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Abstract. We study the manner in which classical phase space distribution functions

converge to the microcanonical distribution, proving a theorem about their lack of

convergence, then generalizing the coarse-graining procedure that leads to convergence.

We prove that the time evolution of phase space distributions is an isometry for a broad

class of statistical distance metrics, implying that ensembles do not get any closer to (or

farther from) equilibrium, according to these metrics. This extends the known result

that strong convergence of phase space distributions to the microcanonical distribution

does not occur. However, it has long been known that weak convergence can occur,

such that coarse-grained distributions—defined by partitioning phase space into a finite

number of cells—converge pointwise to the microcanonical distribution. We define a

generalization of coarse-graining that removes the need for partitioning phase space into

cells. We prove that our generalized coarse-grained distribution converges pointwise

to the microcanonical distribution if the dynamics are strong mixing. As an example,

we study an ensemble of triangular billiard systems.

1. Introduction

The dynamics of classical phase space distribution functions have been widely studied

with the aim of providing a rigorous description of a system’s approach to thermal

equilibrium [1–19]. Phase space distributions describe ensembles of systems obeying

Hamilton’s equations, and the dynamics of these distributions are described by

Liouville’s theorem [20]. A central question is: under what conditions does the

phase space distribution approach the microcanonical distribution ρMC? It has

long been known that for Hamiltonians with a property called strong mixing, phase

space distributions approach ρMC with weak convergence on each constant-energy

hypersurface, but stronger forms of convergence do not occur [3–7]. In this paper,

we prove a theorem which extends this result, showing that time evolution of phase

space distributions is an isometry according to a broad class of metrics for statistical

distance. We also include a brief review of strong mixing and weak convergence.

A closely related question is how (and whether) the entropy converges to its

maximal value, the microcanonical entropy. It is well known that the Gibbs entropy
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is constant in time under the dynamics of Liouville’s theorem [1–8]. This fact may

appear paradoxical in light of the 2nd law of thermodynamics, and Gibbs proposed

to resolve this paradox by coarse-graining phase space, i.e. partitioning phase space

into a finite number of “cells” [1]. Strong mixing guarantees that the coarse-grained

entropy converges to the microcanonical entropy as t → ∞ (and as t → −∞, due

to time reversal symmetry) [3–5]. However, coarse-graining involves a partitioning

of phase space which is not well-motivated physically; this contrasts with the weak

convergence of phase space distributions to ρMC , which does not involve any partitioning

of phase space. In this paper, a generalization of coarse-graining is defined which

removes the need for a partitioning of phase space, and we prove that this generalized

coarse-grained distribution converges pointwise to ρMC for strong mixing systems.

Our generalized coarse-grained distribution has similarities to the maximum entropy

distribution introduced by E.T. Jaynes [21], though there are key differences in their

conceptual motivations and in their dynamical behaviors, as we discuss.

In much of the literature on the dynamics of phase space distributions, a primary

motivation has been to provide a rigorous understanding of thermalization and the

2nd law of thermodynamics [1–7, 10, 14–16, 22]. Yet, compelling arguments have been

made that studying phase space distributions is not the appropriate way to understand

thermalization [23–27]. The reasoning is that phase space distributions describe

ensembles of identical and non-interacting systems, whereas it is an experimental

fact that individual isolated macroscopic systems thermalize; hence, it should be

possible to explain thermalization in terms of the dynamics of individual systems, not

ensembles. These opposing perspectives have been termed the “Ensemblist” view and

the “Individualist” view [27,28]. In the discussion section, we aim to clarify the physical

scenarios in which the weak convergence of phase space distributions is relevant, and

when it is not relevant. We conclude that, while weak convergence does not explain the

thermalization of macroscopic systems, it is relevant to computational and experimental

methods for sampling from the microcanonical ensemble.

2. The isometry of phase space distribution dynamics

2.1. Dynamics of phase space distributions: Review of Liouville’s theorem

Consider a classical mechanical system with phase space P and Hamiltonian H(x⃗). The

notation x⃗ = (q1, ..., qN , p1, ...pN) denotes a point in phase space, where qi and pi are

canonincal position and momentum coordinates. Let ϕt : P → P denote the time

evolution map that evolves the system forward by time t. In other words, x⃗(t) = ϕt(x⃗0)

where x⃗(t) is a trajectory of Hamilton’s equations with initial condition x⃗0.

An ensemble of such systems can be described by a phase space distribution function

ρt(x⃗), normalized so that
∫
P
ρt(x⃗)dx⃗ = 1. The dynamics of ρt(x⃗) follow Liouville’s

theorem, which states that ρt(x⃗) remains constant along phase space trajectories. For

initial condition ρ0(x⃗), the distribution at time t is given by ρt(x⃗) = ρ0(ϕ−t(x⃗)) [4]. If
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ρt(x⃗) is differentiable, then Liouville’s theorem takes the more familiar form [20]

∂

∂t
ρt(x⃗) = −v⃗(x⃗) · ∇ρt(x⃗) (1)

where v⃗(x⃗) is the phase space “velocity” given by Hamilton’s equations: vi(x⃗) =

∂H(x⃗)/∂pi for i ∈ {1, ..., N} and vi(x⃗) = −∂H(x⃗)/∂qi for i ∈ {N + 1, ..., 2N}.

2.2. The distance between phase space distributions

Are there conditions under which ρt(x⃗) approaches an equilibrium distribution as

t → ∞? The answer to this question depends on how one defines “approaches”. We

show that ρt(x⃗) does not get any closer to equilibrium as t increases, according to a

broad class of statistical distance metrics. In fact, we prove that the distance between

any two distributions remains constant in time, according to these metrics. However,

weak convergence to ρMC does occur on each constant-energy hypersurface of phase

space, if the dynamics are strong mixing, as is well known [3–7]. See section 2.3 for

a brief review of weak convergence and strong mixing, and Appendix A for a simple

example showing how a function can converge to a limit weakly but not strongly.

