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Abstract—We consider lossy compression of an information
source when decoder-only side information may be absent. This
setup, also referred to as the Heegard–Berger or Kaspi problem,
is a special case of robust distributed source coding. Build-
ing upon previous works on neural network-based distributed
compressors developed for the decoder-only side information
(Wyner–Ziv) case, we propose learning-based schemes that are
amenable to the availability of side information. We find that our
learned compressors mimic the achievability part of the Heegard–
Berger theorem and yield interpretable results operating close to
information-theoretic bounds. Depending on the availability of
the side information, our neural compressors recover character-
istics of the point-to-point (i.e., with no side information) and the
Wyner–Ziv coding strategies that include binning in the source
space, although no structure exploiting knowledge of the source
and side information was imposed into the design.

I. INTRODUCTION

Imagine a distributed sensor network consisting of indi-
vidual cameras positioned across various locations within a
city, each independently capturing images of its surroundings.
In this scenario, each sensor node compresses and sends its
correlated image to a central processing unit, which then
combines them to generate a comprehensive visual map of the
city. However, direct communication among sensors is often
infeasible, and unreliable channels (e.g., due to fading) may
further hinder communication. This poses a key question: How
can we leverage the correlation among sensor data in a robust
manner, preventing a system failure when some nodes cannot
transmit their observations? In this work, we take a first step
on addressing the link failure scenario, where the decoder may
not receive some correlated sensor data.

Distributed source coding (DSC) refers to the task of
efficiently compressing information from physically separated
encoders. Wyner and Ziv (WZ) [1] examined a simple lossy
distributed compression case where the decoder has access to
a correlated source, known as the side information, losslessly.
WZ theorem relies on joint typicality and random binning ar-
guments, and is non-constructive. Although the theory of DSC
predicts substantial improvements in compression efficiency
compared to the point-to-point setups [2], developing practical
distributed compressors operating in the finite blocklength
regime remains a challenging open problem to date. Recent
work on learned Wyner–Ziv compressors [3], [4] showed
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Fig. 1: Lossy source coding when side information may be absent,
also known as the Heegard–Berger or the Kaspi problem.

binning-like behavior for the quadratic-Gaussian sources. Ad-
ditionally, practical models employing neural networks to
compress high-dimensional source data for distributed stereo
image compression [5], [6] and for distributed task-aware
image compression have been proposed [7].

An interesting question is whether it is still possible to
achieve a reconstruction with non-trivial distortion when side
information fails to reach the decoder in the WZ setup.
An equivalent formulation of this problem containing two
decoders, one with side information and the other without,
is illustrated in Fig. 1. Heegard and Berger (HB) [8] fully
characterized the asymptotic rate–distortion (R-D) function
for the quadratic-Gaussian case of Fig. 1, and also consid-
ered scenarios when different side information is available
at several decoders. In [9], Kaspi also established the R-D
function when side information is available at both encoder
and decoder. Intuitively, one can improve the robustness of
a WZ coding system against the absence of side information
by reducing the number of codewords in each bin. Such an
approach yields a trade-off between compression efficiency
and system robustness, encapsulating the essence of the robust
DSC scheme developed by Ishwar et al. [10].

Recent studies in [3], [4], [11] have demonstrated that
learning-based WZ compressors can recover different types
of interpretable random binning mechanisms without any
specific structure being imposed onto the design. These results
offer empirical evidence that learned distributed compressors
can achieve competitive constructive solutions in the non-
asymptotic blocklength, closely resembling those of hand-
crafted frameworks such as DISCUS [12], without requiring
a priori knowledge of source statistics. In these learned WZ
compressors, the encoder sends the bin index, and the decoder
infers the quantization index with the help of the side informa-
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tion. Finally, the decoder reconstructs the source by utilizing
the deduced quantization index and the side information,
according to the distortion criterion. In their current form,
it is not clear whether these learned WZ compressors can
effectively adapt to the unavailability of side information.

