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Summary: Group testing, a method that screens subjects in pooled samples rather than individually, has been

employed as a cost-effective strategy for chlamydia screening among Iowa residents. In efforts to deepen our under-

standing of chlamydia epidemiology in Iowa, several group testing regression models have been proposed. Different

than previous approaches, we expand upon the varying coefficient model to capture potential age-varying associations

with chlamydia infection risk. In general, our model operates within a Bayesian framework, allowing regression

associations to vary with a covariate of key interest. We employ a stochastic search variable selection process for

regularization in estimation. Additionally, our model can integrate random effects to consider potential geographical

factors and estimate unknown assay accuracy probabilities. The performance of our model is assessed through

comprehensive simulation studies. Upon application to the Iowa group testing dataset, we reveal a significant age-

varying racial disparity in chlamydia infections. We believe this discovery has the potential to inform the enhancement

of interventions and prevention strategies, leading to more effective chlamydia control and management, thereby

promoting health equity across all populations.
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Random effects; Stochastic search variable selection process.
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1. Introduction

Chlamydia, commonly causing cervicitis in females (Workowski, 2013), is one of the most

frequently reported bacterial sexually transmitted diseases (STDs) in the United States.

Untreated chlamydia can cause pelvic inflammatory disease, potentially leading to ectopic

pregnancy, chronic pelvic pain, and infertility (Land et al., 2010). Though there are effective

treatments, many infected women might not seek them because chlamydia often has no symp-

toms while attacking their reproductive system. Acknowledging the asymptomatic threat,

the Centers for Disease Control and Prevention (CDC) advises regular chlamydia testing

for sexually active women. In many states, such as Iowa, the government offers assistance

to provide no-cost or affordable testing for chlamydia and other STDs. Nevertheless, the

financial burden on testing agencies becomes significant when the number of testees is large,

prompting the need to explore cost-effective solutions (Roberts et al., 2006).

As part of Iowa’s surveillance program for chlamydia infection, the State Hygienic Labora-

tory (SHL) has employed group testing as a solution. Its testing protocol, initially introduced

by Dorfman (1943) to screen World War II recruits for syphilis, involves assigning arriving

specimens at SHL into different groups. Within each group, the specimens are mixed to

form a master pool, which is then tested. If it tests negative, patients contributing to that

group are declared negative; otherwise, they undergo separate testing for a final diagnosis.

Consequently, patients in a negative master pool are diagnosed with just one test. For low-

prevalence diseases like chlamydia, group testing can save costs substantially. According to

Tebbs et al. (2013), the SHL has realized an annual savings of approximately $0.62 million

in chlamydia screening for Iowa residents.

In addition to all testing outcomes, the SHL dataset also encompasses various individual-

level information from each patient, including age, race, recent sexual behaviors, presence



2 December 2024

of symptoms, the clinic site where the specimen was collected, etc. This unique dataset has

established itself as an invaluable resource for chlamydia studies.

Analyzing the SHL dataset poses a challenge due to the inherent complexity of its group

testing data structure. Early group testing research focused on estimating the disease preva-

lence without considering covariates (see Liu et al., 2012, for a review). Subsequent regression

studies initially relied on outcomes of master pool testing (Vansteelandt et al., 2000; Bilder

and Tebbs, 2009; Huang, 2009; Delaigle and Meister, 2011; Wang et al., 2013; Delaigle

et al., 2014), but these methods could not incorporate information obtained from retesting

patients in positive master pools at SHL. More appropriate methods, which include but are

not limited to recent parametric approaches (Xie, 2001; McMahan et al., 2017) and semi-

parametric regression techniques (Wang et al., 2014; Liu et al., 2021), have since emerged.

The key distinction lies in the fact that parametric approaches enforce a linear relationship

between covariates and the log-odds of disease risk. Conversely, semiparametric methods

offer flexibility, allowing for the identification of non-linear covariate effects. For example,

Liu et al. (2021) applied the generalized partially linear additive model to the SHL dataset,

employing a non-linear function to capture the age effect while controlling other covariate

effects as linear. Their non-linear estimate revealed a peak infection risk occurring around the

age of 18, with a noticeable rise in risk for females aged 50 and above, a finding that aligns

more closely with the current understanding of chlamydia infections compared to treating

the age effect as linear.

Alongside age, racial disparity also plays a significant role in understanding and addressing

the epidemiology of chlamydia infections. In the existing research on the SHL dataset, the

association between race and infection risk has been assumed to be independent of age.

However, other chlamydia research has shown that this assumption might not be true. For

example, a recent investigation focusing on women aged 15–34 years individually tested
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in Washington (Chambers et al., 2018) revealed a notable racial disparity trend in the

cumulative risk of chlamydia diagnosis. The cumulative risk exhibited a slower increase

in non-Hispanic whites compared to other races before age 25. After reaching 25, the rate

became similar across all racial groups. This intriguing observation suggests that the racial

disparity in chlamydia infections might vary with age. If this holds in Iowa as well, researchers

and policymakers could develop more targeted interventions and prevention strategies to

enhance the control and management of chlamydia. Unfortunately, the current group testing

regression methods are unable to investigate age-varying associations.

We provide a remedy in this article by using varying coefficient models. These models,

initially proposed by Cleveland et al. (1992) and Hastie and Tibshirani (1993), allow the

regression coefficients to vary with a chosen covariate (in our case, age) and have proven to

be a powerful tool in the semiparametric regression toolbox. However, they have never been

extended to group testing, and we aim to make the first attempt.

