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ABSTRACT

Graph neural networks (GNNs) have demonstrated significant suc-
cess in various applications, such as node classification, link pre-
diction, and graph classification. Active learning for GNNs aims to
query the valuable samples from the unlabeled data for annotation
to maximize the GNNs’ performance at a lower cost. However, most
existing algorithms for reinforced active learning in GNNs may
lead to a highly imbalanced class distribution, especially in highly
skewed class scenarios. GNN trained with class-imbalanced labeled
data are susceptible to bias toward majority classes, and the lower
performance of minority classes may lead to a decline in overall
performance. To tackle this issue, we propose a novel class-balanced
and reinforced active learning framework for GNNs, namely, GCBR.
It learns an optimal policy to acquire class-balanced and informa-
tive nodes for annotation, maximizing the performance of GNNs
trained with selected labeled nodes. GCBR designs class-balance-
aware states, as well as a reward function that achieves trade-off
between model performance and class balance. The reinforcement
learning algorithm Advantage Actor-Critic (A2C) is employed to
learn an optimal policy stably and efficiently. We further upgrade
GCBR to GCBR++ by introducing a punishment mechanism to ob-
tain a more class-balanced labeled set. Extensive experiments on
multiple datasets demonstrate the effectiveness of the proposed
approaches, achieving superior performance over state-of-the-art
baselines.
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1 INTRODUCTION

Graph neural networks (GNNs) have recently attracted significant
attention due to their success in various downstream tasks such as
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node classification [11, 14], link prediction [30], and graph classi-
fication [19]. For example, the early model GCN [14] aggregates
node features in the spectral space using a simplified first-order ap-
proximation, while GraphSage [11] aggregates features from node
neighbors directly in the spatial domain. Despite the appealing per-
formance, most GNN models typically require a sufficient amount
of labeled data for training, which is usually expensive to obtain.

Active learning with GNNs emerges as a promising strategy to
address this challenge, whose goal is to dynamically query the most
valuable samples from unlabeled data for annotation to maximize
GNNs’ performance within a limited budget. There have been some
active learning methods [4, 7, 10, 12] for graphs proposed and shown
effective, which introduce different selection criteria to measure the
informativeness of each node, such as information entropy, node
centrality, and information density. However, samples selected by
these methods may exhibit a highly imbalanced class distribution,
and this imbalance is particularly emphasized in scenarios involving
highly skewed classes. For instance, as shown in the pink line of
Figure 1(a), the benchmark dataset Coauthor_Physis (Co-phy) [22], a
co-authorship network of authors categorized into five classes, hasa
highly skewed class distribution that is sorted in a decreasing order
w.r.t. the number of samples in the corresponding class. Specifically,
the first class has a significant number of samples (a.k.a, head
classes), while the remaining classes have only a few samples (a.k.q,
tail classes). We use two SOTA active learning methods GPA [12]
and ALLIE [8] (Details will be introduced in Section 2), as well as our
proposed method GCBR++, to acquire the same number of nodes
for annotation on the dataset. From Figure 1(a), we observe that
the class distributions of labeled nodes acquired by GPA and ALLIE
are both highly imbalanced, and most nodes are from the head
class, while GCBR++ derives balanced results. To further show the
effectiveness of the selected nodes, we train GCN with these labeled
nodes and perform node classification. The result is shown in Figure
1(b), where GPA and ALLIE obtain poorer results, especially on the
tail class 4 with the least number of labeled nodes. In contrast, our
method achieves robust performance across different classes.

The class-imbalanced labeled training data can lead to the class-
imbalanced problem in the classification results [5, 9]. Since typ-
ical GNNs are designed without considering the problem, train-
ing GNNs with class-imbalanced labeled data could introduce a
prediction bias toward majority classes, resulting in overall per-
formance degradation. Meanwhile, class imbalance is prevalent
in real-world applications, such as fraud detection [16], citation
networks [25], and social networks [23]. Therefore, it is crucial for
active learning to select class-balanced and valuable samples to
annotate and avoid class-imbalanced problems. Although active
learning for imbalanced classes has been well studied in computer
vision [1, 2, 15, 28, 29] recently, most existing methods are based
on the i.i.d assumption, and directly applying them to graphs might
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be unsuitable or ineffective. This further prompts our investigation
on class-balanced active learning for GNNs.

(a) Co-Phy (b) Co-Phy

GPA(86.19) ——
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Figure 1: (a) Class distribution of labeled nodes acquired by
GCBR++ is more balanced compared to GPA and ALLIE on
Co-Phy dataset. (b) GCBR++ outperforms GPA and ALLIE
on overall accuracy. GCBR++ improves the performance of
tail classes by a large margin due to the class-balanced and
valuable training data.