Expanding on the learned WZ compressors [3], [4], [11],
in this paper we find constructive solutions for the non-
asymptotic regime of the HB problem where side information
may be absent, by leveraging universal function approximation
capabilities of artificial neural networks (ANNs) [13], [14].
Similar to [3], [4], [11], our focus is on the one-shot regime,
where each source realization is compressed one at a time,
as in popular ANN-based image compressors [15], [16]. We
present three unique solutions for the HB problem, where we
either jointly address the quantization and binning components
(Figs. 2a and 2b) or alternatively, adopt a two-step approach
that involves a learned quantizer coupled with an ideal Slepian-
Wolf (SW) coder (Fig. 2c).

The paper is organized as follows. We first give an overview
of HB theorem, detailing the achievability result (Section II-A)
and the quadratic-Gaussian setup we consider (Section II-B).
To define training objectives for the proposed robust schemes,
we minimize upper bounds on mutual information. These are
formulated using one of three probabilistic models employing
ANNs, which can also interpreted as operational robust dis-
tributed schemes (Section III). Finally, we discuss empirical
results (Section IV) and conclude the paper (Section V).

II. HEEGARD–BERGER PROBLEM SETUP

A. General setting

Let (X,Y ) be a pair of random variables with joint distribu-
tion p(x, y) defined on the product alphabet X ×Y , where X
and Y represent the source and decoder-only side information,
respectively. As shown in Fig. 1, the encoder wishes to
describe the source X to two decoders, an uninformed and
an informed one, with the latter having access to the side
information Y . The first decoder reconstructs X̂1 in a point-to-
point fashion while the second decoder reconstructs X̂2 with
the help of the side information Y , under distortion metrics
di : X ×X̂i → R≥0 where X̂i are the reconstruction alphabets
for i ∈ {1, 2}. The goal is to find the minimum achievable rate
under two expected distortion constraints: E[di(x, x̂i)] ≤ Di

for some Di ≥ 0. In the asymptotic blocklength regime, where
we consider joint compression of n i.i.d. source samples as
n → ∞, the following theorem by Heegard and Berger [8]
characterizes the optimal R-D function.

Theorem 1. (Heegard–Berger Theorem [8]) Let (X,Y ) be
a pair of random variables with joint distribution p(x, y),
representing the source and the correlated side information
respectively, and di : X×X̂i → R≥0 be single letter distortion
measures for i ∈ {1, 2}. The R-D function for X with side
information Y available only at one of the decoders is:

R(D1, D2) = min
p(w,u|x)

(I(X;W ) + I(X;U |Y,W )), (1)

where the minimization is over all conditional probability dis-
tributions p(w, u|x) such that there exists functions g1(W ) =
X̂1 and g2(W,U, Y ) = X̂2 satisfying the distortion constraints

E[d1(X, X̂1)] ≤ D1, E[d2(X, X̂2)] ≤ D2, (2)

and (W,U)−X − Y is a Markov chain.

We remark that the informed decoder encounters a WZ
problem [1] (cf. second mutual information term in Eq. (1)),
while the uninformed decoder is subjected to an ordinary
point-to-point R-D problem (cf. first mutual information term
in Eq. (1)).

Note that the HB theorem considers two distortion con-
straints as in Eq. (2). Alternatively, one can opt for a combined
weighted sum distortion constraint given as:

E
[
βd1(X, X̂1) + (1− β)d2(X, X̂2)

]
≤D, (3)

for some β ∈ [0, 1]. In this case, the asymptotically minimum
weighted distortion for a fixed rate is given as [17]:

D∗(R) = min
D1,D2:R(D1,D2)≤R

βD1 + (1− β)D2, (4)

where R(D1, D2) is given in Theorem 1. This weighted
distortion measure can also be conceptualized as having a β
probability of receiving no side information (see the discussion
in [17]). As will be seen in Section III, considering a combined
distortion constraint, such as the one in Eq. (4), simplifies the
learning procedure of HB compressors, and yet, still offers
valuable insights about how close they operate with respect to
the optimum.

