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We develop a time-dependent Ginzburg-Landau theory of the vortex spin Hall effect, i.e., a spin
Hall effect that is driven by the motion of superconducting vortices. For the direct vortex spin
Hall effect in which an input charge current drives the transverse spin current accompanying the
vortex motion, we start from the well-known Schmid-Caroli-Maki solution for the time-dependent
Ginzburg-Landau equation under the applied electric field, and find out the expression of the induced
spin current. For the inverse vortex spin Hall effect in which an input spin current drives the
longitudinal vortex motion and produces the transverse charge current, we microscopically construct
the time-dependent Ginzburg-Landau equation under the applied spin accumulation gradient, and
calculate the induced transverse charge current as well as the open circuit voltage. The time-
dependent Ginzburg-Landau equation and its analytical solution developed here can be a basis for
more quantitative numerical simulations of the vortex spin Hall effect.

I. INTRODUCTION

Topological defect has been one of the important key
concepts in condensed matter physics [1]. Recently, af-
ter the discovery of magnetic skyrmions in magnetic ma-
terials [2–4], there has been a renewed interest in such
real-space topological defects. Because of its topological
robustness, the magnetic skyrmion is regarded as a useful
information carrier [5]. Besides magnetic systems, there
is another well-known realization of real-space topologi-
cal defects, that is a superconducting vortex [6]. Indeed,
as Bogdanov and Yablonskii pointed out a few decades
ago [7], there is a strong similarity between the mag-
netic skyrmions and the superconducting vortices, and
one can observe their current-induced motion experimen-
tally in both cases of magnetic skyrmions [8] and super-
conducting vortices [9]. Given this similarity as well as
a great expectation for the use of the magnetic skyrmion
as an information carrier [10], it is natural to consider
the possibility of transporting spin information by using
the topological property of the superconducting vortices.
Some years ago, along the line of the above argument,

we theoretically investigated the vortex spin Hall effect
(SHE), i.e., a novel SHE that is driven by the motion
of superconducting vortices [11]. The vortex SHE is an
analog to the well-known vortex Ettingshausen/Nernst
effect [12, 13]. In general, a spin-singlet Cooper pair
does not host entropy, but a superconducting vortex
does. Then, since the superconducting vortex moves ap-
proximately transverse to the charge current due to the
Josephson equation [14, 15], the vortex motion is accom-
panied by a flow of the vortex core entropy, or a trans-
verse heat current, producing the well-known vortex Et-
tingshausen/Nernst effect [12, 13]. In the case of the
vortex SHE, the entropy held in the vortex core is re-
placed by the spin accumulation [16, 17], giving rise to
the vortex SHE (Fig. 1). Note that a similar physical
situation has been theoretically investigated in Refs. [18]
and [19]. In Ref. [18] the angular momentum transport

through a type-II superconductor in the form of vortic-
ity is discussed based on the so-called spin-rotation cou-
pling [20, 21]. By contrast, in the present paper the
transport in the form of spin accumulation trapped by
vortices is discussed, such that the underlying physics is
different. In Ref. [19], the physics same as the present pa-
per is discussed, but the Keldysh-Usadel theory is used
there. By contrast, here we formulate the vortex SHE in
terms of the time-dependent Ginzburg-Landau (TDGL)
theory, which has several advantages as emphasized after
the next paragraph.

In our previous publication [11], we computed the vor-
tex spin Hall conductivity by using a diagrammatic cal-
culation of the Kubo formula. Then, using the resultant
spin Hall conductivity combined with the self-consistent
Hartree approximation [22] of the superconducting fluc-
tuations [23–28], we argued that this approach allows us
to explain the characteristic temperature dependence of
the voltage due to the inverse vortex SHE observed in
a NbN/Y3Fe5O12 bilayer system [29]. Note that a simi-
lar experiment using a NbN/Fe bilayer has recently been
reported [30], where the vortex SHE also plays an im-
portant role. Here, we would like to emphasize that the
Kubo approach employed in Ref. [11] is just one side of
two equivalent approaches for the investigation of vortex
transport phenomena. Namely, as was noted in the con-
text of vortex Nernst effect [31], the microscopic Kubo
approach and the TDGL approach provide us with two
equivalent descriptions of transport phenomena in the
superconducting vortex state. Therefore, it is natural to
expect that the TDGL theory of the vortex SHE should
be developed.

The TDGL equation of superconductivity is a dy-
namical equation that is designed to recover the static
Ginzburg-Landau equation in thermal equilibrium [32,
33]. The TDGL equation has several advantages over the
microscopic Kubo approach. First, it has a high affinity
to numerical simulation. Indeed, the TDGL equation
has so far been used to simulate the phase transition
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FIG. 1. Schematic illustration of the vortex SHE. In the di-

rect vortex SHE, an input electric field E = Eŷ (or a charge

current j(c) = σnEŷ) acts as the external force, which drives
the vortex motion along the x axis, carrying the spin current
J(s) ‖ x̂. In the inverse vortex SHE, an input spin accumula-

tion gradient µ
(s)
1 x̂ [or a spin current j(s) = (σn/|e|)µ

(s)
1 x̂] acts

as the external force, which drives the vortex motion along the
x axis, producing the charge current J(c) ‖ ŷ. Here, σn is the
normal-state electrical conductivity and e = −|e| is the elec-
tron charge. For more detail, see the main text.