In this paper, we propose a class-balanced active learning ap-
proach for graphs, namely, GCBR. It adopts the RL framework and
learns an optimal policy to query class-balanced and informative
samples to annotate, maximizing the performance of GNNs trained
with the selected labeled nodes. Specifically, our method formal-
izes class-balanced active learning as a Markov Decision Process
(MDP) and learns the optimal query strategy. The state is defined
based on the current graph status characterized from both node
informativeness and class balance; the action is to select a node
to label at each query step; the reward function is designed with
the performance gain of GNNs trained with the selected nodes and
also a pre-defined class diversity score, which can improve both
performance and class balance. To obtain a more class-balanced
labeled set, we further upgrade GCBR to GCBR++ by incorporat-
ing a punishment mechanism, which adds a penalty term in the
reward function and enforces nodes in the minority classes to be
selected. For more stable and effective training, Advantage Actor-
Critic (A2C) algorithm [18] is used to learn the query policy, where
the actor and critic networks are composed of two GCNs, consid-
ering both informativeness and the inter-dependent connections
between nodes. Finally, our main contributions in the paper are
summarized as follows:

e We propose GCBR, a novel class-balanced active learning
approach for GNNs. To the best of our knowledge, we are the
first to introduce class balance to reinforced active learning
on graphs.

o We design an effective reward function that can strike the
trade-off between classification performance and class bal-
ance. We also introduce class-balance-aware state space for
sampling informative nodes.

e We conduct extensive experiments on six benchmark datasets
to show that our methods can obtain a more class-balanced
labeled set, which leads to comparable or better classification
results than SOTA competitors.
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2 RELATED WORK
2.1 Active Learning on Graphs

Active learning has been widely studied in various domains, such
as computer vision and natural language processing. Several works
focus on active learning for graph-structured data recently [4, 7,
10, 26, 31]. For example, AGE [4] measures node informativeness
by a linear combination of three criteria, including information
entropy, density, and centrality. It finds the most informative nodes
from unlabeled nodes. ANRMAB [10] extends AGE, employs the
same criteria, and dynamically adjusts linear combination weights
by a multi-armed bandit mechanism. ActiveHNE [7] employs the
multi-armed bandit mechanism to tackle active learning on hetero-
geneous graphs. However, these methods overlook the connections
between nodes in the graph-structured data. Several studies on
active learning leverage reinforcement learning to acquire a label-
ing policy and parameterize the policy network as GNNs, which
could model node interactions. GPA [12] trains a GNN-based policy
network with reinforcement learning to select nodes one by one.
ALLIE [8] extends GPA, an active learning method for large-scale
class-imbalanced scenarios. BIGENE [32] proposes a multi-agent
reinforced active learning framework to query multiple samples at
each time. However above active learning methods may exhibit a
highly imbalanced class distribution, as shown in Figure 1. GNNs
trained with class-imbalanced labeled data are prone to be biased to-
ward major classes compared to minority classes, resulting in over-
all performance degradation. It’s significant to get class-balanced
and informative labeled nodes by active learning for training the
unbiased GNNss classification with selected nodes.

2.2 Class-Imbalanced Problem

The class-imbalanced problem has been extensively studied [5,
9, 20]. The goal is to train an unbiased classifier from a class-
imbalanced distribution, where the majority classes have many
more training instances than the minority classes. Some pioneer-
ing works have recently explored class-imbalanced learning for
graphs [17], including data-level and algorithm-level approaches.
Data-level approaches modify the training data to achieve a more
class-balanced learning environment. For example, GraphSMOTE
[33] and GraphENS [21] generate synthetic minority samples and
edges connected with them as data augmentation for minority
classes. GraphSR [34] leverages the large number of unlabeled
nodes in graphs as data augmentation directly. Algorithm-level ap-
proaches modify the learning algorithms of the classifier to tackle
the class-imbalanced issue. ReNode [6] and TAM [24] modify loss
functions by raising the weights of minority classes to address class
imbalance. This paper aims to prevent the class imbalance issue
that could arise during active learning. Class balance, as one of the
active learning objectives, is essential in imbalanced datasets.

2.3 Class-Imbalanced Active Learning

In recent years, active learning for class-imbalanced has received in-
creasing attention in computer vision [1, 2, 15, 28, 29]. For example,
CBAL [2] proposes an optimization-based method that aims to bal-
ance classes for image classification, which can be combined with



Class-Balanced and Reinforced Active Learning on Graphs

other criteria. SIMILAR [15] select samples with gradient embed-
dings for annotation, which are most similar to previously collected
minority samples while most dissimilar to out-of-distribution ones.
TAILOR [29] proposes a selection strategy for deep active learning,
which uses novel reward functions to gather class-balanced samples.
Nevertheless, directly applying these methods to graphs might be
unsuitable or ineffective due to their i.i.d assumption. In contrast,
we focus on graph-structured data with the goal of class-balance
active learning.

