
SFVInt: Simple, Fast and Generic Variable-Length
Integer Decoding using Bit Manipulation Instructions

Gang Liao∗† Ye Liu Yonghua Ding Le Cai Jianjun Chen
∗ByteDance Infrastructure System Lab †University of Maryland College Park
gangliao@umd.edu {ye.liu, yonghua.ding, le.cai, jianjun.chen}@bytedance.com

Abstract
The ubiquity of variable-length integers in data storage and
communication necessitates efficient decoding techniques.
In this paper, we present SFVInt, a simple and fast approach
to decode the prevalent Little Endian Base-128 (LEB128) var-
ints. Our approach effectively utilizes the Bit Manipulation
Instruction Set 2 (BMI2) inmodern Intel andAMDprocessors,
achieving significant performance improvement while main-
taining simplicity and avoiding overengineering. SFVInt,
with its generic design, effectively processes both 32-bit and
64-bit unsigned integers using a unified code template, mark-
ing a significant leap forward in varint decoding efficiency.
We thoroughly evaluate SFVInt’s performance across vari-
ous datasets and scenarios, demonstrating that it achieves
up to a 2x increase in decoding speed when compared to
varint decoding methods used in established frameworks
like Facebook Folly and Google Protobuf.

1 Introduction
Variable-length integers (varints) play a crucial role in opti-
mizing space efficiency for integer data representation across
a wide range of systems and applications. From search en-
gines like Apache Lucene [10] and databases such as IBM
DB2 [5] and Apache Kudu [26], to columnar formats like
ORC [11] and Parquet [12], varints serve as a fundamen-
tal building block for compact data storage and processing.
The importance of varints extends beyond traditional data
management systems. They are extensively used in serial-
ization frameworks such as Google Protobuf [13] and the
WebAssembly binary encoding [7], highlighting their sig-
nificance in cross-platform data exchange and web-based
applications. Moreover, varints are an integral part of the
Go programming language’s default API [14], further em-
phasizing their widespread adoption across various critical
technological domains [6, 21–23].

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
DaMoN ’24, June 10, 2024, Santiago, AA, Chile
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0667-7/24/06.
https://doi.org/10.1145/3662010.3663439

Among the various varint encoding schemes, the Little En-
dian Base 128 (LEB128) [34] has emerged as a widely adopted
standard due to its optimal balance of space efficiency and
implementation simplicity. LEB128 encodes integers as a se-
quence of bytes, where the most significant bit of each byte
indicates whether more bytes follow, allowing for variable-
length representation. However, despite its space-saving ad-
vantages, the decoding process for LEB128 varints often
becomes a performance bottleneck in data-intensive applica-
tions. The unpredictable lengths of the encoded integers lead
to branch mispredictions and limit the opportunities for vec-
torization, hindering the overall efficiency of the decoding
process.
To address this challenge, we leverage the Bit Manipula-

tion Instruction Set 2 (BMI2) [2], a powerful set of instruc-
tions available in modern Intel [16] and AMD [4] CPUs.
BMI2 offers advanced bit manipulation capabilities that can
significantly accelerate the decoding of LEB128 varints. By
harnessing these instructions, we introduce SFVInt, a simple,
fast, and generic approach for varint decoding. SFVInt stands
out for its simplicity and performance. With just 500 lines
of code, our solution achieves up to a 2x speedup in decod-
ing compared to widely-used systems and libraries. SFVInt’s
generic design seamlessly handles both 32-bit and 64-bit un-
signed integers using a unified C++ template, enhancing its
versatility and maintainability. Our in-depth analysis high-
lights the critical role of BMI2 instructions in achieving this
substantial performance improvement. We demonstrate how
SFVInt strategically employs these instructions to extract and
manipulate the relevant bits from the encoded data, enabling
efficient decoding while minimizing branch mispredictions.

To the best of our knowledge, our work represents the first
comprehensive evaluation of BMI2 instructions in the con-
text of varint decoding, marking a significant advancement
in this field. By leveraging the powerful bit manipulation
capabilities offered by these instructions, we have achieved
a critical enhancement in the efficiency of varint decoding.
The implications of our research extend beyond the scope
of this paper, potentially influencing the design and perfor-
mance optimization of a wide range of data-intensive sys-
tems. Databases, network protocols, and big data frameworks
are just a few examples of the domains that can benefit from
the improved varint decoding performance brought forth by
our approach.

ar
X

iv
:2

40
3.

06
89

8v
3 

 [
cs

.D
B

] 
 1

4 
M

ay
 2

02
4

https://doi.org/10.1145/3662010.3663439


DaMoN ’24, June 10, 2024, Santiago, AA, Chile Gang Liao et al.

2 Background
2.1 Variable-Length Integers
Varints, or variable-length integers, are a method of encoding
integers using one or more bytes. They are widely adopted
in computing for their ability to optimize space usage. The
principal idea behind varints is to use a dynamic number of
bytes for representation, depending on the integer’s mag-
nitude. Smaller numbers consume fewer bytes, making this
method highly space-efficient for data that predominantly
consists of smaller integers.
Varint encoding, essential in data format optimization,

encompasses several schemes, including Group Varint [8],
Prefix Varint [8], and StreamVarint [18], each with its unique
characteristics. Among these, LEB128 stands out for its sim-
plicity and widespread adoption. LEB128 operates on a sim-
ple yet effective principle: it encodes an integer into a se-
quence of bytes, where each byte holds 7 bits of the integer
plus a continuation bit. This continuation bit indicates the
presence of subsequent bytes. In this scheme, the integer’s
least significant 7-bit group is positioned in the first byte, ad-
hering to the little-endian convention. Despite the existence
of more complex varint formats, LEB128’s simplicity makes
it a prevalent choice in various applications, underlining its
effectiveness in efficiently handling integer encoding.
The decoding process of LEB128 involves reading each

byte, extracting the 7 bits of the integer, and assembling them
to reconstruct the original integer. This process continues
byte by byte until a byte with the continuation bit set to 0 is
encountered, indicating the end of the encoded integer.
LEB128 decoding, a bottleneck in high-volume data pro-

cessing, faces challenges due to encoded integers’ unpre-
dictable lengths. This variability frequently leads to branch
mispredictions, exacerbating CPU overhead. The need for
per-byte decision-making during decoding amplifies this
issue, especially in large-scale or real-time processing en-
vironments. Addressing these inefficiencies is crucial for
optimizing LEB128’s decoding performance.

2.2 Bit Manipulation Instructions (BMI)
Bit Manipulation Instructions (BMI2) [2] are advanced CPU
instruction sets designed for efficient bit-level operations,
introduced with Intel’s Haswell architecture and adopted by
AMD. These instructions, including PDEP and PEXT, enable
faster and more effective manipulation of bits in registers or
memory. BMI2’s inclusion in modern processors optimizes
critical operations in high-performance computing, data pro-
cessing, and cryptographic applications, reflecting a broader
trend towards enhancing computational efficiency through
specialized hardware capabilities.

