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Abstract. Modern galaxy surveys demand extensive survey volumes and resolutions sur-
passing current dark matter-only simulations’ capabilities. To address this, many methods
employ effective bias models on the dark matter field to approximate object counts on a grid.
However, realistic catalogs necessitate specific coordinates and velocities for a comprehensive
understanding of the Universe. In this research, we explore sub-grid modeling to create ac-
curate catalogs, beginning with coarse grid number counts at resolutions of approximately
5.5h−1Mpc per side. These resolutions strike a balance between modeling nonlinear damp-
ing of baryon acoustic oscillations and facilitating large-volume simulations. Augmented La-
grangian Perturbation Theory (ALPT) is utilized to model the dark matter field and motions,
replicating the clustering of a halo catalog derived from a massive simulation at z = 1.1. Our
approach involves four key stages: Tracer Assignment: Allocating dark matter particles to
tracers based on grid cell counts, generating additional particles to address discrepancies. At-
tractor Identification: Defining attractors based on particle cosmic web environments, acting
as gravitational focal points. Tracer Collapse: Guiding tracers towards attractors, simulating
structure collapse. Redshift Space Distortions: Introducing redshift space distortions to sim-
ulated catalogs using ALPT and a random dispersion term. Results demonstrate accurate
reproduction of monopoles and quadrupoles up to wave numbers of approximately k = 0.6h
Mpc−1. This method holds significant promise for galaxy surveys like DESI, EUCLID, and
LSST, enhancing our understanding of the cosmos across scales.
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1 Introduction

Large Scale Structure (LSS) analyses provide information on the content and evolution of the
Universe. Over the last 20 years, various experiments have pushed the boundaries of obser-
vations exponentially. The pioneering Two Degree Field Galaxy Redshift Survey (2dFGRS)
captured around 390,000 galaxy redshifts within a sky area of 2 × 103 deg2 and a volume
of 0.12 Gpc3/h3 [1]. Following suit, the Baryon Oscillation Spectroscopic Survey (BOSS)
under the Sloan Digital Sky Survey (SDSS) probed 1.5 million galaxies sprawled over an
area of ∼ 104 deg2 [2, 3], corresponding to a volume of around 2.5 Gpc3/h3. The extended
BOSS (eBOSS) survey extended the depth of BOSS, which increased observed volume by
∼ 1.5 Gpc3/h3. The Dark Energy Spectroscopic Survey (DESI) is expected to observe over
30 million redshifts in 14 × 103 deg2 [4–6] which amounts to a volume of ∼ 20 Gpc3/h3.
Simultaneously, the Euclid satellite 1 is observing approximately 35 million galaxy redshifts
and 1.5 billion shapes in order to combine galaxy clustering and weak lensing measurements
[7].

Additionally, future-generation surveys are on the horizon, including 4MOST2 (4-metre
Multi-Object Spectroscopic Telescope) [8], HETDEX3[9] (Hobby-Eberly Telescope Dark En-
ergy Experiment), PFS4(Subaru Prime Focus Spectrograph) [10] and the Roman Space Tele-

1http://www.euclid-ec.org
2http://www.4most.eu/
3http://hetdex.org
4https://pfs.ipmu.jp
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scope5. These undertakings aim to decipher the properties of dark energy (DE) through
meticulous measurements of the Baryon Acoustic Oscillations (BAO) scale and the universe’s
growth rate via Redshift Space Distortions (RSD). In essence, the forthcoming years are
poised to witness a substantial amplification in the observable volume of the universe.

Uncertainties in the cosmological measurement are traditionally estimated using a sam-
ple of simulated universes that emulate the observed data. This requires, in particular, that
these mocks have a volume at least as large as the observations, in order to properly estimate
the statistical uncertainties in the data. However, current surveys such as DESI are already
too big for an N -body simulation to be able to capture the total observed volume. The
AbacusSummit [11] simulation suite contains boxes of only 8 Gpc3/h3 which are not enough
to contain the observed light cone. To encompass all tracers, including quasars, boxes with a
volume of approximately 1000 Gpc3/h3 would be necessary. In addition, in order to estimate
accurate covariances for cosmological measurements, it is necessary to perform thousands of
simulations. Moreover, the number of simulations which are required increases as the data
vector size does, so the advent of multi-tracer and alternative analyses [12–14] is expected
increase the number of mocks to be produced.

To counter the huge computational burden of precise N -body simulations, fast and
approximate simulations are performed. These simulations sacrifice both mass resolution
and gravitational evolution accuracy in order to decrease computing time. Over the years,
many such methods have emerged. Some of these use variations of Lagrangian perturbation
theory in order to estimate the evolved dark matter (DM) density field [15–18], whereas some
others use particle mesh (PM) methods [19–21]. Regardless of the method, if the volume
requirements of the survey are large enough, the resolution of the mocks must decrease in
order to maintain the simulations computationally tractable, which means that only large
scales will be appropriately modelled by the simulations. In order to take full advantage of
observations, especially of small-scale information, our mocks and models should be able to
accurately capture them, which low-resolution simulations alone cannot do.

