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Abstract

In the field of class incremental learning (CIL), generative
replay has become increasingly prominent as a method to mit-
igate the catastrophic forgetting, alongside the continuous im-
provements in generative models. However, its application in
class incremental object detection (CIOD) has been significantly
limited, primarily due to the complexities of scenes involving
multiple labels. In this paper, we propose a novel approach
called stable diffusion deep generative replay (SDDGR) for
CIOD. Our method utilizes a diffusion-based generative model
with pre-trained text-to-image diffusion networks to generate
realistic and diverse synthetic images. SDDGR incorporates
an iterative refinement strategy to produce high-quality images
encompassing old classes. Additionally, we adopt an L2 knowl-
edge distillation technique to improve the retention of prior
knowledge in synthetic images. Furthermore, our approach
includes pseudo-labeling for old objects within new task images,
preventing misclassification as background elements. Extensive
experiments on the COCO 2017 dataset demonstrate that SD-
DGR significantly outperforms existing algorithms, achieving a
new state-of-the-art in various CIOD scenarios.

1. Introduction
The key challenge in artificial intelligence is the development
of models capable of continuous learning, similar to human
knowledge accumulation over a lifetime. This challenge has
sparked the field of class incremental learning (CIL), the
continual learning in the classification task. The CIL focuses on
developing techniques that enable models to learn new classes
without compromising previously acquired knowledge.

To address the challenge, researchers have primarily focused
on mainly two strategies: knowledge distillation [16, 33, 38,
47, 61], replay [5–7, 12, 17, 47, 57, 58, 66, 67]. Among these,
replay has been employed as a prominent solution in addressing
the challenge of forgetting. Replay can be classified into two
categories: partial experience replay [5, 7, 17, 47, 57] and deep
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Figure 1. We utilize a pre-trained text-to-image diffusion model [51]
to generate realistic images that include objects from the old task.
These images are then filtered out via iterative refinement and filtered
synthetic images are integrated into the training process of the new
task. During training, we employ L2 distillation to a synthetic dataset.
Additionally, when training an image for the new task, we employ
a pseudo-labeling that finds the old task objects from the new task
images. The series of methods enable us to effectively mitigate the
issue of catastrophic forgetting.

generative replay [6, 12, 58, 66, 67]. The partial experience
replay needs to store actual data samples from old tasks, acting
as a reservoir of previous knowledge for the model. On the
other hand, generative replay employs generative models to
mimic the distribution of old task’s data, enabling the current
model to re-experience the previous knowledge.

These methods have made significant progress in the field of
image classification when there is only a single object present
in an image. Yet, there has been a pressing need for techniques
that can handle more complex and realistic scenes including
multi-labels in a scene based on the object detection algorithms.
Consequently, class incremental object detection (CIOD) has
emerged, with the goal of improving models to detect multiple
labels in a scene while still preserving the ability to recognize
previously learned object classes.

Initial researches [1, 11, 35, 60] in class incremental ob-
ject detection (CIOD) extended image classification methods
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to CIOD, showing encouraging results. Furthermore, as the
Transformer-based architectures [3, 29, 71] are introduced as the
alternative to the CNN-based approaches [31, 48], the CIOD for
Transformer-based object detector is also proposed. Specifically,
Gupta et al. [15] and Liu et al. [37], which utilize deformable-
DETR [71], have introduced distinctive characteristics into
Transformer-based object detection, also incorporating partial
experience replay in their methodologies. Despite significant ad-
vancements, they still heavily rely on the direct use of real data.

In parallel to the advancements in incremental learning, gen-
erative models have seen noticeable advancements. Moving
away from traditional generative models like generative adver-
sarial networks (GANs) [13, 40] and Variational autoencoders
(VAEs) [26], recent image generation has focused on more so-
phisticated and realistic techniques, such as diffusion models [9,
20, 62, 63]. Notably, the stable diffusion (SD) method [51],
which has been trained on a vast amount of online knowl-
edge [53, 54], has gained significant attention for its impressive
performance. This has led to various studies [32, 65, 69, 70] to
utilize the model’s capabilities with its original weights fixed.
Motivated by the research trends, we proposed to utilize the pre-
trained SD network for high-quality image generation to prevent
the catastrophic forgetting. While generative models like the
SD have shown proficiency in reproducing knowledge from
the prompt, their effectiveness in multi-label scenarios, such as
CIOD, remains constrained by the complexity of the scenario.
However, we observed that the naı̈ve application of SD is not
suitable for successful CIOD. Thus, we proposed to improve the
SD to control it based on grounding inputs such as classes and
bounding boxes, via GLIGEN [32]. Furthermore, we proposed
series of methods to secure the generated image quality.

In this study, we introduce the stable diffusion-based deep
generative replay (SDDGR) strategy, a novel method for
utilizing a pre-trained generative model for mitigating the
catastrophic forgetting in CIOD. The SDDGR generates images
by using grounding inputs and prompts that explain complex
scenes, which include previously learned objects. However, we
observed that the pre-trained SD weights are sub-optimal for
the CIOD. To relieve the issue, we further proposed to refine the
image fidelity through iterative refinement via a trained detector.
Additionally, we trained a model using the L2 distillation to
facilitate effective knowledge transfer from these synthetic
images to the updated model, rather than the direct training.
Simultaneously, we perform the pseudo-labeling for the old
task’s objects which exist in the new task’s training images, to
prevent it from being detected as the background. Using series
of proposed methods, the SDDGR demonstrates excellent
performance on the COCO dataset, achieving state-of-the-art
accuracy. The overall training process of our method is shown
in Figure 1. Our contributions are summarized as follows:
• As far as we are aware, we, for the first time, proposed to

apply the diffusion-based generative model in CIOD problem.
• Naı̈vely applying the diffusion model to CIOD can decrease

the overall accuracy. To make it properly work, we introduced
series of methods to improve the generated image quality, to
prevent the overfitting or mis-led information during training.

• The extended experiments demonstrate state-of-the-art
performance on the COCO dataset, substantiating its efficacy
in various CIOD scenarios.