dynamics [34–36] and transport properties [37, 38] of su-
perconductors. Second, the TDGL equation allows us
to explicitly write down the dynamical solution for the
moving Abrikosov lattice [39], which provides us with
an intuitive understanding of how the Abrikosov lattice
moves under the action of an external electric field. Con-
sidering these advantages, the TDGL description of the
vortex SHE is highly demanded.
In this work, we develop a TDGL theory of the vor-

tex SHE. For the investigation of the direct vortex SHE
in which an input charge current drives the transverse
spin current concomitant with the vortex motion, we use
the established time-dependent Ginzburg-Landau equa-
tion under the applied electric voltage, and employ the
Schmid-Caroli-Maki solution of the moving Abrikosov
lattice [32, 33]. With this known apparatus, we find out
the expression of spin current carried by the vortex mo-
tion. For the description of the inverse vortex spin Hall
effect in which an input spin current drives the longitu-
dinal vortex motion and produces the transverse charge
current, we first need to construct the TDGL equation
under the applied spin accumulation gradient as there
has been no such formulations. After formulating the
TDGL equation under spin accumulation gradient, we ac-
complish the calculation of the induced transverse charge
current as well as the voltage established under the open
circuit condition.
The organization of this paper is as follows. In Sec. II,

we define our model and present the procedure of micro-
scopically constructing the TDGL equation in the pres-
ence of the spin accumulation gradient. In Sec. III we
theoretically describe the direct vortex SHE, while in
Sec. IV we investigate the inverse vortex SHE. Finally,
in Sec. V, we discuss and summarize our results. We use
unit ~ = kB = c = 1 throughout this paper.

II. TDGL EQUATION UNDER SPIN

ACCUMULATION GRADIENT

In this section we first define our model Hamiltonian
that describes a type-II superconductor under the spin
accumulation gradient. Next, starting from this model
Hamiltonian, we microscopically construct the TDGL
equation under the influence of spin accumulation gradi-
ent, which is needed for the analysis of the inverse vortex
SHE in Sec. IV.

A. Model

We start from the following Hamiltonian for an s-wave
superconductor in the dirty limit:

H =
∑

σ

∫
d3rψ†

σ(r)

[
(−i∇+ |e|A)2

2m
− µσ(r)

]
ψσ(r)

+ Himp +HBCS, (1)

where A is the vector potential, m and |e| are the mass
and absolute value of charge of an electron, ψσ(r) is the
electron field operator for spin projection σ = ±, and
µσ is the spin-dependent chemical potential. The second
term of Eq. (1),

Himp =
∑

σ

∫
d3rU(r)ψ†

σ(r)ψσ(r), (2)

is the Hamiltonian for impurity potential U(r) =∑
a Uimp(r− ra). After the impurity average denoted by

[· · · ]av, the mean and variance of U(r) satisfy [U(r)]av =
0 and [U(r)U(r′)]av = (2πN(0)τimp)

−1δ(r − r′), where
N(0) and τimp are the density of states per spin and elec-
tron lifetime, respectively. The third term of Eq. (1),

HBCS = −|g|
∫
d3rΨ†(r)Ψ(r), (3)

is the BCS Hamiltonian with the attractive interaction
parameter |g|, where Ψ(r) = ψ−(r)ψ+(r) is the pair field.
Note that the Hamiltonian in Eq. (1) does not contain
any spin-orbit interactions.
The spin-dependent chemical potential in Eq. (1) can

be separated into charge and spin components,

µσ(r) = µ(c)(r) +
σ

2
µ(s)(r), (4)

where µ(c) = (µ+ + µ−)/2 is the electrochemical poten-
tial, and µ(s) = (µ+ − µ−) is the spin accumulation [40].
In this paper, we consider a situation where the electro-
chemical potential is spatially uniform as

µ(c)(r) = µ
(c)
0 , (5)

but the spin accumulation varies on the scale of the spin
diffusion length λ(s), where λ(s) is much longer than the
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inter-vortex spacing characterized by the magnetic length
ℓ, i.e., λ(s) ≫ ℓ. If we assume the spin accumulation µ(s)

varies only along the x axis, it is represented as

µ(s)(r) = µ
(s)
0 + µ

(s)
1 x, (6)

where µ
(s)
0 is the spatially uniform part of µ(s)(r),

whereas µ
(s)
1 is its gradient. Note that, the spin accu-

mulation gradient acts as an external force to drive the
vortex motion and spin current along the x axis. Ex-
perimentally, the spin accumulation in a superconduc-
tor is realized by injecting spins via the spin Seebeck
effect [29, 30] or the spin pumping [41–44]. Substituting
Eqs. (5) and (6) into Eq. (4), we obtain

µσ(r) = µσ + σV (s)(r), (7)

where µσ = µ
(c)
0 + σµ

(s)
0 /2 and V (s)(r) = µ

(s)
1 x/2.

Now the spatially uniform part of spin accumulation
µσ can be absorbed into the single-particle Hamiltonian,
and the spatially asymmetric part is regarded as an ex-
ternal force. This amounts to considering the following
Hamiltonian:

H = H0 +HBCS +Himp +H(s)
ext, (8)

where

H0 =
∑

σ

∫
d3rψ†

σ(r)

[
(−i∇+ |e|A)2

2m
− µσ

]
ψσ(r) (9)

coincides with the first term on the right-hand side of
Eq. (1) but µσ(r) being replaced by µσ. The external

Hamiltonian H(s)
ext is given by

H(s)
ext = −

∑

σ

∫
d3r σV (s)(r)ψ†

σ(r)ψσ(r), (10)

where V (s)(r) is defined below Eq. (7).

B. Effects of spin accumulation gradient on the

TDGL equation

In this subsection, we microscopically construct the
TDGL equation under the influence of the spin accumu-
lation gradient. To this end, we first employ the formula-
tion of microscopically constructing the TDGL equation
in the presence of scalar potential gradient [45], and then
replace the scalar potential gradient with the spin accu-
mulation gradient.
The procedure of deriving the TDGL equation in the

presence of the scalar potential gradient has been known
in Ref. [45], which is reviewed in Appendices A and B.
Our discussion here is based on the formulation therein.
Then, the quantity necessary for investigating the cou-
pling between the pair field and the scalar potential gra-
dient is δP [Eq. (B4)], that is the first-order perturbation

p, σ

ε
n

−
Q p, −σ

ε
n

p−K, σ
ε

n

FIG. 2. Diagrammatic representation of Eq. (12), i.e., the
first-order perturbation of particle-particle polarization in
response to the spin accumulation gradient. A solid line
with arrow is electronic Green’s function, a dotted ladder
is the Cooperon, a wavy line represents the pair field, and
the dashed line represents the spin accumulation gradient
[Eq. (11)].