Our approach is developed within the Bayesian framework to flexibly accommodate differ-

ent group testing strategies and estimate the unknown testing accuracies (i.e., test sensitivity

and specificity). Gaussian predictive process priors (GPPs) (Banerjee et al., 2008) are used

to estimate all the varying coefficients nonparametrically. A notable challenge for varying

coefficient models in group testing arises from heavily imbalanced data due to the rarity

of the disease. This imbalance can result in wide confidence intervals and non-informative

inference. Therefore, it is important to regularize the estimation. Herein, we propose reg-

ularizing our estimation using a stochastic search variable selection (SSVS) process. This

process categorizes each covariate into one of three groups: (i) insignificant covariates ; (ii)

significant but age-independent covariates ; (iii) significant and age-varying covariates. Our

regularization differs from those used for selecting linear covariate effects in group testing,

as seen in the works of by Gregory et al. (2019), Lin et al. (2019), and Joyner et al. (2020).
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Another aspect we must consider is that the SHL specimens were collected from a wide

range of clinic sites throughout the state, such as primary care, community health, and

women’s health clinics, for centralized testing and analysis. The inherent disparities among

rural, urban, and suburban areas, as well as different clinic types, as outlined in Bergquist

et al. (2019), underscore the need to address heterogeneity across subgroups at different

locations. Using random effects, Chen et al. (2009) and Joyner et al. (2020) have confirmed

this source of heterogeneity. We follow them in developing our varying coefficient model for

the SHL group testing data. To facilitate efficient posterior inference, we have developed a

Markov chain Monte Carlo (MCMC) sampling algorithm that integrates GPPs, SSVS, ran-

dom effects, and the estimation of unknown testing accuracies. While our study is motivated

by the SHL data, the method we propose applies to data from all sorts of group testing

algorithms, whether or not random effects need to be considered.

The remainder of this article is organized as follows. Section 2 provides preliminaries for

the proposed varying coefficient mixed model with variable selection as well as model as-

sumptions. Section 3 details the data augmentation procedures and prior elicitation. Section

4 presents the posterior sampling algorithm steps. Section 5 evaluates the effectiveness of

our methodologies through a comprehensive simulation study. In Section 6, we conduct

an in-depth analysis of the SHL group testing data. Section 7 concludes this article with a

summary and future research prospects. Technical details about posterior sampling steps and

their derivations along with additional numerical results are provided in the Web Appendices.

2. Methodology

2.1 Notations and the model

Suppose we have N individuals undergo screening for an infectious disease. Each of the N

individuals visits one of L distinct clinics over the state. The clinics collect specimens (e.g.,
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blood, urine, or swabs) from the individuals and subsequently ship these collected samples

to a laboratory (such as the SHL) for testing. A group testing algorithm is followed in the

laboratory to screen all the specimens.

With the group testing data, our objective is to estimate an underlying individual-level

model. To elucidate the model, we use Ỹi to represent the true infection status of the ith

individual, where i = 1, . . . , N . Here, Ỹi = 1 (or 0) indicates that the participant is truly

positive (or negative). Additionally, we denote the age of the ith participant as ui and other p

covariates as xxxi = (xi1, . . . , xip)
⊤. We consider the following varying-coefficient mixed model,

which relates the Ỹi to the covariates

logit
{
Pr

(
Ỹi = 1 | ui, xxxi

)}
= ψ0(ui) +

p∑
d=1

xidψd(ui) +
L∑

ℓ=1

rℓ(i)γℓ, (1)

where logit{·} is the canonical logit link, and the regression coefficients ψd(u)’s are allowed

to vary smoothly with u. Additionally, the clinic-specific random effects are represented by

rℓ(·), serving as the ℓth clinic indicator function; i.e., rℓ(i) = 1 indicates the association of the

ith subject with the ℓth clinic-specific random effect γℓ, while rℓ(i) = 0 denotes otherwise,

for ℓ = 1, . . . , L. We assume the random effects γℓ’s follow N (0, σ2) independently.

In group testing, Ỹi’s cannot be observed due to pooling and imperfect testing. To denote

data from any group testing protocol, we let J be the total number of pools that have been

tested (for generality, if a specimen is tested individually, we view it as tested in a pool of

size 1). We use the index set Pj ⊂ {1, . . . , N} to collect all individuals contributing to the

jth pool, for j = 1, . . . , J . Again, we permit Pj to be a singleton set, allowing for individual

testing scenarios. Additionally, we require that Pj ̸= ∅ and ∪jPj = {1, . . . , N}; i.e., each

individual should be tested at least once either in pools or individually.

The binary variable Z̃j = maxi∈Pj
Ỹi = 1 (or 0) indicates that the jth pool is truly positive

(or negative). However, the Z̃j’s are latent due to imperfect testing. Instead, we observe the

error-contaminated Zj’s, where Zj = 1 (or 0) if the jth pool tested positively (or negatively).
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To evaluate the impact of imperfect testing, we denote the sensitivity and specificity of the

assay used to test the jth pool by Sej = Pr(Zj = 1 | Z̃j = 1) and Spj = Pr(Zj = 0 | Z̃j = 0),

respectively. Furthermore, it is commonly assumed in group testing literature (McMahan

et al., 2017; Joyner et al., 2020; Liu et al., 2021) that conditional on Z̃j’s, Zj’s are independent

and do not depend on the covariates. Under these assumptions and based on (1), the observed

data likelihood can be written as

π(ZZZ | ỸYY ,η, SSSe, SSSp) =
∑

ỸYY∈{0,1}N

[
J∏

j=1

{
S
Zj

ej (1− Sej)
1−Zj

}Z̃j
{
(1− Spj)