3 PROBLEM DEFINITION

Let G = (V, E) denotes a graph, where V is the node set, and E is
the edge set. A € RN*N s the adjacency matrix, and X € RN*4
is the node feature matrix. Each node v € V has a label ¢(v) €
{1, ..., m}, m is the number of node classes. The node set is divided
into three subsets, including Viyqin, Vyarig and Vies:. In traditional
semi-supervised node classification, the labels of a subset L C V;4in
are given. The task is to learn a classification f with the graph G
and labels L to predict the node labels in V;¢s;. We denote the class
distribution of L as {Cy, ..., Cm, }, where C; = |[{v]v € L, c(v) = i}| is
the node number of the i-th class in L. Besides, we use an imbalance
ratio p to measure the balance degree of the class distribution.

_ min{Cy,...,Cm}
p=—— (1)
max{C1,...Cm}

For class-balanced active learning on graphs, the labeled subset
is initialized as an empty set L = ¢. A query budget B is given, and
we sequentially acquire the labels of B samples. At each step ¢, we
select an unlabeled node o? from V;rqin\L* ™!, query the oracle for
its labels, and expand labeled dataset L* = L~1 U {v}, then the
GNN classification f(G, L) is trained with L for one more epoch.
This process is repeated until the B is used up. Finally, we continue
training the classification f(G, LB) until convergence. Our goal is to
gather class-balanced labeled subset LB (p should be as close to 1 as
possible) and maximize the performance of the GNN classification
f(G, LB) on Veest.

4 METHODOLOGY

In this section, we describe our proposed models. We formalize the
problem of class-balanced active learning on graphs as a Markov
Decision Process (MDP). Specifically, the state is defined based on
the current condition of a graph G and the trained GNN classifi-
cation f. We denote the state at step t as S’. The active learning
policy 7y parameterized by 6 takes an action by selecting the next
node to query. To improve the performance of the classification and
also the class balance of labeled nodes, the instant reward r? at step
t is designed based on the performance gain of the GNN and the
class diversity. We show an overview of the proposed framework of
GCBR in Figure 2. Initially, the labeled set L is set to be empty. At
step t, we first use the output of the GNN classification f(G, L*~1)
and G to update the state S?. A node o is sampled from V;yqin \L* ™!
in terms of the policy 7g(+|S?) for annotation, and is added to the
label set L! = L*~1 U {0*}. Then the GNN classification f(G, L") is
trained for one epoch, then evaluate (G, L") on V,,;;4, which is
used to generate the graph state S'*! for next step. When the bud-
get B is used up, we stop querying and train classification f(G, LB)
until convergence. The A2C algorithm is employed to train the
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policy network, and a batch training mode is designed to update
the parameters of the policy network at a frequency of every F
actions. To acquire more class-balanced labeled nodes, we upgrade
GCBR to GCBR++ by incorporating a punishment mechanism. In
the following, we discuss the major components in detail.

4.1 State

The state of graph G at step t is denoted as a matrix S, where
each row s/, represents the state representation of node v. To obtain
class-balanced and valuable labeled nodes, the state is characterized
from the following five factors/dimensions:

Centrality: Nodes in graphs are not ii.d. but connected with
links. The centrality of a node reflects the extent to which the
node influences others. Various node centrality metrics have been
proposed, such as degree centrality and betweenness centrality [3].
It has been shown that using PageRank as the centrality criterion
for selecting nodes in active learning outperforms others [4, 32].
Hence, we adopt PageRank to measure the centrality of node v:

sh(1 1-6
s5(1) =6 )" Au u(D)
u

SiAuw | N @
where 0 < § < 1 is the damping parameter.

Uncertainty: The uncertainty-based selection strategy finds ex-
tensive application in studies on active learning. The less confident
anode’s predicted label is, the more likely the classification is to
make mistake on the node, the more beneficial the node is to be
labeled. For node v, we employ the entropy of its prediction as the
measure of uncertainty:

22y 5 (D1og(§5(i))
log(m)
where 7% (i) is the probability of node v belonging to the i-th class
predicted by the GNN classification f at step t. We divide the en-
tropy by log(m) for normalization.

Class-Diversity: Inspired by [29], we propose class diversity
to measure a node’s importance in maintaining class balance. Intu-
itively, the more nodes in a class has been selected, the less nodes
in the class are to be selected. Therefore, in each step, we assign
an inverse weight to each class based on the number of samples
that are already selected. Formally, the class diversity of node v is
computed by the weighted sum of class probabilities:

m ~t i
s =y 2 @

-1y’
 max(1,C;7)

sh(2) = , ®3)

where i/ (i) denotes the probability of node v in the i-th class. If
node v has been labeled, § (i) = y,(i), and y, (i) refers to the i-th
element of the ground-truth one-hot label vector y,; otherwise,
gt (i) = 9%71(i). Further, Cit_1 is the number of nodes with the
i-th label in L*~1. To avoid the invalidity of inverse weight for

classes with zero nodes selected, we set the inverse weight to be
1
max(1,C!™1)”

Selectivity: Following [12], we use an indicator variable to rep-
resent whether a node has been selected/labeled. This is because
we expect the policy network to focus more on unlabeled samples.