In this work we introduce the Cosmological Multiscale Infall Algorithm (CosmoMIA)6; a
model that corrects the positions of particles given by a low resolution approximate simulation
in order to accurately emulate the subgrid clustering from a target N -body simulation, that
is, the clustering on scales smaller than the spatial resolution of the approximate simulation.
In section 2 we briefly introduce the data used to showcase the capabilities of our model as
well as including a short description the approximate gravity solver used in this work, then
in section 3 we fully describe our subgrid method. Section 4 introduces the metrics used to
evaluate and optimize the model parameters. In section 5 we show our results and finally we
discuss and conclude in section 6.

2 Data

In order to apply our model, we need two main ingredients: a reference and a fast approximate
simulation. For the former, we use an N -body simulation to extract the relevant target
clustering on the scales desired, plus it allows to minimize the effects of cosmic variance
through the use of its initial conditions in the approximate solver. On the other hand, the
approximate simulation is the basis upon which we want to improve, correcting their small-
scale clustering.

5https://roman.gsfc.nasa.gov
6https://github.com/dforero0896/CosmoMIA.jl
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2.1 N-body reference simulations

To introduce our model in this particular case, we use halo catalogs from the publicly available
AbacusSummit suite of simulations [11] which are based on the Abacus code [22, 23]. The
simulation suite consists of 97 different cosmologies around the central “base” Planck cosmol-
ogy [24], each of which was run with a mass resolution of 2× 109 M⊙/h (69123 particles in a
(2 Gpc/h)3 volume) in order to meet the requirements of the DESI [4] tracers. In this work,
we use a subsample of one realization of the Abacus halo catalogs in the base cosmology, at
a redshift of z = 1.1. This downsampling is done such that the most massive halos are used
until the number density of halos in the box is 3×10−3 (h/Mpc)3. This corresponds to 8×106

halos.
Furthermore, we use the corresponding initial conditions in order to run an approximate

low-resolution simulation using the WebON code [25]. The Abacus initial density fields, initially
on a grid of 5763 cells, were downsampled with a sharp Fourier space filter to a mesh of
Nlow = 3603 cells, which corresponds to a cell side size of ∆x ≈ 5.5 Mpc/h. In terms of mass
resolution, our approximate simulation has ∼ 10−4× less resolution than the reference.

We must emphasize the multiple reasons behind conducting this study at the chosen
resolution. Firstly, a minimum resolution of between 5 and 10 Mpc is necessary to adequately
resolve the displacement and peculiar velocity fields for accurately modeling the BAO and
the RSD [see, e.g., 26]. Additionally, we aim at exploring the lowest possible resolution to
showcase the effectiveness of our method.

Such low resolutions facilitate the efficient generation of large-volume mock datasets.
In fact, we conducted a series of 200 large-volume light-cone dark matter simulations using
the WebON code within cubical volumes of 1000Gpc3/h3 [25], precisely with the resolution
explored in this study.

2.2 Approximate simulations

A very precise description of the evolution of the ensemble of simulation particles under gravity
can in general be computed with N -body codes such as Abacus [22], Gadget3 [27] or PkdGrav3
[28], given that enough particles are used i.e. there is a fine enough mass resolution. On top of
the high resolution requirements, current and future surveys impose large volume requirements
that are practically intractable to an N -body simulation. Even when these requirements
are relaxed, these simulations remain too expensive to be used to estimate cosmological
measurement covariances and thus estimate uncertainties in cosmological parameters. In order
to estimate these, cosmological analyses have used fast simulations. These are simulations that
are relatively cheaper in terms of compute time, but sacrifice mass resolution and accuracy
in the gravitational evolution, usually because they use an approximate gravity solver, which
models the real displacement field analytically or with a reduced-resolution particle-mesh
(PM) solution. In this study, we use Augmented Lagrangian Perturbation Theory (ALPT)
[16], an analytical approximation to the nonlinear displacement field that improves upon the
second order LPT (2LPT) by modelling the small-scale displacement with spherical collapse
(SC). This gravity solver was used in the Patchy mocks [15] used by BOSS.

ALPT combines 2LPT for the long-range displacement and SC for small scales through
a Gaussian kernel G(q, rs) evaluated at the Lagrangian particle positions q with a width of
rs = 6 Mpc/h (in this study). The ALPT displacement at redshift z is then given by:

ΨALPT(q, z) = G(q, rs) ∗Ψ2LPT(q, z) + [ΨSC(q, z)− G(q, rs) ∗ΨSC(q, z)] , (2.1)

where “∗” denotes convolution.
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Table 1. Summary of the input required for our method. The approximate quantities are expected
to be generated by an approximate gravity solver.