The distance between two probability distributions can be defined in various of

ways. Table 1 lists several standard distance metrics, all of which are defined in terms

of integrals of the form

I[f(x⃗), g(x⃗)] =

∫
p

F (f(x⃗), g(x⃗))dµ (2)

where F : R2 → R≥0 , p is the domain of the functions f and g, and dµ is an

appropriate measure. As explained below, for phase space distributions, dµ will either

be the Lebesgue measure dx⃗ ≡ dp⃗dq⃗, or the projection of the Lebesgue measure onto a

hypersurface of constant energy [29,30].

The distance dist[f(x⃗), g(x⃗)] is then defined by inserting I[f(x⃗), g(x⃗)] into some

function d : R → R,
dist[f(x⃗), g(x⃗)] = d(I[f(x⃗), g(x⃗)]) (3)

Table 1 lists the functions F and d for standard metrics of statistical distance.

For phase space distribution functions, the domain p must be a time invariant

subset of phase space P , meaning that ϕt(p) = p. This ensures that, for a phase space

distribution ρt(x⃗) with support contained in p at t = 0, the support of ρt(x⃗) will remain

in p for all t. Likewise, the measure dµmust be invariant, meaning that µ(A) = µ(ϕt(A))

where µ(A) is the measure of a set A, i.e. µ(A) =
∫
A
dµ. Typically, p and dµ are one of

the following:

(i) p = P (the entire phase space), and dµ = dx⃗ ≡ dq⃗dp⃗ [29, 30].

(ii) p is the “shell” of points with energy between E and E + ∆E, i.e. p = {x⃗ : E ≤
H(x⃗) < E +∆E}. dµ = dx⃗ ≡ dq⃗dp⃗.
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Table 1. Standard metrics of distance between probability distribution functions.

The distance dist[f(x⃗), g(x⃗)] = d(I[f(x⃗), g(x⃗)]) where I =
∫
p
F (f(x⃗), g(x⃗))dµ and the

functions F and d are listed in the table.

Metric F (f, g) d(I)

Total variation distance [31] |f − g| I/2

Lp distance (p ≥ 1) [32] |f − g|p I1/p

Hellinger distance [31] (
√
f −√

g)2 I/2

Kullback-Leibler divergencea [31] f log(f/g) I

Renyi α-divergencea [33] fα/gα−1 1
α−1 log(I)

a These divergences are defined only when the support of f is a subset of the support of g, and F (0, 0)

is defined to be 0. They are also not formally metrics because they are not symmetric under exchange

of f and g.

(iii) p is the constant-energy hypersurface ΣE = {x⃗ : H(x⃗) = E}. dµ = dΣ/||∇H(x⃗)||
where dΣ is the Lebesgue surface measure [29, 30]. This measure can be viewed

intuitively as the projection of the Lebesgue measure onto ΣE.

If the system is ergodic on each constant-energy hypersurface ΣE, then the above options

are the only possibilities for p and dµ.

Perhaps surprisingly, phase space distributions never get any closer to equilibrium

according to all of the metrics listed in Table 1, as Theorem 1 states below. In fact,

the distance between any two distributions is constant in time according to any metric

defined by Eqs. 2 and 3. In other words, time evolution of phase space distributions is

an isometry.

Theorem 1: Let ρt(x⃗) and ηt(x⃗) be two phase space distributions obeying Liouville’s

theorem and define dist[ρt(x⃗), ηt(x⃗)] according to Eqs. 2 and 3 for any d : R → R and

any Lebesgue integrable F : R → R≥0. Then, dist[ρt(x⃗), ηt(x⃗)] is independent of time t.

Proof: See Appendix B.

Importantly, Theorem 1 is valid for any Hamiltonian with any number of degrees

of freedom. Also note that the theorem holds for any time-invariant set p with a

corresponding invariant measure dµ.

Theorem 1 implies that ρt(x⃗) does not strongly converge to any limit. Strong

convergence would mean that the distance between a distribution ρt(x⃗) and a limit

ρEq. approaches 0 as t → ∞, which is forbidden by Theorem 1. The lack of strong

convergence of ρt(x⃗) has been discussed elsewhere [3, 5, 6], and Theorem 1 strengthens

these previous results by showing that time evolution is an isometry.

Theorem 1 can be viewed as a generalization of the well-known fact that the Gibbs

entropy is constant in time for ρt(x⃗) obeying Liouville’s theorem [1–8]. The Gibbs

entropy is defined as

S[ρt(x⃗)] = −
∫
p

ρt(x⃗) log(ρt(x⃗))dµ (4)
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where we use kB = 1. To establish the connection with Theorem 1, let F (f, g) = f log(f)

and d(I) = −I. Then Theorem 1 implies that S[ρt(x⃗)] is independent of t. Of course,

Theorem 1 is more general than the constancy of S[ρt(x⃗)] because Theorem 1 can

describe a comparison between two distributions, rather than just a characterization of

a single distribution.

2.3. Review of weak convergence and strong mixing

Despite the fact that strong convergence to an equilibrium distribution never occurs,

there is a weaker notion of convergence, called weak convergence, that occurs for systems

with a property called strong mixing. This fact has long been known [3–7].