Specifically, for node v, we define

sh4) =T e L) (5)



Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Trovato and Tobin, et al.

Centrahty

Uncertainty Class-Diversity

Selectivity Criteria-Similarity Majority-Score

% ’\\\ \\o\ S ’\\\
o » g
<
i '§ Ned 'i
Conﬁdence
I 4
2/
S Actor Critic
: >
E . GCN — ﬁ — GCN
9
AN
rt
Select & Annotate Roward
. f GNN Classification f i
03 L i Performance gain
~1 | i GNN . =
/ . Class diversity Penalty
vt O N l
P N e t+1
Train f until | Budget - No Generate §
Convergence used ll_]_) """""
? @ Labeled node MLP Mez.m
(3 Unlabeled node Pooling

Figure 2: The framework of GCBR and GCBR++. Blue and red nodes denote the classes of labeled nodes, and blank nodes are
unlabeled nodes. The policy will query a more class-balanced and valuable node for annotation at each step.

where s/ (4) = 1 if node v has been labeled; otherwise, s (4) = 0.
Criteria-Similarity: The above four factors are prone to select
unlabeled central and uncertain nodes that can contribute to class
diversity. We expect that the next selection will also derive similar
node. Therefore, we propose a novel metric to measure the criteria
similarity between unlabeled and labeled nodes. We concatenate
the four factors mentioned above as the criteria representation of
each node. Then the Criteria-Similarity of node v is calculated as:

si(5) = mm d(St St) 6)

where S is the criteria representation of node v at step ¢ and d(, -)
denotes the Euclidean distance. Note that previously, active learning
aims to select nodes that are most “dissimilar” to labeled nodes to
label, where the dissimilarity is measured from the perspective of
vanilla node features. However, in our case, we use criteria similarity
to enforce the selection of nodes similar to the training set w.r.t. the
selection criteria, i.e., unlabeled central and uncertain nodes that
can contribute most to class diversity.

Finally, we concatenate the above five metrics to form the state
representation s/, for each node v at step ¢. Then, the graph state
matrix S¢ will be passed into the policy network to generate the
action probabilities.

4.2 Action

At step t, the action is generated from the policy network 7q(+|S?)
based on the current state S?, which is used to to select a node v’

from Virqin\L* 1. In this work, the policy network represents the
probability distribution of the action space, which includes all the
unlabeled nodes in the graph. (See Section 4.4 for policy network.)

4.3 Reward

Our goal is not only to improve the performance of GNNs but to
obtain class-balanced labeled nodes. Our reward is thus designed
based on the performance gain on the validation set and the class
diversity. At the t-th step, suppose that node v’ is selected by the
policy network for annotation, and the reward function is given by:

= ag(oh) +(1-a) - h(), )

where the scaling factor a € [0, 1] controls the importance of the
two terms. Here, (0") = M(f(G. L"), Vya1ia)~M(f (G.L* ™). Vigtia)
represents the performance gain on the validation set after node
0! is added to the training set. M is the performance evaluation
function Macro-F1, which is the average of the F1 score per class.

Yot (i)
h(o') = ;r:ll max(tl,Cl‘lf'l)

y,+ is the one-hot label vector of node v*. In particular, when the
class of v has less nodes selected, h(v?) will lead to a larger reward.

indicates the class diversity score, and

4.4 Policy Network Architecture

Advantage Actor-Critic (A2C) is a deep reinforcement learning
algorithm that combines policy-based and value-based methods.
The policy network architecture consists of the actor and the critic
networks. The actor is used to select a node for annotation, while
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the critic provides value estimation of a given state. To fully utilize
the graph structural information, we parameterize the actor and
critic as two L-layer GCNs. Specifically, the propagation rule for
layer [ in the GCN of the actor is:

B — (p2aD~ 20, wl)

actor actor actor) (8)

where A = A + I is the adjacency matrix with self loops and D
is the degree matrix of A. w0

ctor 1S the weight matrix and o is

the activation function ReLU. Here, H ;gzor = §! is the initial input
feature. The GCN of the critic has the similar propagation rule
H(l+1)
critic’
In the actor part, after L layers, the final output H a(gt) o Will be
further fed into a linear layer to get a score for each node. Then,
the probability distribution g is computed by normalizing these

scores using the sof'tmax function.

whose details are omitted due to the page limitation.

