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Abstract: We perform real-time hydrodynamical simulations of the growth of bubbles

formed during cosmological first-order phase transitions under the assumption of local ther-

mal equilibrium. We confirm that pure hydrodynamic backreaction can lead to steady-state

expansion and that bubble-wall velocity in such case agrees very well with the analytical

estimates. However, this is not the generic outcome. Instead, it is much more common to

observe runaways, as the early-stage dynamics right after the nucleation allow the bubble

walls to achieve supersonic velocities before the heated fluid shell in front of the bubble

is formed. This effect is not captured by other methods of calculation of the bubble-wall

velocity which assume stationary solutions to exist at all times and would have a cru-

cial impact on the possible generation of both baryon asymmetry and gravitational wave

signals.
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1 Introduction

Phase transitions are present in a variety of particle-physics models. If they are first or-

der they could create an environment for the generation of baryon asymmetry [1–4] and

production of a stochastic gravitational wave background, which could be potentially ob-

served with the next generation of detectors [5–10]. Cosmological phase transitions are

typically induced by quantum tunnelling or thermal fluctuation of a scalar field between

non-degenerate minima of its potential and proceed via nucleation of bubbles of the en-

ergetically favourable phase. Once the bubbles are nucleated, they start to grow, driven

by the potential difference between the different phases inside and outside the bubble. On

the other hand, particles crossing the bubble wall exert velocity-dependent friction on it.

These two forces may balance each other, leading to steady-state expansion with constant

velocity. Otherwise, the bubble wall will continue to accelerate and reach a velocity very

close to the speed of light1 Correct distinction between these two situations and accurate

estimation of the bubble-wall velocity is crucial for both predictions of baryon asymmetry

production in theories of Electroweak Baryogenesis and modelling of gravitational wave

spectra produced in the transitions.

Backreaction coming from the particles interacting with the bubble wall was estimated

by solving the Boltzmann equation for all the species in the plasma together with the

equation of motion for the scalar field [15–26]. However, this method is quite challenging

and the non-equilibrium part of the friction in the equation of motion is instead often

1In local thermal equilibrium the acceleration will only stop upon collision with other bubbles although

in realistic scenarios it is expected that out-of-equilibrium corrections can stop the acceleration first [11–14].
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parameterized with an effective phenomenological coefficient treated as a free parameter in

hydrodynamical simulations [27, 28]. Recently, it has been shown that purely equilibrium

hydrodynamic backreaction can inhibit the accelerating expansion [29–31] and a simple

estimate that can be interpreted as the upper limit on bubble-wall velocity for a given model

has been derived. However, this approach, similarly to methods based on the Boltzmann

equation, assumes that the plasma profiles are at any time fully developed into steady-state

solutions with a given wall velocity [32]. The mechanism preventing the further acceleration

of the wall is connected with the heating of the plasma outside of the bubble and relies

on this assumption heavily. In this work, we verify this assumption using hydrodynamic

simulations without non-equilibrium friction.

As a benchmark model, we use a singlet scalar extension of the Standard Model, which

is a simple and well-known example of a theory in which electroweak symmetry breaking

may proceed as a first-order phase transition [33–46]. We use the temperature-dependent

potential to find the solution corresponding to the nucleating bubble and simulate its

evolution to observe as it develops into a self-similar solution. We compare the results

with the bubble-wall velocities and plasma profiles obtained with analytical methods. We

have found that if a steady state expanding slower than the Jouguet velocity is reached,

the two methods agree with very good accuracy. Such scenarios are, however, rare and

fine-tuned. In the absence of non-equilibrium friction typical bubble accelerates beyond

the Jouguet velocity before heating the plasma as the self-similar profile would suggest.

As a result, most bubbles develop into very fast detonations which in the absence of non-

equilibrium friction continue to accelerate corresponding to the so-called runaway solution.

Thus, we find that velocity estimates assuming steady-state evolution may not be valid in

the majority of cases and predictions of baryon asymmetry and gravitational wave emission

based on them would be incorrect.

The paper is organised as follows. In section 2 basic parameters describing cosmolog-

ical phase transitions are defined, while in section 3 steady-state dynamics of the bubble

expansion presenting different expansion modes are discussed. We review recent estimates

of velocity [31], to which we refer further. In Section 4 we introduce the singlet scalar

extension of the Standard Model and compute a high-temperature approximation of the

effective potential of this theory. Then, we perform a scan of the parameter space determin-

ing transition parameters for different realisations of that model and estimate bubble-wall

velocity from the matching equations. Section 5 is devoted to the derivation of equations

of motion adjusted to the scalar singlet model used in real-time simulations. Finally, in

section 6 we show the results of the real-time simulations and compare them with the esti-

mations mentioned above. We summarize our results in section 7. Details of our code and

numerical methods used in the simulations are reviewed in the Appendix A.