B. Quadratic-Gaussian case
Similarly to the WZ R-D function [1], the HB formula

in Eq. (1) has a closed-form expression only in few special
cases [8]. To compare the performance of our learned dis-
tributed compressors to the asymptotic HB R-D function, we
consider a quadratic-Gaussian setup: Suppose Y = X + N ,
where N ∼ N(0, σ2

n) is independent from X ∼ N(0, σ2
x), and

the distortion metrics are di(x, x̂i) = (x− x̂i)
2 for i ∈ {1, 2}.

The analytical expression of R(D1, D2) for this case is given
as [8]:

R(D1, D2) =
1

2
log

(
σ2
x

∆1

)
+

1

2
log

(
σ2
n∆1

∆2(∆1 + σ2
n)

)
, (5)

where ∆1 = min(σ2
x, D1), ∆2 = min([1/∆1+1/σ2

n]
−1, D2).

The two terms of Eq. (5) respectively correspond to the two
mutual information terms given in Theorem 1. The first and
second expressions in Eq. (5) represent the rate required to
describe W and U under the distortion constraints of D1 and
D2, respectively. There are four operationally different R-D
regions depending on the value of the pair (D1, D2). When
D1 ≤ σ2

x and D2 ≥ D1σ
2
n

D1+σ2
n

, the second term in Eq. (5)
vanishes, and the problem degenerates into a standard point-
to-point lossy compression problem i.e., having only the first
decoder in Fig. 1. Similarly, when D1 ≥ σ2

x, and D2 ≤ D1σ
2
n

D1+σ2
n

the first term in Eq. (5) vanishes, and the problem degenerates
to the WZ coding problem i.e., having only the second decoder
in Fig. 1. When D1 ≥ σ2

x, and D2 ≥ D1σ
2
n

D1+σ2
n

, both terms



vanish, and the distortion constraints can be trivially satisfied
with zero rate. The most operationally interesting region arises
when D1 ≤ σ2

x and D2 ≤ D1σ
2
n

D1+σ2
n

. Here, both rate terms are
non-zero, forcing the encoder to allocate its total rate budget
between the point-to-point R-D problem of describing W and
the WZ R-D problem of describing U . In Appendix A, we
discuss the optimum weighted distortion outlined in Eq. (4)
for the quadratic-Gaussian setting we consider.

III. OPERATIONAL NEURAL HEEGARD–BERGER SCHEMES

For our learned compressors, we first consider the system
model in Fig. 2a, which corresponds to a straightforward
parametrization of the HB setup depicted in Fig. 1. Note that
in this case, a joint description is sent to both uninformed and
informed decoders, the latter having access to the side infor-
mation Y . By introducing the auxiliary variable V = (W,U),
we first assume that the encoder in the achievability proof of
HB theorem can be represented by a probability model pθ(v|x)
with parameters θ. This formulation, which we name as joint,
yields the following variational upper bound:

I(X;W ) + I(X;U |Y,W ) ≤I(X;U,W ) = I(X;V ), (6)

≤ E p(x)
pθ(v|x)

[
log

pθ(v|x)
qη(v)

]
, (7)

= Ep(x) rj(x), (8)

where qη(v), with parameters η, is a model of the distribution
p(v) ≜ p(w, u), which is generally not known in closed
form. rj(x) refers to the expectation in Eq. (7) with respect
to pθ(v|x). The proof of the upper bound in Eq. (6) can be
found in Appendix B. The upper bound in Eq. (8) follows
from cross-entropy [18] being larger or equal to entropy [2].