2. Related works
2.1. Continual learning

Class-incremental learning (CIL) is a subset of continual learn-
ing, aiming to seamlessly integrate new classes into a model
while maintaining the ability to recognize existing ones. Most
influential CIL studies focused on classification, where one
image represents a single class. In our paper, unless otherwise
specified, CIL refers to the classification task. On the other hand,
class incremental object detection (CIOD) presents a challeng-
ing task due to the presence of multiple instances belonging to
various classes within images. When instances are trained under
different tasks, they cannot be trained simultaneously. This
can cause the model to classify these instances as background,
which in turn degrades detection performance sequentially.
Despite the clear challenges, CIOD has received relatively less
research attention compared to CIL due to its complex nature.
Class incremental learning. In CIL, we can cluster the main
methods into knowledge distillation [16, 33, 38, 61], and re-
play [5–7, 12, 17, 22, 47, 50, 57, 58, 66, 67] in general. Among
these, Replay methods are most frequently utilized for their sim-
ple yet powerful effects and can be categorized into two types:
partial experience replay (ER) [2, 4, 14, 27, 44, 47] and gener-
ative replay (GR) [6, 12, 23, 58, 66, 67]. The former involves
reusing a subset of the original data repeatedly, while The latter
employs a generative model to recreate the data distribution of
previous tasks, effectively mitigating the forgetting [49]. In the
GR, DGR [58] is an initial attempt of the GR method to prevent
the loss of incremental classes using GAN [13]. MRGAN [66]
and ILCAN [67], which evolved from DGR. Furthermore,
DDGR [12] leverages advanced generative models, particularly
diffusion-based techniques, to enhance the fidelity and variabil-
ity of generated data. However, these methods have mainly been
used in simpler scenarios for CIL because they require signifi-
cant resources for training a generative. In our research, we shift
the focus to applying advanced generative models within CIOD.
Class incremental object detection. CIOD has progressed from
primarily employing CNN-based methods [1, 11, 28, 36, 43, 60]
to also incorporating Transformer-based approaches [10, 15,
24, 25, 37]. In this trend, ILOD [60], a pioneering work in
CIOD, implemented the LWF [33] method to handle forgetting.
Besides, Feng et al. [11] focuses on maximizing the utility of
heads in the distillation. More recent developments like CL-
DETR [37] and OW-DETR [15] have adopted the Deformable
DETR [71] (D-DETR) as a baseline. CL-DETR employs
knowledge distillation at the level of the labels, utilizing an old



Pseudo 

labeling

“A photo of bird, realistic, 

8K, …, details”

Prompt

“bird”

Fourier
embedding

Text
encoder

Image
encoder

MLP

Real dataset 𝓓𝒎−𝟏

𝑫𝒎 Dataset𝑫𝒈𝒆𝒏 Dataset

𝑪𝒎−𝟏Grounding input

𝑐1 = “bird”

𝒃𝟏 = “0.01, 0.41, 0.58, 0.85”

Decoder

Synthetic 

images

𝑳𝒄𝒍𝒔 𝑳𝒓𝒆𝒈

…

ℳ𝒎−𝟏 Object Detector
Threshold = 0.8

Threshold = 0.4

…

Class-wise

generation

 count(Bird) <=  𝒩

Filtered

synthetic

images

𝓓𝒈𝒆𝒏

𝑧𝑡

Text
encoder

𝑧0

Stable Diffusion

Object Detector

𝑪𝒎

CLS CLSREG REG

Synthetic 

image

Object queries 𝑄

Object Detector Object Detector

Count() : The number of generated image of class

𝒩 : Target count

: Frozen networks

Ground Truth

: Old detector

: New detector

: Trainable networks

C

B

𝑪𝒎

Generation process

Training process

x𝑚−1

“0.01, 0.41, 0.58, 0.85”

L2 distillation

Iterative 
refinement

Figure 2. Schematic of Our SDDGR Framework: In the ‘Generation process’, our method individually generates each image based on class labels
Clabel, specific bounding box locations Blocation, and old real images xm−1 in the old dataset Dm−1. An ‘Iterative refinement’, employing the trained
model Mm−1, is applied to these synthetic images. In this algorithm, images with object scores below a dynamically adjusted threshold (ranging
from 0.8 to 0.4 in our study) are systematically excluded. This cycle of generation and dynamic refinement continues until each class reaches
the pre-defined target number of instances N , or the lower threshold limit is met. In the ‘Training process’, the synthetic dataset is utilized for the
continual learning via L2 distillation loss. Furthermore, real images undergo pseudo-labeling before being incorporated into the ‘Training process’.

model to perform this process. OW-DETR introduce attention-
driven pseudo-labeling, helping to identify unrecognized labels.
In this study, we use D-DETR as a base detector to exploit the
advantages of DETR [3] and compare its performance.

2.2. Diffusion models

Diffusion models have been largely researched due to their
powerful generation capability. [20, 62, 63] proposed a basic
framework for training through U-Net [52]. [9, 19] have demon-
strated superior results compared to GAN [13] and VAE [26]
based methods. However, since these models typically operate
directly in pixel space, substantial computational resources are
required. To solve this problem, Rombach et al. [51] proposed
latent diffusion model(LDM), which performs the diffusion
steps in latent space. They leveraged large-scale datasets such
as LAION [53] and the pre-trained BERT [8] for text-to-image
synthesis. This approach enables the incorporation of conditions
during the image generation process, leading to the generation
of desired images. Building on this foundation, Stability AI ad-
vanced the field further by developing stable diffusion (SD). SD
utilizes an even larger dataset [54] and incorporates pre-trained
CLIP [46]. Recent research has focused on using pre-trained
SD as a foundation to effectively leverage the extensive knowl-
edge. [21, 32, 41, 65, 70] have gained popularity for controlled
generation by incorporating additional conditions. [59, 68]
have demonstrated performance enhancements by generating
additional data for training. In line with these advancements,

our study employs pre-trained SD as a form of generative replay
model to prevent the forgetting of previous knowledge.

3. Preliminaries
3.1. Stable diffusion

Stable diffusion (SD) [51] includes an VAE [26] structure for
first extracting the latent vector z ∈ R64×64 from the image
x∈R512×512 and gaining the same dimensional reconstructed
images x̂ from the latent vector z. It uses also a U-Net [52]
architecture to add Gaussian noise to the latent vector and
to remove the noise during the backward process, which is
called the diffusion process [20, 62, 63]. By leveraging the
text embedding of CLIP [45] and cross-attention [64], SD
efficiently generates images based on the text prompt T.