2 Transition parameters

Cosmological first-order phase transitions proceed via nucleation of bubbles of the broken

phase from the background state of the symmetric, metastable phase. The probability of

tunnelling per unit time and volume at temperature T is given with the bubble nucleation
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rate [47–50]

Γ(T ) = A(T )e−S , (2.1)

where for finite temperatures the Euclidean action S = S3
T and A(T ) = T 4

(
S3
2πT

) 3
2 . Nu-

cleation temperature is defined as the value such that the probability of a true vacuum

bubble forming within a horizon radius grows close to unity [51], i.e.

N(Tn) =

∫ Tc

Tn

dT

T

Γ(T )

H(T )4
≈ 1, (2.2)

where Tc denotes the critical temperature in which both minima are equally deep. As-

suming that the transition is fast, one can neglect the change of the expansion rate of the

Universe (assume that Hubble parameter H(t) ≈ const). Then, eq. (2.2) reduces to

S3
Tn

≈ 4 log

(
Tn
H

)
, (2.3)

which for temperatures close to the electroweak scale gives S3/Tn ≈ 140 [6]. To quantify

the level of supercooling of the phase transition, we introduce the temperature ratio Tn/Tc.

An important parameter describing the strength of the transition is the amount of

latent heat released during the transition, typically normalised to the energy density of the

cosmological background, resulting in [9, 52]

α =
1

ρr

(
∆V − T

4
∆
∂V

∂T

)
, (2.4)

where ∆ denotes the difference between symmetric and broken phases, and V is temperature-

dependent potential. For model-independent studies, one needs to define a generalized

transition strength based on the trace of the energy-momentum tensor θ [53]

αθ =
∆θ

3ws
, with θ = e− 3p (2.5)

where ws denotes enthalphy in the symmetric phase while e and p correspond to energy and

pressure. Taking into account that the speed of sound might be different from the standard

cs = 1/
√
3 and assuming only weak dependence on T , one can introduce pseudotrace θ̄

[54]. We then have a more accurate prescription for the transition strength

αθ̄ =
∆θ̄

3ws
, with θ̄ = e− p

c2b
, (2.6)

where cb is the speed of sound in the broken phase.

3 Late-time expansion

Late-time evolution of the bubble walls was studied in [32] using a hydrodynamical approx-

imation in which it is assumed that the cosmic plasma can be modelled as the relativistic

perfect fluid, therefore its energy-momentum tensor is given by

Tµν
fluid = wuµuν − gµνp, (3.1)
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where uµ is the four-velocity of the plasma, while p and w are respectively the pressure

and the enthalpy. Conservation of energy-momentum projected onto direction uµ along

the flow and the perpendicular one ūµ = γ(v,v/v) gives the following equations

∂µ(u
µw)− uµ∂

µp = 0, (3.2)

ūνuµw∂µuν − ūν∂µp = 0. (3.3)

with ūµu
µ = 0 and ū2 = −1. As the steady-state profile has no characteristic length scale,

the solution should depend only on the self-similar variable ξ = r/t, where r denotes the

distance from the centre of the bubble and t is the time since nucleation. Variable ξ can

be interpreted as the velocity of a given point in the profile, while the plasma at the point

described by ξ moves with velocity v(ξ). Under this assumptions, equations (3.2) and (3.3)

can be rewritten as

(ξ − v)
∂ξe

w
= 2

v

ξ
+ [1− γ2v(ξ − v)]∂ξv, (3.4)

(1− vξ)
∂ξp

w
= γ2(ξ − v)∂ξv (3.5)

and using the definition of the speed of sound in the plasma cs ≡ dp
dT /

de
dT , they can be

combined into the single hydrodynamic equation describing plasma velocity profile v(ξ) in

the frame of the bubble centre

2
v

ξ
= γ2(1− vξ)

[
µ2

c2s
− 1

]
∂ξv, (3.6)

with µ = ξ−v
1−ξv denoting the Lorentz-transformed fluid velocity. To proceed further, one

has to define the equation of state for the plasma. The most popular choice is the so-called

bag model [32, 55], where the speed of sound in both phases is constant and equal c2s = 1/3,

however, more complex options were recently considered [30, 31].

