows ∆∞ vs. the simulated JZZ for each α. The
red dashed line is a guide for ∆∞ = 0.

standard couplers naturally provide a much larger ferro-
magnetic range than the antiferromagnetic one [4]. We
have contributed to this scalability challenge from the
algorithmic side by proposing alternative driver Hamil-
tonians that enhance the baseline success probability of
the anneal by directing the search towards the logical
subspace, mitigating the need for strong penalties. Some
of these Hamiltonians can be readily implemented with
current devices.

The triangle architecture discussed here is minimal: a
graph of degree d = 3 is the smallest to hold NP-complete
problems [30]. As a consequence, a faulty element will
truncate the maximum embedding size sharply depend-
ing on where the fault is located. Thus, this architecture
has no tolerance to low fabrication yield, which limits its
large-scale implementation as of today. In the particular
case of superconducting quantum technologies (specifi-
cally for flux qubits) robust fabrication processes are still
in their development phase, but yield should stop being
an issue once the technology is mature.

All in all, the proposed scheme has several advantages:
the embedding of the problem does not require any addi-
tional computation, the sparsity of the graph aids noise
and crosstalk minimization and the interactions required
are within the most employed model in current quan-
tum annealing devices. In addition, the repetition code
present in this architecture allows to spatially spread
the information, making the computation more robust
to some external error sources. Finally, the structure of
the logical space allows to devise relatively simple driver
Hamiltonians that mitigate the strength of the constraint
terms.
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R. Biswas, and V. Smelyanskiy, Quantum Optimization
of Fully Connected Spin Glasses, Physical Review X 5,
031040 (2015).

[17] M. Lanthaler and W. Lechner, Minimal constraints in the
parity formulation of optimization problems, New Jour-
nal of Physics 23, 083039 (2021).

[18] T. Albash, W. Vinci, and D. A. Lidar, Simulated-
quantum-annealing comparison between all-to-all con-
nectivity schemes, Physical Review A 94, 022327 (2016).

[19] In the sense of restricting the evolution to the feasible
space.

[20] I. Hen and F. M. Spedalieri, Quantum Annealing for
Constrained Optimization, Physical Review Applied 5,
034007 (2016).

[21] I. Hen and M. S. Sarandy, Driver Hamiltonians for con-
strained optimization in quantum annealing, Physical
Review A 93, 062312 (2016).

[22] Exemplary Hamiltonians of this type can be extracted
from a circuit that builds a GHZ state. One such Hamil-
tonian is:

H0 = HGHZ = −
∑
ck∈C

 ∏
ir∈ck

σx
ir + σz

i0

l−1∑
r=1

σz
ir

 (15)

where ck corresponds to the k-th chain of the chain set C,
all of which are of length l. The ground and first excited
states of Eq. (15) correspond to the even and odd GHZ
states.

[23] J. Dziarmaga, Dynamics of a Quantum Phase Transition:
Exact Solution of the Quantum Ising Model, Physical
Review Letters 95, 245701 (2005).

[24] E. Lieb, T. Schultz, and D. Mattis, Two soluble models
of an antiferromagnetic chain, Annals of Physics 16, 407
(1961).

[25] F. Franchini, An Introduction to Integrable Techniques
for One-Dimensional Quantum Systems, 1st ed., Lecture
Notes in Physics No. 940 (Springer International Pub-
lishing : Imprint: Springer, Cham, 2017).

[26] G. B. Mbeng, A. Russomanno, and G. E. Santoro,
The quantum Ising chain for beginners, Tech. Rep.
arXiv:2009.09208 (arXiv, 2020) arXiv:2009.09208 [cond-
mat, physics:quant-ph] type: article.

[27] R. J. Baxter, Exactly solved models in statistical mechan-
ics, 2nd ed. (Acad. Press, London, 1990).

[28] Q.-Q. Shi, S.-H. Li, and H.-Q. Zhou, Duality and ground-
state phase diagram for the quantum XYZ model with ar-
bitrary spin s in one spatial dimension, Journal of Physics
A: Mathematical and Theoretical 53, 155301 (2020).

[29] For more details, see the SUPPLEMENTARY MATE-
RIAL.

[30] F. Barahona, On the computational complexity of Ising
spin glass models, Journal of Physics A: Mathematical
and General 15, 3241 (1982).

mailto:ana.palacios@qilimanjaro.tech
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
http://arxiv.org/abs/quant-ph/0001106
https://doi.org/10.1103/PhysRevApplied.8.014004
https://doi.org/10.1103/PhysRevApplied.8.014004
https://doi.org/10.1063/1.5089550
https://doi.org/10.1063/1.5089550
https://doi.org/10.1103/PhysRevLett.104.043002
https://doi.org/10.1103/PhysRevLett.120.113602
http://arxiv.org/abs/quant-ph/0403090
https://doi.org/10.1007/s11128-008-0082-9
https://doi.org/10.1007/s11128-008-0082-9
https://doi.org/10.1007/s11128-010-0200-3
https://doi.org/10.1007/s11128-010-0200-3
https://doi.org/10.1126/sciadv.1500838
https://doi.org/10.1038/ncomms15785
http://arxiv.org/abs/2302.02458
http://arxiv.org/abs/2202.05927
https://doi.org/10.7566/JPSJ.92.044001
https://doi.org/10.7566/JPSJ.92.044001
https://doi.org/10.1103/PhysRevX.5.031040
https://doi.org/10.1103/PhysRevX.5.031040
https://doi.org/10.1088/1367-2630/ac1897
https://doi.org/10.1088/1367-2630/ac1897
https://doi.org/10.1103/PhysRevA.94.022327
https://doi.org/10.1103/PhysRevApplied.5.034007
https://doi.org/10.1103/PhysRevApplied.5.034007
https://doi.org/10.1103/PhysRevA.93.062312
https://doi.org/10.1103/PhysRevA.93.062312
https://doi.org/10.1103/PhysRevLett.95.245701
https://doi.org/10.1103/PhysRevLett.95.245701
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1007/978-3-319-48487-7
https://doi.org/10.1007/978-3-319-48487-7
http://arxiv.org/abs/2009.09208
https://doi.org/10.1088/1751-8121/ab78cd
https://doi.org/10.1088/1751-8121/ab78cd
https://doi.org/10.1088/0305-4470/15/10/028
https://doi.org/10.1088/0305-4470/15/10/028

	A scalable 2-local architecture for quantum annealing of all-to-all Ising models
	Abstract
	References