The core function is fθ(zt,t,T), where the trained U-Net is
used for fθ, t denotes the time embedding and zt represents the
latent representation at the t-th diffusion time step. Although SD
is adept at generating images from assigned prompts T, it lacks
the capability to utilize additional grounding inputs that would
guide the generation process in terms of specific locations and
categories of objects, thus limiting the elaboration of images.

3.2. Controllable image generation

To exploit the SD in the context of CIOD, we need to involve
additional conditions such as bounding boxes and classes
particularly when generating images with scenes containing



multiple objects. However, as pointed out before, the SD lacks
such a capability. To address this limitation, we extended the
SD to incorporate the additional guiding inputs, following
GLIGEN [32] (Unless otherwise noted, subsequent references
to SD in this paper denote the SD whose grounding capability
is enhanced by the use of GLIGEN [32].) This approach is
able to leverage the pre-trained knowledge in the SD; while
using the grounding inputs, such as classes and bounding boxes
(bbox) additionally to the original text prompt T. Grounding
inputs are represented as classes and bounding boxes for N
objects in an image as follows:

Clabel =[c1,...,cN ], (1)
Blocation =[b1,...,bN ], (2)

where each ci represents a specific class within the set of
trained classes C, and bi denote the corresponding bounding
box’s normalized coordinate values [xmin,ymin,xmax,ymax]
for the i-th instance, respectively. Now, the SD becomes to
combine the text prompt T with grounding tokens Clabel and
Blocation using a gated self-attention mechanism, to generate
accurate images. The diffusion function fθ is then modified
to incorporate grounding inputs:

fθ(zt,t,T,Clabel,Blocation). (3)

Furthermore, a hyper-parameter β∈ [0,1] is used to handle the
influence of grounding inputs over the diffusion process.

4. Methods
The objective of class incremental object detection (CIOD) is
to progressively assimilate new classes without compromising
the knowledge of previously learned classes. This paradigm
is characterized by a sequence of tasks, each represented as
Tm, where m∈ [1,M ] and M denote the cumulative number
of tasks. Each task contains specific data, represented as Dm.
Specifically, the dataset Dm consists of a set of input images
Xm = {x1

m, ... ,xD
m} and a set of corresponding annotations

Ym={y1
m,...,yD

m}, where D is the data length. It is important
to note that in object detection, individual annotations yi

m

consist of multiple object instances. We also follow the
conventional CIOD configuration [11, 60], which implies that
some images can be shared across different tasks.

Our approach, called SDDGR, consists of four key modules:
1) A method to generate images that include previous class ob-
jects (Section 4.1), 2) A technique for filtering more expressive
images (Section 4.2), 3) A method for implementing pseudo la-
beling of the DETR framework (Section 4.3), and 4) A training
protocol for using the synthetic images (Section 4.4). Figure 2
provides a comprehensive overview of these components.

4.1. Image generation

Text prompt Design. To generate images that accurately reflect
the object categories of previous tasks, we carefully design text

prompts T that encapsulate object classes of Ym−1 from the
previous dataset Dm−1. Initially, we identify the object labels,
as multiple objects may appear in a single image for CIOD.
Subsequently, we count the occurrence of each object and ex-
press the number using words (e.g., one, two, etc.). As a result,
we frame our prompts to reflect both the object category and the
number of occurrences: “A photo of{count}{object A},{count}
{object B}, and{count}{object C},{scene environments}”.
The term {scene environments} is included at the end of the
prompt to describe the overall style and aesthetic quality of the
image (e.g. 4K, 8K, realistic, etc). However, when generating
images in SD with prompts, not all prompts are accurately
reflected, so it is still challenging to precisely place the objects.
Control strategy for stable diffusion. To generate images
Xgen that are consistent with both spatial and object categories
from the previous dataset Dm−1, we employ grounding input
in conjunction with the text prompt T. Specifically, for each
annotation yi

m−1, we extract the category labels Clabel and their
corresponding object locations Blocation for all entities. The
grounding input is defined as a set of label and location pairs
as follows:

{Clabel,Blocation︸ ︷︷ ︸
grounding input

}={(c1,b1),(c2,b2),...,(cN ,bN)︸ ︷︷ ︸
entities

}. (4)

Next, we use the text encoder in CLIP [45] to convert the
labels Clabel into text-to-image matching embeddings, the
same as we apply to the prompts for the SD. Concurrently, the
location Blocation is transformed into the Fourier embeddings
as suggested by Mildenhall et al. [39] for high-dimension
representation. These embeddings are then fused across the
feature dimension by the MLP layer, serving as a condition
for the SD. The fused grounding embeddings are incorporated
into the generation process using a gated self-attention fusion
strategy [32] with the text prompt T. We employ them through-
out the entire denoising process using β=1. Furthermore, we
leverage CLIP’s image encoder to extract image embedding
from the corresponding image xi

m−1 associated with each
annotation yi

m−1. The image embedding is replicated N
times, corresponding to the number of objects in yi

m−1. The
image embeddings are then concatenated with the grounding
embeddings across the feature dimension. This process, aligned
with the text prompt T, is employed in the generation process. It
closely reproduces the realistic style and quality of the original
images from the previous dataset Dm−1. The image qualities
that are varied with additional inputs are shown in Figure 3.

4.2. Iterative class-wise refiner

Despite our efforts to closely mimic the characteristics of real
images, training the model with imagesXgen generated using all
of the previous annotationsYm−1 resulted in only limited perfor-
mance improvements, while also leading to extended generation
times. To address these issues, we employ a class-wise gener-
ation limit, denoting the maximum number of generated images
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Figure 3. Differences in image generation based on input types. Each
row represents different examples used for image synthesis. The first
row uses prompts like “A photo of two umbrellas, person and boat,
realistic, ... details”. The second row uses prompts like “A photo of
two elephants and person, ...”. The last row uses prompts like “A photo
of two suitcases, ...”. (a) and (b) show the grounding input. (c) shows
COCO real images. (d) depicts the prompt-only synthetic images. (e)
depicts combined the grounding input and the prompt. (f) shows used
the prompt, grounding input, and CLIP image embedding for image
synthesis.

for each class as N . This constraint not only ensures a more effi-
cient, but also a balanced generation process. We further employ
a refinement process using the model Mm−1 to ensure the qual-
ity and fidelity of the generated images. This refinement process
is conducted through pseudo-labeling (described in 4.3) where
images containing objects with a probability lower than prefine
are discarded in Dgen. This approach presents a trade-off: a
higher threshold prefine results in higher-quality images but often
fails to meet the class-wise quantity N , while a lower thresh-
old achieves the quantity goal but compromises image fidelity.
Therefore, we adopt an iterative process where the threshold
prefine is gradually decreased by 0.05 in each generation cycle.
This process continues until the generated images for all classes
meet the pre-defined class-wise quantity N or until the lower-
bound threshold prefine, which is 0.4 in our case, is reached.