of particle-particle polarization in response to the scalar

potential gradient represented by H(c)
ext [Eq. (B1)]. Now,

in calculating δP , we replace the scalar potential gradient

H(c)
ext with the spin accumulation gradientH(s)

ext [Eq. (10)],
and examine the first-order perturbation. In doing so, for

the expression V (s)(r) appearing in H(s)
ext, we use

V (s)(r) = V
(s)
K eiK·r, (11)

where V
(s)
K = (−iµ(s)

1 /2)∂Kx
and the limit K → 0 is

taken in the final step of the calculation.
The resultant first-order perturbation of particle-

particle polarization in response to H(s)
ext is given by (see

Fig. 2),

δP = T
∑

σ

∑

εn

∫

p

Gp,σ(εn)Gp−K,σ(εn)GQ−p,−σ(−εn)

×
(
−σV (s)

K eiK·r
)(

CQ,σ(εn,−εn)
)2
, (12)

where we introduce the shorthand notation
∫
p

=∫
d3p/(2π)3. In the above equation,

Gp,σ(εn) =
(
iε̃n − ξp +

σ

2
µ
(s)
0

)−1

(13)

is the impurity-averaged Green’s function, where ε̃n =

εn + sgn(εn)/(2τimp), ξp = p2/2m − µ
(c)
0 , and εn =

2πT (n + 1/2) is a fermionic Matsubara frequency [11].
Besides,

CQ,σ(εn + ωm,−εn)

=






τ−1
imp

dQ(2εn+ωm)−iσµ
(s)
0 sgn(εn)

if εn(εn + ωm) > 0,

1 otherwise,
(14)
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is the Cooperon vertex, where dQ(2εn + ωm) = |2εn +
ωm|+DQ2 with D = v2F τimp/3 being the diffusion coef-
ficient, and Q = −i∇+ 2|e|A. Note that, in contrast to
the scalar potential gradient, the frequency dependence
of the spin accumulation gradient in the present case can
be safely neglected from the beginning. Consequently,
diffuson does not appear in the above equation.
After performing the momentum integral as well as

the Matsubara frequency and spin summations, δP is
calculated to be

δP =
∑

σ

iN(0)σV
(s)
K eiK·r

8πT

×
{
Ψ (1)

(
1

2
+

−iσµ(s)
0

4πT

)
− (σ ↔ −σ)

}
,(15)

where Ψ (n)(z) = dnΨ(z)/dzn with Ψ(z) being the
digamma function, and a small correction DQ2 is dis-
carded. Then, expanding the result to the linear order in

µ
(s)
0 , we obtain

δP = N(0)
µ
(s)
0 V

(s)
K eiK·r

8π2T 2
Ψ (2)

(
1

2

)
,

= −N(0)
7ζ(3)

8π2T 2
µ
(s)
0 µ

(s)
1 x, (16)

where in the last line we used V
(s)
K eiK·r = µ

(s)
1 x/2, and

Ψ (2)(1/2) = −14ζ(3) with ζ(z) being the zeta function.
Substituting Eq. (16) into Eq. (B3), setting ωm →

−iω = ∂t [33, 45], and using Eq. (A3), we finally ob-
tain the TDGL equation under the spin accumulation
gradient:

(
π

8Tc
∂t + Λ̃x+

T − Tc
Tc

+ ξ20Q
2 + b|Ψ(r, t)|2

)
Ψ(r, t) = 0,

(17)

where Λ̃ = bµ
(s)
0 µ

(s)
1 , and b is defined below Eq. (A9).

Equation (17), i.e., the TDGL equation under the spin
accumulation gradient, is formulated for the first time in
the present paper. It will be used in Sec. IV below for
developing the TDGL theory of the inverse vortex SHE.

III. TDGL THEORY OF THE DIRECT VORTEX

SPIN HALL EFFECT

In this section, we develop a TDGL theory of the direct
vortex SHE in which an input electric field E = Eŷ

(or a charge current j(c) = σnEŷ) drives the transverse
spin current (‖ x̂) concomitant with the vortex motion,
where σn is the normal-state electrical conductivity (see
Fig. 1). For this purpose, we employ the Schmid-Caroli-
Maki solution of the moving Abrikosov lattice [32, 33] for
the TDGL equation under the applied electric voltage,
and accomplish the calculation of the spin current carried
by the vortex motion.

Note that the vortex spin current, i.e., the transverse
spin current carried by the vortex motion that is driven
by the longitudinal charge current, requires the spin po-
larization of the vortex core. Strictly speaking, such a
situation can be realized in a flux flow state [46] with a
small Zeeman splitting caused by an external magnetic
field. But we believe a more efficient spin polarization
is achieved by a spin injection into superconductors via
the spin Seebeck effect [29, 30] or the spin pumping [41–
44], as these methods can inject spins locally into the
vortex core in a site-selective way, causing minimal pair-
breaking effect. Note also that, although the direct vor-
tex SHE may in principle be observed by a Kerr rotation
experiment [47], to the best of our knowledge there has
been no report on the observation of the direct vortex
SHE. Instead, the inverse vortex SHE which we discuss
in the next section has been observed in Refs. [29, 30].

We begin with the following linearlized time-dependent
Ginzburg-Landau equation, whose microscopic deriva-
tion is reviewed in Appendices A and B [see Eq. (B7)]:

(
∂t − 2i|e|V (c)(r) +DQ2 + ǫ

)
Ψ(r, t) = 0, (18)

where V (c) is the scalar potential, D is the diffusion co-
efficient, Q is the gauge-invariant gradient defined below
Eq. (A4), and ǫ = 8(T − Tc)/π with Tc being the su-
perconducting transition temperature in the mean-field
approximation under zero magnetic field. We choose the
gauge A = Hxŷ and V (c) = −Ey, where H = H ẑ is
the external magnetic field and E = Eŷ is the applied
electric field. Note that the scalar potential appears in
a gauge-invariant manner, i.e., ∂t − 2i|e|V (c). Note also

that, in the present case in the absence of µ
(s)
1 , there is

no correction to ǫ within the linear order with respect to

µ
(s)
0 .