Zj S
1−Zj

pj

}1−Z̃j

×
N∏
i=1

g(ηi)
Ỹi{1− g(ηi)}1−Ỹi

]
, (2)

where ZZZ collects all the Zj’s, ỸYY collects all the Ỹi’s, η collects the ηi = ψ0(ui)+
∑p

d=1 xidψd(ui)+∑L
ℓ=1 rℓ(i)γℓ for i = 1, . . . , N , SSSe = (SSSe1, . . . , SSSeJ)

⊤ and SSSp = (SSSp1, . . . , SSSpJ)
⊤. Notably, the

summation in the right-hand side of (2) is numerically infeasible when N is considerably

large, whereas a two-step data augmentation procedure will be introduced to circumvent

this issue and thus facilitates a computationally feasible posterior algorithm.

2.2 Variable selection preliminaries

Our variable selection procedure aims to regularize the modeling fitting and mitigate possible

overfitting. The procedure classifies each ψd(·) in (1) into one of three categories (similar as

in Reich et al., 2010; Cai et al., 2013). To be more specific, we rewrite

ψd(u) = δ1d{αd + δ2dβd(u)} (3)

where δ1d ∈ {0, 1} and δ2d ∈ {0, 1} denote binary inclusion indicator variables for the main

fixed effect αd and the age-varying effect βd(·) of the dth covariate, respectively. Under

this construction, we consider three scenarios. (i) Insignificant : ψd(u) = 0; i.e., the dth

covariate should be excluded from the model, or equivalently, δ1d = 0. (ii) Significant but

age-independent : ψd(u) = αd; i.e., δ1d = 1 and δ2d = 0 and we estimate αd. (iii) Significant

and age-varying : ψd(u) = αd + βd(u); i.e., δ1d = δ2d = 1 and we estimate both αd and βd(u).
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Though we also write the main age effect ψ0(u) as in (3), we assume it does vary in age and

thus fix δ10 = δ20 = 1, a mild assumption that can be easily relaxed if needed. Furthermore,

for model identification, we require
∑N

i=1 βd(ui) = 0.

3. Data augmentation and prior solicitation

3.1 Data augmentation

The first step of our data augmentation method is to recast unobserved true statuses in

Ỹ = (Ỹ1, . . . , ỸN)
⊤ as latent random variables. The second step follows Polson et al. (2013) to

introduce the latent variables ωi’s, aggregated as ω = (ω1, . . . , ωN)
⊤, for each of individuals,

where ωi’s independently follow a Pólya-Gamma (PG) distribution with parameters (1, 0),

denoted as PG(1, 0). Applying this two-step data augmentation procedure yields

π(ZZZ, ỸYY ,ω |η, SSSe, SSSp) ∝
J∏

j=1

{
S
Zj

ej (1− Sej)
1−Zj

}Z̃j
{
(1− Spj)

Zj S
1−Zj

pj

}1−Z̃j

× exp

{
−1

2

N∑
i=1

ωi(hi − ηi)
2

}
N∏
i=1

f(ωi | 1, 0) exp
{
(Ỹi − 0.5)2/(2ωi)

}
,

where hi = (Ỹi − 0.5)/ωi and f(· | 1, 0) denotes the density function for PG(1, 0). These

latent variables help us avoid the computational burden of summating 2N terms in (2) and

facilitate a simple and effective Bayesian inference for logistic regression models.

3.2 Prior for the SSVS process

The SSVS process is governed by the binary indicators, δ1d’s and δ2d’s. We set the prior of

(δ1d, δ2d) jointly by the following probability mass function,

π(δ1d, δ2d | θ1d, θ2d) =



1− θ1d, (δ1d, δ2d) = (0, 0),

θ1d(1− θ2d), (δ1d, δ2d) = (1, 0),

θ1dθ2d, (δ1d, δ2d) = (1, 1),

with the support S = {(0, 0), (1, 0), (1, 1)}. Herein, θ1d = Pr(δ1d = 1) is the probability

of including the dth covariate, while θ2d = Pr(δ2d = 1 | δ1d = 1) is the probability of
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including an age-varying effect of the dth covariate given its inclusion in the model. We

set the hyperparameters θ1d ∼ Beta(aθ1d , bθ1d) and θ2d ∼ Beta(aθ2d , bθ2d) independently for

d > 0. Our numerical studies have aθ1d = bθ1d = aθ2d = bθ2d = 1, corresponding to the

non-informative priors.

3.3 Priors for regression coefficients and other parameters

For αd, we set its prior by αd ∼ N (0, ξαd
). In practice, if there is no prior information

about αd, one can set ξαd
to be large (e.g., we used 50 in our analyses). For the age-varying

coefficients, βd(·)’s, we employ GPPs to estimate βd = {βd(u1), . . . , βd(uN)}⊤. Following

Banerjee et al. (2008), GPP involves specifying K̃ knots as (ũ1, . . . , ũK̃)
⊤ and first focuses

on β̃d = {βd(ũ1), . . . , βd(ũK̃)}⊤. The GPP assumes β̃d ∼ N (0, C̃CCd) independently for d =

0, 1, . . . , p. In the covariance matrix C̃CCd = τ−1
d R̃RRd, τd is the precision parameter, and R̃RRd

is the K̃ × K̃ correlation matrix, entries of which are specified using the Matérn function

(Gneiting et al., 2010). Under GPPs, we have βd related to β̃d through βd = EEEQQQdβ̃d where

EEE is an N ×K matrix and QQQd is K× K̃. Explanation of EEE and QQQd and the Matérn function

ρd(·, · | νd, ϕd), which depends on νd for smoothness and ϕd for the decay rate, can be

found in Web Appendix A. In our analyses, we set K̃ = 100, specify the prior for τd to be

Gamma(aτd , bτd) with aτd = 2 and bτd = 1, and set νd = 2 but learn ϕd from the data. For

the variance of the random effect, we set σ2 ∼ InverseGamma(aσ2 , bσ2) with aσ2 = 2 and

bσ2 = 1.