However, if after the completion of the iterative refinement
process, the generated image count for any class still does
not meet the standard N , we introduce a class-specific
generation strategy. This additional step involves creating
an additional generation process with specialized prompts
and phrases tailored for the classes that have not generated
enough images. To focus the synthesis on the target object,
we strategically position the bounding box at the center of
normalized coordinates [0.3, 0.3, 0.6, 0.6]. In this manner, we
also apply the previously described refinement process, utilizing
Mm−1 with only lower-bound threshold. Figure 4 shows an
example of this class-specific image generation technique.

4.3. Pseudo labeling

Based on the prediction mechanism introduced in [15, 37],
D-DETR utilizes learned object queries in the decoder. Each

“stop sign” “bird” “horse” “bench”

Figure 4. Class-specific image generation. This process utilizes a
single class label as a prompt and grounding input with a fixed location.
For example, in the first column, we have T = “stop sign”, {Clabel,
Blocation} ={(“stop sign”, [0.3, 0.3, 0.6, 0.6])}.

query is processed through multiple decoder layers and then fed
into the classification and regression heads to predict classes and
bounding boxes, respectively. The classification head computes
a matrix Fcls ∈ RQ×(cls+1), where Q denotes the number of
object queries and cls+1 represents the total number of learned
classes with an additional one for the background prediction.
Each entry in Fcls denotes a logit score, signifying the probabil-
ity of a query being a specific class. For pseudo-labeling, after
processing through the final decoder layer, we examine the
logits inFcls for each query, identifying the logit with the highest
score. If this highest score exceeds the pre-defined threshold
ppseudo, the query is then pseudo-labeled with the corresponding
class. Concurrently, the regression head outputs a matrix
Freg ∈ RQ×4, where each column contains the normalized
coordinates of the bbox for each query. The queries exceeding
the threshold inFcls are aligned with the bbox predictions inFreg
for the pseudo ground truth. It plays a crucial role in mitigating
the forgetting of previously learned objects during the current
training phase Tm, particularly by reducing the misclassification
of these objects as background, especially in scenarios where
previous annotations Yn−1 are not available. This strategy is
also used in Section 4.2 to refine the synthetic images.

4.4. Training with generated image

While employing synthetic images Xgen, we observed that
despite our attempts to preserve the previous knowledge, the
performance improvement when training directly is insufficient
compared to the state-of-the-art. To improve this, instead of
using the synthetic images Xgen as direct inputs for training,
we enforce the new model Mm to acquire previous knowledge
indirectly from the previous model Mm−1. Inspired by [11],
we apply an L2 distillation loss to both the classification and
regression outputs. The formulation of the distillation function
in terms of the object queries Q and at a given task index m
is defined as follows:

Lcls=
1

Q×C

Q∑
i=1

C∑
j=1

(
F ij

cls,m−F ij
cls,(m−1)

)2

, (5)

Lreg=
1

Q×4

Q∑
i=1

4∑
k=1

(
F ik

reg,m−F ik
reg,(m−1)

)2

, (6)



where F ij
cls,m and F ik

reg,m represent the predicted scores for the i-
th query’s j-th class index and k-th bbox coordinate by the new
model Mm, and F ij

cls,(m−1) and F ik
reg,(m−1) are those predicted

by the old model Mm−1. This approach retains the predictive
consistency of Mm−1, thereby mitigating the forgetting.
Furthermore, since the decoder in D-DETR extracts predictions
over 6 layers, we extend the application of L2 distillation loss
across all these layers to facilitate distillation. In the training, we
use the same loss formulation for D-DETR, denoted as LDETR.
To effectively integrate and balance the distillation loss with
the inherent D-DETR loss, we introduce a weight λ. The final
loss function, reflecting a blend of the standard losses with the
additional distillation components, is formalized as follows:

Ltotal=LDETR+λ(αLcls+βLreg). (7)

Here, α and β are the weights for the classification and
regression loss terms, respectively, adapted from the original
D-DETR configuration, where α is 2 and β is 5.

5. Experiments
5.1. Dataset and metrics

Our research utilizes the MS COCO 2017 [34], which consists
of 80 diverse classes across 118,000 images for training and
5,000 images for evaluation. These classes are strategically
divided based on our experiment scenario. For evaluation,
we employ standard COCO metrics, including mean average
precision (mAP, %) at different intersection over union (IoU)
thresholds and object sizes: AP , AP.5, AP.75, APS, APM ,
and APL. Here, AP refers to the mAP calculated over IOU
thresholds ranging from 0.5 to 0.95. In our ablation study, we
introduce the forgetting percentage points (FPP) as proposed by
CL-DETR [37], as a metric to evaluate the degree of forgetting
for trained categories.

5.2. Implementation and experiments

Implementation details. Our method is based on deformable-
DETR [71], which leverages pre-trained ResNet-50 [18] as
a multi-scale backbone. We set the number of object queries
Q to 300 while keeping all other settings consistent with our
baseline [71]. All experiments are performed using NVIDIA
A100 GPUs with a batch size of 8. In our generation process,
we utilize stable diffusion version 1.4. For incorporating
grounding input, we employ pre-trained GLIGEN’s gated
self-attention weights that have been trained on various datasets
including GoldG [30], O365 [55], SBU [42], and CC3M [56].
Additionally, we set the classifier-free guidance scale to 7.5.
Scenario setup. In our experiment, we focus on two scenarios:
the two-phase setting and the multiple-phase setting. In the
two-phase setting, we train a model first task on T1 and then
on a different task T2, evaluating on a combined total of T1+T2
classes, such as 40+40 or 70+10. In the multiple-phase setting,
we begin by training on 40 classes as a T1, then sequentially add

new classes in Tn phases (e.g., 40+20+20 or 40+10+10+10+10),
with evaluation conducted on all classes T1:n learned up to each
phase.