7e(+|S?) = softmax(WH(L) +b). 9)

actor
An action a (i.e., node v%) which satisfies Vyyqin/L! ™! is sampled

from the distribution y to encourage exploration during training,
while we greedily select the action corresponding to the largest

probability during inference. The selected node o’ is then annotated.

In the critic part, we apply a mean pooling on Hc(rL)t ;> Which

derives the state value function qu)(S‘ ):

Vi (Sh) = MeanPooling(Hc(L) ). (10)

ritic

4.5 Policy Training

By using the advantage function as a baseline to reduce the variance
of the policy gradient estimation, A2C can update the policy more
stably. To further improve training efficiency, we design a batch
training mode to update the weights of the critic and actor networks
at a frequency of every F actions.

At step t, the actor chooses an action o' based on the current
state S?, and the node v’ is added into L*~! after labeling. The
classification f(G,L?) is trained for one epoch, and the instant
reward r! is then obtained. After that, we can generate the next
state S*1,

The critic predicts state value V(S ') for the given state S. The
target value V*(S?) is obtained via the Bellman equation:

VE(ST) = rf 4 yVp(s™h) (11)

where y is the discount factor for balancing instant rewards and
future rewards. The critic is updated by minimizing the Temporal
Difference (TD) error:

t
J@) =3 DV (s = V(52 (12)
t—F

The advantage function calculates how better taking that action
at a state is compared to the average value of the state. TD error

is employed as an unbiased estimate of the advantage function A.

Formally, we denote
A(S',0") = V*(S") = V(5. (13)

The objective of the actor is to maximize the expected cumulative
reward. We update the actor network parameter 6 using policy
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gradient ascent based on the advantage function. The loss function
of the actor is given as:

t
J(0) = —% Z logmp (v']S?) - A(S, o). (14)
t—F

We next summarize the key steps of training the policy network
as follows. For each step ¢, the actor selects an action o* based on
the current state. Then, the classification model GNN will be trained
with cross-entropy loss for one epoch. An instant reward is calcu-
lated using Equation 7. Target value and advantage function are
computed based on the current and the next state value estimated
by the critic according to Equation 11 and 13, respectively. The
actor and critic networks are updated with a batch of F transitions
using the advantage function by optimizing Equation 12 and 14,
respectively. B and F are typically set as integer multiples of the
number of classes in the training graph, and B = kF, k € {1,2...}.
Due to the space limit, we give the detailed pseudo-code for policy
training in Appendix A.

We adopt a transferable active learning scheme to train the policy
network similar to GPA [12]. To clarify, we use a signal graph Gs
with full label information to train the policy, which is used to test
the other target graph G; without adaptation.

4.6 GCBR++

To obtain a more class-balanced labeled set, we further upgrade
GCBR to GCBR++ by incorporating a punishment mechanism. This
mechanism includes a penalty term in the reward function and
introduces a majority score in the state space. The motivation is as
follows. If a majority node is selected for annotation, the reward
will be reduced by a penalty score. Then we modify the reward
function in Equation 7 into:

rP=a-g@")+(1-a) h@") -y Hc@) el (15)

major

where n > 0is a penalty score, which is a hyperparameter. 1{c(v?) €
Cmajor} is an indicator variable to represent whether the class of v
belongs to the majority class. Cﬁn_aljor ={i| Cl.t_1 > B/m} denotes
the set of the classes belonging to the majority class at step t-1.

Meanwhile, the metric of Majority-Score will be added to the
state of the graph as the sixth characterization factor, which can
help the policy identify nodes that are in minority classes.

Majority-Score: If an unlabeled node is more likely to belong
to majority classes, it is expected to be not selected. We calculate
the probability of node v belonging to the majority classes as:

HOEND Y A0} (16)
iecfr;aljor

where 3, (i) indicates the predicted probability score of node v in
the i-th class.

5 EXPERIMENTS

5.1 Experiment Setup

5.1.1 Datasets. We use six widely used benchmark datasets, in-
cluding Cora, Citeseer, Pubmed, Reddit, Coauthor-CS (Co-CS), and
Coauthor-Physics (Co-Phy) [22]. The first three datasets are cita-
tion graphs with nodes as documents and edges as citations. Reddit
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Table 1: The statistics of the datasets.

Dataset Nodes Edges Features Classes Imb-ratio

Cora 2708 5278 1433 7 0.22
Citeseer 3327 4676 3703 6 0.38
Pubmed 19718 44327 500 3 0.52

Reddit 4584 19460 300 10 0.67

Co-CS 18333 8189%4 6805 15 0.03

Co-Phy 34493 247962 8415 5 0.15

is an online forum dataset where nodes represent posts, and two
posts are connected with an edge if at least two users comment
or post them. Co-CS and Co-Phy are co-authorship networks that
connect author nodes by co-authored works. The statistics of the
datasets are shown in Table 1. In our experiments, we follow [12]
to process the Reddit dataset. We train GCBR, GCBR++, GPA, and
ALLIE on the Cora dataset and evaluate them on the other five
datasets together with other baselines.

