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ABSTRACT

Semantic segmentation plays a crucial role in various computer vision applications, yet its efficacy is
often hindered by the lack of high-quality labeled data. To address this challenge, a common strategy
is to leverage models trained on data from different populations, such as publicly available datasets.
This approach, however, leads to the distribution shift problem, presenting a reduced performance
on the population of interest. In scenarios where model errors can have significant consequences,
selective prediction methods offer a means to mitigate risks and reduce reliance on expert supervision.
This paper investigates selective prediction for semantic segmentation in low-resource settings, thus
focusing on post-hoc confidence estimators applied to pre-trained models operating under distribution
shift. We propose a novel image-level confidence measure tailored for semantic segmentation and
demonstrate its effectiveness through experiments on three medical imaging tasks. Our findings
show that post-hoc confidence estimators offer a cost-effective approach to reducing the impacts of
distribution shift.

1 Introduction

Deep learning has demonstrated remarkable success in various computer vision tasks, offering a powerful aid to
labor-intensive processes. However, the scarcity of labeled data hinders the use of state-of-the-art models in many
applications. This is particularly true in semantic segmentation of medical images, as the high dimensionality of input
and output coupled with the high specialization needed for expert annotation usually implies in high costs for labeled
data.

To circumvent the data limitation, a common approach is to leverage models trained on datasets drawn from different
populations, giving rise to the problem of distribution shift. For example, a hospital in a developing country that does
not have enough magnetic resonance images with high-quality annotations to train a state-of-the-art tumor segmentation
model can resort to publicly available datasets on that application. However, the images used for training come from a
different distribution than those expected to be fed to the model during clinical practice, as the acquisition hardware and
the subjects’ population may differ. Generally, the greater the degree of this distribution shift between training and test
(or deployment) data, the poorer the generalization performance [Koh et al., 2021, Malinin et al., 2022].
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In scenarios where model mistakes are critical, selective prediction methods are valuable tools to reduce the costs with
expert supervision, as proposed in the seminal works of Geifman and El-Yaniv [2017] and Hendrycks and Gimpel
[2016]. At the core of selective prediction is the confidence estimator, a scalar function used to determine whether the
model should abstain from a prediction and instead an expert should be invoked. A good confidence estimator enables
the trade-off between expected performance and abstention rate of the deep learning model.

In this paper, we investigate the problem of selective prediction for semantic segmentation in low-resource settings.
Given a lack of high-quality annotated data, we assume that a pre-trained model will be used and focus on post-hoc
confidence estimators. In other words, a deep learning model trained on a different data distribution is used for inference,
and the confidence estimators have as input solely the model’s output. To evaluate the resulting selective prediction
methods, we perform our experiments in three medical imaging segmentation tasks with state-of-the-art pre-trained
models. Furthermore, we propose a novel image-level confidence measure based on the soft Dice loss [Sudre et al.,
2017, Milletari et al., 2016], and show that it outperforms all other confidence measures we tested.

The main contributions of this paper are summarized as follows:

• This is the first paper to evaluate image-level post-hoc confidence measures for selective prediction in semantic
segmentation, extending the existing methods for classification;

• We propose a novel image-level confidence estimation method designed specifically for image segmentation,
which takes into account usual segmentation evaluation metrics;

• We evaluate all methods in 3 medical imaging tasks (polyp segmentation, optic cup segmentation and multiple
sclerosis lesion segmentation) under distribution shift, and show that the proposed method significantly
outperforms other confidence estimators.

2 Related work

Given the increased labeling costs (in comparison to classification), selective prediction methods for semantic seg-
mentation hold great promise. Many works [Nair et al., 2020, Jungo and Reyes, 2019, DeVries and Taylor, 2018,
Lambert et al., 2022] have investigated the natural extension of classification confidence measures to pixel-wise (or
voxel-wise) confidence estimation on semantic segmentation tasks. Such confidence maps (or uncertainty maps) can be
useful for explainability, but often the expert intervention is performed on the whole image, rather than at pixel-level
or region-level, which results in a need for image-level confidence estimates. Although the aggregation of pixel-level
measures seems a natural choice, in this paper we show that they are unsuitable for semantic segmentation and instead
proposed a novel measure designed specifically for this task.