Strong mixing is, intuitively, the phenomenon in which a system “forgets” its initial

condition. To be more specific, consider a trajectory with initial condition x⃗0 drawn

randomly from an arbitrary (and non-singular) distribution ρ0(x⃗) on ΣE. After time

t, the system’s state x⃗(t) is distributed according to the distribution ρt(x⃗) which, for

strong mixing dynamics, becomes more and more spread out over ΣE as t increases. As

t → ∞, the probability that x⃗(t) is in any set B ⊂ ΣE approaches the fraction of ΣE

covered by B, i.e. µ(B)/µ(ΣE) ‡.
The strong mixing property implies that ensemble averages converge to their

microcanonical values for distribution functions with support confined to a constant-

energy hypersurfaces ΣE; this behavior is called weak convergence [3]. More precisely,

weak convergence is defined as the property that ⟨a⟩ρt → ⟨a⟩ρMC as t → ∞ for any

square integrable observable function a(x⃗) : P → R, where

⟨a⟩ρ =
∫
ΣE

a(x⃗)ρ(x⃗)dµ (5)

and where

ρMC =
1

µ(ΣE)
(6)

which is the uniform distribution of ΣE.

It is perhaps not intuitive how a function could converge to a limit weakly, but not

strongly. Appendix A provides a simple example showing how this occurs.

3. Entropy and coarse-graining of phase space distributions

Imposing a coarse-graining on ρt(x⃗) is a widely proposed method for modeling imperfect

measurement and, thereby, of resolving the paradox that S[ρt(x⃗)] is constant in time

[1–3, 5, 14, 16, 17, 22]. Coarse-graining involves a partition of phase space into “cells”,

and ρt(x⃗) is averaged over each cell to produce a coarse-grained distribution ρ̃t(x⃗).

The coarse-graining procedure is described more precisely in section 3.1 below. On

a constant-energy hypersurface ΣE, ρ̃t(x⃗) converges pointwise to the microcanonical

‡ The formal definition of strong mixing is limt→∞
µ(ϕt(A)∩B)

µ(A) = µ(B)
µ(ΣE) for any A,B ⊂ ΣE with

µ(A) > 0 [30].
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distribution ρMC when the dynamics are strong mixing [5,22]. Consequently, the coarse-

grained entropy S[ρ̃t(x⃗)] increases to its maximal value of S[ρMC ] as t → ∞, resolving

the apparent paradox.

The preceding discussion highlights two similar, yet distinct, results for strong

mixing systems that need to be compared: (i) ρt(x⃗) converges weakly to ρMC , and (ii)

ρ̃t(x⃗) converges pointwise to ρMC . Result (i) has the advantage that it does not require

any partitioning of phase space, but it has the disadvantage that S[ρt(x⃗)] is constant in

time despite weak convergence. Result (ii) has the advantage that S[ρ̃t(x⃗)] → S[ρMC ],

but it has the disadvantage that it requires partitioning phase space.

We propose a generalization of coarse-graining that keeps the advantages of the

above results (i) and (ii) while remedying their disadvantages. Like weak convergence,

it is defined in terms of ensemble averages of observables, putting generalized coarse-

graining and weak convergence on the same footing. Our generalized coarse-grained

distribution, denoted ρGt (x⃗), is defined by a maximum-entropy optimization problem,

similar to E.T. Jaynes’ maximum-entropy distribution [21]. However, there is a key

difference between ρGt (x⃗) and Jaynes’ distribution: namely, ρGt (x⃗) converges to the

microcanonical distribution for strong mixing dynamics (Theorem 2 below), whereas

Jaynes’ distribution does not converge to either the canonical nor microcanonical

distribution under the dynamics of Liouville’s equation (see Appendix C). In sections

3.1, 3.2, and 3.3 below, we first introduce standard coarse-graining, then define our

generalization of coarse-graining, and lastly we compare the two forms of coarse-graining

with an example.

In all that follows, we will only consider distributions on a hypersurface ΣE.

Consequently, dµ will always refer to dΣ/||∇H(x⃗)||, and entropy S[ρ(x⃗)] will always

be defined as

S[ρ(x⃗)] = −
∫
ΣE

ρ(x⃗) log ρ(x⃗)
dΣ

||∇H(x⃗)||
(7)

3.1. Standard coarse-graining

The standard definition of coarse-graining involves a partition of ΣE into N cells Γi,

i = 1, ..., N , satisfying ∪N
i=1Γi = ΣE and Γi ∩Γj = ∅ for i ̸= j. The partition is intended

to capture the fact that real-world measurements are imperfect, the idea being that each

cell is a collection of points that are indistinguishable by the imperfect measurement.

However, in section 3.2 we show that this is just a special case of a more natural and

general approach for describing imperfect measurements.

The standard coarse-grained distribution is defined as

ρ̃t(x⃗) =
1

µ(Γi(x⃗))

∫
Γi(x⃗)

ρt(x⃗
′)dµ (8)

where i(x⃗) is the index of the cell containing the point x⃗. Equivalently, ρ̃t(x⃗) can be

defined by a maximum entropy optimization problem, as follows. Let 1Γi
(x⃗) denote the
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indicator function of the set Γi, defined as 1Γi
(x⃗) = 1 if x⃗ ∈ Γi and 0 otherwise. Then,

ρ̃t(x⃗) = argmax S[ρ(x⃗)] subject to

∫
ΣE

ρ(x⃗)dµ = 1

and ⟨1Γi
⟩ρ = ⟨1Γi

⟩ρt for i = 1, ..., N

(9)

To clarify notation in this equation, ρt(x⃗) denotes the true distribution that determines

the experimentally observed averages, ρ(x⃗) denotes the argument being optimized, and

ρ̃t(x⃗) is the solution to the optimization problem. S[ρ(x⃗)] is defined by Eq. 7. This

optimization problem is to be solved at each time t to obtain ρ̃t(x⃗). The definition of

Eq. 9 clarifies the motivation for coarse-graining: ρ̃t(x⃗) is the highest entropy distribution

consistent with the information available via measurements of ensemble averages. In

Appendix D.1 it is shown that the two definitions, Eq. 8 and 9, are equivalent.