Required input Description Dimension

Target catalog 3D positions of all target particles for
clustering measurements (Ntracers, 3)

Approx. Number counts Number of target tracers per cell, normally
the output of a bias model (i.e. Patchy). (Nlow)

Approx. DM positions Final positions of DM particles (Nlow, 3)
Approx. DM velocity Eulerian velocities of DM particles (Nlow, 3)

Approx. DM density DM density painted on a mesh from DM
particles (Nlow)

Approx. CW classification Cosmic environment for each cell: voids,
sheets, filaments or knots. (Nlow)

The displacement field encodes all the necessary information for the application of our
model. The final (Eulerian) DM particle positions are given by x = q +ΨALPT, whereas the
Lagrangian coherent velocities are computed as

vcoh(q, z) =
H(z)

1 + z
(f1(z)ΨZeld + f2(z) [ΨALPT(q, z)−ΨZeld(q, z)]) , (2.2)

and the Eulerian velocities can be computed from these through vcoh(x, z) = vcoh(q +
ΨALPT(q, z), z). The growth rates f1,2 are given by [29]

f1(z) = Ω5/9, f2(z) = Ω6/11, Ω = Ωm
(1 + z)3H2

0

H(z)2
, (2.3)

Finally, we rely on the cosmological environment of the particles, not only in the use
of the local dark matter density, but also in the form of a cosmic web type, which can be
computed within the δ-web prescription introduced in the companion papers [25, 30, 31].
This new cosmic web classification scheme identifies cells based on the eigenvalues λδ of the
Hessian of the dark matter field Γij ≡ ∂i∂jδ. Alternatively, the ϕ-web prescription introduced
by [32] may also be used. This classification relies on the eigenvalues λϕ of the tidal field
tensor Tij ≡ ∂i∂jϕ, i.e. the Hessian of the potential. Both cosmic-web classification schemes
require a threshold λth [33] and define regions as

• Knots: λ1, λ2, λ3 > λth

• Filaments: λ1, λ2 > λth and λ3 < λth

• Sheets: λ1 > λth and λ2, λ3 < λth

• Voids: λ1, λ2, λ3 < λth.

The present study, however, only uses the δ-web classification. The inclusion of a hierarchical
cosmic web classification (see [31]) in our subgrid modelling is left for future work. Table 1
summarizes the input information that our model requires.

In this work, we assume that a perfect bias model is available and our approximate
number counts will be given by the real Abacus halo catalog painted into a mesh of Nlow cells
using Nearest Grid Point (NGP) mass assignment.
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Figure 1. Velocity kernel used to increase the power of the approximate coherent velocity field. Left:
Fourier-space representation of the kernel for different values of the gain parameter, Γ – including our
fiducial choice Γ = 10 – and a fixed scale parameter q = 0.6. Right: Effect of the velocity kernel on
the monopole and quadrupole of the power spectrum of a sample with random subgrid assignment.
We show the Abacus power spectrum as reference.

2.2.1 Velocity Kernel

To accurately fit the halo velocities from the Abacus simulation, correcting the peculiar veloc-
ity field becomes imperative when approximate gravity solvers are utilized, as they frequently
struggle to capture the nonlinear regime of structure formation effectively.

In the nonlinear regime, particles begin to undergo virialization, and the velocity field ex-
hibits an additional dispersed component alongside the coherent one. Handling the dispersed
velocity component stochastically grants us a degree of freedom in adjusting the accuracy of
the coherent component. The concept involves empowering the coherent velocity component
with sufficient strength at smaller scales.

To achieve this, we convolve the velocity field with an isotropic kernel designed to pre-
serve power on large scales and inject more in the small scales. The enhanced coherent velocity
field is given by

v′
coh(k) = vcoh(k)K(k) = vcoh(k)

(
1 +

Γ

1 + e−q
k2
)
. (2.4)

In principle, the gain and scale parameters of the kernel (Γ, q respectively) can be free.
However, we find that the scale parameter does not significantly affect the two-point clustering
when varying in the range of q ∈ [0.2, 0.8] and thus fix it to q = 0.6. The gain parameter,
Γ on the other hand, does significantly affect the clustering, specially the quadrupole, as can
be seen in fig. 1. We find that a gain of Γ = 10 gives enough power on large scales for this
particular application. These may vary from reference to reference.

Following this, at a later stage (see next section), we introduce a dispersed velocity
component to systematically diminish this strength, thus enabling us to adjust the overall
peculiar velocity on a global scale.