5.1.2  Baselines. We compare our proposed methods with the fol-
lowing baselines. We implement GCBR and GCBR++ with PyTorch
and all experiments were conducted on a server with NVIDIA Tesla
V100 PCIE 40GB GPU.

(1) Random: In each step, randomly select a node for annotation.

(2) AGE! [4]: AGE selects samples with the highest weighted
sum of three criteria, including entropy, density and centrality.

(3) ANRMAB? [10]: ANRMARB utilizes the same criteria as in
AGE and adjusts the weights of linear combination dynamically by
a multi-armed bandit mechanism.

(4) GPA3 [12]: GPA formulates active learning on graphs as an
MDP and trains a GNN-based policy network to learn the optimal
query strategy with reinforcement learning.

(5) ALLIE* [8]: ALLIE extends GPA, utilizes a RL agent with
imbalance-aware reward function to sample nodes from each class
in the active learning part, and employs the algorithm-level tech-
nology and the graph coarsening strategy to address the class-
imbalance problem for large-scale graphs.

We also notice that a recent work BATCH [32] is similar to our
topic. However, the code of the method is not publicly released.
Further, the results in the paper are visualized but not reported in
numerical values, so we cannot replicate the results. For fairness,
we do not take it as our baseline.

5.1.3  Evaluation Metrics. We use Micro-F1, Macro-F1, and imbal-
ance ratio (imb-ratio) as the evaluation metrics. The Micro-F1 and
the Macro-F1 are the common metrics in GNN literature [27]. The
imbalance ratio is usually in class-imbalance problem literature [34],
calculated by Equation 1. The more balanced the labeled dataset is,
the higher the imbalance ratio. We use 1000 nodes as the test set
and randomly sample 500 nodes from the remaining nodes as the
validation set. We run 50 independent experiments with different

!https://github.com/vwz/AGE.

2We utilize the implementation of ANRMAB from GPA directly.
Shttps://github.com/ShengdingHu/GraphPolicyNetworkActiveLearning

4As the code of ALLIE is not provided, we implement the active learning part based
on their paper.
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classification network initializations and report the average clas-
sification performance on the test set and the average imbalance
ratio.

5.1.4  Hyperparameter Settings. The actor and the critic networks
are implemented as two two-layer GCNs with a hidden layer of 8,
and they all use Adam [13] as the optimizer with a learning rate
of 0.001. The policy network is trained for a maximum of 4000
episodes with a batch size of 5, an update frequency of 7, and a
training budget of 35. We set the hyperparameter o = 0.5. And we
set the hyperparameter n = 0.05 in GCBR++. We implement the
classification network as a two-layer GCN with a hidden layer size
of 64. We train it with Adam optimizer with a learning rate of 0.01.
To evaluate the active learning method, we set the test budget on
each graph as (20 X #classes), which is the common setting in the
GNN literature [14], and the active learning literature [4, 8].

5.2 Experiment Results and Analysis

5.2.1 Node Classification Performance. Table 2 summarizes the
performance results of all methods on five benchmark datasets. The
table shows that our proposed GCBR method outperforms other
baselines in terms of Micro-F1 and Macro-F1 on datasets of Pubmed,
Reddit, Co-CS, and Co-Phy, and GCBR++ is the runner-up. Our
methods have shown significant improvement in the imbalance
ratio compared to the other baselines across all datasets. The ad-
vantages are more obvious when the class distribution is highly
skewed. For instance, the datasets for Co-Phy and Co-CS exhibit
the highest skewed class distribution among all the datasets. Our
GCBR outperforms the best baseline in the metric of Macro-F1 by at
least 2% on Co-Phy and Co-CS. The imbalance ratios are improved
by 31% and 55% with GCBR++ compared to the best baseline on
Co-Phy and Co-CS. The superior performance of our GCBR and
GCBR++ can be mainly attributed to our policy considering class
balance. The class-balance-aware reward function and state space
effectively enhance the performance of minority classes compared
to other baselines, further improving overall performance, as shown
in Figure. 1. Although GCBR achieves the second-best Micro-F1 and
Macro-F1 on Citeseer, it still demonstrates very competitive per-
formance. Furthermore, we also can find that GCBR++ achieves a
higher imbalance ratio score but lower Macro-F1 and Micro-F1 com-
pared to GCBR in the table. Because GCBR++ pays more attention
to class balance by adding the punishment mechanism.