Following Schmid [32], Caroli and Maki [33], we con-
struct a flux-flow solution of Eq. (18),

Ψ(r, t) =

√
k0ℓ〈|Ψ|2〉s√

π

∞∑

p=−∞

Cpfp(r, t), (19)

fp(r, t) = exp

{
− (x+ k0pℓ

2 − ut)2

2l2

}

× exp

{
i

(
k0p−

ut

ℓ2
+
v

D

)
y

}
, (20)

where u and v are parameters to be determined below,
ℓ = 1/

√
2|e|Hc2 is the magnetic length at the upper crit-

ical field Hc2, and 〈|Ψ|2〉s means the spatial average of

|Ψ|2. Here, we use k0 =
√√

3π/ℓ and Cp = eiπp
2/2 in

order to reproduce the triangular Abrikosov lattice in the
absence of E.

Now, using Qx = −i∂x and Qy = −i∂y + x/ℓ2 in the
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present gauge, we obtain

∂tfp =

[
u(x+ k0pℓ

2)

ℓ2
− i

uy

ℓ2

]
fp, (21a)

Q2
xfp =

[
1

ℓ2
− (x+ k0pℓ

2 − ut)2

ℓ4

]
fp, (21b)

Q2
yfp =

[
(x+ k0pℓ

2 − ut)2

ℓ4
+

2v(x+ k0pℓ
2)

Dℓ2

]
fp,

(21c)

where only terms up to the linear order with respect to u
and v are collected, except for terms appearing in the (x+
k0pℓ

2−ut)2 combination. Then, substituting Eqs. (21a)-
(21c) to Eqs. (18) and (19), we have

{(
u

ℓ2
+

2v

ℓ2

)
(x+ k0pℓ

2)

+i

(
E

Hc2ℓ2
− u

ℓ2

)
y + ǫ +

D

ℓ2

}
fp = 0. (22)

From the above equation we find that, Ψ given in
Eq. (19) satisfies the TDGL equation (18) in the imme-
diate vicinity of the upper critical field Hc2 determined
by ǫ+D/ℓ2 = 0, when

u =
E

Hc2
, (23)

v = −u
2
. (24)

Since we have obtained the solution to the TDGL equa-
tion (18), we now check the expression of charge current
J(c) carried by the vortex motion. Calculation of this
quantity is basically the same as that given in Ref. [39],
and here we only give a brief summary. The charge cur-
rent driven by the vortex motion is given by [31, 39]

J(c) = −K(c)Ψ∗QΨ+ c.c., (25)

where K(c) = 2|e|N(0)ξ20 , and ξ
2
0 = πD/8Tc was defined

below Eq. (A9). By using the expression of Ψ in Eq. (19),
we obtain

J (c)
x = −K(c)∇y|Ψ|2 (26)

and

J (c)
y = K(c)∇x|Ψ|2 +K(c) u

D
|Ψ|2, (27)

which can be summarized into

J(c) = ∇×
(
−K(c)|Ψ|2ẑ

)
+
K(c)u

D
|Ψ|2ŷ. (28)

Then, after the spatial average, we obtain

〈J(c)〉s =
K(c)u

D
〈|Ψ|2〉sŷ, (29)

where the first term on the right-hand side of Eq. (28)
vanishes upon the spatial average.
Experimentally, we observe the following total charge

current:

〈J(c)
tot〉s = σn

(
E +

K(c)u

σnD
〈|Ψ|2〉s

)
ŷ

= σ0Eŷ, (30)

where σn is the normal state electrical conductivity,

σ0 = σn(1 + η) (31)

is the total electrical conductivity, and the dimensionless
parameter η is defined by

η =
1

Dσn

K(c)〈|Ψ|2〉s
Hc2

. (32)

Note that the electrical conductivity σ0 is increased by
a growth of the pair-field correlation 〈|Ψ|2〉s below Hc2,
whereas the electrical resistivity ρ0 = 1/σ0 is decreased.
Now, we are in a position to present the calculation of

the spin current J(s) carried by the vortex motion. This
quantity can be calculated from [11, 31]

J(s) = −K(s)
[(

− i∂t + 2|e|V (c)
)
Ψ∗
]
QΨ+ c.c., (33)

where K(s) = 2|e|µ(s)
0 N(0)ξ20/(8T

2
c ), the time derivative

in the above equation is understood to operate only on
Ψ∗, and we use the relation between J(s) and the heat

current J(h), i.e., J(s) = −2|e|µ(s)
0 J(h)/(8T 2

c ) [11]. Then,
by using the expression of Ψ in Eq. (19), we obtain

J (s)
x = −2uK(s)

∑

p,p′

C∗
pf

∗
pCp′fp′

×
[
(x+ k0pℓ

2)(x+ k0p
′ℓ2)

ℓ4

]
, (34)

where higher order terms with respect to u have been
discarded, and we used

(
− i∂t + 2|e|V (c)

)
f∗
p = −iu (x+ k0pℓ

2)

ℓ2
f∗
p (35)

and

Qxfp′ = i
(x+ k0p

′ℓ2 − ut)

ℓ2
fp′ . (36)

In a similar manner, we get

J (s)
y =

−iu
ℓ4

∑

p,p′

C∗
pCp′(x+ k0pℓ

2)(x + k0p
′ℓ2)f∗

p fp′ + c.c.

= 0, (37)

where we used

Qyfp′ =
1

ℓ2

(
x+ k0p

′ℓ2 − ut− uℓ2

2D

)
fp′ . (38)
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Then, after the spatial average, we have

〈J(s)〉s = −uK
(s)

ℓ2
〈|Ψ|2〉sx̂, (39)

where we used
〈
∑

p,p′

(x+ k0pℓ
2)(x + k0p

′ℓ2)f∗
p fp′

〉

s

=
ℓ2

2
〈|Ψ|2〉s. (40)

The minus sign of 〈J(s)〉s relative to u comes from the
definition of the spin current [Eq. (33)]. Finally, we define

the vortex spin Hall angle as ΘVSHE = |〈J(s)〉s|/|〈J(c)
tot〉s|.