Solutions of equation (3.6) with the bag-model equation of state depend only on the

transition strength α and bubble-wall velocity in the stationary state ξw. Possible types

of solutions are subsonic deflagrations or supersonic detonations and hybrids schematically

depicted in Fig. 1. The velocity at which the shell around the bubble disappears and the

solution shifts from hybrid to detonation is given by the Chapman-Jouguet value [31]:

cJ =
1 +

√
3αθ̄(1− c2s + c2sαθ̄)

1/cs + 3csαθ̄

. (3.7)

For a detailed discussion of bag model solutions see [32].

In order to estimate bubble-wall velocity, it is necessary to estimate the total force

exerted on a bubble wall from the plasma surrounding the bubble and compare it with a

driving force coming from the pressure difference between the false and true vacuum. The

equation of motion of a scalar field reads

□ϕ+
∂Veff
∂ϕ

+
∑
i

dm2
i (ϕ)

dϕ

∫
d3p

(2π)32Ei
δfi(p, x) = 0, (3.8)
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Deflagration: vw < cs Hybrid: cs < vw < cJ Detonation: cJ < vw

Figure 1. Schematic representation of three different types of expanding bubbles. Colour saturation

denotes the value of the plasma velocity, while black circles represent the position of the bubble wall.

where the index i runs over all the species in the plasma and δfi is the non-equilibrium

part of the particle distribution function as the equilibrium part is already included in the

effective potential [30]. Assuming a planar wall expanding with a constant velocity in z

direction, the equation above can be written as∫
dz

dϕ

dz

(
□ϕ+

∂Veff
∂ϕ

+
∑
i

dm2
i (ϕ)

dϕ

∫
d3p

(2π)32Ei
δfi(p, x)

)
= 0 (3.9)

and integrated leading to

∆Veff =

∫
dz
∂Veff
∂T

dT

dz
−
∑
i

∫
dϕ

dm2
i (ϕ)

dϕ

∫
d3p

(2π)32Ei
δfi(p, x). (3.10)

The left-hand side can be interpreted as the pressure difference between the true vacuum

inside the bubble and the false vacuum outside. The right-hand side is the backreaction

force and can be separated into the equilibrium part coming from heated plasma at the

bubble front (first term) and typically subdominant [25] non-equilibrium friction (second

term).

Steady-state bubble-wall velocity can be determined by solving the equation of motion

for the scalar field (3.8) together with the Boltzmann equations for all the particle species in

the plasma. This approach is computationally demanding and typically the so-called fluid

ansatz is used and solutions are found by looking for the configuration for which equation

of motion has two vanishing moments (see [19, 22, 24, 25, 56] for more details). Full com-

putations of the bubble-wall velocity including out-of-equilibrium friction are challenging,

therefore to simplify the problem, it is often assumed that δfi = 0, which is called the local

thermal equilibrium (LTE) scenario.

It was recently shown that assuming the LTE approximation and using the conservation

of entropy it is possible to determine the bubble wall velocity in a steady state in a much

simpler way. The first attempt based on the bag equation of state [30], has been already

generalized to a more broad class of the equations of state and beyond the planar wall

limit [31]. It has been also shown, that the bubble-wall velocity can be estimated based
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on a few parameters evaluated at the nucleation temperature: enthalpy ratio between

phases ψN = ωb
ωs
, transition strength αθ̄ and speed of sound in both phases cs and cb [31].

Nevertheless, both non-equilibrium Boltzmann methods as well as simplified equilibrium

approximations are based on the assumption, that stationary hydrodynamical behaviour

sets in just after nucleation and do not take into account the early evolution of the system,

as all the calculations are performed for stationary profiles.

4 Benchmark model: SM + real scalar singlet

Probably the simplest and most studied model in which a strong first-order electroweak

phase transition can be realized is the real scalar singlet extension of the Standard Model [33–

46], where in addition to the Standard Model Higgs doublet, the scalar sector includes the

Z2−symmetric scalar field s. The tree-level scalar potential of this theory in a unitary

gauge is given by

V0(h, s) =
1

2
µ2hh

2 +
1

4
λhh

4 +
1

4
λhsh

2s2 +
1

2
µ2ss

2 +
1

4
λss

4. (4.1)

The mass term for the Higgs µh and the quartic coupling λh are fixed in such a way, that

in the electroweak vacuum is (h, s) = (υ, 0) with υ = 246.2 GeV and the physical mass of

the Higgs is mh = 125.09 GeV, which leads to

λh =
m2

h

2v2
and µ2h = −λhυ2,

leaving scalar singlet mass ms, its quartic coupling λs and the portal coupling between the