Next, we consider the system models illustrated in Figs. 2b
and 2c. In these schemes, we opt for a layered encoding
approach, aligned more closely with the HB theorem, where
we separately encode the auxiliary variables W and U with
probability models pω(w|x) and pγ(u|w, x) (with parameters
ω and γ), respectively. For our objective functions, building
onto Theorem 1, we will consider either a marginal or a
conditional formulation [3] whose variational upper bounds
respectively are:

I(X;W ) + I(X;U |Y,W ) ≤ E p(x)
pω(w|x)
pγ(u|w,x)

[
log

pω(w|x)
qζ(w)

+ log
pγ(u|w, x)
qψ(u|w)

]
= Ep(x) rm(x), (9)

I(X;W ) + I(X;U |Y,W ) ≤ E p(x,y)
pω(w|x)
pγ(u|w,x)

[
log

pω(w|x)
qζ(w)

+ log
pγ(u|w, x)
qµ(u|w, y)

]
= Ep(x,y) rc(x, y). (10)

where rm(x) and rc(x, y) refer to respective expectations in
Eqs. (9) and (10) with respect to pω(w|x) and pγ(u|w, x).
Here qζ(w) (with parameters ζ) is a model of the distribution
p(w), and qψ(u|w) and qµ(u|w, y) (with parameters ψ and
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Fig. 2: The three lossy compression systems that we consider: (a)
learned compressor sending a joint description for both decoders
using a classic entropy coder (i.e., the joint formulation, see Eq. (13)),
(b) learned compressors sending individual descriptions to both
decoders using classic entropy coders (i.e., the marginal formulation,
see Eq. (14)), and (c) using a combination of a classic entropy coder
and an ideal Slepian–Wolf coder (i.e., the conditional formulation,
see Eq. (15)). The learned parameters are indicated in green.

µ, respectively) are two different models of the distribution
p(u|w, y).

We will utilize these probabilistic models (i.e.,
pθ(v|x), pω(w|x) and pγ(u|w, x)) to aid in the learning
process of respective encoders. We set the encoder outputs in a
deterministic way, similar to [3], e.g., v = argmaxh pθ(h|x).
To actualize a practice-oriented compression setting, we
also set all encoder outputs (i.e., V , W , and U ) as discrete.
Similarly to [3], [4], [11], without loss of generality, we
define all probabilistic models as discrete distributions with
probabilities Pk = expαk∑K

i=1 expαi
for k ∈ {1, . . . ,K}, where

K is a model parameter. The unnormalized log-probabilities
(logits) are either directly treated as learnable parameters
(i.e., qη(v) and qζ(w)), or computed by ANNs as functions
of the conditioning variable (e.g., w and y for qµ(u|w, y)).
These design choices keep the parametric families as general
as possible without imposing any structure. Specifically, this
allows the encoders to learn, when needed, quantization



Fig. 3: Visualizations of the learned optimized encoders, w = argmaxh pω(h|x) and u = argmaxl pγ(l|w, x) in Eq. (9), and of the
decoders, x̂1 = gκ(w) and x̂2 = gι(w, u, y) in Eq (12), for the marginal formulation (see Fig. 2b and Eq. (14)). Left: The dashed vertical
red lines are quantization boundaries induced by w, and the codebook points represent the outputs of the decoder gκ to which all source
values within the corresponding quantization region are mapped. The height of each codebook stalk represents the likelihood of that code
vector under the entropy model qζ (see Eq. (9)). Right: The dashed horizontal red lines coincide with those depicted in the left panel induced
by w, while the dotted-dashed horizontal blue lines are quantization boundaries induced by u. The colors between each boundary represent
a unique (w, u) pair. We depict the decoding function learned by gι with the solid lines, each representing a different pair of (w, u) as
inputs within its respective quantization region, distinguished by unique colors. The experimental setup parameters (see Section II-B) are
configured as σ2

x = 1.00, σ2
n = 0.01 and β = 0.20. This model attains -15.55 dB at a rate of 2.85 bits (see Fig. 5 in Appendix E).

schemes that may incorporate discontiguous bins in the
source space, resembling the random binning operation in the
achievability part of the HB and WZ theorems. Previously, it
was demonstrated in [3], [4], [11] that a similarly parametrized
neural distributed compressor can learn different types of
interpretable binning mechanisms for the WZ problem, such
as periodic-like mappings for the quadratic-Gaussian case.