Eq. 9 makes clear that for strong mixing systems, ρ̃(x⃗) → ρMC pointwise as t → ∞.

This is because strong mixing implies weak convergence, hence ⟨1Γi
⟩ρ̃t = ⟨1Γi

⟩ρt →
⟨1Γi

⟩ρMC . Consequently, the coarse-grained entropy S[ρ̃(x⃗)] → S[ρMC ] as t → ∞. See

Theorem 2 below for a proof of this statement in a more general form.

3.2. Generalized coarse-graining

Eq. 9 suggests a natural generalization of coarse-graining. Rather than assuming that

the measurement capability is characterized by indicator functions 1Γi
(x⃗), we allow for

measurement capabilities characterized by any list of observables ai(x⃗), i = 1, ..., N .

Accordingly, we define the generalized coarse-grained distribution as the function

ρGt (x⃗) : ΣE → R≥0 that solves the following optimization problem:

ρGt (x⃗) = argmax S[ρ(x⃗)] subject to

∫
ΣE

ρ(x⃗)dµ = 1

and ⟨ai⟩ρ = ⟨ai⟩ρt for i = 1, ..., N

(10)

where, as before, ρt(x⃗) is the true distribution and ρ(x⃗) denotes the argument being

optimized. The functions ai(x⃗) are the observables whose ensemble averages are available

to the experimenter. As before, this optimization problem is to be solved at each time t

to obtain ρGt (x⃗). Appendix C compares and contrasts ρGt (x⃗) with the maximum entropy

distribution introduced by E.T. Jaynes.

The following theorem captures the key behaviors of ρGt (x⃗).

Theorem 2: Let ρt(x⃗) be a normalized and non-singular (0 ≤ ρt(x⃗) < ∞) distribution

on ΣE obeying Liouville’s theorem for a strong mixing system. Define ρGt (x⃗) according

to Eq. 10. Then,

(i) limt→∞ ρGt (x⃗) = ρMC for all x⃗, i.e. pointwise convergence.

(ii) limt→∞ S[ρGt (x⃗)] = S[ρMC ].

Proof: See Appendix E.
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A fundamental aspect of the coarse-graining procedure is that the distribution

ρG and entropy S[ρG] depend upon the information available to the observer. Hence,

different observers may assign different entropies to the same system. In particular,

adding additional observables to Eq. 10 decreases the entropy of ρG (or leaves the

entropy unchanged). This reflects the fact, that with more observables, it is easier

to perceive discrepancies between ρG and ρMC ; in other words, additional observables

reduce one’s ignorance of the system’s state, thereby reducing entropy. Importantly,

although different observers may disagree about the entropy at finite t, all observers

agree that S[ρG] converges to S[ρMC ] in the t → ∞ limit, if the dynamics are strong

mixing.

The optimization problem that defines ρGt can be solved using the method of the

Lagrange dual function [34]; see Appendix D for details. The result is

ρGt (x⃗) = exp

(
−1− λ∗

0(t)−
N∑
i=1

λ∗
i (t)ai(x⃗)

)
(11)

where, at each t, the values λ∗
i (t) minimize the function:

gt(λ0, ..., λN) =

∫
ΣE

exp

(
−1− λ0 −

N∑
i=1

λiai(x⃗)

)
dµ+ λ0 +

N∑
i=1

λi⟨ai⟩ρt (12)

The function gt(λ0, ..., λN) is the Lagrange dual function corresponding to Eq. 10, and

it is guaranteed to be convex with a global minimum and no other local minima. As a

result, a standard gradient descent algorithm is guaranteed to converge to the unique

minimum. Note that Eqs. 11 and 12 reduce the original infinite dimensional constrained

optimization problem (Eq. 10) to a finite dimensional unconstrained optimization

problem for which standard algorithms are guaranteed to converge.

The entropy of ρGt (x⃗) can be written in a simple form in terms of the Lagrange

multipliers λ∗
i (t),

S[ρGt (x⃗)] = −
∫
ΣE

ρGt (x⃗) log(ρ
G
t (x⃗))dµ = −⟨log(ρGt (x⃗))⟩ρGt (13)

= 1 + λ∗
0(t) +

N∑
i=1

λ∗
i (t)⟨ai⟩ρt (14)

Similar expressions for entropy are found in [4, 21].

3.3. Example: A Triangular Billiard

Consider a single particle in a two-dimensional triangular box, as illustrated in Fig. 1A.

The Hamiltonian is H(q1, q2, p1, p2) = p21 + p22 + V (q1, q2) where V (q1, q2) is zero inside

the triangle and ∞ outside the triangle, so that the particle makes reflects off the walls

specularly. This is known as a triangular billiard system, and there is strong numerical
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Figure 1. A particle in a 2D triangular box with vertices at (-0.3,0), (0.9,0), and

(0,1). (A) Sample trajectory (dotted line). (B) Initial phase space distribution ρ0(x⃗),

indicated by the blue rectangle. (C) Left: Partition of phase space used to compute

ρ̃t(x⃗). Right: Observables used to compute ρG(x⃗). (D) Simulation of an ensemble of

200 systems. Left, center, and right columns show the system at times t = 0, 0.3,

and 5.0. Top row: Positions of each system in the ensemble. Middle row: Standard

coarse-grained distribution ρ̃t. Bottom row: Generalized coarse-grained distribution

ρGt .

evidence that triangular billiards are strong mixing if each angle of the triangle is an

irrational multiple of π [35, 36]. Fig. 1A shows an example trajectory.