Then, we obtain

ΘVSHE =
µ
(s)
0

πTc

(
η

1 + η

)
, (41)

by taking the ratio of Eqs. (30) and (39).
To summarize this section, we have developed a TDGL

theory of the direct vortex SHE. In particular, we have
obtained the explicit expression of the induced spin cur-
rent within the TDGL theory, Eq. (39), which has not
been known so far. This phenomenon, in which an input
electric field E = Eŷ (or a charge current j(c) = σnEŷ)
drives the transverse spin current (‖ x̂) concomitant with
the vortex motion, can be viewed as a new member of the
direct SHE, because the phenomenology matches the def-
inition of the direct SHE [40, 48].

IV. TDGL THEORY OF THE INVERSE

VORTEX SPIN HALL EFFECT

In this section, we develop a TDGL theory of the in-
verse vortex SHE in which an input spin accumulation

gradient µ
(s)
1 x̂ [or a spin current j(s) = (σn/|e|)µ(s)

1 x̂]
acts as the external force, which drives the vortex mo-
tion along the x axis, producing the charge current (
‖ ŷ, see Fig. 1). The TDGL equation with a spin ac-
cumulation gradient as the driving force was formulated
in Sec. II. Below, starting from this TDGL equation, we
calculate the induced transverse charge current as well as
the voltage established under the open circuit condition.
We begin with the linearlized TDGL equation un-

der the spin accumulation gradient derived in Sec. II
[Eq. (17)]:

(
∂t − 2i|e|ViVSHE + Λx+DQ2 + ǫ

)
Ψ(r, t) = 0, (42)

where Λ is given by

Λ =
7ζ(3)

π3Tc
µ
(s)
0 µ

(s)
1 . (43)

Note that the direction of the spin accumulation gradient
in the above TDGL equation is arbitrary. But in order
to explicitly write down the solution to the TDGL equa-
tion in the specific gauge of A = Hxŷ, choosing x axis as

the direction of spin accumulation gradient is convenient,
which we adopt below. Note also that, although no elec-
tric voltage is applied to the system, because the vortex
motion inevitably induces a transverse voltage due to the
Josephson equation [14, 15], we find that a voltage caused
by the inverse vortex SHE, ViVSHE = −EiVSHE y, is nec-
essary for a consistent description of the inverse vortex
SHE.
Since the direction of the vortex motion is the same

as in the previous section, we try to find a solution
to Eq. (42) in a form similar to Eq. (19). Then,
we find that, upon replacing fp(r, t) with gp(r, t) =
fp(r, t) exp(Λk0pℓ

2t), we can solve Eq. (42) after choos-
ing appropriate values of u and v. Because of the ad-
ditional factor exp(Λk0pℓ

2t) in gp, however, the resul-
tant |Ψ(r, t)|2 does not keep the periodic structure of the
Abrikosov lattice. Therefore, we conclude that the spin
accumulation gradient tends to break the vortex lattice
structure, and it is impossible to construct the moving
Abrikosov lattice solution to the inverse vortex SHE.
The above consideration implies that we cannot con-

struct a solution to Eq. (42) that keeps the vortex lattice
structure. Therefore we relax the constraint and try to
find a solution to Eq. (42) in the following form:

Ψ(r, t) =

√
2
√
πℓ2

Ly

∑

k

φk(t)uk(r, t), (44)

uk(r, t) = exp

{
− (x+ kℓ2 − ut)2

2l2

}

× exp

{
i

(
k − ut

ℓ2
+
v

D

)
y

}
, (45)

where Ly is the system dimension in the y direction, and
k = 2πn/Ly with integer n. Note that the above solution
does not keep the vortex lattice structure, but it contains
Nv = LxLy/2πℓ

2 vortices in the system where Lx is the
system dimension in the x direction [49, 50]. Guided by
the time dependence of gp(r, t), we impose

φk(t) = φk(0) exp(Λkℓ
2t), (46)

where the above time dependence is justified only for a
linearlized TDGL equation. With this note in mind, we
have

∂tφk = Λkℓ2φk (47a)

∂tuk =

[
u(x+ kℓ2)

ℓ2
− i

uy

ℓ2

]
uk, (47b)

Q2
xuk =

[
1

ℓ2
− (x+ kℓ2 − ut)2

ℓ4

]
uk, (47c)

Q2
yuk =

[
(x + kℓ2 − ut)2

ℓ4
+

2v(x+ kℓ2)

Dℓ2

]
uk, (47d)

where, as in the previous section, only terms up to the
linear order with respect to u and v are collected, except
for terms appearing in the (x + kℓ2 − ut)2 combination.
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Now substituting Eqs. (47a)–(47d) to Eq. (44) and us-
ing Eq. (42), we obtain

{(
u

ℓ2
+ Λ+

2v

ℓ2

)
(x+ kℓ2)

+i

(
EiVSHE

Hc2ℓ2
− u

ℓ2

)
y + ǫ+

D

ℓ2

}
φk(t)uk(t) = 0,

(48)

from which we have two conditions,

u =
EiVSHE

Hc2
(49)

and

u+ Λℓ2 + 2v = 0, (50)

at the immediate vicinity of Hc2 determined by ǫ +
D/ℓ2 = 0.
The values of u, v, and EiVSHE are determined from

the open circuit condition. To this end, we first evaluate
the charge current J(c) carried by the vortex motion. As
in the previous section, we can show that J(c) satisfies

J(c) = ∇×
(
−K(c)|Ψ|2ẑ

)
− 2vK(c)

D
|Ψ|2ŷ. (51)

Then, after the spatial average we obtain

〈J(c)〉s = −2vK(c)

D
〈|Ψ|2〉sŷ, (52)

where the spatial average of |ψ|2 is expressed as

〈|Ψ|2〉s =
1

Nv

∑

k

|φk(t)|2. (53)

The total charge current is given by

〈J(c)
tot〉 = σnEiVSHEŷ − 2vK(c)

D
〈|Ψ|2〉sŷ, (54)

where σn is the normal-state electrical conductivity.