Within the uncertainty estimation literature, a popular approach to compute confidence is the use of ensembles, which
combine multiple predictions made for the same input; this includes conventional ensembles [Lakshminarayanan et al.,
2017, Wen et al., 2020, Kushibar et al., 2022] as well as techniques based on Bayesian reasoning [Gal and Ghahramani,
2016, Malinin et al., 2022, Lambert et al., 2022]. However, ensembles are not well suited to low-resource settings, as
they usually increase training, development and/or storage costs. At the very least, ensembles either require multiple
network passes for inference, increasing operational costs, or require custom models with custom training regimes,
preventing the use of state-of-the-art, publicly-available pre-trained models. To fit the low-resource paradigm, our scope
is limited to confidence estimation methods applicable to pre-trained single models.

We do not consider techniques to increase robustness to distribution shift, as they are entirely orthogonal to our approach;
as long as there is some remaining performance gap due to distribution shift, selective prediction can always be used as
a last resort to reduce this gap.

3 Selective Prediction for Semantic Segmentation

3.1 Selective Prediction

Let P be an unknown distribution over X × Y , where X is the input space and Y is the label space, and let h : X → Y
be a (predictive) model. The risk of h is R(h) = EP [ℓ(h(x), y)], where ℓ : Y ×Y → R+ is a loss function. A selective
model [Geifman and El-Yaniv, 2017, 2019] is a pair (h, g), where g : X → R is a confidence estimator (also known as
confidence score function or confidence-rate function), which quantifies the model’s confidence on its prediction for
a given input. For some fixed threshold t, given an input x, the selective model makes a prediction h(x) if g(x) ≥ t,
otherwise the prediction is rejected. A selective model’s coverage ϕ(h, g) = P [g(x) ≥ t] is the probability mass of the
selected samples in X , while its selective risk R(h, g) = EP [ℓ(h(x), y) | g(x) ≥ t] is its risk restricted to the selected
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samples. In particular, a model’s risk equals its selective risk at full coverage (i.e., for t such that ϕ(h, g) = 1). These
quantities can be evaluated empirically given a given a test dataset {(x(i), y(i))}Ni=1 drawn i.i.d. from P , yielding the
empirical coverage ϕ̂(h, g) = (1/N)

∑N
i=1 1[g(x

(i)) ≥ t] and the empirical selective risk

R̂(h, g) =

∑N
i=1 ℓ(h(x

(i)), y(i))1[g(x(i)) ≥ t]∑N
i=1 1[g(x

(i)) ≥ t]
. (1)

Note that, by varying t, it is generally possible to trade off coverage for selective risk, i.e., a lower selective risk
can usually (but not necessarily always) be achieved if more samples are rejected. This tradeoff is captured by the
risk-coverage (RC) curve [Geifman and El-Yaniv, 2017], a plot of R̂(h, g) as a function of ϕ̂(h, g). While the RC
curve provides a full picture of the performance of a selective classifier, it is convenient to have a scalar metric that
summarizes this curve. A commonly used metric is the area under the RC curve (AURC) [Ding et al., 2020, Geifman
et al., 2019], denoted by AURC(h, g). However, the AURC is not always easy to interpret. For a more tangible metric,
we propose here a simple generalization of the selective accuracy constraint [Galil et al., 2023] from classification
to generic prediction: the coverage at selective risk (CSR), defined as the maximum coverage allowed for a model to
achieve a specified risk.

In the case of semantic segmentation, inputs are images and labels are segmentation masks, so, e.g., X =
[0, 1]nC×nW×nH and Y = {0, 1, . . . ,K − 1}nW×nH if images are nW × nH pixels with nC channels and seg-
mentation masks are divided into K classes. Here we consider only binary segmentation, so K = 2. To simplify
notation, we assume flattened segmentation masks, so that Y = {0, 1}n, where n = nWnH is the total number of
output pixels. In the binary case, a commonly used quality metric is the Dice Similarity Coefficient (DSC), defined as

D(ŷ,y) ≜
2
∑n

j=1 ŷjyj∑n
j=1(ŷj + yj)

(2)

where ŷ,y ∈ Y . We convert it to a loss by taking ℓ(ŷ,y) = 1−D(ŷ,y).