Higgs and the scalar singlet λhs as three free parameters of the model. To study the phase

transition, thermal corrections to the potential need to be included:

Veff(h, s, T ) = V0(h, s) +
∑
i

niT
4

2π2
Jb/f

(
mi(h, s)

T

)
, (4.2)

where the sum runs over all particle species of the model, and for all species ni is the

number of degrees of freedom, mi(h, s) is its field-dependent mass, and Jb/f is the thermal

function given by

Jb/f (x) = ±
∫ ∞

0
dyy2 log

(
1∓ exp

(
−
√
y2 + x2

))
, (4.3)

where the upper (lower) sign is for bosons (fermions). Expanding the thermal function in

the relativistic regime (T ≫ m) gives

Jb(x) ≈− π4

45
+
π2

12
x2 +O(x3) Jf (x) ≈− 7

8

π4

45
+
π2

24
x2 +O(x4 log x2) . (4.4)

Therefore, the high temperature expansion (4.4) yields the well-known result

Veff(h, s, T ) ≈ V0(h, s)−
g∗π

2

90
T 4 +

∑
i

cini
24

m2
i (h, s)T

2 (4.5)
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with ci = 1/2 for fermions, ci = 1 for bosons and g∗ denoting the effective number of

relativistic degrees of freedom, namely

g∗(T ) =
∑

i∈bosons
gi

(
Ti
T

)4

+
∑

i∈fermions

7

8
gi

(
Ti
T

)4

. (4.6)

Finally, the whole effective potential of the model can be written in compact form as the

tree-level potential (4.1) with temperature-dependent mass terms

µ2h(T ) := µ2h + c2hT
2 and µ2s(T ) := µ2s + c2sT

2, (4.7)

with

c2h =
1

48

(
9g2 + 3g′2 + 12y2t + 24λh + 2λhs

)
and c2s =

1

12
(2λhs + 3λs) , (4.8)

where g and g′ are electroweak couplings and yt is the Yukawa coupling for the top quark.

This leads to the high-temperature approximation of the effective potential in a compact

form

Veff(h, s, T ) =− g∗π
2

90
T 4 +

1

2
(µ2h + c2hT

2)h2 +
1

4
λhh

4 +
1

4
λhsh

2s2+

+
1

2
(µ2s + c2sT

2)s2 +
1

4
λss

4 .

(4.9)

In this simplified treatment we neglect the presence of the Coleman-Weinberg corrections

to the effective potential.

25 50 75 100 125 150 175 200

ms [GeV]
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v
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Figure 2. Bubble-wall velocities for the scalar

singlet model in local thermal equilibrium deter-

mined using the matching method derived in [31]

which assumes a steady state solution at all times.

Deflagrations and hybrids are represented by blue

dots with the shade depicting the wall velocity,

while runaways are marked with red. No station-

ary detonations were found which gives rise to the

gray gap in velocities.

To prepare a sample for our study we

performed a scan over the scalar singlet

mass ms and portal coupling λhs fixing the

quartic coupling to λs = 1 with the use of

the CosmoTransitions package [57]. We

determine the critical and nucleation tem-

peratures as well as the transition strength

for each point.

Next, using approximation derived

in [31], we determine the bubble-wall ve-

locities under the assumption of preserving

local thermal equilibrium, finding a variety

of deflagration and hybrid solutions, as well

as runaway scenarios for the strongest tran-

sitions from the investigated sample. The

results are presented in Fig. 2, where the

shades of blue indicate the wall velocity

while the red points mark the runaway so-

lutions.
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5 Real-time dynamics of the system

In hydrodynamical treatment, we describe the plasma as a perfect fluid with temperature

T , characterized by the internal energy density e, pressure p and enthalpy density w. As

the effective potential Veff(h, s, T ) can be interpreted as the free energy density F of the

system, we can define2

p(h, s, T ) = −Veff(h, s, T ), (5.1)

e(h, s, T ) = Veff(h, s, T )− T
dVeff(h, s, T )

dT
, (5.2)

w(h, s, T ) = −T dVeff(h, s, T )

dT
. (5.3)

The total energy-momentum tensor of the system is a sum of energy-momentum tensors

for the fields 3:

Tµν
fields = ∂µh∂νh+ ∂µs∂νs− gµν

(
1

2
∂αh∂

αh+
1

2
∂αs∂

αs

)
, (5.4)

and the one of the fluid given by (3.1).