Since 〈J(c)
tot〉 ‖ ŷ, the open circuit condition reads

〈J(c)tot,y〉 = σnEiVSHE − 2vK(c)

D
〈|Ψ|2〉s = 0. (55)

Substituting Eqs. (49) and (55) into Eq. (50), we obtain

EiVSHE = −Λℓ2Hc2
η

1 + η
, (56a)

u = −Λℓ2
η

1 + η
, (56b)

v = −Λℓ2

2

1

1 + η
, (56c)

where the dimensionless parameter η was defined in
Eq. (32).

Next, we calculate the spin current J(s) carried by the
vortex motion. Starting from Eq. (33) we find that the
spin current before the spatial average is not perfectly
parallel to the x axis. Namely, in contrast to the direct
vortex SHE, it has the y component,

J (s)
x = −K(s) 2

√
πℓ2

Ly

∑

k,k′

φ∗kφk′u∗kuk′

×
[
2u(x+ kℓ2)(x + k′ℓ2)

ℓ4

+ Λkℓ2(x + k′ℓ2) + Λk′ℓ2(x+ kℓ2)

]
, (57a)

J (s)
y = −iK(s) 2

√
πℓ2

Ly

∑

k,k′

φ∗kφk′u∗kuk′

×
[
Λk(x+ k′ℓ2)− Λk′(x+ kℓ2)

]
. (57b)

After the spatial average, however, the y component van-
ishes and the spin current becomes

〈J(s)〉s = −uK
(s)

ℓ2
〈|Ψ|2〉s x̂, (58)

which coincides with Eq. (39), where 〈|Ψ|2〉s is now given
by Eq. (53).
To summarize this section, we have developed a TDGL

theory of the inverse vortex SHE. In particular, we have
obtained the explicit expression of the induced trans-
verse electric field within the TDGL theory, Eq. (56a),
for the first time. This phenomenon, in which an in-

put spin accumulation gradient µ
(s)
1 x̂ [or a spin current

j(s) = (σn/|e|)µ(s)
1 x̂ accompanied by the vortex motion]

drives the transverse charge current (‖ x̂), can be viewed
as a new member of the inverse SHE. This is because
the phenomenology matches the definition of the inverse
SHE [40, 48]. In this inverse vortex SHE, the moving
Abrikosov lattice has a tendency to be broken by the
driving force of spin accumulation gradient. We hence
expect that effects of the nonlinear term of the TDGL
equation may be important, which is left for future stud-
ies.

V. DISCUSSION AND CONCLUSION

In this paper, we have developed a TDGL theory
of the direct/inverse vortex SHE. For the direct vortex
SHE in which an input charge current drives the trans-
verse spin current accompanied by the vortex motion, we
have employed the well-known Schmid-Caroli-Maki solu-
tion [32, 33] for the established TDGL equation under the
applied electric voltage [39], and found out the expression
of the induced spin current [Eq. (39)]. For the inverse
vortex spin Hall effect in which an input spin current
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FIG. 3. Schematic illustration of the system discussed in
Sec. V. Here FI and SC refer to a ferromagnetic insulator
and a type-II superconductor, respectively.

drives the transverse charge current concomitant with
the vortex motion, we have microscopically constructed
the TDGL equation under the applied spin accumulation
gradient [Eq. (17)], and calculated the induced transverse
charge current [Eq. (52)] as well as the open circuit volt-
age [Eq. (56a)].
The impact of the present paper can be summarized

as follows. First, we have explicitly written down the
solution to the linearized TDGL equation for the di-
rect/inverse vortex SHE. This provides us with an in-
tuitive physical picture of the direct/inverse vortex SHE.
Second, we have formulated the TDGL equation for the
vortex SHE, which can be used for the numerical simula-
tion of the direct/inverse vortex SHE. Indeed, as seen in
literature, the TDGL equation has been widely used in
the numerical simulation of the vortex states [35, 37, 38],
and therefore, the present paper can serve as a basis for
a quantitative numerical simulation.
Before ending, we discuss how to detect the vortex SHE

experimentally. To observe the vortex SHE, a convenient
way is to focus on the inverse vortex SHE, and perform
a spin injection via the spin Seebeck effect [29, 30] or
the spin pumping [41–44]. It allows us to detect the in-
verse vortex SHE by measuring the open circuit voltage,
and this procedure was actually adopted in Refs. [29, 30].
Theoretically, giving a numerical estimate of the signal
is an involved problem as the open circuit voltage [see
Eq. (56a)] depends on the magnitude of the spin accu-
mulation, which is quite hard to estimate. However one
can discuss the change of the open circuit voltage from
the normal to the vortex states (see Fig. 8 of Ref. [11]).
Experimentally, how the inverse vortex SHE manifests
itself in the open circuit voltage is best seen in Ref. [30]
(see Fig. 5 therein). In analyzing the data, care is nec-
essary because there is a similarity between the inverse
vortex SHE under discussion and the vortex Nernst ef-
fect [12, 13] as pointed out in the Introduction. Indeed,
in a positive magnetic field region of Fig. 5b in Ref. [30],
a positive signal due to the vortex Nernst effect and a

negative signal coming from the inverse vortex SHE, are
clearly visible. This experiment, together with Ref. [29]
proves the feasibility of the experimental detection of the
vortex SHE. In passing, it is tempting to measure the
inverse vortex SHE in the pseudo-gap phase of high-
Tc cuprate superconductors [12], since the underlying
physics of the inverse vortex SHE is similar to that of
the vortex Nernst effect.
Below we discuss a way of identifying the inverse vor-

tex SHE, by distinguishing it from the vortex Nernst ef-
fect from symmetry point of view. We consider the situ-
ation shown in Fig. 3, where a bilayer composed of ferro-
magnetic insulator (FI) layer and type-II superconductor
(SC) is placed under a temperature bias ∆T = T2 − T1.
The situation is similar to that of Ref. [29, 30] where the
FI and SC correspond to Y3Fe5O12 and NbN, respec-
tively. Due to the spin Seebeck effect, spins are injected
from FI to SC, and a spin accumulation gradient is es-
tablished in the SC layer. Then, following the inverse
vortex SHE discussed in Sec. IV, a transverse voltage,