3 Method

The method comprises four stages. Initially, we compute the dark matter density field on a
mesh using approximate gravity solvers (see section 2.2). We allocate dark matter particle
positions to the tracers with a novel adaptive perturbative prescription (see section 3.1).
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Additionally, we compute the coherent peculiar velocity field using a nonlinear enhancement
prescription (see section 2.2.1). The final and most novel aspect of the method, as outlined in
section 3.2, entails assigning halo positions and peculiar velocities exploiting the phase-space
and cosmic web information.

3.1 Tracer Assignment

Given the tracer number-counts field, to obtain mocks appropriate for LSS clustering it is
necessary to obtain a discrete particle distribution. In order to do this, the appropriate number
of particles are often generated randomly around the center of each cell, which ignores the
existence of any substructure below the scale of the grid. As an alternative, the DM particles
themselves can be regarded as a proxy for the tracers, which preserves some information on
the sub-grid physics. However, there are often not enough particles to satisfy the requirements
of the target tracer field, which usually implies that a larger (higher-resolution) simulation is
required.

Our approach is to use a hybrid method. Let Nt be the number of tracers required in
each cell and NDM the number of dark matter particles located in the same cell. Ideally,
there are enough DM particles to assign to all tracers (Nt ≤ NDM). However, there may be
cases in which this condition is not satisfied. If Nt > NDM > 0, then the position of the
(NDM + l)−th tracer is given by xNDM+l = xi≤NDM

+G, that is, the new position is assumed
to be the position (xi≤NDM

) of another particle in the cell plus a Gaussian-distributed random
perturbation G ∼ N (µ, σ), where µ = 0, σ = 0.1∆x and ∆x is the cell size. Finally, for low
resolution simulations, the case where NDM = 0 becomes more likely; in which case we sample
the particle position randomly around the center of the cell, c. The new particle position
will then be given by xNDM+l = c+ 0.5∆x sign(U)(1−

√
|U|) [17], where U ∼ U(−1, 1) is a

random vector sampled from a uniform distribution between -1 and 1.
As a baseline, we will compare our method with catalogs generated from the same

number-count field but using only randomly distributed particles as described in the previous
paragraph. We refer to this catalog as the random sample.

In addition, during this step we assign coherent velocities v′
coh to the new particles via

Cloud-In-Cell (CIC) interpolation from the enhanced eulerian velocity fields (see section 3.2).
We have also tested assigning the cell’s velocity (i.e., NGP mass assignment) but found that
the velocity distribution in such case would not be centered around zero. Moreover, using
the same CIC interpolation scheme we assign dark matter overdensity δDM. Finally, we use
the NGP mass assignment scheme to assign a cosmic web type to each particle. These will
be necessary in order to identify which particles will behave as attractors in a given collapse
iteration (see section 3.2).

3.2 Tracer Collapse

Figure 2 shows (top-left panel) that randomly sampling particles within the cell will cause
a loss of power with respect to the reference of 10% at k ≈ 0.1 h/Mpc and 50% already by
k ≈ 0.2 h/Mpc. In order to remedy this we perform a two-step particle collapse. In principle,
the number of collapse steps is arbitrary, however we find that two steps are sufficient, preserve
some computational efficiency, and are physically motivated.

This collapse consists on identifying pairs of particles, one of which will be the “central”
whereas the other will be the “satellite”. In the collapse, the satellite will be moved radially
towards the central by a factor ϵc. We do not collapse all particles towards all other particles,
instead we use some criteria that allow us to decide whether a pair of particles is to be
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collapsed. These criteria correspond first to whether it the particle is a real DM particle from
the simulation or has been sampled randomly in the cell; and second on their local cosmic
web environment. Using these criteria we select the subset of particles that 1. are real DM
and 2. do not reside in cosmic voids. These are denominated attractors, and reflect the fact
that we rely more on the DM particle positions than the randomly sampled ones and that we
expect gravity to cause particles to collapse towards peaks in the DM field.

The first collapse step is done among these attractors exclusively, i.e., both central and
satellite populations are the attractors and the selection criteria for collapsing pairs is simply
given by the closest minimum distance. This means that we collapse attractors to their closest
attractor. The second step is done taking the central population to be the attractors and
the satellite population to be the rest. In this case, we modify the selection criteria to also
include information on the local DM density. In particular, we will collapse satellites either
to the closest central or to the central located in the highest density environment.

3.3 Redshift Space Distortions

The collapse step is isotropic and completely independent on tracer velocities. In order to
generate accurate mocks, we must provide accurate redshift-space clustering, which requires
us to tune the tracer velocities. In section 2.2.1 we introduced the isotropic kernel that we
employ to enhance the coherent flow that the approximate gravity solver provides. This
kernel has two parameters that depend on the reference but need not be fine tuned, that is,
we only require the quadrupole (of the redshift-space clustering) to have enough power on
small scales such that it can later be fine-tuned. This subsection explains how this fine-tuning
is performed.