PDEP (Parallel Bit Deposit): This instruction streamlines
the process of depositing bits from a source operand into a
destination operand based on a mask. It allows for selectively
placing bits in specific positions, enabling precise control

over bit placement. PDEP is particularly useful in scenarios
where bits from a variable need to be reorganized or masked
in a specific pattern, as illustrated in Figure 1.

10101010010111111111111101000000SRC1 (32 bits):

00001000001000010000000001000000MASK (32 bits):

00000000000000010000000001000000DEST (32 bits):

Figure 1. PDEP Example.

PEXT (Parallel Bit Extract): PEXT complements PDEP by en-
abling the extraction of bits from a source operand based on
a mask. This instruction allows for the selective extraction
of bits, effectively ’filtering’ the source operand through the
mask to produce the desired bit pattern in the destination
operand. PEXT is invaluable for operations that require iso-
lating specific bits from a larger set, such as decoding varints
where bits need to be extracted from a sequence of bytes. An
example of PEXT in action is depicted in Figure 2.

10101010010111111111111101000000SRC1 (32 bits):

00001000001000010000000001000000MASK (32 bits):

00001011000000010000000001000000DEST (32 bits):

Figure 2. PEXT Example.

Our motivation for utilizing BMI2 in LEB128 varint de-
coding lies in its ability to simplify the bit extraction and
assembly process, crucial for efficient decoding. Traditional
LEB128 decoding, characterized by sequential bitwise opera-
tions, benefits from the parallelism and efficiency offered by
BMI2 instructions.

3 SIMD Implementation
This section outlines traditional varint encoding/decoding
methods, then focuses on optimizing operations like varint
sequence skipping and storage size determination. We ex-
plore BMI2-enhanced implementation, detailing how it im-
proves decoding efficiency and performance, demonstrating
a progression from basic to advanced techniques in varint
processing.

3.1 Basic Varint Operations
Varint Encoding: LEB128 encodes integers into a compact,
variable-length format by dividing each integer into 7-bit
blocks, each represented by a single byte. All bytes, barring
the final one, mark their most significant bit as 1 to denote
the sequence’s continuation. The final byte’s most significant
bit is set to 0, indicating the end of the encoding. This method
is efficient for storing integers, particularly smaller values.
The pseudocode below details this encoding process:



SFVInt: Simple, Fast and Generic Variable-Length Integer Decoding using Bit Manipulation Instructions DaMoN ’24, June 10, 2024, Santiago, AA, Chile

Algorithm 1: LEB128 Integer Encoding
Input: Integer val, BufferPointer buf, Output: None
1. while val >= 0x80 do
2. *buf = 0x80 | (val & 0x7f);
3. val >>= 7; buf++;
4. end while
5. *buf = val; buf++;

If val is 128 (0x80) or greater, the function stores the
lowest 7 bits of val into the buf, setting the 8th bit of this
byte (denoted by 0x80) to signal that more bytes follow (line
2). The buffer pointer buf is then advanced, and val is right-
shifted by 7 bits to prepare the next 7 bits for encoding (line
3). This process repeats until val is less than 128. At this
point, val is small enough to fit into the final byte, indicating
the end of the variable-length integer (line 5).

Varint Decoding: LEB128 extracts the original integer from
its encoded representation. It involves iteratively processing
each byte, reconstructing the integer by aggregating 7-bit
segments.
Algorithm 2: LEB128 Integer Decoding (Basic Version)
Input: BufferPointer buf
Output: T res (either uint32_t or uint64_t)
1. res = 0; max_shift = std::is_same_v<T, uint32_t> ? 28 : 63;
2. for shift = 0 to max_shift step 7 do
3. res |= ((*buf & 0x7f) << shift);
4. if (likely(!(*buf++ & 0x80))) break;
5. end for

In the basic LEB128 decoding algorithm, each byte is read
and its lower 7 bits are combined into the result integer
using bitwise operations. The most significant bit of each
byte serves as a continuation flag, indicating whether more
bytes follow. The decoding process concludes when a byte
with its most significant bit unset is encountered, signaling
the end of the varint.
The maximum shift values for decoding are determined

based on the target integer size (line 1). For 32-bit integers,
the maximum shift is 28, while for 64-bit integers, it is 63.
These values are derived from the fact that LEB128 uses
a 7-bit encoding scheme. To illustrate this, consider a 32-
bit unsigned integer with a maximum value of 4,294,967,295
(232−1). Representing this value using LEB128 would require
up to 5 bytes, as ⌊32/7⌋ = 4, with 4 bits remaining. The shift
values used in the decoding process correspond to each 7-bit
group in these five bytes: 0, 7, 14, 21, and 28 (line 2).
This basic decoding algorithm serves as a foundation for

understanding LEB128 decoding, but it may not be optimal
for performance due to the byte-by-byte processing and the
presence of conditional branches. More advanced techniques,
such as vectorization and branch elimination, can be applied
to improve decoding efficiency.

Varint Skipping: Efficient skip operations are crucial for ef-
fective filtering and scanning of varint-encoded data streams
in columnar storage systems. By leveraging SIMD instruc-
tions and bitwise operations, we employ a technique that

processes 64-bit data blocks, enabling simultaneous han-
dling of multiple varints, improving performance compared
to byte-by-byte approaches.

Algorithm 3: LEB128 Integer Skipping
Input: uint64_t n (# integers to skip), BufferPointer buf
Output: Updated BufferPointer
1. res = 0; w = (const uint64_t*)(buf);
2. while n >= 8 do
3. n -= __builtin_popcountll(~(*w++) & 0x8080808080808080);
4. end while
5. buf = (const char*)(w);
6. while n-- do
7. while *buf++ & 0x80 do {;} end while // fallback
8. end while

The algorithm above takes two input parameters: n, the
number of integers to skip, and buf, a pointer to the buffer
containing the encoded integers. It initializes a 64-bit pointer
w to the same location as buf, enabling the processing of
64-bit words (line 1). The condition n >= 8 in line 2 ensures
that the algorithm processes the buffer in 64-bit word-sized
chunks as long as there are at least 8 integers to skip. This
threshold is chosen because a 64-bit word can contain up to
8 bytes, each potentially representing a single-byte varint.

Within the loop, the algorithm performs a series of bitwise
operations to determine the number of complete varints in
the current 64-bit word (line 3). It first inverts all the bits of
the dereferenced 64-bit word using the bitwise NOT opera-
tion (∼). For LEB128 encoding, the most significant bit (MSB)
of each byte being ’1’ indicates the continuation of a varint,
and ’0’ indicates its termination. By inverting these bits, the
continuation bits (’1’s) are turned into ’0’s and vice versa.
Then, it applies a mask (0x8080808080808080) to isolate the
MSBs of each byte, which indicate the continuation or termi-
nation of a varint. By performing the bitwise AND operation
(&) between the inverted word and the mask, the algorithm
obtains a 64-bit value where the most significant bits of each
byte are set to 1 if the corresponding varint terminates and
0 if it continues.