Since we focus on a weighted distortion metric (see Eq. (4)),
instead of having individual distortion constraints as is the case
for the HB theorem (see Section II), we define the following
distortion functions for the cases where there is either joint
(see Fig. 2a) or separate descriptions (see Fig. 2b and Fig. 2c)
to the decoders, respectively, as:

dj(x, y) = βd(x, gϕ(v)) + (1− β)d(x, gτ (v, y)), (11)
ds(x, y) = βd(x, gκ(w)) + (1− β)d(x, gι(u,w, y)), (12)

where gϕ(v) and gκ(w) denote the uninformed decoders,
represented by ANNs with parameters ϕ and κ respectively,
which yield x̂1. Similarly, gτ (v, y) and gι(u,w, y) correspond
to the informed decoders, represented by ANNs with param-
eters τ and ι respectively, which output x̂2. Building on the
upper bounds developed in Eqs. (8), (9) and (10) in tandem
with the distortion metrics defined in Eqs. (11) and (12),
this yields the loss functions for three different variants we
consider:

Lj(θ,η,ϕ, τ ) = E[rj(x) + λ · dj(x, y)], (13)
Lm(ω,γ, ζ,ψ,κ, ι) = E[rm(x) + λ · ds(x, y)], (14)
Lc(ω,γ, ζ,µ,κ, ι) = E[rc(x, y) + λ · ds(x, y)], (15)

where we relax the constrained formulation of the HB theo-

rem to unconstrained ones using Lagrange multipliers. Here,
{θ,η,ϕ, τ ,ω,γ, ζ,ψ,µ,κ, ι} are optimization parameters,
and λ > 0 controls the trade-off. We can obtain different
points in the achievable R-D region induced by the weighted
distortion constraint by simply varying the parameter λ. The
optimized pθ(v|x), pω(w|x) and pγ(u|w, x) models yield the
ANN-based encoders depicted in Fig. 2. Similarly, the opti-
mized

(
gϕ(v), gτ (v, y)

)
and

(
gκ(w), gι(u,w, y)

)
correspond

to a pair of uninformed-informed decoder components for joint
and separate description cases, respectively. We discuss the
operational meaning of these different schemes in Appendix C.

Following the popular class of neural compressors [15],
[16], [20], we use stochastic gradient descent (SGD) to jointly
optimize all learnable parameters. Since SGD relies on a
Monte Carlo approximation of the expectations in the loss
functions, we use the Gumbel-max technique, as in previous
work [3], for sampling from discrete distributions. Similarly,
we also leverage Concrete distributions [21] to aid stochastic
optimization. Additional details about our experimental setup
are provided in Appendix D.

IV. DISCUSSION

We first consider a setting where the proposed neural
compressors clearly recover some elements of the optimal
theoretical solution for the lossy source coding problem where
side information may be absent. The visualization of the
learned compressor obtained with the marginal scheme (see
Fig. 2b) is provided in Fig. 3. As seen in the left panel of the
figure, the neural encoder pω quantizes the source in a manner



0 0.5 1 1.5 2 2.5

−25

−20

−15

−10

rate [bits]

ex
pe

ct
ed

di
st

or
tio

n
[d

B
]

neural scheme established with Lm

neural scheme established with Lj

neural scheme established with Lc

asymptotic R-D Heegard–Berger + 1.53 dB
asymptotic R-D Heegard–Berger

(a)

0 0.5 1 1.5 2 2.5

−30

−20

−10

rate [bits]

di
st

or
tio

n
[d

B
]

marginal formulation in [3] (β = 0)

asymptotic R-D point-to-point
asymptotic R-D Heegard–Berger (D2 only)
asymptotic R-D Wyner–Ziv + 1.53 dB
asymptotic R-D Wyner–Ziv

(b)

Fig. 4: Rate–distortion (R-D) performances obtained with joint, marginal and conditional formulations (see Eqs. (13), (14) and (15)), where
experimental setup parameters (see Section II-B) are set as σ2

x = 1.00, σ2
n = 0.10 and β = 0.01. In both panels, we plot the empirical

results versus the asymptotic bounds. We provide the expected distortion achieved by two decoders (see Fig. 2) in the left panel, while we
only plot the distortion attained by the informed decoder, which has access to side information, in the right panel. The 1.53 dB refers to the
mean-squared error gap that the entropy-constrained one-shot lattice quantizer is subjected to in high-rate regime [19].