Now consider an ensemble of such systems initially confined to the small blue

rectangle shown in Fig. 1B. We will approximate the infinite ensemble by a finite

ensemble of 200 systems. For each of the 200 systems, the initial position is drawn

randomly (uniformly) from within the small blue rectangle in Fig. 1B. For each system,

the initial momentum is drawn randomly (uniformly) from the unit circle in momentum

space (i.e. (p1, p2) space), so that the energy of each system is E = 1, and the

initial momentum direction is random. Hence, all systems are on the hypersurface

ΣE=1 = T × S1 where T is the set of (q1, q2) contained within the triangle, S1 is the

unit circle in (p1, p2) space, and × denotes the Cartesian product.

We will compare a standard coarse-graining with a generalized coarse-graining. For

the standard coarse-graining, ΣE is partitioned into nine cells as illustrated in Fig. 1C.
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The dashed lines indicate the boundaries between the cells in (q1, q2) space, and the

partition is independent of momentum. To be precise, the cells are Γi = γi × S1,

where γi are the cells in (q1, q2) space and S1 is the unit circle in (p1, p2) space. For

the generalized coarse-graining, suppose that the mean values and variances of particle

position are observable. Hence, the observables are

a1(q1, q2, p1, p2) = q1 (15)

a2(q1, q2, p1, p2) = q2 (16)

a3(q1, q2, p1, p2) = q 2
1 (17)

a4(q1, q2, p1, p2) = q 2
2 (18)

For this system with these observables, the integral in Eq. 12 can be efficiently solved

numerically. This makes the optimization problem of maximizing gt(λ0, ..., λN) very fast

with standard optimization packages.

Fig. 1D (top row) shows the state of each of the 200 systems in the ensemble at three

values of t, showing how the systems spread out over the triangle as t increases. The

middle row and bottom row show, respectively, the standard coarse-grained distribution

ρ̃t(q1, q2) and the generalized coarse-grained distribution ρGt (q1, q2), at each time. Note

that both coarse-grained distributions depend only on the position coordinates (q1, q2)

because the partition is momentum-independent. Fig. 1D illustrates how both coarse-

grained distributions are initially very far from uniform, and they approach the uniform

microcanonical distribution as t → ∞.

Fig. 2A shows the entropy vs. t for ρ̃t (top) and ρGt (bottom). S[ρ̃t] has a

jagged appearance because it is a piecewise constant function, with discontinuity at

any t where a particle crosses from one cell to another. In contrast, ρGt (x⃗) is smooth

because the observables a1, a2, a3, and a4 are smooth functions. As expected, both

entropies approach the maximal value S[ρMC ]. However, their approach to S[ρMC ]

is not monotonic, and small fluctuations in entropy persist even as t → ∞. These

fluctuations decrease as the size of the ensemble grows, and they disappear in the limit

of an infinite ensemble. However, the non-monotonicity of the entropy remains even in

the limit of an infinite ensemble. Note also that S[ρ̃t] remains constant until t > 0.06.

This is because S[ρ̃t] is bounded from below: when all system states are within the

same cell i, then S[ρ̃t] = 1/µ(Γi). This contrasts with S[ρGt ], which becomes arbitrarily

negative when the variance in particle positions is arbitrarily small.

Fig. 2B shows the observable averages ⟨q1⟩ρt , ⟨q2⟩ρt , ⟨q 2
1 ⟩ρt , and ⟨q 2

2 ⟩ρt . At t = 0,

these are far from their microcanonical averages, and they approach and fluctuate around

their microcanonical averages as t → ∞. The magnitude of fluctuations in the t → ∞
limit decays as the number of systems in the ensemble increases.

Fig. 2C illustrates how adding additional observables decreases the coarse-grained

entropy. The four curves, labelled N = 1 through N = 4, show the generalized coarse-

grained entropy computed using a 1 through 4 observables. Specifically, the blue curve

(N = 1) uses only a1, the orange curve (N = 2) a1 and a2, the green curve (N = 3)
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Figure 2. Entropy and ensemble averages of an ensemble of 200 particles in the

triangular box. (A) Entropy vs time for the standard coarse-graining ρ̃t(x⃗) (top)

and the generalized coarse-graining ρGt (x⃗) (bottom). A log-scale x-axis is used to

make the dynamics at small t more visible. (B) Ensemble averages ⟨q1⟩ρt , ⟨q2⟩ρt ,

⟨q 2
1 ⟩ρt

, and ⟨q 2
2 ⟩ρt

vs time. (C) Coarse-grained entropy with different numbers of

observables, illustrating how including additional observables decreases entropy. Blue

curve (N = 1): a1 is the only observable. Orange curve (N = 2): a1 and a2 are

observable. Green curve (N = 3): a1, a2, and a3 are observable. Red curve (N = 4):

a1, a2, a3, and a4 are observable.

a1, a2, and a3, and the red curve (N = 4) uses all four observables. This illustrates

that entropy is an observer-dependent quantity that is lower for observers with more

information. Nevertheless, all observers agree in the t → ∞ limit.

4. Discussion

Briefly summarizing our results, we have proven a theorem showing that the time

evolution of phase space distributions obeying Liouville’s equation is an isometry

according to a broad class of statistical distance metrics. This means that, according

to these metrics, an ensemble never gets any “closer” to an equilibrium ensemble.

However, as is well known [3–7], the ensemble averages of observables do approach their

microcanonical averages for systems with strong mixing dynamics, if the distribution is
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confined to a constant energy hypersurface; this behavior is called weak convergence.

Our second contribution is to generalize the definition of coarse-graining to remove

the need for an arbitrary partition of phase space. For strong mixing systems, the

generalized coarse-grained distribution ρGt (x⃗) converges pointwise to ρMC for any list of

observables. Likewise, the entropy of ρGt (x⃗) increases to its maximal value.