The POPCNT function is then used to efficiently count the
number of set bits (varint terminations) in the resulting 64-bit
value. This count represents the number of complete varints
in the current word. The algorithm subtracts this count from
n to update the number of remaining integers to skip (line
3). After the loop, the algorithm updates the buf pointer to
the location where the 64-bit word processing stopped (line
5). It then enters a byte-by-byte skipping loop (lines 6-8) to
handle any remaining integers. This loop continues until n
reaches zero, indicating that the desired number of integers
has been skipped.
By processing the buffer in 64-bit words and using effi-

cient bitwise operations and SIMD instructions, the LEB128
Integer Skipping algorithm achieves fast skipping of var-
ints, making it suitable for scenarios where large numbers
of integers need to be skipped quickly.



DaMoN ’24, June 10, 2024, Santiago, AA, Chile Gang Liao et al.

Varint Sizing: In varint-based systems, accurately estimat-
ing storage needs is crucial for efficient memory allocation
and management. We utilize a precomputed lookup table
(LUT) to quickly calculate the exact byte size needed for
varint encoding, based on the position of the most significant
set bit in integers. This approach optimizes computational
efficiency with low overhead in caching, facilitating rapid
estimations for dynamic storage allocation.
Algorithm 4: LEB128 Integer Sizing
Input: vec<T> values (T is either uint32_t or uint64_t)
Output: uint64_t size
1. kLUT = {10,

9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8,
7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6,
5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4,
3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1};

3. size = 0;
4. for each val in values do
5. if constexpr (std::is_same_v<val, uint32_t>) then
6. size += kLUT[__builtin_clz (val | 1) + 32]
7. else
8. size += kLUT[__builtin_clzll(val | 1)]
9. end for

The algorithm computes the total byte size required for
varint encoding a collection of integers. It leverages a pre-
computed LUT that maps the position of the most significant
set bit in an integer to the corresponding varint byte size. The
LUT is constructed based on the observation that the byte
size needed for varint encoding depends on the magnitude
of the integer value.

For each integer val in the input vector values, the algo-
rithm determines the position of the most significant set bit
using the LZCNT (Leading Zero Count) instruction, depend-
ing on the integer type (uint32_t or uint64_t). To handle
the case where val is zero, the algorithm performs a bitwise
OR operation with 1 (val|1) before counting the leading ze-
ros1. This ensures that the LUT index is correctly calculated
even for zero values. The position of the most significant set
bit is then used as an index to retrieve the corresponding
byte size from the LUT. For uint32_t values, an offset of 32
is added to the LUT index to account for the difference in bit
positions between 32-bit and 64-bit integers.
To illustrate the algorithm 4, consider a small dataset of

four 64-bit integers: 42, 1,337, 69,420, and 42,000,000. Figure 3
shows the binary representation of each integer, highlighting
the most significant set bit position and the corresponding
LUT index and byte size. The algorithm determines the varint
encoding byte size for each integer using the precomputed
LUT. For 42, the most significant set bit is at position 58, and
the LUT value at index 58 is 1, indicating a 1-byte encod-
ing. Similarly, 1,337 requires 2 bytes (LUT index 53), 69,420
requires 3 bytes (LUT index 47), and 42,000,000 requires 4
bytes (LUT index 38). The algorithm sums the byte sizes,
1It’s worth noting that BSF and BSR, with a source operand value of (0),
leave the destination undefined and set the ZF (zero flag). However, C++20’s
std::countl_zero doesn’t have this issue, if your compiler supports it.

42

1,337

69,420

42,000,000

000000000010101000000000000000000……0

000001010011100100000000000000000……0

000011110010110000000000000000010……0

110111101000000000000010100000000……0

32 bits 16 bits 16 bits kLUT

58: 1

53: 2

47: 3

38: 4

Figure 3. Varint Sizing Example

yielding a total storage requirement of 10 bytes (1 + 2 + 3 +
4) for the dataset. The retrieved byte sizes for each integer
are accumulated in the size variable, which represents the
total storage requirement for the varint-encoded integers.
The use of a precomputed LUT eliminates the need for

runtime calculations and conditional branching, resulting in
efficient and fast estimation of varint sizes. The LUT is small
enough to fit in the cache, minimizing cache misses and fur-
ther improving performance. By employing this LUT-based
approach, the algorithm achieves rapid and accurate estima-
tion of storage requirements for varint encoding, enabling
efficient memory allocation andmanagement in varint-based
systems.

3.2 BMI2-Enhanced Bulk Varint Decoding
This section enhances varint decoding with BMI2 instruc-
tions, advancing beyond the basic methods in Section 3.1.

Mask Configuration: The first step in our BMI2-based
LEB128 varint decoding approach involves the use of a 64-
bit mask with the _pext_u64 instruction for efficient ex-
traction of the most significant bits (MSBs) from byte se-
quences. The choice of mask configuration is crucial to the
performance of our approach, as it directly influences the
number of bytes processed simultaneously and the range
of values that can be extracted. In SFVInt, we considered
three primary mask configurations: 0x0000808080808080
for six bytes, 0x0080808080808080 for seven bytes, and
0x8080808080808080 for eight bytes. Each of these config-
urations caters to different ranges of extracted values: 0-63
for six bytes, 0-127 for seven bytes, and 0-255 for eight bytes.

Utilizing _pext_u64(word, mask), we decipher the count
and positions of integers within a 64-bit block. For exam-
ple, using an 8-byte mask (0x8080808080808080) that yields
zero indicates eight complete integers in the segment. Ini-
tially setting aside carryover or boundary effects for sim-
plicity, we employ _pext_u64 instructions strategically to
isolate individual integers:

int1 = _pext_u64(word, 0x000000000000007f);
int2 = _pext_u64(word, 0x0000000000007f00);
int3 = _pext_u64(word, 0x00000000007f0000);
int4 = _pext_u64(word, 0x000000007f000000);
int5 = _pext_u64(word, 0x0000007f00000000);
int6 = _pext_u64(word, 0x00007f0000000000);
int7 = _pext_u64(word, 0x007f000000000000);
int8 = _pext_u64(word, 0x7f00000000000000);



SFVInt: Simple, Fast and Generic Variable-Length Integer Decoding using Bit Manipulation Instructions DaMoN ’24, June 10, 2024, Santiago, AA, Chile

For amasked result of 63, indicating two integers spanning
six and two bytes respectively in the original varint sequence.
To extract them efficiently, we apply the _pext_u64 instruc-
tion with specific masks tailored to these lengths:

int1 = _pext_u64(word, 0x00007f7f7f7f7f7f);
int2 = _pext_u64(word, 0x7f7f000000000000);

This method showcases a high degree of adaptability to
various varint structures, which are identified through the
mask results obtained from the _pext_u64 instruction. By
leveraging these mask results, our approach can efficiently
process the encoded data stream while minimizing the need
for conditional byte-by-byte checks, which are a common
source of branch mispredictions and pipeline stalls in tradi-
tional decoding methods. This understanding of the mask’s
role is fundamental to our optimized decoding process. By
using the mask results to guide the decoding logic, we can
efficiently extract and process the relevant bits from the en-
coded data stream, resulting in a significant performance
improvement over traditional methods.