5.3. Results

Two-phase setting. Tab. 1 shows that our method outperforms
previous approaches such as LWF [33], RILOD [28], SID [43],
and ERD [11] using GFLv1 [31], including CL-DETR [37].
Importantly, we achieved a 0.5% increase in AP for the 70+10
scenario and 1.0% for the 40+40 scenario. Moreover, we
observed even higher gains of 1.5% and 2.0% in AP.5, respec-
tively. It is particularly noteworthy that while CL-DETR relies
on a 10% replay buffer comprising real data from previous tasks,
our method stands out by achieving remarkable performance
improvements without any reliance on real previous data.
Multi-phase setting. Tab. 2 shows that our method, which
utilizes synthetic image-based training, surprisingly outperforms
other approaches significantly in multi-phase scenarios. Despite
using different baselines like [11, 28, 43], it is evident that our
method maintains consistent performance. We achieve 8.7%
and 5.8% gains in AP for the 40+10+10+10+10 and 40+20+20
scenarios, respectively, compared to CL-DETR. This highlights
that our approach, which uniformly employs synthetic data
through knowledge distillation from the old model across all
phases, effectively trains on new task data while maintaining
high performance by alleviating catastrophic forgetting.

5.4. Ablations

Main components. In Tab. 3, we present an ablation study
of our method’s components in the 70+10 scenario. For the
‘Fine-tuning’ component, we do not apply specific CIOD
strategies. The results show a significant improvement when
employing the pseudo-labeling strategy, which notably reduces
FPP by 39.1% in AP . This highlights its crucial role in
minimizing the misclassification of previously trained objects
as background. Following the introduction of a synthetic dataset
to mitigate forgetting, we noticed a modest increase in AP by
1.2% in all categories and a reduction in FPP by 1.5%. Although
this indicates that synthetic data contributes to knowledge
retention, its impact on reaching state-of-the-art performance
is somewhat insufficient. However, the results take a significant
turn when we integrate distillation with the synthetic dataset
training, marking a substantial improvement. As a result,
we achieve an AP of 40.9% in all categories and 41.5% in
old categories, along with an FPP of 1.9%. These indicate a
significant advancement in the effectiveness of our method.
Pseudo-labeling. Tab. 4 illustrates the impact of varying
confidence score ppseudo thresholds on the selection of optimal
queries for pseudo ground-truth labeling. The data reveals a
marked improvement in performance when predictions are
labeled using a query score threshold above 0.3. However, it
also shows a gradual decline in performance as the threshold
is increased beyond this point.



Table 1. CIOD results (%) on COCO 2017 in two-phase setting. The results of related research [11, 28, 33, 43] extract from CL-DETR paper.
The order of data follows the [11]. The best performance is highlighted in bold, and a red upward arrow ↑ signifies an improvement in performance
relative to the state-of-the-art.

Scenarios Method Baseline AP AP.5 AP.75 APS APM APL

40 + 40

LWF [33] GFLv1 17.2 25.4 18.6 7.9 18.4 24.3
RILOD [28] GFLv1 29.9 45.0 32.0 15.8 33.0 40.5
SID [43] GFLv1 34.0 51.4 36.3 18.4 38.4 44.9
ERD [11] GFLv1 36.9 54.5 39.6 21.3 40.4 47.5
CL-DETR [37] Deformable DETR 42.0 60.1 45.9 24.0 45.3 55.6
Ours Deformable DETR 43.0 ↑1.0 62.1 ↑2.0 47.1 ↑1.2 24.9 ↑0.9 46.9 ↑1.6 57.0 ↑1.4

70 + 10

LWF [33] GFLv1 7.1 12.4 7.0 4.8 9.5 10.0
RILOD [28] GFLv1 24.5 37.9 25.7 14.2 27.4 33.5
SID [43] GFLv1 32.8 49.0 35.0 17.1 36.9 44.5
ERD [11] GFLv1 34.9 51.9 37.4 18.7 38.8 45.5
CL-DETR [37] Deformable DETR 40.4 58.0 43.9 23.8 43.6 53.5
Ours Deformable DETR 40.9 ↑0.5 59.5 ↑1.5 44.8 ↑0.9 23.9 ↑0.1 44.7 ↑1.1 54.0 ↑0.5

Table 2. CIOD results (AP /AP.5, %) on COCO 2017 in multi-phase setting. The tasks are divided into two scenarios: 40+10+10+10+10 and
40+20+20. Ours and CL-DETR are based on deformable DETR, while ERD, RILOD, and SID are based on GFLv1. A red upward arrow ↑ indicates
a performance improvement compared to the state-of-the-art CL-DETR. The ”-” symbol indicates a missing value, as reported in paper [37].

Method T1 (1-40)
40+10+10+10+10 40+20+20

T2 (40-50) T3 (50-60) T4 (60-70) T5 (70-80) T2 (40-60) T3 (60-80)

Ours
46.5 / 68.6

42.3 / 62.8 40.6 / 60.2 40.0 / 59.0 36.8 ↑8.7 / 54.7 42.5 / 62.2 41.1↑5.8 / 59.5
CL-DETR [37] - - - 28.1 / - - 35.3 / -

ERD [11]
45.7 / 66.3

36.4 / 53.9 30.8 / 46.7 26.2 / 39.9 20.7 / 31.8 36.7 / 54.6 32.4 / 48.6
RILOD [28] 25.4 / 38.9 11.2 / 17.3 10.5 / 15.6 8.4 / 12.5 27.8 / 42.8 15.8 / 4.0
SID [43] 34.6 / 52.1 24.1 / 38.0 14.6 / 23.0 12.6 / 23.3 34.0 / 51.8 23.8 / 36.5

Refiner. Tab. 5 presents our findings on how varying the
number of generated images per class (N ) and the refinement
threshold (prefine) influences the performance of our iterative
refinement method (Section 4.2).