The energy-momentum tensor of the system is conserved (∇µT
µν = 0), however, both

contributions are not conserved separately:

∇µT
µν
fields =

∂Veff
∂h

∂νh+
∂Veff
∂s

∂νs = −∇µT
µν
fluid. (5.5)

Note that as we are interested in the local thermal equilibrium scenario, here the energy

transfer between the scalar field and the plasma is possible only through the temperature-

dependent effective potential, and there is no additional effective friction typically added

to capture non-equilibrium effects [58]. The left equality of (5.5) is satisfied if fields h and

s follow standard wave equations which in spherical coordinates take the form

−∂2t h+
1

r2
∂r(r

2∂rh)−
∂Veff
∂h

= 0, (5.6a)

−∂2t s+
1

r2
∂r(r

2∂rs)−
∂Veff
∂s

= 0. (5.6b)

Due to the spherical symmetry of our problem, we assume that the four-velocity of the

perfect fluid is of the form u = (γ, γv, 0, 0)T with γ := (1− v2)−1/2. We will determine the

equations governing the evolution of two parameters v and p considering temporal (ν = 0)

and radial component (ν = 1) of Eq. (5.5). Introducing new variables Z := wγ2v and

τ := wγ2 − p we get

∇µT
µ0
fluid = ∂tτ +

1

r2
∂r(r

2(τ + p)v) =
∂Veff
∂h

∂th+
∂Veff
∂s

∂ts, (5.7a)

∇µT
µ1
fluid = ∂tZ +

1

r2
∂r
(
r2Zv

)
+ ∂rp = −∂Veff

∂h
∂rh− ∂Veff

∂s
∂rs. (5.7b)

2Note that in contrast to the previous papers, the contributions from relativistic degrees of freedom are

already included in the definition of the effective potential (4.9) and do not need to be added separately.
3Note that in our convention the vacuum energy is a part of the fluid energy-momentum tensor (3.1)

and is not present here.
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Figure 3. Two possible scenarios for the growing bubble in local thermal equilibrium approximation:

rapid expansion beyond Chapman-Jouguet velocity leading to a runaway scenario (left panel) and

evolution toward a stationary state predicted by matching conditions (right panel). Solid blue curves

represent the results of the real-time simulations, where darker shades correspond to later times.

Red, dashed curves denote predictions of the equilibrium methods.

The system of equations for the fields (5.6) and for the plasma (5.7), together with the

equations of state (5.1) and (5.2) define the dynamics of the growing bubble and was solved

numerically on the lattice. For details of numerical treatment, see Appendix A.

6 Results of the simulations

We use our code [58] to perform real-time simulations of the bubble-wall expansion for all

the points shown in Fig. 2. Each simulation was initialized with fields profiles corresponding

to the nucleated critical bubble, while plasma velocity and temperature were fixed as

spatially uniform, v(r) = 0 and T (r) = Tn respectively. This gives a good approximation

of homogeneous plasma in which nucleation takes place and allows us to carefully follow

the early stages of the evolution of the bubbles and formation of the fluid profiles. This is

not possible with different methods of determining bubble-wall velocities, which look for

the stationary states only.

Fig. 4 highlights the difference between our results in the left panel and the matching

method of [31] in the right. For majority of points where the matching method predicts de-

flagrations and hybrids, we observe a very different behaviour. The bubble walls accelerate

beyond the Jouguet velocity before the heated fluid shell in front of the bubble is formed.

The corresponding evolution for a benchmark is shown in the left panel of the Fig. 3. This

phenomenon is easy to understand as the bubble growth in local thermal equilibrium is

very rapid. During the early stages of the evolution, the amplitude of plasma profiles is

much smaller, and profiles are less sharp than the ones predicted by the steady-state solu-

tions. This leads to a significantly lower backreaction force (see eq. (3.10)), which allows

the bubble wall to accelerate further. If the profile accelerates above the Jouguet velocity

before the steady state profile is reached, the stationary state will not be achieved and the

bubble will continue to grow in the runaway regime. This occurs for the vast majority of

the points from the scan where the matching method can be used to compute the wall

velocity.
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Figure 4. Results for the bubble wall velocity in LTE from the hydrodynamical simulations (left

panel) and from analytical calculations [31] (right panel). The stationary states are shown in shades

of blue corresponding to the wall velocity in both panels while runaway scenarios are shown in red.

In most of the parameter space where matching equations predict a deflagration or hybrid solution

the simulation results in a runaway. In those cases, the simulated bubble accelerates beyond the

Jouguet velocity before the heated fluid shell around the bubble is formed while analytical methods

assume a steady state at all times where the shell is heated enough to cease the acceleration.