While longer masks, such as 0x8080808080808080, might
appear to offer better performance by processing more bytes
simultaneously, our empirical findings suggest otherwise.
The use of longer masks results in a larger instruction foot-
print, as the decoding logic needs to handle a greater number
of possible varint configurations. This increased complexity
can exceed the capacity of the L1 instruction cache, lead-
ing to cache misses and performance degradation. To strike
an optimal balance between decoding efficiency and CPU
resource utilization, we empirically determined that the six-
byte mask configuration provides the best performance. This
choice aligns with the operational constraints of modern
CPU architectures, minimizing the risk of L1 instruction
cache spillage while still enabling efficient decoding.

Cross-Boundary Cases: In addressing cross-boundary
cases where integers span two or even three consecutive
blocks, we adopt a refined approach crucial for accurate and
complete decoding. Our approach employs two key vari-
ables: shift_bits and partial_value. shift_bits tracks
the necessary bit displacement for integers crossing block
boundaries, while partial_value retains the already de-
coded segment from a previous block. This system ensures
proper alignment and integration of integer segments across
blocks, merging partial_value with new segments to re-
construct complete integers, thereby preserving the accuracy
and integrity of the overall decoding process.
Continuing from our previous example where a masked

result of 63 suggests two integers with the first spanning
six bytes and the second two, we encounter the complex-
ity of int1 extending across 64-bit block boundaries. Here,
partial_value retains int1’s initial segment from the pre-
ceding block, while shift_bits tracks the decoded bit count.
The subsequent processing extracts int1’s remainder, aligns

it using shift_bits, and merges it with partial_value,
forming the complete integer, as demonstrated below:

int1 = (_pext_u64(word, 0x00007f7f7f7f7f7f)
<< shift_bits) | partial_value;

int2 = _pext_u64(word, 0x7f7f000000000000);

This method effectively handles integers crossing 64-bit
block boundaries, ensuring their precise and complete recon-
struction.

Algorithm: The following presents an advanced varint
decoding algorithm optimized for bulk processing with a
6-byte MASK, integrating cross-boundary case handling and
fully leveraging BMI2 instructions for improved efficiency
and speed. Line 7 employs _pext_u64 to extract MSBs from a
64-bit word using a defined mask, revealing the varint struc-
ture, including the count and distribution of integers. The
algorithm then uses this output (mval) in a switch-case to
tailor the decoding process for each integer, adapting to their
specific encoding patterns within the data stream. To illus-
trate the decoding process, let’s examine three representative
cases: case 0, case 45, case 62 and case 63.

Algorithm 5: Optimized Bulk Varint Decoding with BMI2
Input: uint64_t n, BufferPointer buf, T* res (uint32/uint64)
Output: Updated BufferPointer in the data stream
1: mask_length = 6; mask = 0x0000808080808080;
2: shift_bits = 0; pt_val = partial_value = 0;
3: buf -= mask_length;
4: while n >= 8 do
5: buf += mask_length;
6: word = *(const uint64_t*)(buf);
7: mval = _pext_u64(word, mask);
8: switch (mval)
9: case 0:
10: cu_val = _pext_u64(word, 0x000000000000007f);
11: *res++ = (cu_val << shift_bits) | pt_val;
12: *res++ = _pext_u64(word, 0x0000000000007f00);
13: *res++ = _pext_u64(word, 0x00000000007f0000);
14: *res++ = _pext_u64(word, 0x000000007f000000);
15: *res++ = _pext_u64(word, 0x0000007f00000000);
16: *res++ = _pext_u64(word, 0x00007f0000000000);
17: shift_bits = 0; pt_val = 0; n -= 6;
18: case 45:
19: cu_val = _pext_u64(word, 0x0000000000007f7f);
20: *res++ = (cu_val << shift_bits) | pt_val;
21: *res++ = _pext_u64(word, 0x0000007f7f7f0000);
22: pt_val = _pext_u64(word, 0x00007f0000000000);
23: shift_bits = 7; n -= 2;
24: case 62:
25: cu_val = _pext_u64(word, 0x000000000000007f);
26: *res++ = (cu_val << shift_bits) | pt_val;
27: pt_val = _pext_u64(word, 0x00007f7f7f7f7f00);
28: shift_bits = 35; n -= 1;
29: case 63:
30: pt_val |= _pext_u64(word, 0x00007f7f7f7f7f7f)
31: << shift_bits;
32: shift_bits += 42;
33: case ... // Other cases omitted for brevity
34: end while

Figure 4. BMI2-enhanced Bulk Decoding.



DaMoN ’24, June 10, 2024, Santiago, AA, Chile Gang Liao et al.

Case 0 (lines 10-17) handles the scenario where the cur-
rent 64-bit word contains six complete single-byte integers.
When mval is 0, it indicates that all six bytes in the word
represent individual integers. The algorithm proceeds to ex-
tract each integer using _pext_u64 with carefully crafted
masks targeting their respective positions within the word.
The extracted integers are then stored in the output array
res, and the shift_bits and pt_val variables are reset to
prepare for the next iteration. Finally, the count of remaining
integers to decode (n) is decremented by 6 (line 17).
Case 45 (lines 19-23) handles the scenario where the cur-

rent 64-bit word contains two 2-byte integers. When mval is
45 (binary representation: 101101), it indicates that the first
integer spans across the first two bytes of the word, while
the second integer spans across the third and fifth bytes.
The algorithm extracts these integers using _pext_u64 with
masks 0x0000000000007f7f and 0x0000007f7f7f0000, re-
spectively (lines 19-21). The pt_val variable is updated with
any remaining partial value (line 22), and the shift_bits
variable is set to 7 to align the decoding process for the
next iteration. Finally, the count of remaining integers (n) is
decremented by 2 (line 23).

Case 62 (lines 25-28) demonstrates the algorithm’s ability
to handle integers that span across multiple 64-bit words.
When mval is 62 (binary representation: 111110) under a
6-byte mask, it signifies that an integer ends within the cur-
rent word, with its remaining bits located in the preceding
word. The algorithm extracts the relevant bits from the cur-
rent word using _pext_u64 and merges them with the par-
tial value (pt_val) from the previous word to reconstruct
the complete integer (lines 26). Moreover, the presence of
five leading 1s (11111) in mval indicates an incomplete in-
teger extending into the next word. This partial integer is
extracted and stored in pt_val for subsequent decoding, and
the shift_bits variable is updated to 35 (the five 7-byte se-
quences) to align the decoding process for the next iteration.
This decrement in n by 1 (line 28) ensures the algorithm’s
seamless management of cross-boundary integers, maintain-
ing decoding continuity and precision.