When examining different N values (50, 100, and 200),
we observed comparable performances, particularly with a
fixed threshold range (e.g., from 0.8 to 0.4). This suggests that
our method is robust to variations in class-wise image count
regulation. However, when we set N to ”no limit” (∞), gen-
erating images based on all old annotations without class-wise
restrictions, there is a performance drop of 1% (39.9%) in AP
compared to our best (40.9%). This outcome highlights the
necessity of regulating image generation for each class. Fur-
thermore, by limiting the production quantity per class using N ,
we significantly reduce the time required for generation. This
efficiency gain is further discussed in the supplementary Tab. 2.

Regarding the refinement threshold (prefine), our best result
(40.9%) is obtained with a dynamic range between 0.4 and
0.8. Setting prefine to a fixed value, either at the low end (0.4)
or high end (0.8), led to diminished performance. This indicates
the importance of a dynamic threshold range in optimizing the

generation and refinement process. In conclusion, these results
demonstrate that our iterative refinement strategy effectively
refines the synthetic images while balancing the quality and
quantity of the synthetic images.
Weight parameter λ. In Tab. 6, we examine the effect of differ-
ent weight parameter λ. We found that a weight of 2 achieved
the best performance with an AP of 40.9%. Importantly, all
tested weights performed better than the current state-of-the-art
performance of 40.4%, demonstrating the effectiveness of our
knowledge distillation approach using synthetic images.
CLIP image embedding. In Tab 7, we conducted an ablation
experiment to evaluate the effect of incorporating CLIP’s image
embedding in the generation process (Sec. 4.1). The result
indicates that incorporating CLIP’s image embedding led to a
performance improvement of 1.2% in AP . This highlights the
impact of CLIP’s image embedding in enhancing the realism of
synthetic images, which in turn positively impacts the detector
performance. On the other hand, without the CLIP’s image
embedding, it results in an inferior performance that is similar to
the baseline using pseudo-labeling alone (38.6% AP in Tab. 3).
This result implies that image quality and realism are important



Table 3. Ablation study of main contribution components on COCO 2017 (two-phase setting, 70+10). The metrics assess performance after
completing training across all phases, measuring results across all categories (higher is better) and specifically in old categories (higher is better). The
forgetting percentage point (FPP, lower is better) specifically reflects the performance change in the initial 70 categories, as measured by the difference
in AP between the first phase and the last phase. The best performance is represented in bold, with the final row indicating our method’s results.

Method
All categories ↑ Old categories ↑ FPP ↓

AP AP.5 AP.75 AP AP.5 AP.75 AP AP.5 AP.75

Fine-tuning 14.8 23.6 15.6 0.0 0.0 0.0 43.4 62.8 47.2
+ Pseudo labeling 38.6 56.2 42.1 39.1 57.3 42.7 4.3 5.5 4.5
++ Deep generative replay 39.8 57.7 43.4 40.6 59.2 44.0 2.8 3.6 3.2
+++ Knowledge distillation 40.9 59.5 44.8 41.5 60.6 45.4 1.9 2.2 1.8

Table 4. Ablation study of the range of confidence scores in
the pseudo-labeling strategy on COCO 2017 (70+10). The best
performance is highlighted in bold.

Setting AP AP.5 AP.75 APS APM APL

ppseudo≥0.2 29.5 44.9 32.0 17.4 33.4 38.8
ppseudo≥0.3 38.6 56.2 42.1 22.3 42.1 50.6
ppseudo≥0.4 37.5 54.2 40.8 22.0 41.3 48.5
ppseudo≥0.5 35.2 51.1 38.8 20.3 38.7 46.1

Table 5. Ablation study on image generation regulation and refinement
confidence score thresholds on COCO 2017 (70+10). The best result
is highlighted in bold among each ablation.

Setting AP AP.5 AP.75 APS APM APL

N=50 40.9 59.5 44.8 24.0 44.7 54.0
N=100 40.7 59.4 44.6 24.0 44.4 53.9
N=200 40.8 59.5 44.6 24.0 44.2 54.5
N=∞ 39.9 58.6 43.4 23.0 43.6 53.1

prefine=0.4 39.8 58.8 43.4 23.1 43.2 52.6
prefine=0.8 38.5 57.2 42.2 22.9 41.8 51.0

prefine∈ [0.4,0.8] 40.9 59.5 44.8 23.9 44.7 54.0
prefine∈ [0.5,0.8] 40.7 59.3 44.5 24.1 44.0 53.6
prefine∈ [0.6,0.8] 40.5 59.2 44.3 23.4 44.2 53.6
prefine∈ [0.7,0.8] 39.6 56.8 43.3 22.5 42.6 51.8

Table 6. Ablation study of knowledge distillation weight on COCO
2017 (70+10). The best result is highlighted in bold.

Weight AP AP.5 AP.75 APS APM APL

λ=1 40.6 59.2 44.2 23. 7 44.1 53.8
λ=2 40.9 59.5 44.8 23.9 44.7 54.0
λ=3 40.5 59.3 44.4 24.0 44.1 53.0

in CIOD with the deep generative model to effectively prevent
the catastrophic forgetting.

Table 7. Ablation study of CLIP’s image embedding on COCO 2017
(70+10). The experiment was conducted excluding L2 knowledge
distillation to evaluate the effect of synthetic data. The best result is
highlighted in bold. A red upward arrow ↑ indicates the performance
improvement.

Setting AP AP.5 AP.75

w/o Image embedding 38.6 56.9 42.1
w/ Image embedding 39.8 1.2↑ 57.7 0.8↑ 43.4 1.3↑

6. Conclusions
In this paper, we introduced the SDDGR strategy, a novel
diffusion-based deep generative replay approach for class
incremental object detection. The proposed SDDGR includes a
method for generating synthetic images that encompass objects
from previously trained classes, with the goal of enhancing
their quality and high fidelity while maintaining computational
efficiency. To achieve this, we suggested a rigorous refinement
technique and class-wise regulation of quantity. Additionally,
the synthetic images are effectively used to mitigate forgetting
through the application of L2 knowledge distillation. Finally,
SDDGR utilizes an effective pseudo-labeling technique
that substantially reduces the misclassification of objects as
background. The combination of these proposed methods
enables our SDDGR to achieve state-of-the-art performance
in class incremental object detection.
Acknowledgements. This work was supported by IITP grants
(No. 2020-0-01336 Artificial intelligence graduate school
program (UNIST) 10%; No. 2021-0-02068 AI innovation hub
10%; No. 2022-0-00264 Comprehensive video understanding
and generation with knowledge-based deep logic neural network
10%) and the NRF grant (No. RS-2023-00252630 10%), all
funded by the Korean government (MSIT). This work was also
supported by Korea Institute of Marine Science & Technology
Promotion (KIMST) funded by Ministry of Oceans and
Fisheries (RS-2022-KS221674) 20% and received support from
LG Electronics (20%) and AI Center, CJ Corporation (20%).