3.2 Confidence estimators

We restrict attention to segmentation models that can be decomposed as h(x) = 1[f(x) > γ], where f : X → [0, 1]n is
a neural network, γ ∈ [0, 1] is a decision threshold (e.g., γ = 0.5), and 1[·] denotes the indicator function extended to
vectors in element-wise fashion. In other words, if we denote p̂ = f(x), then p̂j can be interpreted as an estimate of the
posterior probability P [yj = 1|x] that the jth pixel of the ground truth mask is equal to 1.

We focus on confidence estimators that can be computed directly from the model outputs p̂ = f(x) and ŷ = h(x).
To the best of our knowledge, image-level confidence estimators applicable to a single model had not been proposed
before, so first we consider a few natural baselines.

The first two are based on widely-used pixel-level confidence estimators, namely, the maximum softmax probability
(MSP) [Hendrycks and Gimpel, 2016, Geifman and El-Yaniv, 2017, Ding et al., 2020]

gj(x) = max{p̂j , 1− p̂j} (3)

and the negative entropy1 [Belghazi and Lopez-Paz, 2021]
gj(x) = p̂j log p̂j + (1− p̂j) log(1− p̂j). (4)

We adapt them to image-level confidence estimators by taking their mean over all pixels, g(x) = (1/n)
∑n

j=1 gj(x).

The third baseline exploits a peculiarity of the Dice score. As shown in [Carass et al., 2020, Raina et al., 2023, Malinin
et al., 2022], the Dice score is biased towards providing higher scores to images with higher prevalence of lesion. With
this in mind, we propose as a baseline confidence estimator the predicted lesion load, computed as the proportion of the
predicted foreground class of an image, namely,

g(x) = ρ̂(x) ≜ (1/n)

n∑
j=1

ŷj . (5)

Finally, we propose a confidence measure based on the Dice coefficient. Our motivation is to have a confidence
estimator somehow connected to the evaluation metric. We define the soft Dice confidence (SDC) as

g(x) = SDC(p̂, ŷ) ≜
2
∑n

j=1 p̂j ŷj∑n
j=1(p̂j + ŷj)

. (6)

1Note that any uncertainty estimator can be used as a confidence estimator by taking its negative.
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The SDC is inspired by and closely related to the soft Dice loss (SDL) [Sudre et al., 2017]

SDL(p̂,y) ≜ 1−
2
∑n

j=1 p̂jyj∑n
j=1(p̂j + yj)

. (7)

Specifically, it is equal to 1 minus SDL when the hard predictions ŷ are used in place of the ground truth y, i.e.,
SDC(p̂, ŷ) = 1− SDL(p̂, ŷ). (8)

Note that the SDC increases as the confidence of a gixen pixel increases within the same class; in particular, it is highest
(equal to 1) when p̂ = ŷ. This can be easily seen from the alternative expression

SDC(p̂, ŷ) =

(
1 +

∑n
j=1 p̂j(1− ŷj) + (1− p̂j)ŷj

2
∑n

j=1 p̂j ŷj

)−1

(9)

which is maximized if and only if p̂j = 1 whenever ŷj = 1 and p̂j = 0 whenever ŷj = 0, for all j. On the other hand,
when the model is least confident at the pixel level, p̂ ≈ γ, Proposition 1 below shows that g(x) ≈ 2γ/(1 + γ/ρ̂(x)),
which is an increasing function of the predicted lesion load ρ̂(x). Thus, in this case, it at least retains the properties of
the lesion load baseline.
Proposition 1. Suppose p̂j = γ − ϵ+ 2ϵŷj for all j, where ϵ > 0. Then

lim
ϵ→0

SDC(p̂, ŷ) =
2γ

1 + γ/ρ̂(x)
. (10)

Proof. We have

SDC(p̂, ŷ) =
2
∑n

j=1 p̂j ŷj∑n
j=1 p̂j ŷj +

∑n
j=1 p̂j(1− ŷj) +

∑n
j=1 ŷj

(11)

=
2(γ + ϵ)

∑
j ŷj

(1 + γ + ϵ)
∑

j ŷj + (γ − ϵ)
∑

j(1− ŷj)
(12)

=
2(γ + ϵ)

∑
j ŷj

(1 + 2ϵ)
∑

j ŷj + n(γ − ϵ)
(13)

=
2(γ + ϵ)

(1 + 2ϵ) + (γ − ϵ)/ρ̂(x)
(14)

from which the result follows.