Case 63, depicted in lines 30-32, addresses a binary repre-
sentation of 111111, signaling an integer spanning three data
blocks, with the current block as its mid-segment. This spe-
cific case requires extracting six bytes (42 bits) via _pext_u64,
appending this data to the partial value to maintain integer
continuity across blocks.
In addition to the representative cases discussed above,

our algorithm includes a comprehensive set of cases to han-
dle various varint encoding patterns efficiently. These cases,
omitted for brevity in the pseudocode (line 33), cover a
wide range of scenarios, ensuring optimized decoding per-
formance for different integer distributions.
The seamless handling of cross-boundary integers is a

key strength of our approach. By maintaining state variables
like shift_bits and pt_val, we ensure the continuity and

precision of the decoding process across word boundaries.
The decrement of n by the appropriate count in each case
guarantees that the algorithm keeps track of the remaining
integers to decode, maintaining the correctness of the output.
Through this case analysis, we showcase the adaptability
and efficiency of our BMI2-based varint decoding algorithm.
By leveraging the power of the _pext_u64 instruction and
carefully designing the decoding logic for each case, we
can handle a wide range of varint encoding patterns with
minimal branching and maximum performance.

4 Performance Evaluation
In our comprehensive evaluation of the BMI2-enhanced
varint decoding technique, we utilized a diverse set of AWS
EC2 instances equipped with a range of Intel and AMD CPU
architectures (refer to Table 1). This heterogeneous testing
environment allowed us to assess the performance and ver-
satility of our approach across different processor genera-
tions and microarchitectures. To thoroughly evaluate the
efficiency of our technique, we generated datasets encoded
as varints following two distinct distributions: uniform and
skewed. The uniform distribution dataset served as a stable
benchmark, providing a balanced representation of integer
values across the entire range. This dataset enabled us to as-
sess the performance of our approach under a consistent and
predictable workload. On the other hand, the skewed distri-
bution dataset was specifically designed to mirror real-world
varint patterns commonly encountered in various applica-
tions and data formats. This dataset exhibited a bias towards
smaller integers, with a higher frequency of 1-byte and 2-
byte LEBs. By incorporating a skewed distribution, we aimed
to evaluate the performance of our technique in scenarios
that closely resemble practical use cases.

We employed four distinct workloads for evaluation: W1
featured uniformly distributed 32-bit integers as a bench-
mark; W2 used real-world LEB lengths from the WebAssem-
bly build suite [1], providing practical insights; and Work-
loadsW3 andW4 derived from our proprietary systems’ data
distributions, offering a realistic view of their application.
Notably, W2 to W4 exhibited a skew towards 1-byte inte-
gers, aligning with typical data trends observed in practical
scenarios. The specific distributions for these workloads are
detailed in the figure captions of Figures 5 to 8.

Our evaluation compares our BMI2-based decoding tech-
nique against established varint encoding solutions from
Apache Kudu (a columnar storage system)[26], Google Proto-
buf (a serde library)[13], ApacheORC (a columnar format)[11],
and Facebook Folly (a C++ std lib)[9], which all support 32-
bit and 64-bit integer encoding. This benchmark situates our
approach within the current industry practices2, focusing on
in-memory decoding performance given the widespread use

2Our assessment directly interacted with the varint decoding interfaces of
these libraries, ensuring no additional overhead is incurred.



SFVInt: Simple, Fast and Generic Variable-Length Integer Decoding using Bit Manipulation Instructions DaMoN ’24, June 10, 2024, Santiago, AA, Chile

4.8

6.3

7.2 4.7

5.5

6.0

2.6

3.8

3.9 2.6

3.2

3.32.3

3.6

3.4 2.3

3.1

2.92.7

4.7 4.2 2.6

4.0 3.52.3

2.4

2.7 2.3

2.1

2.3

Protobuf
Folly

Kudu
Orc

SFVIntIntel CPU

D
ec

od
e(

m
s/

ite
r)

0

5

10

m6i.4xlarge m5.4xlarge m4.4xlarge c6i.4xlarge c5.4xlarge c4.4xlarge

4.5

7.8 4.5

5.02.4

4.0 2.4

2.92.0

3.7 2.0

2.5

2.4

4.0 2.4

2.9

3.1

75.4

3.1

57.3Protobuf Folly Kudu Orc ByteInt AMD CPU

1

10

100

m6a.4xlarge m5a.4xlarge c6a.4xlarge c5a.4xlarge

Figure 5. Workload 1 (W1): uniform distribution.

1.9

2.1

2.3 1.9

2.1 2.0

2.0

2.1

2.5 2.0

2.1

2.11.8

2.1

2.2

2.4 2.1 1.9

2.4

2.8

3.0 2.6

2.8 2.51.6

1.6

2.1 1.6

1.6

1.7

Protobuf
Folly

Kudu
Orc

SFVIntIntel CPU

D
ec

od
e(

m
s/

ite
r)

0
2
4
6
8

m6i.4xlarge m5.4xlarge m4.4xlarge c6i.4xlarge c5.4xlarge c4.4xlarge
1.5

1.9 1.5

1.91.7

2.2 1.7

2.21.6

2.0 1.6

2.0

2.1

2.5 2.1

2.51.9

18.7

1.8

18.7Protobuf Folly Kudu Orc ByteInt AMD CPU

1

10

m6a.4xlarge m5a.4xlarge c6a.4xlarge c5a.4xlarge

Figure 6. W2: varint byte distribution — 1 byte: 90.08%, 2 bytes: 4.63%, 3 bytes: 3.22%, 4 bytes: 1.20%, 5 bytes: 0.88%.

3.3

4.2 3.9 3.2

3.6 3.2

3.2

3.9

3.8 3.2

3.3

3.22.9

3.8 3.6 2.9

3.3 3.0

3.5

4.4

4.2 3.5

3.8 3.62.2

2.6

2.7 2.2

2.3

2.4

Protobuf
Folly

Kudu
Orc

SFVIntIntel CPU

D
ec

od
e(

m
s/

ite
r)

0

5

10

m6i.4xlarge m5.4xlarge m4.4xlarge c6i.4xlarge c5.4xlarge c4.4xlarge

2.6

4.4 2.6

3.22.6

4.6 2.6

3.32.6

4.4 2.6

3.1

3.0

5.2 3.0

3.62.3

27.8

2.3

21.5Protobuf Folly Kudu Orc ByteInt AMD CPU

1

10

m6a.4xlarge m5a.4xlarge c6a.4xlarge c5a.4xlarge

Figure 7. W3: varint byte distribution — 1 byte: 81.22%, 2 bytes: 7.31%, 3 bytes: 6.16%, 4 bytes: 4.20%, 5 bytes: 1.10%.