similar to standard point-to-point lossy compression. Looking
at the right panel of the figure, we remark that the discon-
tiguous quantization bins are learned as the neural compressor
exhibits periodic-like mappings in the source space, akin to the
binning-like behavior recovered by the neural WZ compressor
proposed in [3], [4], [11]. We note that this grouping behavior
is aligned with the achievability part of the HB theorem,
which yields a rate discount similar to the random binning
argument invoked in the WZ proof. The figure demonstrates
that this learned distributed compressor, formulated based on
the proposed marginal approach, exhibits a greater adaptability
to robust scenarios compared to the WZ compression case
previously explored in [3], [4], [11]. This is evident from
the model’s ability to recover both WZ and point-to-point
coding strategies, despite not imposing any explicit structure
exploiting the source knowledge onto the design. Although we
noticed similar behaviors persisting in different experimental
configurations other than the one considered in Fig. 3 for the
marginal variant, we did not observe such consistent binning-
like behavior in the visualizations of the compressors obtained
by the joint and conditional formulations (not shown). For
the conditional scheme, similar to the explanation in [3], we
posit that this is due to having an ideal SW coder in the
system design (see Fig. 2c), unlike the marginal variant (see
Fig. 2b). We speculate that this choice of entropy coding
scheme incentivizes the model to delegate the task of binning
solely to the ideal SW code, rather than to the learned encoder.

In Fig. 4a, we provide R-D performances achieved with
these three different formulations. The joint and marginal
variants achieve similar performances, whereas the condi-
tional model outperforms them, approaching the asymptotic
HB bound. We attribute the comparable performances of the
marginal and joint schemes to the operational equivalence
between having two layered descriptions managed by separate
classical entropy coders (see Eq. (9)) and having a single
classical entropy coder with the input being the unified de-

scription of these two representations (see Eq. (8)). We explain
the improved R-D performance of the conditional formulation
as follows. The SW code that this variant employs, which
may leverage high-dimensional channel codes (e.g., as in
DISCUS [12]), enables binning over long sequences, i.e., in a
multi-shot fashion. This type of compress-bin [22] is much
more efficient than the one that could be attained by the
learned encoder, which could only bin a one-shot manner as
it compresses each source realization one at a time. We refer
the reader to Appendix E for a discussion on an additional set
of experiments.

In Fig.4b, we illustrate the trade-off between system ro-
bustness and compression efficiency by evaluating distortion
attained only with the informed decoders of all three proposed
schemes, along with the learned WZ compressor proposed
in [3] (which operationally coincides with having β = 0
in Eq. (4), that is decoder-only side information is always
assumed to be available). Recalling that all three proposed
learned compressors are now also formulated to accommodate
scenarios where side information may be absent, which is
not the case for the learned WZ compressor studied in [3], a
decline in distortion is expected. Interestingly, the conditional
variant again surpasses all other learned schemes considered,
underscoring the efficiency of high-dimensional binning capa-
bility facilitated by the SW coder.

V. CONCLUSION

In this work, we have proposed three learning-based so-
lutions to the problem of lossy source coding when side
information may be absent, for which the optimal theoretical
solution is asymptotic and non-constructive. By explicitly
visualizing the behavior of the learned encoders and decoders,
we demonstrated that they recover schemes aligned with the
characteristics of the achievability of the HB theorem, that
is WZ and standard lossy source coding. Future research
directions include analyzing the robustness in fully distributed



compression scenarios. Another interesting direction is to
explore the performance of the models for more complex,
high-dimensional sources such as images.
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APPENDIX A
THE MINIMUM DISTORTION FOR EQ. (4)

When considering the weighted distortion metric as in Eq. (4) for the quadratic-Gaussian setup of the HB problem, the
minimum distortion is provided by [17]:

D∗(R) = βD∗
1 + (1− β)D∗

2 , (16)

where

D∗
1 =

[(
2−2Rσ2

xσ
2
n

1− β

β

)1/2

− σ2
n

]
[D−

1 ,D+
1 ]

,

D∗
2 =

[(
2−2Rσ2

xσ
2
n

β
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)1/2
]
[D−

2 ,D+
2 ]

.