An essential question that is often overlooked is: What physical scenarios are

described by ensembles obeying Liouville’s theorem? The answer is: Scenarios where

an initial condition x⃗0 is drawn from some non-equilibrium distribution, and one

is interested in the probability distribution of the state x⃗(t) at later times. Weak

convergence to ρMC can be of practical utility in computational studies where one

wants to sample from the microcanonical distribution. If one initializes the system by

randomly drawing x⃗(0) from any non-equilibrium distribution, then simulates dynamics

for a sufficiently long time t, the resulting state x⃗(t) will be distributed microcanonically.

Using this method to compute microcanonical averages by averaging over repeated

simulations may be faster than estimating microcanonical averages by computing a

time average along a single long-time trajectory. The required simulation time is given

by the timescale on which S[ρG] approaches S[ρMC ]. This timescale depends upon the

observables used to compute ρG, i.e. the observables whose microcanonical averages

are to be estimated. In experiments, microcanonical averages could be estimated in a

similar way, if repeated experiments can be performed where each is initialized with

nearly the same energy.

A central question in the foundations of statistical mechanics is: Why do

individual isolated macroscopic systems exhibit equilibrium behavior, where a system’s

macroscopic properties settle to nearly constant values that undergo only exceedingly

rare fluctuations? Weak convergence does not say anything about the fluctuations

of individual systems, only about ensemble averages. Rather, it is an aspect of

the thermodynamic limit—namely, that macroscopic observable functions approach

uniformity on ΣE in the limit of large particle number [29,37–39] (see also [27,40])—that

explains how macroscopic properties of individual systems approach equilibrium values.

This feature of the thermodynamic limit gives rise to typicality : the phenomenon that

nearly all microstates have nearly the same, ‘typical’, macroscopic properties [23]. Due

to typicality, an individual trajectory initialized with non-equilibrium properties will

typically approach equilibrium after traversing even a small portion of ΣE [23, 26, 41].

Importantly, typicality and the thermodynamic limit do not rely upon mixing dynamics

or any other ergodic properties [23, 37]. Hence, while the weak convergence of ρt(x⃗) to

ρMC is indeed interesting and useful for certain computations and experiments, it does

not provide a suitable description of the thermalization of macroscopic systems.

Acknowledgements

I am grateful to Robijn Bruinsma, Giovanni Zocchi, Jacob Pierce, Tyler Carbin, and the

participants of the UCLA soft condensed matter journal club, for helpful discussions and



13
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comments. I also thank the NSF Graduate Research Fellowship Program (NSF Grant

No. DGE-2034835) for support.

Appendix A. Example of weak convergence without strong convergence

Here we provide a simple example of a function that converges to a limit weakly

but not strongly in a manner similar to how ρt(x⃗) converges weakly to ρMC . Let

ft(x) = sin2(πx(t + 1)) for x ∈ [0, 1], as shown in Fig. A1. ft(x) is not a probability

distribution and it does not obey Liouville’s theorem, but it nevertheless is an instructive

example because its behavior is analogous to the behavior of a phase space distribution

for a strong mixing system.

Fig. A1 shows ft(x) for three values of t. As t increases, ft(x) oscillates increasingly

rapidly around a mean value of 1/2. As a result, for any a(x⃗),∫ 1

0

ft(x)a(x)dx →
∫ 1

0

fEq.(x)a(x)dx =

∫ 1

0

1

2
a(x)dx (A.1)

where fEq.(x) = 1/2. Hence, ft(x) → fEq.(x) = 1/2 with weak convergence. However,

ft(x) does not converge strongly to any limit. For instance, it is straightforward to check

that dist[ft(x), fEq.(x)] does not approach zero for any of the metrics in Table 1. Just

like ft(x), phase space distributions ρt(x⃗) become increasingly oscillatory under strong

mixing, and these rapid oscillations lead to weak convergence to ρMC without strong

convergence.

Another similarity between ft(x) and ρt(x⃗) is that their amplitudes are constant in

time. The amplitude of ft(x) is maxx ft(x) − minx ft(x) = 1 for all t ≥ 0. Similarly,

maxx⃗ ρt(x⃗)−minx⃗ ρt(x⃗) = maxx⃗ ρ0(x⃗)−minx⃗ ρ0(x⃗) for all t, as guaranteed by Liouville’s

theorem.

Appendix B. Proof of Theorem 1

To prove Theorem 1, we will first prove the following lemma, which is equivalent to

Theorem 1 except that the lemma assumes that F (f, g) is a simple function (i.e. a sum
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of indicator functions). Then, we use the lemma to prove Theorem 1.

Define the functional Is[f(x⃗), g(x⃗)] according to Eq. B.1. Is[f(x⃗), g(x⃗)] is equivalent

to the functional I[f(x⃗), g(x⃗)] defined in Eq. 2, except that it is defined in terms of a

simple function; the subscript s stands for “simple function”.

Is[f(x⃗), g(x⃗)] =

∫
p

Fs(f(x⃗), g(x⃗))dµ (B.1)

where Fs : R2 → R is any simple function,

Fs(y1, y2) =
M∑

m=1

fm1Tm(y1, y2) (B.2)

where the sets Tm are measurable subsets of R2 and 1Tm(y1, y2) denotes the indicator

function of Tm, defined as 1Tm(y1, y2) = 1 if (y1, y2) ∈ Tm, and 1Tm(y1, y2) = 0 otherwise.

Lemma 1: If ρt(x⃗) and ηt(x⃗) obey Liouville’s theorem, then Is[ρt(x⃗), ηt(x⃗)] is

independent of t.