6.0

7.3 6.9 6.0

6.3 5.8

5.7

6.7

6.6 5.7

5.7

5.5

5.4

6.7 6.3 5.4

5.7 5.3

6.1

7.0 6.7 6.1

6.0 5.63.1

3.5

3.7 3.1

3.0

3.1

Protobuf
Folly

Kudu
Orc

SFVIntIntel CPU

D
ec

od
e(

m
s/

ite
r)

0

5

10

15

m6i.4xlarge m5.4xlarge m4.4xlarge c6i.4xlarge c5.4xlarge c4.4xlarge

4.8

8.4 4.9

5.74.7

8.3 4.7

5.74.5

8.2 4.6

5.94.9

8.7 4.9

6.32.9

33.0

2.9

25.5Protobuf Folly Kudu Orc ByteInt AMD CPU

1

10

m6a.4xlarge m5a.4xlarge c6a.4xlarge c5a.4xlarge

Figure 8. W4: varint byte distribution — 1 byte: 72.13%, 2 bytes: 12.31%, 3 bytes: 8.53%, 4 bytes: 5.31%, 5 bytes: 1.72%.

of the LEB128 algorithm. Performance gains were assessed
in a single-threaded environment to attribute improvements
directly to our method.

4.1 Intel CPU Microarchitectures
In Figures 5-8, the left panel showcases the varint decod-
ing performance across six EC2 instance types featuring
Intel CPUs, detailed in Table 1. Each figure within the panel
includes benchmarks for each EC2 instance type, with the y-
axis representing the time required per iteration (in millisec-
onds), where each iteration involves decoding one million
integers generated according to a specific distribution. Here,
SFVInt consistently excels, surpassing all other systems in
decoding speed across every instance type and under various
distributions. For example, in W1 (Figure 5), SFVInt demon-
strates a significant performance edge, nearly doubling the

EC2 CPU Architecture
m6i Intel Xeon Ice Lake 8375C
m5 Intel Xeon Skylake 8175M / Cascade Lake 8259CL
m4 Intel Xeon Broadwell E5-2686 / Haswell E5-2676
c6i Intel Xeon Ice Lake 8375C
c5 Intel Xeon Cascade Lake
c4 Intel Xeon Haswell E5-2666 v3
m6a 3rd Gen AMD EPYC (Milan)
c6a 3rd Gen AMD EPYC (Milan)
m5a 2nd Gen AMD EPYC 7571
c5a 2nd Gen AMD EPYC 7R32

Table 1. AWS EC2 Types and CPU Architectures



DaMoN ’24, June 10, 2024, Santiago, AA, Chile Gang Liao et al.

speed of Protobuf. Similarly, in W4 (Figure 8), SFVInt out-
performs all other systems by nearly a factor of two.

The varint byte distribution evolves from W2 to W4, indi-
cating a transition to a more varied spread of integer sizes.
In W2 (Figure 6), the distribution heavily favors 1-byte in-
tegers, constituting 90.08% of the data, with a minor repre-
sentation of 2-byte at 4.63%, and even less for 3-byte (3.22%),
4-byte (1.20%), and 5-byte integers (0.88%). Progressing to
W4, there’s a noticeable decrease in 1-byte integers to 72.13%,
with corresponding increases across the board—2-byte in-
tegers rise to 12.31%, 3-byte to 8.53%, 4-byte to 5.31%, and
5-byte to 1.72%. This shift implies an increase in the number
of bytes subject to the decoding process, logically resulting
in prolonged iteration times as the byte distribution broad-
ens. Specifically, on the m6i.4xlarge instance, the iteration
time for SFVInt extends from 1.6ms in W2, to 2.2ms in W3,
ultimately reaching 3.1ms in W4. Such an increment reflects
the additional computational overhead necessitated by the
decoding of a higher proportion of multi-byte integers.

On the other hand, the performance gap between SFVInt
and other systems widens most notably in W4. Taking the
c6i.4xlarge instance as an example, SFVInt achieves a 2x
speed increase compared to Protobuf in W4, while in W3
and W2, the gains are 45% and 19%, respectively. This in-
dicates that SFVInt’s BMI2-fortified decoding mechanism
gains a significant edge when dealing with varints exceeding
the single-byte range. This is because with shorter byte-
length encodings, our approach requires a sequence of serial
instructions similar to traditional byte-by-byte processing.
This is exemplified by case 0 (lines 10 - 17) in Figure 4, which
involves a greater number of sequential executions than
case 63 (lines 44 - 46), hence, SFVInt’s relatively subdued
enhancement for 1-byte integers reflects this similarity to
conventional decoding approaches.

4.2 AMD CPU Microarchitectures
In our analysis detailed in Figures 5-8, we observe that SFVInt
demonstrates up to 40% faster varint decoding on 3rd gen-
eration AMD EPYC processors (m6a and c6a), in contrast
to the slower performance on 2nd generation CPUs (m5a
and c5a). This performance disparity is consistent with the
known emulation overhead of PEXT/PDEP instructions on
AMD platforms, which can significantly lag behind Intel’s
native execution [3, 17]. Studies indicate that on AMD hard-
ware, these instructions’ latency can vary widely, from 18
to approximately 300 cycles [15]. The improved results with
newer AMD generations suggest advancements in BMI2 in-
struction handling. For enhanced consistency across CPU
architectures, we can incorporate a dynamic selection mech-
anism between BMI2-accelerated and standard decoding or
employs ZP7 [33], a branchless alternative for AMD proces-
sors.

5 Related Works
Varint Formats. In byte-oriented integer compression, var-
ious techniques aim to improve decoding efficiency. Tradi-
tional LEB128, using a 7-bit structure, lacks SIMD optimiza-
tion. In contrast, Google’s VARINT-GB [8] offers an alterna-
tive by encoding a constant block of integers with a unified
control byte, streamlining decoding for data with variable
lengths. The patented VARINT-G8IU [32] further advances
this innovation, employing SIMD to process variable counts
of integers within a fixed byte structure, controlled by an
initial byte. Stream VByte [18] segregates control and data
bytes into separate streams to fully leverage SIMD’s paral-
lel processing strengths. However, these techniques, despite
their SIMD-enabled efficiency gains, diverge from the preva-
lent LEB128 standard, limiting their seamless integration
into existing infrastructures. Conversely, the Masked VByte
method [28] retains the LEB128 form while harnessing SIMD
for improved performance, yet it is not without its draw-
backs—namely, a non-generic and maintenance-intensive
codebase exceeding 2300 lines, tailored specifically for 32-bit
unsigned integers. Our proposed SFVInt is a simple, elegant,
fast, and generic solution that effectively addresses the limi-
tations present in earlier methods.