4 Experiments and Results

4.1 Semantic Segmentation tasks

In the following we describe the segmentation tasks and respective models considered, as well as the datasets used
for in-distribution (ID) and out-of-distribution (OOD) evaluation. Note that this study used only pretrained models
obtained from the corresponding repositories of the original authors; training details for each model can be found in the
corresponding original papers.

4.1.1 Polyp Segmentation

Polyp segmentation in colonoscopy images aids identification and evaluation of these clumps, which is key in colorectal
cancer prevention [Jha et al., 2019]. In our study, we build the dataset for polyp segmentation as reported in Dong et al.
[2023]. More specifically, 900 images from KvasirSEG [Jha et al., 2019] and 548 images from ClinicDB [Bernal et al.,
2015] build the training set, while the remaining 162 images from both are used for ID evaluation. The OOD dataset is
composed with 196 images from ETIS [Silva et al., 2014], 380 images from ColonDB [Tajbakhsh et al., 2016], and 60
images from EndoScene [Vázquez et al., 2017].

As segmentation models, we use the Polyp-PVT, a deep learning model based on the pyramid vision transformer (PVT),
and a baseline U-Net. Both models were made available (both structure, weights, predictions and ground truth images)
by Dong et al. [2023].

The predictions and corresponding ground truth masks used for both U-Net and Polyp PVT can be accessed in
https://github.com/DengPingFan/Polyp-PVT.
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Table 1: AURC of confidence estimators across all task-model pairs (lower is better). Risk indicates the original risk
without selective prediction, which equals the AURC of the random estimator.

Polyp (PVT) Polyp (U-Net) Optic cup (Segtran) MSWML (U-Net)
ID OOD ID OOD ID OOD ID OOD

Risk 0.072 0.186 0.173 0.507 0.074 0.228 0.377 0.497

MSP 0.068 0.129 0.099 0.370 0.078 0.270 0.414 0.600
Negative Entropy 0.068 0.128 0.091 0.319 0.078 0.268 0.418 0.595
Lesion Load 0.063 0.185 0.170 0.333 0.064 0.169 0.302 0.355
SDC 0.036 0.076 0.059 0.217 0.058 0.146 0.282 0.338
Ideal 0.028 0.062 0.049 0.195 0.047 0.119 0.259 0.326

4.1.2 Optic Cup Segmentation

Accurately segmenting the cup and disc in color fundus photography (CFP) plays a key role in the early diagnosis of
glaucoma and the prevention of irreversible vision loss [Orlando et al., 2020]. To instantiate optic cup segmentation
task, we use three publicly available datasets: REFUGE [Orlando et al., 2020], with 1600 images; ORIGA [Zhuo
Zhang et al., 2010], with 650 images; and G1020 [Bajwa et al., 2020], with 1020 images. 1200 images from REFUGE
compose the training set, while the remaining 400 images are used as the ID evaluation set, and the entirety of ORIGA
and G1020 compose the OOD evaluation set. All images (and corresponding masks) were preprocessed by the MNet
DeepCDR model [Fu et al., 2018] to crop a region of interest containing the optic disc and cup. To maintain consistency
with the other tasks, images corresponding to labels with y = 0 (no optic cup appearing in the ground truth mask) were
systematically excluded as they trivially indicate a preprocessing failure. Therefore, the resulting revised evaluation
datasets comprise 394 images from REFUGE, 648 from ORIGA, and 782 from G1020.

For segmentation, we use the Segtran model, developed and made available by Li et al. [2021]. The authors aim to streak
a balance between increasing context and improving localization accuracy by combining a convolutional backbone with
a series of squeeze-and-expansion transformer layers.

The Segtran model architecture and corresponding weight parameters used in this study can be accessed in https:
//github.com/askerlee/segtran.

4.1.3 Multiple Sclerosis White Matter Lesion (MSWML) Segmentation

The segmentation of white matter lesions caused by multiple sclerosis helps physicians follow the progress of the
disease through the evolution of the lesions [Thompson et al., 2018]. We use the datasets and baseline segmentation
model provided in the Shifts 2.0 challenge [Malinin et al., 2022]. We consider the ISBI [Carass et al., 2017] and
MSSEG-1 [Commowick et al., 2018] as ID data, while the PubMRI [Lesjak et al., 2018] is considered OOD. The ID
evaluation set contains 33 images from each source, while the OOD set contains 25 images.