Once the quadrupole of the redshift-space clustering has enough power (i.e. more than
the reference) on all scales, we add a dispersive velocity component to the satellite particles
in order to account for tracer virialisation. The final form of the velocity dispersion is

vdisp = 10G′γ

√
1 + δ̂DM, (3.1)

where G′ is a Standard-Gaussian-distributed random vector, δ̂DM is the DM density of the
central particle, clipped to the [0,∞) range and γ is the free velocity dispersion parameter.

3.4 Summary of the model

Let us now summarize the collapse step, i:

1. Neighbour identification: we limit the radius rc,i of influence of each collapse, which
allows us to fine-tune small scales and be more computationally efficient. These searches
are efficiently implemented in Julia using the CellListMap.jl package [34].

2. Pair identification: we define which particles will be collapsed (“satellites”) and to-
wards which other particle (“central”) they will move. We do so based on their cosmic
web environment, their radial distance and whether they were gravitationally evolved
during the simulation or were randomly generated within the cell. We stress that the
set of centrals/satellites is not constant and different subsets of particles can be used in
each collapse iteration as explained before.

3. Collapse: this steps effectively multiplies the radial distance between the satellites and
the corresponding central s by a factor ϵc,i, that is, for ϵc,i < 1 the pair collapses.
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Table 2. Summary of the collapse model parameters, their description and their final values for our
test on Abacus halos at z = 1.1.

Parameter name Description Value

rc,1
Cutoff radius for nearest neighbor search during
attractor-attractor collapse 8.2

rc,2
Cutoff radius for nearest neighbor/density peak
search during attractor-not attractor collapse 2.13

ϵc,1 Collapse factor for attractor-attractor collapse 0.73
ϵc,2 Collapse factor for attractor-not attractor collapse 1.77

γ [km/s] Velocity dispersion parameter 4.75

4. Velocity dispersion: we modify the velocity of the satellite particles by adding a
stochastic or dispersive term such that their final velocity is vsat = v′

coh + vdisp.

A summary of the free parameters of our collapse model can be found on table 2.

4 Evaluation metrics: Clustering statistics

In this section, we evaluate the performance of the method using several summary statistics.
We begin by examining the two-point correlation function in real and redshift space, both in
Fourier and configuration space, including multipole expansions (see section 4.1). Following
that, we present our results on the three-point statistics in Fourier space, specifically focusing
on the bispectrum (see section 4.2).

4.1 Two-point clustering

The two-point functions contain all the information of a Gaussian field. They are widely used
in cosmology in order to extract information from the large-scale structure of the Universe
[35, 36] and are the main observables of modern spectroscopic instruments such as DESI.
Our main objective is to provide two-point statistics that are accurate in scales smaller than
the approximate simulation’s grid would allow. Given a catalog, we use the Fourier-space
two-point function (i.e. the power spectrum).

(2π)3δD(k + k′)P (k) = ⟨δ(k)δ(k′)⟩, (4.1)

where δD is a Dirac delta distribution, k and k′ are wavevectors, δ(k) is the Fourier-space
overdensity field and ⟨ · ⟩ denotes averaging. Through this work we estimate power spectra
using the CosmoCorr.jl7 and pypowspec8 codes, both based on the C powspec9 code.

However, spectroscopic observations cannot disentangle the cosmological redshift from
the redshift due to the peculiar velocity of the tracers. in order to compute the redshift space
clustering, we add the contribution of the peculiar velocity to the position of each tracer in
the plane-parallel approximation, assuming a line of sight along the Z (third) axis:

Zz = Zr + v
1 + z

H(z)
, (4.2)

7https://github.com/dforero0896/CosmoCorr.jl.git
8https://github.com/dforero0896/pypowspec.git
9https://github.com/cheng-zhao/powspec.git
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where Zz denotes the redshift space position along the line of sight, v is the halo’s
peculiar velocity along the same direction, and H(z) is the Hubble parameter at redshift z.

The peculiar velocity contributions induce anisotropy in the power spectrum which can
be easily detected in its multipoles, Pℓ(k). These are the projections of the 2-dimensional
power spectrum P (k, µ) onto a Legendre polynomial basis Lℓ(µ), where µ is the cosine of the
angle to the line of sight, that is

Pℓ(k) =
2ℓ+ 1

2

∫ 1

−1
dµ P (k, µ)Lℓ(µ). (4.3)

Alternatively, in configuration space we compute the two-point correlation function ξ(s).
In practice, we estimate it using the natural estimator [37], which allows us to compute very
small scale clustering that is impractical to compute in Fourier space:

ξ(s, µ) =
DD(s, µ)− RR(s, µ)

RR(s, µ)
. (4.4)

DD(s, µ) is the number of pairs separated by a distance s in the data catalogue, normalised
by the total number of pairs ND(ND−1), where ND is the number of tracers in the catalogue.
Equivalently, the RR(s, µ) term is the number of such pairs in a random catalogue. Given
that our tests are performed on periodic boxes, the RR factor is computed analytically.