BMI in DBMS. The pursuit of SIMD optimizations for data
scanning operations and operator vectorization has been
prominent in data management research [20, 29–31]. Kudu
was seminal in applying BMI2 for data scan filtering [25, 26],
a similar idea extended by Parquet-Select [19], which utilizes
BMI2 for optimized selection pushdown in columnar storage.
During our investigation of next-generation columnar

store for machine learning workloads [24], we found dis-
cussions on Google Protobuf regarding the use of BMI2 for
accelerating varint decoding [27, 35]. The Protobuf team ex-
pressed concerns about the performance of BMI2 on AMD
processors. Motivated by these discussions, we developed
SFVInt and conducted a comprehensive analysis of the effec-
tiveness of BMI2 on both Intel and AMD platforms, address-
ing the performance considerations raised by the community.

6 Conclusions
In this paper, we presented SFVInt, a simple, fast, and generic
approach for decoding variable-length integers using BMI2
instructions. Through extensive evaluation across diverse
CPU architectures, SFVInt consistently demonstrated up to
a 2x increase in decoding speed compared to traditional
methods, addressing a critical bottleneck in data-intensive
applications. As data continues to grow in volume and com-
plexity, SFVInt represents a step forward in offering a high-
performance solution for varint decoding that can greatly
benefit a wide range of applications.



SFVInt: Simple, Fast and Generic Variable-Length Integer Decoding using Bit Manipulation Instructions DaMoN ’24, June 10, 2024, Santiago, AA, Chile

References
[1] [n. d.]. WebAssembly Build Suite. Retrieved Jan 2, 2024 from https:

//github.com/WebAssembly/build-suite
[2] 2013. x86 Bit manipulation instruction set. Retrieved Jan

6, 2023 from https://en.wikipedia.org/wiki/X86_Bit_manipulation_
instruction_set

[3] 2017. Ryzen and BMI2: Strange behavior and high latencies. Retrieved
Jan 2, 2024 from https://www.reddit.com/r/Amd/comments/60i6er/
ryzen_and_bmi2_strange_behavior_and_high_latencies/

[4] AMD. 2023. AMD64 Architecture Programmer’s Manual. Retrieved Jan
6, 2023 from https://www.amd.com/content/dam/amd/en/documents/
processor-tech-docs/programmer-references/24594.pdf

[5] Bishwaranjan Bhattacharjee, Lipyeow Lim, Timothy Malkemus,
George Mihaila, Kenneth Ross, Sherman Lau, Cathy McArthur, Zoltan
Toth, and Reza Sherkat. 2009. Efficient Index Compression in DB2
LUW. Proc. VLDB Endow. 2, 2 (aug 2009), 1462–1473. https://doi.org/
10.14778/1687553.1687573

[6] Souvik Bhattacherjee, Gang Liao, Michael Hicks, and Daniel J. Abadi.
2021. BullFrog: Online Schema Evolution via Lazy Evaluation. In
Proceedings of the 2021 International Conference on Management of
Data (Virtual Event, China) (SIGMOD ’21). Association for Computing
Machinery, New York, NY, USA, 194–206. https://doi.org/10.1145/
3448016.3452842

[7] World Wide Web Consortium. 2022. WebAssembly Binary Format.
Retrieved Jan 6, 2023 from https://webassembly.github.io/spec/core/
binary/values.html

[8] Jeffrey Dean. 2009. Challenges in building large-scale information
retrieval systems: invited talk. In WSDM ’09: Proceedings of the Second
ACM International Conference on Web Search and Data Mining. New
York, NY, USA, 1–1. http://doi.acm.org/10.1145/1498759.1498761

[9] Facebook. 2012. Folly: An open-source C++ library developed and used at
Facebook. Retrieved Dec 30, 2023 from https://github.com/facebook/
folly

[10] Apache Software Foundation. 2011. Apache Lucene. Retrieved Jan 4,
2023 from https://lucene.apache.org/

[11] Apache Software Foundation. 2013. Apache ORC: the smallest, fastest
columnar storage for Hadoop workloads. Retrieved Dec 30, 2023 from
https://orc.apache.org

[12] Apache Software Foundation. 2013. Apache Parquet: an open source,
column-oriented data file format. Retrieved Jan 4, 2023 from https:
//parquet.apache.org/

[13] Google. 2001. Protocol Buffers: Google’s data interchange format. Re-
trieved Dec 30, 2023 from https://github.com/protocolbuffers/protobuf

[14] Robert Griesemer. 2011. Support for varint encoding in Go. Re-
trieved Jan 6, 2023 from https://github.com/golang/go/commit/
f30719dc89c2a41502fa584b790943170ad2d1ce

[15] InstLatX64. 2019. Achilles heel of AMD Zens: data dependency of
PDEP/PEXT instructions. Retrieved Jan 6, 2023 from https://mobile.
twitter.com/InstLatX64/status/1209095219087585281

[16] Intel Corporation. 2016. Intel® 64 and IA-32 Architectures Software
Developer’s Manual. Retrieved Jan 6, 2023 from https://www.intel.
com/content/dam/www/public/us/en/documents/manuals/64-ia-32-
architectures-software-developer-vol-2b-manual.pdf

[17] Kullberg. 2017. Ryzen Schach Performance - BMI2 Problem. Retrieved
Jan 2, 2024 from https://www.hardwareluxx.de/community/threads/
ryzen-schach-performance-bmi2-problem.1156117/

[18] Daniel Lemire, Nathan Kurz, and Christoph Rupp. 2018. Stream VByte:
Faster byte-oriented integer compression. Inform. Process. Lett. 130
(Feb. 2018), 1–6. https://doi.org/10.1016/j.ipl.2017.09.011

[19] Yinan Li, Jianan Lu, and Badrish Chandramouli. 2023. Selection
Pushdown in Column Stores Using Bit Manipulation Instructions.
Proc. ACM Manag. Data 1, 2, Article 178 (jun 2023), 26 pages. https:
//doi.org/10.1145/3589323

[20] Yinan Li and Jignesh M. Patel. 2013. BitWeaving: Fast Scans for Main
Memory Data Processing. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data (New York, New York,
USA) (SIGMOD ’13). Association for Computing Machinery, New York,
NY, USA, 289–300. https://doi.org/10.1145/2463676.2465322

[21] Gang Liao. 2022. The Evolution of Cloud Data Architectures: Storage,
Compute, and Migration. https://drum.lib.umd.edu/items/e591f36a-
a240-42db-8252-196ed4facee9.

[22] Gang Liao and Daniel J. Abadi. 2023. FileScale: Fast and Elastic Meta-
data Management for Distributed File Systems. In Proceedings of the
2023 ACM Symposium on Cloud Computing (, Santa Cruz, CA, USA,)
(SoCC ’23). Association for Computing Machinery, New York, NY, USA,
459–474. https://doi.org/10.1145/3620678.3624784

[23] Gang Liao, Amol Deshpande, and Daniel J. Abadi. 2023. Flock:
A Low-Cost Streaming Query Engine on FaaS Platforms.
arXiv:2312.16735 [cs.DB] https://github.com/flock-lab/flock

[24] Gang Liao, Ye Liu, Jianjun Chen, and Daniel J Abadi. 2024. Bullion: A
Column Store for Machine Learning. arXiv preprint arXiv:2404.08901
(2024).