0.35

0.40

0.45
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0.55

v
si

m
w

0.35 0.40 0.45 0.50 0.55

vmatch
w

−0.02

0.00

0.02

∆
v w

Figure 5. Comparison of the bubble wall veloc-

ity from matching method estimates vmatch
w [31] vs

those measured in hydrodynamic simulation vsimw .

The lower panel shows the difference between these

two values ∆vw = vsimw − vmatch
w . The low number

of points results from the fact that the two methods

agree on the final steady state solution in a very

small part of the parameter space where Tn/Tc and

αθ̄ are tuned. The result of the simulation is much

more often a runaway (see Fig. 4).

For moderately strong transitions

which at the same time are not supercooled,

the temperature of the plasma around the

bubble front reaches more quickly the crit-

ical temperature Tc. This stops further

acceleration of the bubble wall, as larger

wall velocity (up to Chapman-Jouguet ve-

locity) would demand higher temperature

in the peak exceeding Tc which would lo-

cally tend to reverse the ongoing transi-

tion. This mechanism is called the hydro-

dynamical obstruction [55] and has already

been demonstrated in hydrodynamical sim-

ulations [58] leading to velocity gaps within

possible expansion modes. From this mo-

ment the bubble starts to asymptote to a

constant velocity and the plasma profiles

evolve towards stationary states predicted

by the matching conditions. The evolution

of the plasma velocity profile towards a stationary state compared with the analytically

predicted profile for a benchmark transition is shown in the right panel of Fig. 3. While

this is the case only in a very small part of the parameter space, it is worth noting that

bubble-wall velocities as well as plasma profiles obtained in the simulations are in very

good agreement with those found with the matching method of [31] wherever they both

find non-runaway behaviour. We show a direct comparison of the predictions for this set
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of points in Fig. 5 finding the difference to be of the order of a few per cent at most.

Ref. [59] used a similar setup and solved the equations of motion for the very early

stages of evolution (tmax ≈ 0.6 GeV−1, compared with tmax ≃ 100 GeV−1 in this work.). It

was shown the profiles began to form, however, the dynamical range was not large enough

to verify if they reached steady-state solutions. It is also important to point out that the

authors focused on a single benchmark with Tn/Tc ≈ 0.994 and observed the impact of

hydrodynamical obstruction, which is consistent with our results. Ref. [60] also observed

relaxation of the fluid to form a shell, although, in that work, the code used a fixed value

for the wall velocity and the formation of a steady-state profile was only the result of this

prior assumption.

7 Conclusions

We have studied the growth of cosmological bubbles nucleated during first-order phase

transitions using real-time hydrodynamic simulations. Focusing on the bubble-wall velocity

in the local thermal equilibrium, we have confirmed that pure equilibrium backreaction can

lead to a steady-state solution. If this is the case and the stationary state is realised in

our simulation, the final velocity agrees very well with recent predictions based on the

matching equations [31]. Such scenarios are however very rare and demand fine-tuning of

nucleation temperature as the stationary expansion is the outcome only in the absence of

any supercooling (Tn/Tc ≈ 1).

We have found that generically without a non-equilibrium friction bubbles expand as

runaways. In the very early stages of their evolution, the nucleated bubbles accelerate

quickly as the heated fluid shell around them is just beginning to form. Typically the

walls accelerate past the Jouguet velocity and start to develop into detonations before the

fluid around them forms into a familiar steady state profile. Once this occurs the bubble

will behave as a runaway despite the fact that a solution exists for which the steady-state

profile would match the vacuum pressure and cease the acceleration at a lower velocity.

We have focused on a very simple extension of the Standard Model with a neutral

singlet to illustrate the prevalence of the early runaway scenario. We have found that

nearly the entire parameter space of the model predicting a first-order transition would

result in a runaway if one neglects the non-equilibrium friction. The only exceptions are

tuned scenarios where the transition is relatively strong yet nucleation occurs extremely

close to the critical temperature.

We have shown that the early stages of the evolution of bubbles in cosmological phase

transitions can have a crucial impact on the resulting phenomenology. In particular, assum-

ing a local thermal equilibrium at those early times generically leads to a runaway solution

even in cases where analytical methods using fully developed steady-state profiles suggest a

small terminal velocity. This would have serious consequences for the predictions of models

concerning the possible production of baryon asymmetry in electroweak baryogenesis, as

well as on the gravitational wave signals generated in first-order phase transitions.
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A Numerical treatment

Equations (5.6) and (5.7) describing the dynamics of the model under consideration are

highly nonlinear and the exact solution of the system is not known. In order to get a

detailed understanding of the evolution of bubbles described by the set of equations we

solve the system numerically extending the code used in our previous studies [58] to the

case of two scalar fields. The extension is straight forward and to keep this manuscript

self-contained we will now only briefly describe used methods.