The multipoles of the correlation function are analogously defined as

ξℓ(s) =
2ℓ+ 1

2

∫ 1

−1
dµ ξ(s, µ)Lℓ(µ). (4.5)

Through this paper we use the correlation function computation implementations in the
CosmoCorr.jl and pyfcfc10, the latter of which is based on the C FCFC11[18, 38] code.

4.2 Bispectrum

While the two-point clustering is a good descriptor of the matter field, higher order statistics
such as the bispectrum are being increasingly used in order to constrain cosmology [39–41] and
break degeneracies present in the two-point analyses. Moreover, these higher order statistics
are instrumental in constraining alternative cosmological models including modified gravity
[42, 43] and primordial non-Gaussianity [44–46]. Current and next generation mocks should
then be able to properly emulate three-point functions and their covariances.

The bispectrum is defined as

δD(k1 + k2 + k3)B(k1, k2, k3) = ⟨δ(k1)δ(k2)δ(k3)⟩. (4.6)

In this work we evaluate the bispectrum in a configuration with k1 = 0.1 and k2 = nk1 with
n = 2, 3. k3 is given by the closure relation enforced by the Dirac distribution δD. For this
bispectrum projection, we show it as a function of the angle θ12 between the wavevectors k1

and k2, given by k23 = k22 sin
2 θ12 + (k2 cos θ12 + k1)

2. In practice, we use the GPU-enabled
bispectrum implementation available in the jax-powspec12 package, based on Pylians313

and a Julia wrapper to the C library libbispec.
10https://github.com/dforero0896/pyfcfc.git
11https://github.com/cheng-zhao/FCFC.git
12https://github.com/dforero0896/jax-powspec.git
13https://github.com/franciscovillaescusa/Pylians3.git
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Moreover, recent analyses [41, 47, 48], have used the Sugiyama estimator [49] of the
bispectrum in order to constrain cosmology. This estimator computes the bispectra in different
k1, k2 configurations for different multipoles ℓ1, ℓ2, L. A common configuation is the diagonal
k1 = k2 ≡ k configuration. [49] shows that the ℓ1 = ℓ2 = L = 0 and ℓ1 = ℓ2 = 2, L = 0 have
a high signal to noise ratio and are thus important for cosmological analyses. In practice we
use the Triumvirate package [50] to compute the bispectra.

4.3 Free Parameters & Optimization

Our model has just 5 free parameters, θ, that can be optimized by trial and error to a certain
extent. Our approach however is to use a minimizer to compute steps towards a reasonable-
looking minimum. To do so, we define the loss function as the weighted sum of the mean
absolute errors, MAE(θ) = 1

N

∑N
i=0 |xi − x̂i(θ)| of different predicted clustering statistics x̂(θ)

compared to the target statistics xi. Our total loss is then

L = a1LP + a2LP,2, a3LP,0 + a4Lξ,0, (4.7)

where LP is the MAE of the real-space power spectrum monopole, LP,ℓ is the redshift space
power spectrum ℓ−multipole and Lξ,0 is the redshift space correlation function monopole. The
weighting factors ai not only help to regularize the dynamic range of the different statistics,
but modifying them during the training of the model will help to speed up convergence. In
the first stages of training we focus on the power spectrum in redshift space, making sure
that a2 > a3 > a1 and a4 = 0. Once the larger scales have been fixed, we introduce the
correlation function term with a4 = 50 in order to help the model better fit the smallest
scales. In practice we use the Optim.jl14 package.

5 Results

Our fitting procedure can be run for an arbitrary amount of time, however after a couple of
hours the precision is already good enough compared to the reference. This usually means
that the redshift-space power spectrum has reached 1− 2% accuracy down to scales of 0.4−
0.5 h/Mpc. Notice that given that we share the same initial conditions, we do not take cosmic
variance into account for the fit. The resulting values of our fit are also shown in table 2. The
values of the collapse fractions are interesting since the first collapse seems to be reducing
the pairwise distances to about 70% of the original value, this will generate excess power at
scales under the first cutoff radius. The subsequent “collapse” step actually separates particles
from the chosen attractors, diluting power in the very small scales, under the second collapse
radius. The combination of these two accurately emulates the small-scale clustering. We
comfortably recover the 50% loss in power at large scales and inject the necessary power to
scales significantly smaller than the minimum requirements for BAO and RSD analyses.