For the assay sensitivity and specificity, if Sej and Spj vary across j = 1, . . . , J , estimation

suffers from identifiability issues. Following McMahan et al. (2017), we assume there are

M assays or M pairs {(Se(m), Sp(m)) : m = 1, . . . ,M} to be estimated, where M is much

less than J . For example, our analysis in Section 5 considers M = 2 with Se(1) and Sp(1)

being the sensitivity and specificity of the assay on pooled specimens, respectively, while

Se(2) and Sp(2) are the ones on individual specimens (see another example in Section 6).
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Under this assumption, we let Mm = {j : Pj tested by the assay with (Se(m), Sp(m))} for

m = 1, . . . ,M . That is, Mm identifies all the testing outcomes that can help us estimate

(Se(m), Sp(m)). In our estimation, we set the priors of Se(m) and Sp(m) to be Beta(aSe(m)
, bSe(m)

)

and Beta(aSp(m)
, bSp(m)

), respectively, with aSe(m)
= aSp(m)

= bSe(m)
= bSp(m)

= 0.5 adhere to

Jeffreys priors (Gelman, 2009).

4. Posterior sampling

The proposed posterior sampling algorithm involves five steps. For ease of notation, let

Θ = {ỸYY ,ω, δ1, δ2,θ1,θ2,λ, τ ,ϕ,γ, σ
2, SSSe, SSSp} be the complete set of latent variables and

model parameters, where δ1, δ2, λ, τ and ϕ are the collections of all δ1d’s, δ2d’s, θ1d’s, θ2d’s,

λd = (αd, β̃
⊤
d )

⊤’s, τd’s and ϕd’s, respectively. In the following, we use the notation Θ−ϑ to

denote the subset of Θ excluding the element ϑ. Note that we only outline the five steps

below. A detailed version is included in the Web Appendix B.

Step 1: Sample latent random variables, ỸYY and ω. To sample Ỹi, we observe Ỹi | Θ−Ỹi
∼

Bernoulli {p∗i1/ (p∗i0 + p∗i1)} with p∗i0 and p∗i1 provided in Step 1(a) in the Web Appendix B.

Following the properties of the PG distribution (Polson et al., 2013), we can quickly sample

ωi | Θ−ωi
∼ PG(1, ηi).

Step 2: Sample binary inclusion indicators (δ1, δ2) and (θ1,θ2). For d > 0, sampling

(δ1d, δ2d) directly from its full conditional posterior distribution π(δ1d, δ2d | Θ−(δ1d,δ2d)) can

lead to an absorbing state in the Markov chain and ruin the posterior sampling. Instead, we

draw (δ1d, δ2d) from its the marginal posterior conditional distribution by firstly integrating

λd out. Routine algebra shows that

π
{
δ1d, δ2d | Θ−(δ1d,δ2d,λd)

}
∝ |Σd|1/2 exp

(
1

2
µ⊤

d Σdµd

)
× π(δ1d, δ2d | θ1d, θ2d), (4)

where µd and Σd are explicitly presented in Step 2(a) of the Web Appendix B. From (4),

we can sample each (δ1d, δ2d) ∈ S from their posterior probabilities accordingly. To sample
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θ1d and θ2d, one can obtain θ1d | δ1d ∼ Beta(aδ1d + δ1d, bδ1d + 1 − δ1d) and θ2d | δ2d ∼

Beta(aδ2d + δ2d, bδ2d + 1− δ2d).

Step 3: Sample regression coefficients. Given the values of (δ1d, δ2d), one can sample αd and

β̃d accordingly. To be more specific, if (δ1d, δ2d) = (0, 0), we set λd = 0 and hence αd = 0

and β̃d = 0; if (δ1d, δ2d) = (1, 0), we set β̃d = 0 and sample αd | Θ−λd
∼ N (µ∗

αd
, ξ∗αd

);

otherwise, one can observe λd | Θ−λd
∼ N (µd,Σd) from (4). Derivations for µ∗

αd
, ξ∗αd

are

provided in Step 3(a) in the Web Appendix B. To sample τd, one can obtain τd | Θ−τd ∼

Gamma(aτd + K̃/2, bτd + β̃⊤
d R̃RR

−1

d β̃d/2). For ϕd, we follow the Metropolis-Hastings algorithm

(Algorithm S.1) in Web Appendix B.

Step 4: Sample random effects. To sample γℓ, one can derive that γℓ | Θ−γℓ ∼ N (µγℓ , σ
2
γℓ
)

given γℓ ∼ N (0, σ2). Derivations for µγℓ , σ
2
γℓ

are provided in Step 4(a) in the Web Appendix

B. For σ2, we update σ2 | Θ−σ2 ∼ InverseGamma(aσ2 + L/2, bσ2 +
∑L

ℓ=1 γ
2
ℓ /2).