Equations (5.6) and (5.7) have to be supplemented by the proper boundary conditions.

We chose Neumann boundary conditions for both scalar fields at the centre of the bubble

which correspond to r = 0. In general, the Dirichlet boundary conditions corresponding

to the false vacuum expectation values should be imposed at an infinite distance r = ∞
from the nucleation site. In order to treat the problem numerically, we had to limit our

computational domain to be a finite interval [0, R] with R large enough to be outside the

light cone of the nucleated bubble, so imposing boundary conditions at r = R is physically

equivalent to r = ∞ for a finite period of time simulated in our code.

The initial conditions for our simulations are critical bubble profiles calculated using

CosmoTransitions code [57]. The critical bubble which is at the boundary between col-

lapsing and expanding bubbles is an unstable static solution of equations of motion. Due

to numerical imperfections, the approximate profile may collapse instead of growing and

a minimal stretching of the initial profile is necessary to guarantee the expansion of the

bubble. The conserved variables Z and τ describing the state of the plasma are initial-

ized to the values corresponding to the plasma with temperature T equal to nucleation

temperature, staying at rest v = 0 with respect to the nucleation site.

We used the Galerkin discontinuous method to discretize equations (5.6) and (5.7)

in space. We used the so-called mixed formulation of the equations of motion for the

fields (5.6) (which are nonlinear wave equations), so the gradients of the fields and their

values are discretized as independent variables. Both field values and quantities Z and

τ describing plasma are interpolated using piecewise constant functions. Piecewise linear

functions are used for gradients of fields. The integrals in weak forms of discretized equa-

tions are approximated by numerical quadratures which are exact for elements of the base

of space of interpolation functions. The numerical fluxes were chosen such that the obtained

method is the generalization of the central finite difference scheme (for planar bubble walls

described in Cartesian coordinates the method would recover the central finite difference

scheme of second order).
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Figure 6. Convergence analysis: velocity profile evolution on different lattices for typical defla-

gration (upper row) and runaway (lower row). Three different grids are compared: fine grid, the

default one used in this work and thick grid. Shape of the profile does not depend on the choice of

the grid. For ultra-relativistic bubble-wall, numerical oscillations coming from the Gibbs effect are

more visible, however they do not impact the overall result.

Wave equations (5.6) describing the evolution of scalar fields were discretized using a

well-known position version of Stömer-Verlet scheme. It can be formulated as the right-

discontinuous Galerkin method in time. This formulation was used in our previous pa-

per [58] to derive in a self-consistent manner the discretization of effective friction terms

which, however, are not used in the current study (they violate the LTE assumption).

The discretization in time of (5.7) is more involved, and no extension with respect to the

code used in Ref [58] needs to be done. Equations (5.7) are first-order hyperbolic equations

which are challenging for numerical methods due to the formation of discontinuities (shocks,

etc.) in a finite time period of time from smooth initial conditions. Many various numerical

methods dealing with this problem were proposed in the past. We chose to use flux-

corrected transport to keep second-order precision in smooth regions of the profile and

avoid numerical artefacts (Gibbs effect) around discontinuities. In this approach, we have

two schemes, called high and low order, merged in such a way as to keep the solution in the

range of physically correct values according to maximum principle [61, 62]. The second-

order scheme (the high-order one) was integrated in time using the midpoint rule (which

is by itself second order). The low order scheme was obtained by algebraic upwinding

[63–66] which produces the local extrema diminishing scheme, and was integrated in time

using backward (implicit) Euler method. Differences in fluxes computed in the two schemes

are called antidiffusive fluxes and are used (after proper limiting) to correct the low-order

scheme result. The aim of the limiting procedure is to suppress antidiffusive fluxes in

regions where high-order scheme breaks down due to discontinuities. We used Zalesak’s

peak preserving limiter [67] corrected by the idea inspired by [68] to restrict distances

from which the conserved quantity values should be considered to limit antidiffusive fluxes.

Details of the construction of the limiter can be found in [58].

Finally, the conversion from conserved variables τ , Z to primitive ones T , v was done
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analogously as described in [58]. Equations of state (5.1) and (5.3) can be combined to

form

τ + p(h, s, T )− 1

2

(
w(h, s, T ) +

√
w(h, s, T )2 + 4Z2

)
= 0. (A.1)

For given values of τ , Z (and h, s) equation (A.1) can be numerically solved (we used

Raphson–Newton method) with respect to T . The velocity of the plasma can be recovered

from the definition of Z = wγ2v and (5.3) for a given temperature T .