Figure 2 shows the Fourier-space two-point clustering of the reference Abacus halo cata-
log compared to the baseline random subgrid particle assignment and our collapsed model for
the subgrid clustering. The leftmost column shows that the real-space clustering is within 1%
of the target up to scales of k ≈ 0.6 h/Mpc. This is a substantial improvement over the usual
particle distribution technique where at these scales the power is already negligible. However,
our main target is the two-point redshift space clustering, which we upweight in the loss
function. The monopole is consistent with the reference to 1% precision up to k ≈ 0.5 h/Mpc

14https://github.com/JuliaNLSolvers/Optim.jl.git
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Figure 2. Power spectra of the reference Abacus halo catalog, a randomly sampled population of halos
and our collapsed sample. Left: Real space monopole, : Redshift space monopole. Right: Redshift
space quadrupole. Top row: comparison of the Abacus reference to a random sample. Bottom:
Comparison of Abacus against our collapsed sample. Monopoles agree to 1% (dark grey band) up to
k ∼ 0.6h/Mpc. The quadrupole agrees within 5% (light grey band) on the same scale range.

and 2% up to k ≈ 0.7 h/Mpc. The quadrupole shows also a significant improvement, as it is
consistent within 5% up to scales of k ≈ 0.4 h/Mpc.

The late addition of the configuration space monopole to the loss, allows for fine-tuning
the smallest scales in order to properly reproduce the redshift space monopole. fig. 3 shows
that the term used in the loss (redshift space monopole) is accurate within 2% down to scales
of s ≈ 5 Mpc/h and 5% down to s ≈ 1 Mpc/h. On the other hand, the real-space case does
not fit as well, specially on these small scales. The feature at s ≈ 0.5 Mpc/h, likely due to
halo exclusion, makes the fit to these scales considerably more difficult, and the model was
not explicitly trained on this particular measurement. Notice how the redshift space mapping,
largely mitigates these effects and the model is able to capture the small scales better. We
expect that this feature will not be present in galaxy clustering, thus improving the overall fit
to these scales. Nonetheless, we find a 5% agreement with the reference down to s ≈ 4 Mpc/h
in the real space two-point function. Similarly the quadrupole is also not explicitly trained
on thus we do not capture the feature at s ≈ 2 Mpc/h. However, we are able to recover the
agreement with the reference even at s ≈ 5 Mpc/h. This is also a significant improvement
over the baseline, which in this case does not contain a dispersion velocity term. Finally,
fig. 4 shows that the random assignment of particles performed in the baseline, dampens the
strength of the BAO peak significantly. This was already seen for the EZmocks [17], where the
artificial strengthening of the BAO peak in the initial conditions was necessary. Evidently,
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Figure 3. Small-scale correlation function of the reference Abacus halo catalog, a randomly sampled
population of halos and our collapsed sample. Left: Real space monopole, : Redshift space monopole.
Right: Redshift space quadrupole. Top row: comparison of the Abacus reference to a random sample.
Bottom: Comparison of Abacus against our collapsed sample. Monopoles agree to 1% (grey band)
down to to s ∼ 3Mpc/h. The quadrupole agrees within 5% down to to s ∼ 10Mpc/h. The zero-
crossing of the quadrupoles makes the ratio diverge.

our model not only allows to fix small-scale clustering but also corrects smaller effects on
relevant larger scales such as the sound horizon.

In order to model the covariance correctly, it is necessary to properly model the three-
point clustering of the sample [51]. In fig. 5 we show the real and redshift space for one
large-scale k1 = 0.1 h/Mpc, k2 = 2k1 and one smaller scale k1 = 0.1 h/Mpc, k2 = 3k1
B(θ12) configurations. Evidently, the baseline particle assignment does not generate accu-
rate bispectra, showing discrepancies of around 50 and 100% for the large and small scale
distributions respectively. Given that we are using ideal number counts, this also shows that
properly fitting the global PDF of number counts with a bias model is not enough for an
accurate bispectrum and that an accurate subgrid description is necessary. On the other
hand, our collapsed sample shows a significantly better agreement with the reference, with
per cent differences of 5 and 10% for the large and small scale bispectrum configurations in
redshift space, while the agreement for the real-space clustering is slightly worse. This is not
surprising given that we focused on fitting the redshift space measurements.

Furthermore, we want to check whether our model can reproduce some of the common
bispectrum projections used for cosmological measurements. In order to do this, we use
the Sugiyama estimator [49] and choose two configurations with a high signal-to-noise ratio,
thus the most relevant for cosmological parameter estimation. We use the ℓ1 = ℓ2 = 0 and
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Figure 4. Large-scale correlation function of the reference Abacus halo catalog, a randomly sampled
population of halos and our collapsed sample.

ℓ1 = ℓ2 = 2, L = 0 configurations. For the former we show the real and redshift space and
for the latter we show the redshift space only measurements in fig. 6. We observe that the
random subgrid assignment causes the bispectrum multipoles shown to have a divergence
of 50% compared to the reference at scales as large as k = 0.2 h/Mpc. On the contrary,
our collapse method can match the Abacus 3-point clustering within 5% down to scales of
k ≈ 0.6 h/Mpc. This kind of agreement may open the door for more precise cosmological
analyses provided that theoretical models can also reach these scales.