Step 5: Sample assay accuracy probabilities.Given the beta priors Se(m) ∼ Beta(aSe(m)
, bSe(m)

)

and Sp(m) ∼ Beta(aSp(m)
, bSp(m)

), the conditional posterior distributions are Se(m) | ZZZ, ỸYY ∼

Beta(a∗Se(m)
, b∗Se(m)

) and Sp(m) | ZZZ, ỸYY ∼ Beta(a∗Sp(m)
, b∗Sp(m)

), where a∗Se(m)
= aSe(m)

+
∑

j∈Mm
ZjZ̃j,

b∗Se(m)
= bSe(m)

+
∑

j∈Mm
(1− Zj)Z̃j, a

∗
Sp(m)

= aSp(m)
+
∑

j∈Mm
(1− Zj)(1− Z̃j), and b

∗
Sp(m)

=

bSp(m)
+
∑

j∈Mm
Zj(1− Z̃j).

5. Simulation

5.1 Data generation

To evaluate our method, we design a simulation study that replicates key aspects of the

SHL group testing data. We create a clinic network with L = 64 sites and generate infection

statuses for N individuals, who are uniformly distributed among these clinics. The true

infection statuses Ỹi’s are generated following the model below:

logit
{
Pr

(
Ỹi = 1 | ui, xxxi

)}
= ψ0(ui) +

6∑
d=1

xid {αd + βd(ui)}+
L∑

ℓ=1

rℓ(i)γℓ.
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Herein, γℓ ∼ N (0, σ2) with σ = 0.5, for ℓ = 1, . . . , L, are independent random effects.

To mimic the covariates pattern in the SHL dataset, we simulate the age variable ui ∼

Uniform(−3, 3) with rounding to the nearest hundredth and set xxxi = (xi1, xi2, xi3, xi4, xi5, xi6)
⊤,

where xi1 ∼ N (0, 1), and xi2 to xi6 each following Bernoulli(0.5). The true value of α is

(α0, α1, . . . , α6)
⊤ = (−3.5,−1.0, 0.5,−0.5, 0.5, 0, 0)⊤. To evaluate our variable selection, we

set β1(u), β3(u), β5(u), β6(u) to be zero, and model β0(u), β2(u), β4(u) as smooth age-

varying functions. We consider two model sets for these age-varying coefficients to cover

various non-linear patterns:

M1 :



β0(u) = sin(πu/3)

β2(u) = u3/8

β4(u) = −u2/4 + 3/4

M2 :



β0(u) = −0.5 exp{− sin(u)}+ 0.64

β2(u) = 0.3x2 + sin2(u/3)− 0.9

β4(u) = Φ(u)− 0.5

where Φ(·) is the cumulative distribution function of N (0, 1). To be consistent with the real

data application, the carefully designed parameters above maintain an approximately 9%

disease prevalence. In summary, our generating model emphasizes estimating and selecting

two significant but age-independent effects (α1, α3), three age-varying effects {β0(·), β2(·),

β4(·)}, and two insignificant effects (α5, α6).

We considered the two-stage array testing (AT) algorithm proposed in Phatarfod and

Sudbury (1994) in addition to the Dorfman testing (DT) employed at SHL. The DT algorithm

randomly assigns individuals to non-overlapping pools of size c, while the AT algorithm

randomly assigns them to size c×c arrays. In AT, the initial stage involves mixing specimens

in rows and columns to create row and column pools, which are subsequently tested. In the

second stage, specimens with a higher likelihood of being positive (e.g., individuals at the

intersection of positive rows and columns) undergo individual retesting (more details are

referred to Kim et al., 2007).

When generating the testing outcomes Zj, we consider two assays (i.e., M = 2). The
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pool responses under each protocol are simulated using the first assay with Se(1) = 0.95

and Sp(1) = 0.98. Individual tests/retests are simulated using the second assay with Se(2) =

0.98 and Sp(2) = 0.99. In short, for any Pj, Sej = I(|Pj| > 1)Se(1) + I(|Pj| = 1)Se(2) and

Spj = I(|Pj| > 1)Sp(1) + I(|Pj| = 1)Sp(2). The testing response on Pj is generated by

Zj | Z̃j ∼ Bernoulli{SejZ̃j + (1− Spj)(1− Z̃j)}, where Z̃j = maxi∈Pj
Ỹi.

We have simulated data for each combination of the sample size (N = 3000 or N = 5000),

the model setting (M1 or M2), the pool size (c = 5 or c = 10), and the testing protocol (DT or

AT). For comparative reasons, individual testing (IT) is also implemented. The entire process

has been repeated 500 times to assess the performance of our methodology comprehensively.

In our estimation, our proposed algorithm draws 15000 iterations, with every 5th iteration

retained after a burn-in of 5000 samples. These numbers were chosen to ensure consistent

mixing and convergence, as verified by trace plots. In each replication, we estimate ψd(·)’s,

σ2, Se(m)’s, and Sp(m)’s using the respective posterior medians.