5.2.2  Performance under Different Test Budgets. Here, we conduct
experiments to compare all the methods under different test bud-
gets. This study uses Reddit and Co-Phy as examples, representing
datasets with relatively balanced and highly imbalanced class dis-
tributions, respectively. Figure 3 (a)-(d) shows that our methods
consistently outperform all baselines under all budgets in terms
of Micro-F1 and Macro-F1 on both datasets. The benefits are more
apparent when the test budget is small, and the class distribution is
highly skewed. For instance, GCBR and GCBR++ outperform the
best baseline by at least 6% in terms of Macro-F1 on Reddit and
Co-Phy when the number of labeled nodes is 25. When the test
budget is 150, GCBR outperforms the best baseline by 1.28% on
Co-Phy but only by 0.68% on Reddit in terms of Macro-F1. This
is because the number of nodes selected from minority classes by
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Table 2: Node classification performance (Macro-F1, Micro-F1) and Imb-ratio of labeled nodes. The best and 2nd best are noted

in bold font and underlined, respectively.

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Method Citeseer Pubmed Reddit Co-CS Co-Phy
Micro-F1 Macro-F1 Imb-ratio Micro-F1 Macro-F1 Imb-ratio Micro-F1 Macro-F1 Imb-ratio Micro-F1 Macro-F1 Imb-ratio Micro-F1 Macro-F1 Imb-ratio
Random 70.96 64.39 0.27 7755 76.78 0.50 9235 92.17 047  90.27 77.35 0.03  90.76  82.82 0.14
AGE 72.21 67.72 046  80.13 79.23 0.61 92.66  92.58 0.26  92.87 91.62 0.14 9282 88.11 0.50
ANRMAB 70.64 64.83 034 77.14 7588 047 91.10 91.02 039 9255 89.92 0.08 90.79 8295 0.14
GPA 72.16  67.19 0.34  80.13  78.89 036  92.81 92.70 047 9293 81.74 0.02 9199 86.18 0.06
ALLIE  72.74 67.19 0.28  79.20  78.29 045 9273 92.62 0.35 93.28 83.42 0.02  89.87 71.72 0.01
GCBR 7250 6751 045 8176 80.46 0.66 93.64 9351 047 94.32 93.69 052 9459 9047 0.61
GCBR++ 7222 6711 0.57 8124 80.11 0.82 9349 9333 0.66 9357 9319 0.69 9436 9026 0.81
(@ Reddit (b) Co-Phy ratio. GCBR achieves better performance, while GCBR++ achieves
‘z‘: ‘z:’ competitive and more stable class balance under different budgets.
g . g . 5.2.3 Varied Scaling Factor. In this section, we show the perfor-
E % E % mance of GCBR under different scaling factor o on all five datasets.
Bl R The results are illustrated in Figure 4. We can find that Micro-F1,
: Z Macro-F1, and imbalance ratio fluctuate insignificantly when « is
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Figure 3: Node classification results (Macro-F1, Micro-F1) and
Imb-ratio on Reddit and Co-Phy under different test budgets.

other baselines is very limited, which results in lower Micro-F1 and
Macro-F1 scores. The smaller the test budget, the more skewed the
class distribution, and the more pronounced this issue becomes.

Figure 3 (e)-(f) shows that our methods consistently outperform
all baselines under all budgets in terms of imbalance ratio on Reddit
and Co-Phy. In specific, the imbalance ratio of GCBR and GCBR++
initially are positive to the test budgets, then converges for GCBR++
as the budget reaches around 75 and 100 on Reddit and Co-Phy,
respectively, and decreases for GCBR slightly as the budget reaches
around 100 on both datasets.

GCBR and GCBR++ consistently outperform all baselines under
different budgets in terms of Micro-F1, Macro-F1, and imbalance

between 0 and 0.9, indicating that the performance of GCBR is
not strictly sensitive to a. Surprisingly, GCBR can achieve very
good performance when the reward function only contains the
class diversity part (@ = 0). There is a significant performance drop
when the reward function only includes the performance gain part
(a = 1). Therefore, the class diversity we proposed in the reward
function is crucial for our model’s performance.

5.2.4  Varied Penalty Score. Figure 5 shows the performance and
imbalance ratio of GCBR++ under different penalty score . n = 0
means GCBR++ is equal to GCBR. The performance of GCBR++
tends to degrade as 7 increases for all datasets. The imbalance ratio
of GCBR++ initially rises and then declines with the increase in
the value of 5. In GCBR++, we set n = 0.05 as it corresponds to
the minimal decrease in performance while exhibiting a significant
improvement in class balance.

5.2.5 Varied Training Budget. Here, we explore the impact of vary-
ing training budgets on the performance of the learned policy. We
train five policies with training budgets of {21, 35, 70, 105, 140} on
Cora respectively, since Cora has 7 classes. Then, these policies are
utilized to acquire nodes with a fixed test budget size (20 X #classes)
for the other five datasets. In Figure 6, we observe that the training
budget of 35 is sufficient to yield better performance and a higher
imbalance ratio for all datasets, which is similar to GPA [12].