As our baseline segmentation model, we use a (single-model) 3D U-Net made available by the competition organizers,
as few competitors were able to overcome the baseline performance in terms of ID and OOD Dice score.

The U-Net model architecture and corresponding weight parameters used in this study can be accessed in https:
//github.com/Shifts-Project/shifts.

4.2 Results

For each task and model, we evaluate the confidence estimators presented in Sec. 3.2 with respect to their selective
prediction performance on OOD data, simulating the low-resource setting described in Sec. 1. As a bound, we also
evaluate a hypothetically optimal confidence estimator (denoted “ideal”) that perfectly orders samples in decreasing
order of their losses. Following the literature on selective prediction, we use the AURC metric [Ding et al., 2020,
Geifman et al., 2019], with selective risk taken as 1 minus the average Dice score over the selected samples (see
Sec. 3.1). The results are shown in Table 1 where, for comparison, the performance on ID data is also shown. The full
RC curves for all task-model pairs on ID and OOD data are shown in Fig. 1 and Fig. 2, respectively. Even though the
performances differ significantly between tasks (and even between models, as in the case of the polyp segmentation),
the proposed confidence estimator SDC visibly achieves the best overall performance, providing the smallest risk in
almost all coverage levels for all tasks and models. Furthermore, the predicted lesion load, although being a simple
heuristic, presents a reasonable performance in some cases, substantiating the intuition that originated it. This would
be expected especially since all datasets exhibit low average lesion load, as shown in Table 2. On the other hand, the
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Figure 1: Risk-coverage curves for all confidence estimators across all task-model pairs on the respective ID evaluation
sets. The dashed lines represent the random confidence estimator (horizontal line) and the ideal confidence estimator.

Table 2: Average Lesion Load across each dataset ground truth.

Polyp Optic cup MSWML
ID OOD ID OOD ID OOD

0.12311 0.06162 0.03590 0.10511 0.00102 0.00191

two baselines derived from pixel-level confidence estimators sometimes show performance even worse than a random
ordering of predictions (whose performance is always equal to the full-coverage risk).

To provide a closer examination of the differences between the confidence estimators evaluated, Fig. 3 and Fig. 4 show
representative examples of predictions with low and high Dice score, respectively. As can be seen, the performance of
the SDC is far superior to that of the MSP in estimating confidence. This can be explained by the fact that the latter (as
well as the Negative Entropy estimator) is sensitive to highly confident true negatives, thereby yielding excessively
high values even for predictions with few true positives. In contrast, the SDC is much more robust in these cases
due to the exclusion of pixels with p̂j ≈ 0 from its calculation, rendering it much less susceptible to the influence of
foreground-background imbalance in the dataset.

Finally, to give a more tangible illustration of the potential of selective prediction, in Table 3 we measure the maximum
coverage on OOD data that produces a selective risk equal to that obtained at full coverage on ID data (assuming that
the ID performance of the models would be considered satisfactory). In other words, for each confidence estimator, we
estimate how much of the OOD data can be processed solely by the deep learning model (instead of resorting to an
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Figure 2: Risk-coverage curves for all confidence estimators across all task-model pairs on the respective OOD
evaluation sets. The dashed lines represent the random confidence estimator (horizontal line) and the ideal confidence
estimator.

(a) Input image (b) Class predictions ŷ
(Dice = 0.0427)

(c) Posterior predictions p̂
(MSP = 0.9945; SDC = 0.1301)

Figure 3: Segmentation predictions for Segtran on the OOD dataset (G1020), for an image with low Dice score (high
risk). In the class predictions, green = true positives, blue = false negatives and red = false positives.
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(a) Input image (b) Class predictions ŷ
(Dice = 0.9561)

(c) Posterior predictions p̂
(MSP = 0.9826; SDC = 0.9585)

Figure 4: Segmentation predictions for Segtran on the OOD dataset (ORIGA), for an image with high Dice score (low
risk). In the class predictions, green = true positives, blue = false negatives and red = false positives.