Proof: Define ωm(t) = {x⃗ ∈ p : (ρt(x⃗), ηt(x⃗)) ∈ Tm}. Then,

ωm(t) = {x⃗ : (ρ0(ϕ−tx⃗), η0(ϕ−tx⃗)) ∈ Tm} (B.3)

= {ϕtx⃗ : (ρ0(x⃗), η0(x⃗)) ∈ Tm} (B.4)

= ϕtωm(0) (B.5)

Therefore,

Is[ρt(x⃗), ηt(x⃗)] =

∫
p

Fs(ρt(x⃗), ηt(x⃗))dµ (B.6)

=
M∑

m=1

fm

∫
p

1Tm(ρt(x⃗), ηt(x⃗))dµ (B.7)

=
M∑

m=1

fm

∫
ωm(t)

dµ =
M∑

m=1

fmµ(ωm(t)) (B.8)

=
M∑

m=1

fmµ(ϕtωm(0)) (B.9)

=
M∑

m=1

fmµ(ωm(0)) (B.10)

where in going from Eq. B.9 to B.10 we have used the fact that µ is an invariant measure.

Eq. B.10 is manifestly independent of t. □

Theorem 1: Let ρt(x⃗) and ηt(x⃗) be two phase space distributions obeying Liouville’s

theorem and define dist[ρt(x⃗), ηt(x⃗)] according to Eqs. 2 and 3 for any d : R → R and

any Lebesgue integrable F : R → R≥0. Then, dist[ρt(x⃗), ηt(x⃗)] is independent of time t.
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Proof: Consider a sequence of simple functions F (M) =
∑M

m=1 f
(M)
m 1

T
(M)
m

such that

F (M) → F and F (M)(y⃗) ≤ F (y⃗) for all y⃗ ∈ R2. As before, T
(M)
m are measurable subsets

of R2 and 1
T

(M)
m

is the characteristic function of T
(M)
m . The existence of such a sequence

F (M) is a standard result (see Theorem 11.20 in [42]).

By Lebesgue’s Monotone Convergence Theorem [42],

lim
M→∞

∫
p

F (M)dµ =

∫
p

Fdµ = I[ρt(x⃗), ηt(x⃗)] (B.11)

where the second step is merely the definition of I given in Eq. 2. Also, from Lemma 1

we know ∫
p

F (M)dµ =
M∑

m=1

f (M)
m µ(ω(M)

m (0)) (B.12)

where, as before, ω
(M)
m (t) = {x⃗ ∈ p : (ρt(x⃗), ηt(x⃗)) ∈ T

(M)
m } so we have

I[ρt(x⃗), ηt(x⃗)] = lim
M→∞

M∑
m=1

f (M)
m µ(ω(M)

m (0)) (B.13)

which is manifestly independent of t. Therefore,

dist[ρt(x⃗), ηt(x⃗)] = d(I[ρt(x⃗), ηt(x⃗)]) (B.14)

is also independent of t. □

Appendix C. Comparing ρGt (x⃗) to E.T. Jaynes’ maximum entropy

distribution

Although ρGt (x⃗) is similar to E.T. Jaynes’ maximum entropy distribution [21] in that

both are defined in terms of a maximum entropy optimization problem, there is a key

difference: ρGt (x⃗) is guaranteed to converge to ρMC for strong mixing systems, whereas

Jaynes’ maximum entropy distribution does not converge to either the canonical nor

microcanonical distribution, except under a restrictive assumption. This is explained

below.

E.T. Jaynes introduced the maximum entropy distribution ρJt (x⃗) : P → R≥0 defined

as

ρJt (x⃗) = argmax

[
−
∫
P

ρ(x⃗) log ρ(x⃗)dx⃗

]
subject to

∫
P

ρ(x⃗)dx⃗ = 1

and ⟨ai⟩ρ = ⟨ai⟩ρt for i = 1, ..., N

(C.1)

where, unlike in Eq. 10, ⟨ai⟩ρ =
∫
P
ai(x⃗)ρ(x⃗)dx⃗. The solution to this optimization

problem is

ρJt (x⃗) = exp

(
−1− µ∗

0(t)−
N∑
i=1

µ∗
i (t)ai(x⃗)

)
(C.2)
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where µ∗
i (t) are chosen to solve the equations ⟨ai⟩ρJ = ⟨ai⟩ρt .

The difference between ρGt (x⃗) and ρJt (x⃗) is that ρ
G
t (x⃗) is defined on a hypersurface

ΣE (and all integrals in the optimization are taken over ΣE), whereas ρ
J
t (x⃗) is defined

on the full phase space P . The fact that ρJt (x⃗) is defined on the full phase space means

that it does not, in general, dynamically evolve into an equilibrium distribution under

the dynamics of Liouville’s theorem, as explained below.

Under the dynamics of Liouville’s theorem, ρJt (x⃗) will not converge to the canonical

distribution ρcan(x⃗) unless either (i) Hn(x⃗) is not observable for any n > 1, meaning

that the variance in energy cannot be measured, or (ii) ⟨Hn(x⃗)⟩ρt is already equal to its

canonical value ⟨Hn(x⃗)⟩ρcan at t = 0. This condition is due to the fact that ⟨Hn(x⃗)⟩ρt is
a constant of the motion, so its value must either be at equilibrium initially (in which

case the approach to equilibrium is not explained), or the experimenter must be ignorant

of its value, in order for ρJt (x⃗) to approach ρcan(x⃗).

Similarly, ρJt (x⃗) does not evolve to the microcanonical distribution except in the

special case that the variance in energy is an observable and is arbitrarily small. In

the limit that ⟨H2(x⃗)⟩ρt − ⟨H(x⃗)⟩2ρt → 0, ρJt (x⃗) becomes zero everywhere except on a

hypersurface ΣE and ρJt (x⃗) → ρGt (x⃗).