References
[1] Manoj Acharya, Tyler L Hayes, and Christopher Kanan. Rodeo:

Replay for online object detection. BMVC, 2020. 1, 2
[2] Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha, and

Jonghyun Choi. Rainbow memory: Continual learning with a
memory of diverse samples. In CVPR, 2021. 2

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-end
object detection with transformers. In ECCV, 2020. 2, 3

[4] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan,
and Philip HS Torr. Riemannian walk for incremental learning:
Understanding forgetting and intransigence. In ECCV, 2018. 2

[5] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny,
Thalaiyasingam Ajanthan, Puneet K Dokania, Philip HS Torr,
and M Ranzato. Continual learning with tiny episodic memories.
arXiv, 2019. 1, 2

[6] Yulai Cong, Miaoyun Zhao, Jianqiao Li, Sijia Wang, and
Lawrence Carin. Gan memory with no forgetting. NeurIPS,
2020. 1, 2

[7] Matthias De Lange and Tinne Tuytelaars. Continual prototype
evolution: Learning online from non-stationary data streams. In
ICCV, 2021. 1, 2

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv, 2018. 3

[9] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. Advances in neural information
processing systems, 2021. 2, 3

[10] Na Dong, Yongqiang Zhang, Mingli Ding, and Gim Hee Lee.
Incremental-detr: Incremental few-shot object detection via
self-supervised learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, pages 543–551, 2023. 2

[11] Tao Feng, Mang Wang, and Hangjie Yuan. Overcoming
catastrophic forgetting in incremental object detection via elastic
response distillation. In CVPR, 2022. 1, 2, 4, 5, 6, 7

[12] Rui Gao and Weiwei Liu. Ddgr: Continual learning with deep
diffusion-based generative replay. ICML, 2023. 1, 2

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua
Bengio. Generative adversarial nets. NeurIPS, 2014. 2, 3

[14] Yunhui Guo, Mingrui Liu, Tianbao Yang, and Tajana Rosing.
Improved schemes for episodic memory-based lifelong learning.
In NIPS, 2020. 2

[15] Akshita Gupta, Sanath Narayan, KJ Joseph, Salman Khan,
Fahad Shahbaz Khan, and Mubarak Shah. Ow-detr: Open-world
detection transformer. In CVPR, 2022. 2, 5

[16] Yu Hao, Yanwei Fu, Yu-Gang Jiang, and Qi Tian. An
end-to-end architecture for class-incremental object detection
with knowledge distillation. In ICME, 2019. 1, 2

[17] Chen He, Ruiping Wang, Shiguang Shan, and Xilin Chen.
Exemplar-supported generative reproduction for class incremental
learning. In BMVC, 2018. 1, 2

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In CVPR, 2016. 6

[19] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. arXiv, 2022. 3

[20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion
probabilistic models. NeurIPS, 2020. 2, 3

[21] Lianghua Huang, Di Chen, Yu Liu, Yujun Shen, Deli Zhao,
and Jingren Zhou. Composer: Creative and controllable
image synthesis with composable conditions. arXiv preprint
arXiv:2302.09778, 2023. 3

[22] David Isele and Akansel Cosgun. Selective experience replay
for lifelong learning. In AAAI, 2018. 2

[23] Quentin Jodelet, Xin Liu, Yin Jun Phua, and Tsuyoshi Murata.
Class-incremental learning using diffusion model for distillation
and replay. In ICCVW, 2023. 2

[24] Junsu Kim, Sumin Hong, Chanwoo Kim, Jihyeon Kim,
Yihalem Yimolal Tiruneh, Jeongwan On, Jihyun Song, Sunhwa
Choi, and Seungryul Baek. Class-wise buffer management for
incremental object detection: An effective buffer training strategy.
In ICASSP, 2024. 2

[25] Junsu Kim, Yunhoe Ku, Jihyeon Kim, Junuk Cha, and Seungryul
Baek. Vlm-pl: Advanced pseudo labeling approach class
incremental object detection with vision-language model. arXiv,
2024. 2

[26] Diederik P Kingma and Max Welling. Auto-encoding variational
bayes. ICLR, 2013. 2, 3

[27] Hyunseo Koh, Dahyun Kim, Jung-Woo Ha, and Jonghyun
Choi. Online continual learning on class incremental blurry task
configuration with anytime inference. arXiv, 2021. 2

[28] Dawei Li, Serafettin Tasci, Shalini Ghosh, Jingwen Zhu, Junting
Zhang, and Larry Heck. Rilod: Near real-time incremental
learning for object detection at the edge. In SEC, 2019. 2, 6, 7

[29] Feng Li, Hao Zhang, Shilong Liu, Jian Guo, Lionel M Ni, and
Lei Zhang. Dn-detr: Accelerate detr training by introducing
query denoising. In CVPR, 2022. 2

[30] Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei
Yang, Chunyuan Li, Yiwu Zhong, Lijuan Wang, Lu Yuan, Lei
Zhang, Jenq-Neng Hwang, et al. Grounded language-image
pre-training. In CVPR, 2022. 6

[31] Xiang Li, Wenhai Wang, Lijun Wu, Shuo Chen, Xiaolin Hu,
Jun Li, Jinhui Tang, and Jian Yang. Generalized focal loss:
Learning qualified and distributed bounding boxes for dense
object detection. NIPS, 2020. 2, 6

[32] Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei
Yang, Jianfeng Gao, Chunyuan Li, and Yong Jae Lee. Gligen:
Open-set grounded text-to-image generation. In CVPR, 2023.
2, 3, 4

[33] Zhizhong Li and Derek Hoiem. Learning without forgetting.
ECCV, 2016. 1, 2, 6, 7