ViVSHE = Λℓ2Hc2
η

1 + η
y0, (59)

is generated, where y0 is the sample dimension along the
y axis (Fig. 3). The crucial point in the above signal is
that ViVSHE contains the coefficient Λ, which is doubly

proportional to µ
(s)
0 and µ

(s)
1 [see Eq. (43)]. The physics

behind this is that for the inverse vortex SHE to occur,
the vortex core needs to be spin polarized, and this re-
quires the uniform component of the spin accumulation

µ
(s)
0 . Besides, the vortices need to be dragged by the

spin accumulation gradient, which requires µ
(s)
1 . Then,

in the situation considered here, the spin accumulation
µ(s)(r) is caused by the spin Seebeck effect [29], thereby

both µ
(s)
0 and µ

(s)
1 are proportional to ∆T . Consequently,

ViVSHE is proportional to the square of ∆T , i.e.,

ViVSHE ∝ (∆T )2. (60)

This signal is proportional to the square of the tem-
perature bias, and thus the response in Eq. (60) be-
longs to the nonlinear and nonreciprocal thermal trans-
port [51, 52], and does not change sign under the opera-
tion ∆T ↔ −∆T . By contrast, a parasitic voltage VVNE

coming from the vortex Nernst effect is proportional to
∆T ,

VVNE ∝ ∆T. (61)

Using the symmetry difference between Eqs. (60) and
(61), we can disentangle the inverse vortex SHE from
the vortex Nernst effect.
The physics that a longitudinal vortex motion induces

a transverse electric voltage is common to both the in-
verse vortex SHE and the vortex Nernst effect, where the
difference is either the driving force is a spin accumula-
tion gradient for the former, or a temperature gradient
for the latter. Moreover, the same physics also applies to
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vortex motions driven by other means [53–57]. The new
characteristic of the inverse vortex SHE is that the vor-
tices carry spin polarization, which is different from pre-
viously known ones. Following Anderson [15], all these
transverse voltage generations can be understood using
Fig. 1 of Ref. [15], combined with the the Josephson equa-
tion [see Eq. (13) therein]:

∂t(φ1 − φ2) = 2|e|V12, (62)

where φi (i = 1, 2) is the phase of the pair field at point
i of Fig. 1 of [15] and V12 is the voltage drop between
points 1 and 2. A vortex moves across a path from 1 to 2
is accompanied by a phase slippage [the left-hand side of
Eq. (62)], thereby producing the transverse voltage [the
right-hand side of Eq. (62)]. Note that when a vortex
pinning [58] sets in, the phase of the pair field is frozen,
i.e., the left-hand side of Eq. (62) vanishes, and therefore
the transverse voltage disappears. Based on this argu-
ment, an expected behavior of the open circuit voltage
once taking account of the vortex pinning effect is drawn
in Fig. 8(a) of Ref. [11] (see the dotted line therein). Note
also that, in the case of a vortex channel flow where only
a bundle of vortices moves whereas the remaining vor-
tices are pinned, the transverse voltage generation due
to the inverse vortex SHE still exists.
In summary, we have developed the TDGL theory of

the vortex SHE. We have written down the explicit solu-
tions of the TDGL equation for the direct/inverse vortex
SHE, which provides us with an intuitive understand-
ing of these phenomena. The TDGL theory of the di-
rect/inverse vortex SHE presented here can be a basis
for numerical simulations. Since this work have set up
equations for numerical studies, we hope that the present
study stimulates a more quantitative numerical approach
in future. Moreover, the conventional SHE requires the
spin-orbit interaction [40, 48], but the vortex SHE inves-
tigated here does not rely on the spin-orbit interaction.
Therefore, we also hope that future experiments on the
vortex SHE using cuprate superconductors are performed
as a realization of SHE free from the spin-orbit interac-
tion.
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Appendix A: TDGL equation with no driving force

In the Appendix, we review how to construct the
TDGL equation in the presence of the scalar potential
gradient. There are several ways of microscopically deriv-

ωmQ, ωmQ, 

FIG. 4. Diagrammatic representation of the Gaussian action.
A solid line with an arrow is electronic Green’s function, a
dotted ladder is the Cooperon, and a wavy line represents the
pair field.

ing the TDGL equation [33, 59], but from the present per-
spective, the simplest way is perhaps to use the fact [60]
that the TDGL equation is derived from the Ginzburg-
Landau action,

SGL =

∫ β

0

dτ

∫
d3r

{
Ψ∗(r, τ)K2(i∂τ )Ψ(r, τ)

+
K4

2
|Ψ(r, τ)|4

}
, (A1)

as a stationary condition δSGL/δΨ
∗ = 0 [61], where τ

is the imaginary time and Ψ is the pair field, the lat-
ter of which is understood as a complex number when
used within the functional integral representation of the
partition function [62]

Z =

∫
D[Ψ,Ψ∗]e−SGL . (A2)

Writing down the above procedure more precisely, by
firstly calculating K2(ωm) in the Matsubara space and
then performing analytic continuation ωm → −iω =
∂t [33, 45], we obtain the TDGL equation from SGL as

K2(∂t)Ψ(r, t) +K4|Ψ(r, t)|2Ψ(r, t) = 0, (A3)

where t = −iτ is now the real time. For the moment
we focus on the linearized TDGL equation, for which
discussion of the Gaussian action is sufficient. Besides,
we use the usual quasiclassical approximation [63] and
employ the identity

exp
(
2i|e|

∫ r

r′

A · ds
)
Ψ(r′) = e−i(r−r′)·QΨ(r), (A4)

where Q = −i∇+2|e|A is the gauge-invariant gradient.