5.2 Results

In this section, we present the outcomes for M1 with N = 5000, while results for other

scenarios are provided in Web Appendix C. Figure 1 summarizes our 500 posterior median

estimates of the regression coefficient functions, ψd(·) for d = 0, 1, . . . , 6. When ψd(·) ̸= 0, our

method well estimates these coefficients, whether they vary with u (d = 0, 2, 4) or remain

constant (d = 1, 3). Notably, the pointwise median of the 500 ψd(u) estimates (depicted

with dashed lines) closely aligns with the true values (represented by solid lines), exhibiting

minimal bias where present, while the pointwise equal-tailed 95% credible bands accurately

envelop the true curves across the entire support. It’s reassuring to observe that the width

of credible bands remains almost constant. When ψd(·) = 0 for d = 5 or 6, it is promising to

see that the median line and 95% credible bands are unified to be exactly 0, indicating our
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method’s success in identifying the insignificant covariates. Further evidence of the efficacy

of our variable selection method is demonstrated in Table 1.

[Figure 1 about here.]

Table 1 first summarizes the performance of our SSVS process. For evaluation, we consider

the inclusion probability (IP) of the dth covariate; i.e., Pr(δ1d = 1). Since δ2d is binary, this

probability can be written as the summation of two: (i) IPF, the inclusion probability of

the fixed effect αd but not the varying effect βd(u), which is Pr(δ1d = 1, δ2d = 0); (ii) IPV,

the inclusion probability of the varying effect βd(u), which is Pr(δ1d = 1, δ2d = 1). We note

that IP is the summation of IPF and IPV. All these probabilities can be estimated using

the respective posterior means in each simulation. We report the averages of these estimates

from our 500 replications in Table 1 for d > 0.

[Table 1 about here.]

When ψd(·) = 0, the dth covariate is insignificant to the model, meaning Pr(δ1d = 1) = 0.

Hence, IP should be close to 0, as evident in Table 1 for d ∈ {5, 6}. Conversely, when ψd(·) ̸=

0, we have two cases: (i) significant but age-independent as ψd(u) = αd, where IPF should

be close to 1 while IPV approaches 0; (ii) significant and age-varying as ψd(u) = αd+βd(u),

where IPF should be close to 0 while IPV approaches 1. In Table 1, these patterns are evident

for d ∈ {1, 3} and d ∈ {2, 4}, underscoring the effectiveness of our SSVS approach.

For d ∈ {1, 3}, it’s notable that ψd(u) reduces to a single value αd . In addition to σ, Se(m)’s,

and Sp(m)’s, Table 1 summarizes our estimates of these parameters across all considered

testing protocols. However, we lack results for estimating Se(m)’s and Sp(m)’s under IT since

they are not identifiable in this scenario. Examination of these summary statistics reveals

minimal to no bias in the estimates, close agreement between SSDs and ESEs, and mostly

nominal CP95s. These observations further underscore the inferential capabilities of our

method.
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Finally, we’d like to discuss the testing protocols. The last row of Table 1 indicates that

both DT and AT achieve significant cost reductions (28%–41%) compared to IT, without sac-

rificing estimation accuracy as both DT and AT protocols at c = 5 or c = 10 exhibit minimal

variability and comparable estimation performance to IT. These trends are also evident in

the results presented in Web Appendix C. In conclusion, our comprehensive simulation study

demonstrates that the proposed group testing method is capable of identifying significant age-

independent, significant age-varying, and insignificant covariates while achieving comparable

performance to IT of adeptly capturing nonlinear patterns and accurately estimating other

model parameters but with great cost-savings.

6. Application

We now apply our method to the SHL chlamydia dataset. This data was obtained from

screening N = 13862 females over L = 64 clinics throughout Iowa in 2014. The screening

involved both individual testing and group testing. The individual testing was conducted on

all 4316 urine specimens and 416 swab specimens. The remaining 9130 swabs were tested

in pools following the DT algorithm. In the group testing part, it tested 2286 swab master

pools (2273 pools of size 4, 12 of size 3, and 1 of size 2) with additional retests in resolving

positive pools.

In addition to all the testing outcomes, the dataset also contains covariates for each

participant, denoted by ui and xxxi = (xi1, xi2, xi3, xi4, xi5, xi6, xi7, xi8)
⊤ for i = 1, . . . , N .

Specifically, ui denotes the ith female’s age and all xid’s are binary: xi1 = 1 for Caucasian

participants (and 0 otherwise), xi2 = 1 if a new sexual partner was reported in the last 90

days (and 0 otherwise), xi3 = 1 if multiple partners were reported in the last 90 days (and

0 otherwise), xi4 = 1 if the subject had contact with a partner reporting any STD in the

previous year (and 0 otherwise), xi5 = 1 if the patient experienced symptoms of infection

such as painful urination/intercourse (and 0 otherwise), xi6 = 1 the female experienced
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symptoms associated with a friable cervix such as painful intercourse or frequent spotting

(and 0 otherwise), xi7 = 1 if the subject experienced the cervicitis, the inflammation of

the cervix (and 0 otherwise), and xi8 = 1 if the patient has been diagnosed with the pelvic

inflammatory disease (PID), an infection of the female reproductive organs (and 0 otherwise).

To explore whether the association between the p = 8 covariates (especially race) and

chlamydia infection risk varies with age, we fit the following model,

logit
{
Pr

(
Ỹi = 1 | ui, xxxi

)}
=ψ0(ui) +

8∑
d=1

xidδ1d{αd + δ2dβd(ui)}+
L∑

ℓ=1

rℓ(i)γℓ,

for i = 1, 2, . . . , N , where Yi is the ith female’s true (latent) infection status, ψ0(·) =

α0 + β0(·) captures the main age-varying effect (or the intercept term), and for d > 0,

δ1d{αd + δ2dβd(·)} = ψd(·) depicts the dth covariate’s age-varying effect with (δ1d, δ2d)

classifying ψd(·) as either significant age-independent, significant age-varying, or insignificant.