Appendix D. Solving the optimization problem for ρGt

The first step for computing ρGt is to write the Lagrangian for the optimization problem.

Note that this is the Lagrangian in the context of optimization theory, it is not the

physical Lagrangian associated with the Hamiltonian H(x⃗). The Lagrangian is

Lt[ρ(x⃗), λ1, ..., λN ] = S[ρ(x⃗)]−λ0

(∫
ΣE

ρ(x⃗)dµ− 1

)
−

N∑
i=1

λi

(∫
ΣE

ρ(x⃗)ai(x⃗)dµ− ⟨ai⟩ρt
)

(D.1)

where N is the number of observables available to the experimenter. The subscript t

in Lt[ρ(x⃗), λ1, ..., λN ] indicates that the Lagrangian carries a time dependence due to

the time dependence of ⟨ai⟩ρt . The variables λi ∈ R are the Lagrange multipliers for

the problem. λ0 corresponds to the normalization constraint, and λi for i = 1, ..., N

corresponds to each of the N constraints on the ensemble averages. Importantly, the

values ⟨ai⟩ρt are considered to be known to the experimenter, so they are treated as

known constants in the optimization problem.

The concavity of S[ρ(x⃗)] guarantees that Lt has a single stationary point

corresponding to the unique optimum [34]. The stationarity condition δL/δρ = 0 is

solved by a function ρ∗(x⃗, λ0, ..., λN) that maximizes Lt under fixed λi. To simplify

notation, let λ = (λ0, ..., λN) denote the list of Lagrange multipliers. Then, the function

ρ∗(x⃗,λ) that solves δL/δρ = 0 is

ρ∗(x⃗;λ) = exp

(
−1− λ0 −

N∑
i=1

λiai(x⃗)

)
(D.2)
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We now use the method of Lagrange duality to determine the Lagrange multipliers

λ. An important result in the theory of convex optimization says that the Lagrange

dual function gt(λ) = maxρ(x⃗) Lt[ρ(x⃗),λ] is a convex function with a unique minimum

(because S[ρ(x⃗)] is concave), and the λ∗
t that minimize gt(λ) are the Lagrange multipliers

that solve our original optimization problem [34]. In other words,

ρGt (x⃗) = ρ∗(x⃗;λ∗
t ) (D.3)

where λ∗
t is the unique minimum of the function gt(λ) given by

gt(λ) = min
ρ(x⃗)

Lt[ρ(x⃗),λ] = Lt[ρ
∗(x⃗;λ),λ] (D.4)

=

∫
ΣE

exp

(
−1− λ0 −

N∑
i=1

λiai(x⃗)

)
dµ+ λ0 +

N∑
i=1

λi⟨ai⟩ρt (D.5)

Note that Eqs. D.3 and D.5 are equivalent to Eqs. 11 and 12, so we have completed

the derivation.

Appendix D.1. The equivalence of Eq. 9 and Eq. 8

Here, we show that Eq. 9 is equivalent to Eq. 8. We start with ρ̃t(x⃗) as defined by Eq. 9,

which is the special case of ρGt (x⃗) in which ai(x⃗) = 1Γi
(x⃗), where Γi are sets that form

a partition of ΣE. By solving the optimization problem using Eqs. 10 and 12, we show

that the solution to Eq. 9 is Eq. 8.

Suppose that ai(x⃗) = 1Γi
(x⃗), where Γi are sets that form a partition of ΣE. Then,

Eq. 11 reduces to

ρGt (x⃗) = ρ̃t(x⃗) = exp(−1− λ0 − λi(x⃗)) (D.6)

where i(x⃗) is the index of the cell containing point x⃗, i.e. x⃗ ∈ Γi(x⃗). Eq. 12 reduces to

gt(λ0, ..., λN) = e−1−λ0

N∑
i=1

e−λiµ(Γi) + λ0 +
N∑
i=1

λi⟨1Γi
⟩ρt (D.7)

The first order condition for minimizing Eq. D.7, ∂gt/∂λi = 0, gives

λi = log
µ(Γi)

⟨Γi⟩ρte1+λ0
(D.8)

for i = 1, ..., N . Inserting this into Eq. D.6 gives

ρ̃t(x⃗) =
⟨Γi(x⃗)⟩ρt
µ(Γi(x⃗))

=
1

µ(Γi(x⃗))

∫
Γi(x⃗)

ρt(x⃗
′)dµ (D.9)

which is Eq. 8.
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Appendix E. Proof of Theorem 2

Theorem 2: Let ρt(x⃗) be a normalized and non-singular (0 ≤ ρt(x⃗) < ∞) distribution

on ΣE obeying Liouville’s theorem. Define ρGt (x⃗) according to Eq. 10. Then,

(i) limt→∞ ρGt (x⃗) = ρMC for all x⃗, i.e. pointwise convergence.

(ii) limt→∞ S[ρGt (x⃗)] = S[ρMC ].

Proof: First, note that if ⟨ai⟩ρt = ⟨ai⟩ρMC for all i, then ρGt = ρMC . This because ρMC

solves

ρMC = argmax S[ρ(x⃗)] s.t.

∫
ΣE

ρGt (x⃗)dµ = 1 (E.1)

and ρMC satisfies the additional constraints of Eq. 10 when ⟨ai⟩ρt = ⟨ai⟩ρMC .

Second, recall that

lim
t→∞

⟨ai⟩ρt = ⟨ai⟩ρMC (E.2)

for strong mixing dynamics due to weak convergence.

Third, note that the solution to the optimization problem of Eq. 10 is continuous

with respect to ⟨ai⟩ρt . Hence,
lim
t→∞

ρGt = ρMC (E.3)

This proves (i). (ii) follows immediately from (i) due to the continuity of S[ρ(x⃗)]. □
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