Table 3: Maximum coverage of the OOD dataset using the designated confidence estimator that reproduces the ID risk
at 100 % coverage (higher is better). Blank values (-) indicate that the corresponding ID risk could not be achieved for
any coverage levels.

Polyp (PVT) Polyp (U-Net) Optic cup (Segtran) MSWML (U-Net)

MSP - - - -
Negative Entropy - 6.0 % - -
Lesion Load - - - 56.0 %
SDC 60.5 % 49.5 % 0.8 % 64.0 %
Ideal 70.9 % 56.8 % 18.3 % 64.0 %

expert) so that no performance drop is observed due to the distribution shift. It can be seen that the SDC is not only the
best option by a wide margin, but also the only that provided consistent results. However, we can also see that this
metric is highly dependent on the task and model.

Our full results on OOD data broken-down by each data source are presented in Appendix A.

5 Conclusion

In this paper, we evaluated confidence estimators for semantic segmentation with respect to their selective prediction
capacity in the context of distribution shift due to the lack of in-domain, high-quality data. The proposed confidence
estimator, soft Dice confidence, outperformed all other confidence estimators evaluated, as shown through the RC
curves of our results (see Fig. 1, Fig. 2 and Table 1).

Furthermore, our results suggest that selective prediction can be a viable option for tackling the distribution shift
problem when other options have been exhausted. With a suitable confidence estimator, a selective model provides
a sensible way of achieving ID performance during clinical practice, while saving on expert costs. The evaluation
through the maximum coverage to achieve ID performance in OOD data (see Table 3) demonstrates such goal, as
this ratio can be directly translated into expert hours that could be saved by employing a selective model. However,
despite a significant performance in the tasks of polyp and MSWML segmentation, the poor performance on optic cup
segmentation indicates that there is still a wide avenue for future research.
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A Full Results on OOD Data

A.1 Polyp segmentation

Table 4: AURC of confidence estimators across the Polyp task (lower is better). Risk indicates the original risk without
selective prediction, which equals the AURC of the random estimator.

Polyp (PVT) Polyp (U-Net)
ColonDB ETIS Endoscene ColonDB ETIS Endoscene

Risk 0.189 0.210 0.096 0.496 0.597 0.283

MSP 0.137 0.137 0.075 0.357 0.526 0.206
Negative Entropy 0.136 0.134 0.075 0.306 0.476 0.152
Lesion Load 0.203 0.160 0.104 0.320 0.389 0.304
SDC 0.080 0.078 0.064 0.207 0.301 0.108
Ideal 0.065 0.066 0.049 0.188 0.262 0.093

Table 5: Maximum coverage of the OOD dataset for Polyp using the designated confidence estimator that reproduces
the ID risk at 100 % coverage (higher is better). Blank values (-) indicate that the corresponding ID risk could not be
achieved for any coverage levels.

Polyp (PVT) Polyp (U-Net)
ColonDB ETIS Endoscene ColonDB ETIS Endoscene

MSP - - 76.7 % - 1.5 % 76.7 %
Negative Entropy - - 78.3 % 1.8 % 2.0 % 76.7 %
Lesion Load - 9.2 % 3.3 % 0.3 % - -
SDC 58.7 % 53.1 % 83.3 % 54.0 % 30.1 % 85.0 %
Ideal 68.9 % 67.3 % 93.3 % 58.7 % 43.4 % 85.0 %

A.2 Optic cup segmentation

Table 6: AURC of confidence estimators across the Optic cup task (lower is better). Risk indicates the original risk
without selective prediction, which equals the AURC of the random estimator.

Optic cup (Segtran)
ORIGA G1020

Risk 0.212 0.241

MSP 0.268 0.276
Negative Entropy 0.269 0.273
Lesion Load 0.145 0.187
SDC 0.134 0.154
Ideal 0.109 0.129
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Table 7: Maximum coverage of the OOD dataset for Optic cup using the designated confidence estimator that reproduces
the ID risk at 100 % coverage (higher is better). Blank values (-) indicate that the corresponding ID risk could not be
achieved for any coverage levels.

Optic cup (Segtran)
ORIGA G1020

MSP - -
Negative Entropy -
Lesion Load - 0.3 %
SDC 1.7 % 0.9 %
Ideal 23.6 % 13.6 %
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