We demonstrate the convergence of our numerical methods on two benchmarks from

our scans in Fig 6. The columns correspond to finer lattice spacings which we see have

no impact on the results. The upper row shows a point with Tn/Tc ≈ 1 in which the wall

reaches a finite velocity and a steady state profile forms. The lower row represents a point

where the wall passes the Jouguet velocity in its early evolution and runs away.

References

[1] V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the Anomalous Electroweak

Baryon Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36.

[2] A.G. Cohen, D.B. Kaplan and A.E. Nelson, Progress in electroweak baryogenesis, Ann. Rev.

Nucl. Part. Sci. 43 (1993) 27 [hep-ph/9302210].

[3] V.A. Rubakov and M.E. Shaposhnikov, Electroweak baryon number nonconservation in the

early universe and in high-energy collisions, Usp. Fiz. Nauk 166 (1996) 493

[hep-ph/9603208].

[4] D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012)

125003 [1206.2942].

[5] C. Caprini et al., Science with the space-based interferometer eLISA. II: Gravitational waves

from cosmological phase transitions, JCAP 04 (2016) 001 [1512.06239].

[6] C. Caprini et al., Detecting gravitational waves from cosmological phase transitions with

LISA: an update, JCAP 03 (2020) 024 [1910.13125].

[7] AEDGE collaboration, AEDGE: Atomic Experiment for Dark Matter and Gravity

Exploration in Space, EPJ Quant. Technol. 7 (2020) 6 [1908.00802].

[8] L. Badurina, O. Buchmueller, J. Ellis, M. Lewicki, C. McCabe and V. Vaskonen, Prospective

sensitivities of atom interferometers to gravitational waves and ultralight dark matter, Phil.

Trans. A. Math. Phys. Eng. Sci. 380 (2021) 20210060 [2108.02468].

[9] LISA Cosmology Working Group collaboration, Cosmology with the Laser

Interferometer Space Antenna, Living Rev. Rel. 26 (2023) 5 [2204.05434].

[10] M. Colpi et al., LISA Definition Study Report, 2402.07571.

[11] D. Bodeker and G.D. Moore, Electroweak Bubble Wall Speed Limit, JCAP 05 (2017) 025

[1703.08215].

[12] A. Azatov and M. Vanvlasselaer, Bubble wall velocity: heavy physics effects, JCAP 01 (2021)

058 [2010.02590].

[13] Y. Gouttenoire, R. Jinno and F. Sala, Friction pressure on relativistic bubble walls, JHEP 05

(2022) 004 [2112.07686].

– 14 –

https://doi.org/10.1016/0370-2693(85)91028-7
https://doi.org/10.1146/annurev.ns.43.120193.000331
https://doi.org/10.1146/annurev.ns.43.120193.000331
https://arxiv.org/abs/hep-ph/9302210
https://doi.org/10.1070/PU1996v039n05ABEH000145
https://arxiv.org/abs/hep-ph/9603208
https://doi.org/10.1088/1367-2630/14/12/125003
https://doi.org/10.1088/1367-2630/14/12/125003
https://arxiv.org/abs/1206.2942
https://doi.org/10.1088/1475-7516/2016/04/001
https://arxiv.org/abs/1512.06239
https://doi.org/10.1088/1475-7516/2020/03/024
https://arxiv.org/abs/1910.13125
https://doi.org/10.1140/epjqt/s40507-020-0080-0
https://arxiv.org/abs/1908.00802
https://doi.org/10.1098/rsta.2021.0060
https://doi.org/10.1098/rsta.2021.0060
https://arxiv.org/abs/2108.02468
https://doi.org/10.1007/s41114-023-00045-2
https://arxiv.org/abs/2204.05434
https://arxiv.org/abs/2402.07571
https://doi.org/10.1088/1475-7516/2017/05/025
https://arxiv.org/abs/1703.08215
https://doi.org/10.1088/1475-7516/2021/01/058
https://doi.org/10.1088/1475-7516/2021/01/058
https://arxiv.org/abs/2010.02590
https://doi.org/10.1007/JHEP05(2022)004
https://doi.org/10.1007/JHEP05(2022)004
https://arxiv.org/abs/2112.07686
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[64] D. Kuzmin, M. Möller and S. Turek, Multidimensional fem-fct schemes for arbitrary time

stepping, International Journal for Numerical Methods in Fluids 42 (2003) 265

[https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.493].
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