Here, we used the notation [x][a,b] = min(max(a, x), b), and

D−
1 = 2−2Rσ2

x , D+
1 = σ2

x,
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2 = 2−2R
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1

σ2
x
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1
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22R

σ2
x

+
1

σ2
n

)−1

.

To further explain the above expressions, D−
1 represents the minimum achievable distortion for X̂1 when allocating the entire

rate R for the description of W , while D+
1 denotes the worst-case distortion attained for X̂1 when the entire rate is dedicated

to the description of U . Likewise, D−
2 and D+

2 are the minimum and maximum distortions for X̂2 achieved when the rate R
is utilized for U and W , respectively.

APPENDIX B
PROOF OF THE UPPER BOUND IN EQ. (6)

Building onto Theorem 1, we can re-write the second mutual information term in Eq. (1) as:

I(X;U |Y,W ) = I(U ;X,Y |W )− I(U ;Y |W ), (17)
= I(U ;X|W )− I(U ;Y |W ), (18)

where Eq. (17) follows from the chain rule for mutual information, and Eq. (18) is due to the Markov chain (W,U)−X −Y .
Then, Eq. (1) becomes:

I(X;W ) + I(X;U |Y,W ) = I(X;W ) + I(U ;X|W )− I(U ;Y |W ),

≤ I(X;W ) + I(U ;X|W ), (19)
= I(X;W,U), (20)
= I(X;V ), (21)

where Eq. (19) is due to the non-negativity of mutual information, Eq. (20) follows from the chain rule for mutual information,
and Eq. (21) is due to the definition of V = (W,U).

APPENDIX C
OPERATIONAL HEEGARD–BERGER COMPRESSORS ILLUSTRATED IN FIGS. 2A, 2B AND 2C

The upper bound in Eq. (8) corresponds to the compression rate of a system employing a one-shot encoder in the joint
model and an entropy code which asymptotically achieves a cross-entropy rate of

Ep(x)[Ev∼pθ(v|x)[− log qη(v)]]. (22)

Similarly, the upper bounds in Eqs. (9) and (10) coincide with the compression rates of designs having one-shot compressors
coupled with either classic entropy coders (i.e., the marginal model) or a combination of a classic entropy coder and an ideal
SW coder (i.e., the conditional model), respectively, which asymptotically achieve the cross-entropy rates of

Ep(x)[Ew∼pω(w|x),u∼pγ(u|w,x)[− log qζ(w)− log qψ(u|w)]], (23)

and

Ep(x,y)[Ew∼pω(w|x),u∼pγ(u|w,x)[− log qζ(w)− log qµ(u|w, y)]]. (24)

Therefore, by minimizing Lj, Lm, and Lc in Eqs. (13), (14) and (15), we optimize the robust operational distributed compression
schemes depicted in Figs. 2a, 2b and 2c, respectively, in an end-to-end fashion. We remark that unlike the neural WZ compressors
proposed in [3], [4], [11], the proposed distributed compressors illustrated in Fig. 2 can by design accommodate for scenarios
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Fig. 5: Rate–distortion (R-D) performances obtained with joint, marginal and conditional formulations (see Eqs. (13), (14) and (15)), where
experimental setup parameters (see Section II-B) are set as σ2

x = 1.00, σ2
n = 0.01 and β = 0.20. In both panels, we plot the empirical

results versus the asymptotic bounds. We provide the expected distortion achieved by two decoders (see Fig. 2) in the left panel, while we
only plot the distortion attained by the informed decoder, which has access to side information, in the right panel. The 1.53 dB refers to the
mean-squared error gap that the entropy-constrained one-shot lattice quantizer is subjected to in high-rate regime [19].

where decoder-only side information may be absent.