Let us first see how the above procedure works in the
derivation of the TDGL equation [33, 45] in the absence
of the driving force. In the dirty limit, the kernel K2 is
calculated as

K2(ωm) =
1

|g| − P(ωm), (A5)
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where P(ωm) is the particle-particle polarization (see
Fig. 4) represented as

P(ωm) =
T

2

∑

εn,σ

∫

p

Gp+Q,σ(εn + ωm)G−p,−σ(−εn)

×CQ,σ(εn + ωm,−εn), (A6)

whereGp,σ(εn) is the impurity-averagedGreen’s function
defined in Eq. (13), and CQ,σ is the Cooperon defined in
Eq. (14).
In the following, we consider terms up to the linear

order with respect to the spatially-uniform component of

the spin accumulation, µ
(s)
0 . After the momentum inte-

gral, we obtain

P(ωm) = 4πN(0)T

ωD∑

εn>0

1

|2εn + ωm|+DQ2
, (A7)

where ωD is the Debye frequency giving the cutoff. Note
that, after the spin summation, the dependence of P on

the spin accumulation becomes higher order than µ
(s)
0 -

linear term and hence discarded. In performing the re-
sultant Matsubara frequency summation, we use the re-
lation 4πT

∑ωD

εn>0(2εn + u)−1 = ln(ωD/2πT )− Ψ(1/2 +
u/4πT ), where Ψ(z) is the digamma function. Then, af-
ter performing the Matsubara frequency summation and
analytic continuation ωm → −iω, we have

K2(−iω) = N(0)

[
ln

(
T

Tc

)
+

π

8Tc
(−iω +DQ2)

]
, (A8)

where we used 1/(|g|N(0)) = ln(ωD/2πTc)− Ψ(1/2). In
the above equation, we expanded the result to linear or-
der in −iω + DQ2 and used Ψ (1)(1/2) = π2/2, where
Ψ (n)(z) = dnΨ(z)/dzn. Substituting the above result
into Eq. (A3) and setting −iω = ∂t [33, 45], we repro-
duce the well-known TDGL equation:

(
π

8Tc
∂t +

T − Tc
Tc

+ ξ20Q
2 + b|Ψ(r, t)|2

)
Ψ(r, t) = 0,

(A9)
where ξ20 = πD/8Tc. Note that the coefficient of the
nonlinear term coming from K4, b = 7ζ(3)/8π2T 2

c , is
added, which can be derived in a standard manner [63].

Appendix B: TDGL equation under scalar potential

gradient

The effect of the scalar potential gradient on the TDGL
equation has been discussed in Ref. [45]. Here, we review
their procedure of deriving the TDGL equation under the
scalar potential gradient. We consider a response to the
following external Hamiltonian:

H(c)
ext = −|e|

∑

σ

∫
d3r V (c)(r, τ)ψ†

σ(r)ψσ(r), (B1)

zεIm(    )

zε
p, σ

ε
n

−
Q p, −σ

ε
n

−p   K, σ
ε

n lν−

zεRe(    )

A

Im(    )zε l
=  ν

B

C

(b)(a)

FIG. 5. (a) Diagrammatic representation of the contribution
from the scalar potential gradient to the Gaussian action. The
dashed line is the scalar potential gradient [Eq. (B2)], and
the hatched triangle represents the diffuson [Eq. (B5)]. (b)
Three regions of Matsubara summation in the complex plane,
leading to Eq. (B6).

where the spatially uniform part of V (c) is absorbed into
the definition of the Fermi energy. In the above expres-
sion of the scalar potential, as discussed in Ref. [45], we
first need to keep the Matsubara frequency dependence
as

V (c)(r, τ) = V
(c)
K ei(K·r−νlτ), (B2)

where V
(c)
K eiK·r = −Ex is the scalar potential, V

(c)
K =

iE∂kx
, and the limit K → 0 is taken. We next perform

the analytic continuation to real frequency νl → −iν,
and set ν → 0 in the final step.

Then, in response to H(c)
ext, the kernel K2 [Eq. (A5)] is

modified as

K2(ωm) =
1

|g| −
(
P(ωm) + δP

)
, (B3)

where δP is the first-order perturbation of the particle-
particle polarization. Then the corresponding expression
of δP is given by [see Fig. 5(a)],

δP = T
∑

σ

∑

εn

∫

p

Gp,σ(εn)Gp−K,σ(εn)GQ−p,−σ(−εn)

× V
(c)
K eiK·r−iνlτCQ,σ(εn − νl,−εn)CQ,σ(εn,−εn)

× DK(εn − νl, εn), (B4)

where DK represents the diffuson,

DK(εn − νl, εn)

=

{
τ−1
imp

|νl|+DK2 if εn(εn − νl) < 0,

1 otherwise.
(B5)

In performing the Matsubara frequency summation,
there are three regions in the Matsubara space separated
by two branch cuts as shown in Fig. 5(b). In contrast to
the case with the spin accumulation gradient discussed in
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Sec. II, two contributions from regions A and C can-
cel in the limit of ν → 0, and the dominant contribution

comes from B .
Then, performing the momentum integral as well as

the Matsubara frequency summation, we have

δP = N(0)

( −iν
−iν +DK2

)
iV

(c)
K eiK·r

2πTc
Ψ (1)

(
1

2

)
,

= N(0)
iπV (c)(r)

4Tc
, (B6)

where, in moving to the second line, we used K2V
(c)
K = 0

(∵ divE = 0) and Ψ (1)(1/2) = π2/2.

Then, substituting Eq. (B6) into Eq. (B3), setting
ωm → −iω = ∂t [33, 45], and using Eq. (A3), we finally
obtain the TDGL equation under the scalar potential
gradient:

(
π

8Tc

(
∂t − 2i|e|V (c)(r)

)
+
T − Tc
Tc

+ ξ20Q
2

)
Ψ(r, t)

+b|Ψ(r, t)|2Ψ(r, t) = 0. (B7)
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