6 Discussion and Conclusions

The present work presents a subgrid model designed to emulate the small-scale clustering of an
accurate (N -body) reference using an approximate, fast simulation with a mass resolution of
10−4 times the original one. We have explored not only the technical details of the modelling
of the small-scale clustering but have also identified theoretically motivated solutions to offset
the limitations of low resolution gravity solvers. We compare our model with a baseline created
using a common (random) particle assignment scheme within each cell.

We show that even under the assumption that a perfect bias model exists, such that
the target number counts field is exactly the one obtained from the simulation, the random
particle assignment is not enough to obtain two and three point statistics that properly
emulate the reference on the relevant scales. Within our model, we employ a dark matter-
random hybrid particle position assignment within each low resolution simulation cell that
potentially mitigates the dampening of the baryon acoustic peak that is observed in other
methods such as EZmocks [17]. In addition, we developed a two-step collapse and disperse
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Figure 5. Bispectrum of the reference Abacus halo catalog, a randomly sampled population of
halos and our collapsed sample for two different triangle configurations. Left two columns: Real and
redshift space curves for k1 = 0.1 h/Mpc; k2 = 2k1. Right columns: Real and redshift space curves
for k1 = 0.1 h/Mpc; k2 = 3k1. Top row: comparison of the Abacus reference to a random sample.
Bottom: Comparison of Abacus against our collapsed sample. Gray areas show 5% discrepancy. The
k2 = 2k1 agrees with the reference within 5% while the k2 = 3k1 configurations agree within 10%.

velocity model with 5 free parameters that takes into account cosmic-web and environmental
information and can automatically be tuned to reproduce the real and redshift space two
point clustering of the reference down to scales of k ≈ 0.6 h/Mpc or s ≈ 1 Mpc/h with
an accuracy of 1% in the monopole and of 5% in the quadrupole. This accuracy is a large
improvement compared to previous approaches to approximate mock generation as seen in
[52], where only the N -body based methods such as COLA yield comparable results. This
agreement satisfies the requirements from current generation large spectroscopic instruments.

We employ a multi-stage training scheme that allows for faster optimization by avoiding
the computation of sub-dominant terms in the objective function such as the small scale
configuration space two-point clustering. This term will only be computed in later stages of
the training, when large scales have already been fit by minimizing the power spectrum terms
of the loss.

Despite not being trained to do so, our model is also capable of fitting various bispectra
configurations B(θ12) with accuracies of 5 to 10%, a factor of 10 improvement over the baseline
random particle assignment. This hints at the capability of our model to properly model the
two-point covariance matrix, as shown by [51]. Moreover, we test different cosmologically
relevant bispectrum projections using the Sugiyama estimator. We find a 5% agreement with
the reference, which is also a factor of 10 improvement over the naive random assignment

– 14 –



Figure 6. Diagonal Bℓ1ℓ2L(k, k) configuration of the bispectrum in different (ℓ1, ℓ2, L) configurations
of the Sugiyama estimator as a function of k. We show two of the highest signal-to-noise configurations.
Our collapsed catalog matches the reference within 5% up to k = 0.5 h/Mpc in both real and redshift
space for both configurations shown.

of particles. The combination of these shows that this novel technique can be applied to
the generation of mocks for higher order statistics analyses, which will be a major focus of
spectroscopic surveys in the coming years.

There are several avenues for enhancing our method further. While in this study we
have employed ALPT at extremely low resolutions (four orders of magnitude less than the
reference simulation), alternative approaches such as eALPT [53] operating at higher reso-
lutions or machine learning-based solutions [54] offer promising alternatives. These methods
could provide an improved baseline for determining the positions and velocities of dark matter
particles. The particle collapse step could potentially be enhanced using a machine learning
approach. However, in this work, we aimed to demonstrate how we can leverage the informa-
tion contained in the phase-space distribution of particles from approximate gravity solvers
through straightforward prescriptions without requiring large training data sets.

Our model can be regarded as a post-processing step that is completely independent of
the method used to model the tracer field, thus various bias models such as [16, 17, 55, 56] can
equivalently be used. In particular, this allows us to overcome the data-volume limitations
of machine learning (ML)-enabled models or models that are in general limited by (GPU)
memory such as [57], given that a lower resolution mesh is required. In addition, this step
can be applied to existing mocks such as the MD-Patchy mock suite used in BOSS in order
to mitigate the small-scale discrepancies with respect to N -body (e.g., [58]).
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Finally, we stress that a great advantage of the model is its flexibility in the fact that
modifications can easily be made to include more cosmic-web related information in the
definition of attractors or even the number of collapse steps showing its potential paths for
further improvement. This method will potentially become crucial in the analysis of current
and upcoming galaxy surveys.
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