5.2.6 Ablation Study of State Features. We also study the contribu-
tion of the state features introduced in Section 4.1. We remove each
of them from the state space to observe how they affect the learned
policy. We can draw the following observations from Table 3. First,
in most cases, removing any of the features can result in a perfor-
mance drop w.r.t. Micro-F1 and Macro-F1 metrics, demonstrating
the effectiveness of these features. Second, NoCDiv obtains the low-
est imbalance ratios on all the datasets and also the lowest Macro-F1
scores on Co-CS and Co-Phy, which have highly skewed class dis-
tribution. This indicates that the feature of class diversity is crucial
for class balance and classification performance. For other methods,
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Figure 6: The performance and imbalance ratio of GCBR trained with different training budgets.

Table 3: Contribution of each state feature. Each row corresponds to removing one feature. “GCBR” means using all the features.

Method Citeseer Pubmed Reddit Co-CS Co-Phy
Micro-F1 Macro-F1 Imb-ratio Micro-F1 Macro-F1 Imb-ratio Micro-F1 Macro-F1 Imb-ratio Micro-F1 Macro-F1 Imb-ratio Micro-F1 Macro-F1 Imb-ratio

GCBR 72.50 67.51 045 81.76  80.46 0.66 93.64 93.51 047 94.32 93.69 052 94.59 90.47 0.61
NoCSim 7239 67.43 0.46 81.11 79.91 0.59 93.23  93.05 0.50 94.09 93.67 0.47 94.05 89.64 0.59
NoUncer 71.66 66.43 0.56 77.16  75.82 0.87 92.29  92.19 0.76 93.37 93.46 0.72 93.41 89.19 0.64
NoCentr 72.22 67.21 0.44 80.90 79.50 0.60 93.29 93.15 0.48 9431 93.62 0.51 9432 90.03 0.59
NoSelec 71.33  66.50 0.69 81.85 80.92 0.70 92.93 92.85 0.58 93.16 92.78 0.65 93.70  89.26 0.77
NoCDiv 71.68 66.48 0.31 78.77 77.6 0.33 93.44  93.27 0.35 93.62 84.77 0.05 92.59 87.74 0.17

they all exhibit high class balance due to the presence of class di-
versity as state feature. Third, we surprisingly find that, compared
with NoCSim and NoCentr, the removal of uncertainty (NoUncer)
and selectivity (NoSelec) leads to a decrease in classification perfor-
mance and a significant improvement in class balance. The reason
could be that the reward function consists of two parts: perfor-
mance gain and class diversity score. To maximize reward given a
decreasing performance gain, the class diversity score will thus be
increased. Nevertheless, we have to clarify that overly-emphasizing
class balance cannot guarantee the classification results. Finally,
GCBR achieves the best classification results and maintains a com-
petitive class balance across all datasets, striking a good trade-off
between performance and class balance.

6 CONCLUSION

In this paper, we propose GCBR, a novel reinforced class-balanced
active learning for GNNs. GCBR learns an optimal policy to acquire
class-balanced and informative nodes for annotation. The class-
balance-aware state space and reward function are designed to
trade-off between model performance and class balance. Besides, we
further upgrade GCBR to GCBR++ by incorporating a punishment
mechanism to obtain a more class-balanced labeled set. Experiments
on multiple benchmark datasets demonstrate our methods can get
amore class-balanced labeled set and achieve superior performance
over SOTA baselines.
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A PSEUDO-CODE

In this section, we present the pseudo-code of our approach for
policy training (Algorithm 1).

Algorithm 1: Train the policy using A2C

input :labeled training graph Gg, the training budget B,
maximal training episode E, update frequency F
output: query policy 7y
1 Initialize parameters of the actor network 7g;
2 Initialize parameters of the critic network Vy;
3 foreach episode =1 to E do

4 L0 = 0;
5 Initialize the classification GNN as f(Gs, L°);
6 fort=1toBdo
7 Generate the state S? based on Equation 2-6;
8 Sample an unlabeled node v* ~ 75(S?) from
Virain\L*~! and query for its label;
9 LP=171u (ot}
10 Train GNN model f(Gs, L?) for one epoch ;
1 Evaluate f(Gs, L?) on Vygiq;
12 Get reward r! based on Equation 7;
13 Generate next state St+1;
14 Get the current and the next state values V4 (S%) and
Ve (5**1) using critic;
15 Compute target V*(S) and advantage A(S?,v?)
based on Equation 11 and 13;
16 if t mod F = 0 then
17 Update critic 7y by minimizing the loss based on
Equation 12;
18 Update actor Vi by minimizing the loss based on
Equation 14;

Trovato and Tobin, et al.
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