[25] Todd Lipcon. 2020. Core algorithms for columnar serialization. Re-
trieved Jan 6, 2023 from https://github.com/apache/kudu/commit/
0ba6cb8d6b38a992786e5027528349a43802fd31

[26] Todd Lipcon, David Alves, Dan Burkert, Jean-Daniel Cryans, Adar
Dembo, Mike Percy, Silvius Rus, Dave Wang, Matteo Bertozzi,
Colin Patrick McCabe, et al. 2015. Kudu: Storage for fast analytics on
fast data. Cloudera, inc 28 (2015), 36–77.

[27] Andrei Palade. 2024. Parsing array of varints optimizations. Retrieved
May 6, 2023 from https://github.com/protocolbuffers/protobuf/pull/
13256

[28] Jeff Plaisance, Nathan Kurz, and Daniel Lemire. 2017. Vectorized VByte
Decoding. arXiv:1503.07387 [cs.IR]

[29] Orestis Polychroniou and Kenneth A. Ross. 2014. Vectorized Bloom
Filters for Advanced SIMD Processors. In Proceedings of the Tenth Inter-
national Workshop on Data Management on New Hardware (Snowbird,
Utah) (DaMoN ’14). Association for Computing Machinery, New York,
NY, USA, Article 6, 6 pages. https://doi.org/10.1145/2619228.2619234

[30] Orestis Polychroniou and Kenneth A. Ross. 2015. Efficient Lightweight
Compression Alongside Fast Scans. In Proceedings of the 11th Interna-
tional Workshop on Data Management on New Hardware (Melbourne,
VIC, Australia) (DaMoN’15). Association for Computing Machinery,
NewYork, NY, USA, Article 9, 6 pages. https://doi.org/10.1145/2771937.
2771943

[31] Evangelia Sitaridi, Orestis Polychroniou, and Kenneth A. Ross. 2016.
SIMD-Accelerated Regular Expression Matching. In Proceedings of the
12th International Workshop on Data Management on New Hardware
(San Francisco, California) (DaMoN ’16). Association for Computing
Machinery, New York, NY, USA, Article 8, 7 pages. https://doi.org/10.
1145/2933349.2933357

[32] Alexander A. Stepanov, Anil R. Gangolli, Daniel E. Rose, Ryan J. Ernst,
and Paramjit S. Oberoi. 2011. SIMD-Based Decoding of Posting Lists.
In Proceedings of the 20th ACM International Conference on Informa-
tion and Knowledge Management (Glasgow, Scotland, UK) (CIKM ’11).
Association for Computing Machinery, New York, NY, USA, 317–326.
https://doi.org/10.1145/2063576.2063627

[33] Zach Wegner. 2019. ZP7: Zach’s Peppy Parallel-Prefix-Popcountin’
PEXT/PDEP Polyfill. Retrieved Jan 6, 2023 from https://github.com/
zwegner/zp7

[34] Wikipedia. 2023. LEB128 (Little Endian Base 128). Retrieved Jan 6,
2023 from https://en.wikipedia.org/wiki/LEB128

[35] Zhao Zhou. 2024. Optimize Varint Codeing for c++. Retrieved May 6,
2023 from https://github.com/protocolbuffers/protobuf/pull/13255

https://github.com/WebAssembly/build-suite
https://github.com/WebAssembly/build-suite
https://en.wikipedia.org/wiki/X86_Bit_manipulation_instruction_set
https://en.wikipedia.org/wiki/X86_Bit_manipulation_instruction_set
https://www.reddit.com/r/Amd/comments/60i6er/ryzen_and_bmi2_strange_behavior_and_high_latencies/
https://www.reddit.com/r/Amd/comments/60i6er/ryzen_and_bmi2_strange_behavior_and_high_latencies/
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24594.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24594.pdf
https://doi.org/10.14778/1687553.1687573
https://doi.org/10.14778/1687553.1687573
https://doi.org/10.1145/3448016.3452842
https://doi.org/10.1145/3448016.3452842
https://webassembly.github.io/spec/core/binary/values.html
https://webassembly.github.io/spec/core/binary/values.html
http://doi.acm.org/10.1145/1498759.1498761
https://github.com/facebook/folly
https://github.com/facebook/folly
https://lucene.apache.org/
https://orc.apache.org
https://parquet.apache.org/
https://parquet.apache.org/
https://github.com/protocolbuffers/protobuf
https://github.com/golang/go/commit/f30719dc89c2a41502fa584b790943170ad2d1ce
https://github.com/golang/go/commit/f30719dc89c2a41502fa584b790943170ad2d1ce
https://mobile.twitter.com/InstLatX64/status/1209095219087585281
https://mobile.twitter.com/InstLatX64/status/1209095219087585281
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2b-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2b-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2b-manual.pdf
https://www.hardwareluxx.de/community/threads/ryzen-schach-performance-bmi2-problem.1156117/
https://www.hardwareluxx.de/community/threads/ryzen-schach-performance-bmi2-problem.1156117/
https://doi.org/10.1016/j.ipl.2017.09.011
https://doi.org/10.1145/3589323
https://doi.org/10.1145/3589323
https://doi.org/10.1145/2463676.2465322
https://drum.lib.umd.edu/items/e591f36a-a240-42db-8252-196ed4facee9
https://drum.lib.umd.edu/items/e591f36a-a240-42db-8252-196ed4facee9
https://doi.org/10.1145/3620678.3624784
https://arxiv.org/abs/2312.16735
https://github.com/flock-lab/flock
https://github.com/apache/kudu/commit/0ba6cb8d6b38a992786e5027528349a43802fd31
https://github.com/apache/kudu/commit/0ba6cb8d6b38a992786e5027528349a43802fd31
https://github.com/protocolbuffers/protobuf/pull/13256
https://github.com/protocolbuffers/protobuf/pull/13256
https://arxiv.org/abs/1503.07387
https://doi.org/10.1145/2619228.2619234
https://doi.org/10.1145/2771937.2771943
https://doi.org/10.1145/2771937.2771943
https://doi.org/10.1145/2933349.2933357
https://doi.org/10.1145/2933349.2933357
https://doi.org/10.1145/2063576.2063627
https://github.com/zwegner/zp7
https://github.com/zwegner/zp7
https://en.wikipedia.org/wiki/LEB128
https://github.com/protocolbuffers/protobuf/pull/13255

	Abstract
	1 Introduction
	2 Background
	2.1 Variable-Length Integers
	2.2 Bit Manipulation Instructions (BMI)

	3 SIMD Implementation
	3.1 Basic Varint Operations
	3.2 BMI2-Enhanced Bulk Varint Decoding

	4 Performance Evaluation
	4.1 Intel CPU Microarchitectures
	4.2 AMD CPU Microarchitectures

	5 Related Works
	6 Conclusions
	References