The random effects γℓ’s follow N (0, σ2) independently and account for possible spatial

heterogeneity across the 64 clinic sites, and rℓ(i) = 1 if ith individual specimen was collected

at the ℓth clinic.

In our model fitting, different sensitivity and specificity parameters are used to account

for the testing errors on different specimens. More specifically, we denote by Se(1) and Sp(1),

respectively, the sensitivity and specificity of the test on the individual swab specimens. For

the individual test on the urine specimens, they are denoted by Se(2) and Sp(2), and for the

test on pooled swab specimens, we use Se(3) and Sp(3). This formulation accounts for nuances

in assay performance, considering the differences between urine and swab specimens and the

distinction between individual and pooled tests. In our analysis, all prior specifications are

aligned with those detailed in Section 3. For comparison, we also fit the model without our

SSVS process; i.e,

logit
{
Pr

(
Ỹi = 1 | ui, xxxi

)}
=ψ0(ui) +

8∑
d=1

xidψd(ui) +
L∑

ℓ=1

rℓ(i)γℓ.
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In the posterior sampling of both models, we discarded the first 5000 draws for MCMC

convergence and retained every 50th sample from the subsequent 20000 iterations.

The posterior mean estimate of the standard deviation, σ, of the random effect is 0.426

with a 95% highest posterior density (HPD) credible interval of (0.313, 0.545). This indicates

that the random effect is strongly significant, providing clear evidence of heterogeneity across

clinics statewide. This result reinforces earlier findings from Chen et al. (2009) and Joyner

et al. (2020). Regarding the six assay accuracy probabilities, our findings align with those

reported in McMahan et al. (2017) and Liu et al. (2021) and are thus presented in Web

Table S.4 in Web Appendix D.

[Figure 2 about here.]

We now turn our attention to the regression coefficients. We start with the estimates

of the main age effect ψ0(u) that are summarized in Figure 2. The left and right panels

present estimates of ψ0(u) without and with SSVS, respectively. Therein, solid lines depict the

pointwise posterior mean estimates of the curve, while shaded areas represent the pointwise

95% HPD credible bands. The age-axis has the ages of all female individuals as dots,

accompanied by a (rescaled) histogram illustrating the distribution of these ages. Upon

comparison, it becomes evident that although our SSVS regularizes the other covariates, it

still benefits the estimate of ψ0(u). Notably, the credible band on the right is much narrower

than that on the left, highlighting the non-linear trend in the estimates of ψ0(u). It’s worth

mentioning that this non-linear pattern is similar to the one identified by the generalized

partially linear additive model in Liu et al. (2021), which highlights a peak in infection risk

around the age of 18, alongside a noticeable rise in risk for individuals aged 50 and above. We

acknowledge that the non-linear patterns observed in the age groups 5–13 and 45–70 offer less

informative insights compared to the age range 13–45, likely due to the limited availability

of data near those boundaries, a phenomenon commonly known as the boundary effect in
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nonparametric estimation. The peak around 18 is more informative and aligns closely with

CDC screening recommendations for chlamydia in sexually active females aged 24 or younger

(CDC, 2021).

[Figure 3 about here.]

For covariates, x1, . . . , x8, we categorize them into three groups based on the SSVS outputs.

Those with an estimated IP ⩽ 0.1 are considered insignificant covariates. We choose 0.1

as the threshold for two reasons: (1) it’s a commonly used significance level in standard

statistical hypothesis testing, and (2) we would rather be a bit conservative than overlook

any significant covariates. Based on this criteria, the insignificant covariates identified are x5,

x7, and x8, with IPs of 0.074, 0.017, and 0.029, respectively. Figure 3 provides a summary

of these estimates. In the case of ψ7(·) and ψ8(·), the figures on the left (without SSVS)

present non-linear estimates but with a wide 95% HPD credible band covering zero across all

ages. Unsurprisingly, SSVS regularization precisely sets them to zero. In the corresponding

figures, both the posterior mean estimate and the 95% HPD credible intervals have been

unified to the zero horizontal line, providing compelling evidence that PID or cervicitis does

not significantly associate with chlamydia infection risk. Similarly, x5 (symptoms) is also

deemed insignificant, indicating that the presence of symptoms does not impact the risk of

chlamydia infection. This aligns with expectations, as chlamydia infections frequently occur

without symptoms yet can still attack a woman’s reproductive system. Moreover, the SSVS

credible band of ψ5(u) becomes slightly larger between ages 15 and 22 compared to other

age groups, likely due to this age range being the most vulnerable period to chlamydia.

[Figure 4 about here.]

Those covariates with estimated IP > 0.1 and IPV ⩽ 0.1 are considered significant age-

independent. This category includes x2, x3, x4, x6, with IP = 0.979, 0.524, 1.000, 0.979 and

IPV = 0.071, 0.017, 0.039, 0.075, respectively. The corresponding estimates are summarized
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in Figure 4. Again, employing SSVS results in substantially narrower credible bands com-

pared to analyses without SSVS. All posterior mean estimates, with a majority of their

credible bands, remain above zero, suggesting that chlamydia risk escalates with factors such

as having contact with STDs (x2 = 1), acquiring a new sexual partner (x3 = 1), engaging in

multiple partnerships (x4 = 1), or experiencing a friable cervix (x4 = 1). This finding aligns

with known epidemiological trends of chlamydia (LeFevre and USPSTF, 2014).