[34] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In ECCV,
2014. 6

[35] Liyang Liu, Zhanghui Kuang, Yimin Chen, Jing-Hao Xue,
Wenming Yang, and Wayne Zhang. Incdet: In defense of elastic
weight consolidation for incremental object detection. TNNLS,
2020. 1

[36] Xialei Liu, Hao Yang, Avinash Ravichandran, Rahul Bhotika,
and Stefano Soatto. Multi-task incremental learning for object
detection. arXiv, 2020. 2



[37] Yaoyao Liu, Bernt Schiele, Andrea Vedaldi, and Christian
Rupprecht. Continual detection transformer for incremental
object detection. In CVPR, 2023. 2, 5, 6, 7

[38] Yichen Lu, Mei Wang, and Weihong Deng. Augmented
geometric distillation for data-free incremental person reid. In
CVPR, 2022. 1, 2

[39] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T
Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing
scenes as neural radiance fields for view synthesis. ECCV, 2021.
4

[40] Mehdi Mirza and Simon Osindero. Conditional generative
adversarial nets. arXiv preprint arXiv, 2014. 2

[41] Chong Mou, Xintao Wang, Liangbin Xie, Jian Zhang, Zhongang
Qi, Ying Shan, and Xiaohu Qie. T2i-adapter: Learning adapters
to dig out more controllable ability for text-to-image diffusion
models. arXiv preprint arXiv:2302.08453, 2023. 3

[42] Vicente Ordonez, Girish Kulkarni, and Tamara Berg. Im2text:
Describing images using 1 million captioned photographs. NIPS,
2011. 6

[43] Can Peng, Kun Zhao, Sam Maksoud, Meng Li, and Brian C
Lovell. Sid: Incremental learning for anchor-free object detection
via selective and inter-related distillation. CVIU, 2021. 2, 6, 7

[44] Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb:
A simple approach that questions our progress in continual
learning. In ECCV, 2020. 2

[45] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh,
Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell,
Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International
conference on machine learning, pages 8748–8763. PMLR,
2021. 3, 4

[46] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh,
Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell,
Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021. 3

[47] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl,
and Christoph H Lampert. icarl: Incremental classifier and
representation learning. In CVPR, 2017. 1, 2

[48] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster
r-cnn: Towards real-time object detection with region proposal
networks. In NIPS, 2015. 2

[49] Anthony Robins. Catastrophic forgetting, rehearsal and
pseudorehearsal. Connection Science, 1995. 2

[50] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy
Lillicrap, and Gregory Wayne. Experience replay for continual
learning. In NIPS, 2019. 2

[51] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick
Esser, and Björn Ommer. High-resolution image synthesis with
latent diffusion models. In CVPR, 2022. 1, 2, 3

[52] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation. In
MICCAI, 2015. 3

[53] Christoph Schuhmann, Richard Vencu, Romain Beaumont,
Robert Kaczmarczyk, Clayton Mullis, Aarush Katta, Theo
Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m:
Open dataset of clip-filtered 400 million image-text pairs. arXiv,
2021. 2, 3

[54] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade
Gordon, Ross Wightman, Mehdi Cherti, Theo Coombes, Aarush
Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text
models. NeurIPS, 2022. 2, 3

[55] Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu,
Xiangyu Zhang, Jing Li, and Jian Sun. Objects365: A large-scale,
high-quality dataset for object detection. In ICCV, 2019. 6

[56] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu
Soricut. Conceptual captions: A cleaned, hypernymed, image
alt-text dataset for automatic image captioning. In ACL, pages
2556–2565, 2018. 6

[57] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Con-
tinual learning with deep generative replay. In NIPS, 2017. 1, 2

[58] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.
Continual learning with deep generative replay. NIPS, 2017. 1, 2

[59] Jordan Shipard, Arnold Wiliem, Kien Nguyen Thanh, Wei Xiang,
and Clinton Fookes. Diversity is definitely needed: Improving
model-agnostic zero-shot classification via stable diffusion. In
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 769–778, 2023. 3

[60] Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari.
Incremental learning of object detectors without catastrophic
forgetting. In ICCV, 2017. 1, 2, 4

[61] Christian Simon, Piotr Koniusz, and Mehrtash Harandi. On
learning the geodesic path for incremental learning. In CVPR,
2021. 1, 2

[62] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising
diffusion implicit models. arXiv, 2020. 2, 3

[63] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek
Kumar, Stefano Ermon, and Ben Poole. Score-based generative
modeling through stochastic differential equations. arXiv, 2020.
2, 3

[64] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 3

[65] Andrey Voynov, Kfir Aberman, and Daniel Cohen-Or. Sketch-
guided text-to-image diffusion models. In SIGGRAPH, 2023. 2, 3

[66] Chenshen Wu, Luis Herranz, Xialei Liu, Joost Van De Weijer,
Bogdan Raducanu, et al. Memory replay gans: Learning to
generate new categories without forgetting. NIPS, 31, 2018. 1, 2

[67] Ye Xiang, Ying Fu, Pan Ji, and Hua Huang. Incremental learning
using conditional adversarial networks. In NeurIPS, 2019. 1, 2

[68] Jie Yang, Bingliang Li, Fengyu Yang, Ailing Zeng, Lei
Zhang, and Ruimao Zhang. Boosting human-object interaction
detection with text-to-image diffusion model. arXiv preprint
arXiv:2305.12252, 2023. 3

[69] Zhengyuan Yang, Jianfeng Wang, Zhe Gan, Linjie Li, Kevin
Lin, Chenfei Wu, Nan Duan, Zicheng Liu, Ce Liu, Michael
Zeng, et al. Reco: Region-controlled text-to-image generation.
In CVPR, 2023. 2

[70] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In ICCV,
2023. 2, 3

[71] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable detr: Deformable transformers for
end-to-end object detection. ICLR, 2020. 2, 6


	. Introduction
	. Related works
	. Continual learning
	. Diffusion models

	. Preliminaries
	. Stable diffusion
	. Controllable image generation

	. Methods
	. Image generation
	. Iterative class-wise refiner
	. Pseudo labeling
	. Training with generated image

	. Experiments
	. Dataset and metrics
	. Implementation and experiments
	. Results
	. Ablations

	. Conclusions