APPENDIX D
ADDITIONAL DETAILS ON EXPERIMENTAL SETUP

For the probabilistic models conditioned on other variables (e.g., pθ, qψ) and for the decoding functions (e.g., gϕ, gκ), we
employ ANNs with three dense layers. Each layer, except the last one, consists of 100 units followed by a leaky rectified
linear unit as the activation function. As for the other probabilistic model (i.e., qη and qζ), we directly treat them as learnable
parameters. In our experiments, we observed that increasing the dimensions of ANNs or employing different activation functions
did not lead to better performance. For probabilistic models and functions that have more than one input, we feed ANNs with
concatenated version of the inputs. We conduct our experiments using the JAX [23] framework. We train all learning-based
compressors for 500 epochs with randomly initialized network weights and utilize Adam [24], a widely used variant of SGD.
We employ a learning rate of 1× 10−4 and a batch size of B = 1024, which aligns with the number of realizations sampled
from the aforementioned correlation model in Section II-B. Similar to [3], we likewise choose qη(v), qζ(w), qψ(u|w) and
qµ(u|w, y) as Concrete during training to align the distributions of v, w and u samples.

APPENDIX E
ADDITIONAL EXPERIMENTS

Fig. 5a shows R-D results for all three different formulations we consider for the HB problem (i.e., joint, marginal and
conditional as explained in Section III), where we set experimental setup parameters as σ2

x = 1.00, σ2
n = 0.01 and β = 0.20

(see Fig. 3). In the asymptotic blocklength regime, under this choice of correlation model parameters, the optimal R-D trade-off
for the minimum expected distortion can be attained by operating in the point-to-point R-D region for all rate values (see
Section II-B and Appendix A for the discussion on different operational R-D regions). This implies that the optimal coding
strategy is to use the entire rate budget for the description of W . We remark that our learned distributed compressors emulate
this optimal approach. The joint and the conditional models (nearly) allocate all of their rates to the description of W , and
achieve R-D performance close to the asymptotic R-D bound. As in Fig. 4a, the compressors do not reach the asymptotic R-D
bound as they operate in a one-shot quantization regime in tandem with variable rate entropy coding. We observe that the
marginal model behaves similarly to the other schemes at low rates, but deviates from them at higher rate values. We speculate
that this occurs because, at higher rates, the marginal model, employing a layered encoding strategy, tends to allocate some
rate for the description of U , which may not be optimal given this specific choice of correlation model parameters.

Similar to the comparison shown in Fig. 4b, we illustrate in Fig.5b the trade-off between system robustness and compression
efficiency by evaluating distortions attained only with the informed decoders of all three proposed schemes, along with the
learned WZ compressor established in [3] (which operationally coincides with having β = 0 in Eq. (4), that is this learned
compressor always presume the presence of decoder-only side information). We observe that unlike the scenario depicted in
Fig.4b, all three variants exhibit inferior performance compared to this learned WZ compressor, primarily due to setting a
higher β value. Hence, given that all of the three learned schemes are trained to prioritize the uninformed decoder more than
the experimental setup considered in Fig. 4b, such a decrease in performance considering the WZ compression scenario is



anticipated. Moreover, the decline in distortion at higher rates for the marginal formulation illustrated in Fig. 5a is reflected as
a minor R-D enhancement in Fig. 5b. We hypothesize that this happens because, at higher rates, the marginal approach starts
allocating more rates to the description of U . On the other hand, this marginal scheme also seeks to minimize this rate budget
of U by recovering periodic-like mappings, akin to binning, at higher rate values as observed in the right panel of Fig. 3.
This, in return, results in a slightly improved distortion performance attained by the informed decoder, as shown in Fig. 5b.
We remark that the HB curve in Fig.5b shows the distortion attained by the informed decoder of the HB in Fig.5a which is
optimal for expected distortion. Since our learned compressors are trained for minimizing the expected distortion as well, the
HB curve in Fig.5b is not necessarily a lower bound for the distortions attained by the informed decoders of our models.
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