[Figure 5 about here.]

Covariates exhibiting estimated IP > 0.1 and IPV > 0.1 are considered significant age-

varying. In this analysis, only race (x1) falls into this category, with IP = 0.94 and IPV =

0.339. With the implementation of SSVS, the posterior mean estimate of ψ1(u) displays

reduced fluctuation along with a narrower credible interval in Figure 5 as expected. A

particularly intriguing discovery emerges within the age bracket of 11 to 23. Within this

range, there are 7571 females, constituting approximately 54.6% of the sample size, and the

SSVS estimate of ψ1(u), along with its credible band, is consistently negative throughout

this span. This suggests that individuals who are non-Caucasian (x1 = 0) between the ages

of 11 and 23 exhibit greater vulnerability compared to people who are Caucasian (x1 = 1),

with this discrepancy gradually diminishing after age 25. This finding closely aligns with

results reported in Chambers et al. (2018). We believe that this finding not only highlights

the crucial need for utilizing varying-coefficient models when analyzing group testing data

but also prompts policymakers to consider the age-varying racial disparity in developing

interventions and prevention strategies for better chlamydia control and management.

7. Discussion

This article introduces a Bayesian varying-coefficient model tailored for group testing data,

enabling regression coefficients to vary with a chosen covariate, estimating unknown test
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accuracies, and providing an option for integrating spatial random effects. The model uti-

lizes GPP prior distribution to estimate these varying coefficients. To ensure informative

inference, we employ the SSVS process for regularization and categorize covariates into three

groups. Through careful data augmentation, we develop a computationally efficient posterior

sampling algorithm. Simulation results consistently demonstrate the method’s effectiveness

in estimating regression parameters and performing variable selection. These techniques are

applied to analyze SHL group testing data from Iowa’s chlamydia screening, revealing an

intriguing age-varying pattern in the racial disparity of the disease.

As previously discussed in Liu et al. (2021), it’s important to acknowledge that the

chlamydia dataset analyzed here wasn’t obtained from a random sample of Iowa females.

Rather, it may be considered representative of the “highest-risk” residents. This aspect

should be taken into account when interpreting the outcomes of our data analysis. However,

this characteristic neither undermines the significance of our study’s contribution nor restricts

the applicability of our method to a random sample if one is available.

Future directions within this research line involve exploring more flexible approaches to

modeling the varying coefficients. For instance, one could expand upon Bayesian additive

regression trees (BART) (Chipman et al., 2010) to estimate these coefficients. BART offers

greater flexibility compared to GPP priors, allowing for the capture of discontinuously

varying functions and automatic determination of covariate importance for variable selection.

Another possibility is to use Dirichlet processes (DP) (Gelfand et al., 2005; Cai et al., 2013)

for age-varying coefficients, alleviating biases associated with the normality assumption of

age-varying coefficients inherent in GPP. Furthermore, one could explore the development of

a multivariate varying coefficient model (Reich et al., 2010; Zhu et al., 2012), in which, each

coefficient is a function of both age and race, facilitating more flexibility in understanding

racial disparities. Regarding testing accuracies, another avenue for investigation could be to
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address the dilution effect in testing errors, where testing sensitivity might decrease when

pooling a positive specimen with multiple negative ones. Previous work by Wang et al. (2015)

may provide valuable insights in this regard. Lastly, there is potential to extend this work

by developing joint varying-coefficient modeling methods that incorporate testing responses

from multiplex assays. These assays, which test for multiple diseases simultaneously, have

gained popularity among many public health labs.
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Figure 1. Simulation results for model M1 with sample size N = 5000, c ∈ {5, 10} under
both DT and AT protocols. Each subfigure features a solid curve for the true value of the
varying coefficient (Truth), a dashed curve for the pointwise median of the 500 posterior
median estimates (Median), and a gray-shaded area for the equal-tailed 95% credible band
(95% CB) with the lower and upper bounds being the 2.5% and 97.5% pointwise quantiles
of the 500 posterior median estimates. Results for IT are also presented as a reference.
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Figure 2. Iowa chlamydia data: the main age effect. Each subfigure displays the pointwise
posterior mean (Mean) estimates and the pointwise 95% HPD credible band (95% HPD).
The zero reference line is dashed. All the females’ ages are plotted in dots and summarized
in a (rescaled) histogram on the age-axis.
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Figure 3. Iowa chlamydia data: insignificant covariates. Each subfigure displays the
pointwise posterior mean (Mean) estimates and the pointwise 95% HPD credible band
(95% HPD). The zero reference line is dashed. All the females’ ages are plotted in dots and
summarized in a (rescaled) histogram on the bottom age-axis. With SSVS, the estimated
IP, IPF, and IPV are also provided.
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Figure 4. Iowa chlamydia data: significant and age-independent covariates. Each subfigure
displays the pointwise posterior mean (Mean) estimates and the pointwise 95% HPD credible
band (95% HPD). The zero reference line is dashed. All the females’ ages are plotted in dots
and summarized in a (rescaled) histogram on the bottom age-axis. With SSVS, the estimated
IP, IPF, and IPV are also provided.
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Figure 5. Iowa chlamydia data: the significant and age-varying covariate. Each subfigure
displays the pointwise posterior mean (Mean) estimates and the pointwise 95% HPD credible
band (95% HPD). The zero reference line is dashed. All the females’ ages are plotted in dots
and summarized in a (rescaled) histogram on the bottom age-axis. With SSVS, the estimated
IP, IPF, and IPV are also provided.
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