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MILNOR FIBRATIONS OF ARRANGEMENTS WITH TRIVIAL
ALGEBRAIC MONODROMY

ALEXANDRU I. SUCIU!

AsstrACT. Each complex hyperplane arrangement gives rise to a Milnor fibration of its
complement. Although the Betti numbers of the Milnor fiber F' can be expressed in terms
of the jump loci for rank 1 local systems on the complement, explicit formulas are still
lacking in full generality, even for b, (F). We study here the “generic” case (in which
by (F) is as small as possible), and look deeper into the algebraic topology of such Milnor
fibrations with trivial algebraic monodromy. Our main focus is on the cohomology jump
loci and the lower central series quotients of 71 (F). In the process, we produce a pair of
arrangements for which the respective Milnor fibers have the same Betti numbers, yet non-
isomorphic fundamental groups: the difference is picked by the higher-depth characteristic
varieties and by the Schur multipliers of the second nilpotent quotients.
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1. INTRODUCTION

1.1. The Milnor fibration. In a seminal book [43], Milnor introduced a fibration which
soon became the central object of study in singularity theory. In its simplest form, the
construction associates to a homogeneous polynomial f € C[z,...,z,] a smooth fibration
over C*, defined by restricting the map f: C¢*! — C to the complement of its zero-set. The
Milnor fiber, F = f~!(1), is a smooth complex affine variety of complex dimension d. The
monodromy of the fibration, 7: F — F, is given by h(z) = ¢**'/"z, where n = deg f. A
key question is to compute the characteristic polynomials of the induced homomorphisms
in homology, h,: H,(F;C) — H,(F;C).

We are mainly interested in the case when f has singularities in codimension 1. Ar-
guably the simplest situation in this regard is when the polynomial f completely factors
into distinct linear forms. This situation is neatly described by a hyperplane arrangement,
that is, a finite collection <7 of codimension-1 linear subspaces in C?*!. Choosing a linear
form fy with kernel H for each hyperplane H € <7, we obtain a homogeneous polynomial,
f = 11uye.y fu, which in turn defines the Milnor fibration of the complement of the arrange-
ment, M = M(</), with fiber F = F (/). More generally, if m: &/ — N, H — my is a
choice of multiplicities for the hyperplanes comprising .7, we may consider the polynomial
fm = [ lyes f" and the corresponding Milnor fibration, with fiber F,.

To analyze these fibrations, it is most natural to use the rich combinatorial structure en-
coded in the intersection lattice of <7, that is, the poset of all intersections of hyperplanes
in 7, ordered by reverse inclusion and ranked by codimension. A much-studied ques-
tion in the subject asks: Is the characteristic polynomial of the algebraic monodromy of
the (usual) Milnor fibration, A,/ ,(f) = det(¢/ — h,), determined by the intersection sub-
lattice L,+1(7)? Despite much effort—and some progress—over the past 3040 years,
the problem is still open, even in degree ¢ = 1.

In this paper, we take a different tack, and focus instead on the “generic” situation, to
wit, on those hyperplane arrangements for which the monodromy of the Milnor fibration
acts trivially on the homology of the Milnor fiber, either with Z or with C coefficients.

1.2. Cohomology jump loci. We start by analyzing the structure of the characteristic
varieties (the jump loci for homology in rank 1 local systems) and the resonance varieties
(the jump loci of the Koszul complex associated to the cohomology algebra) of the Milnor
fiber of a multi-arrangement in the trivial algebraic monodromy setting.
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Let U = P(M) be the projectivization of the complement M = M(</). Since U is a
smooth, connected, quasi-projective variety, its characteristic varieties, #;7(U), are finite
unions of torsion-translates of algebraic subtori of the character group, Hom(rxr; (U),C*) =
H'(U;C*), see [2, 6]. Since U is also a formal space, its resonance varieties, Z:(U),
coincide with the tangent cone at the trivial character to ¥;/(U), see [15, 22, 21]. As
shown in [28], the varieties 2! (U) may be described solely in terms of multinets on sub-
arrangements of 7. In general, though, the varieties #,'(U) may contain components
which do not pass through the origin, see [61, 10, 16]. We explain in detail the relationship
between the cohomology jump loci of M and U in Proposition 3.3 and Corollary 6.13.

Now let (<7, m) be a multi-arrangement in C4*! and let F,, — M — C* be the Milnor
fibration of the complement, with monodromy 4: Fy,, — F,, We then have a regular Zy-
cover, Om: Fm — U, where N = > ,,_ my. In Theorem 5.7, we prove the following
result, which relates the degree 1 cohomology jump loci of Fy, to those of U = P(M),
under a trivial algebraic monodromy assumption.

Theorem 1.1. Suppose the map h: Fy, — Fy, induces the identity on H\(Fy; Q). Then,

(1) The induced homomorphism o,: H'(U;C) — H'(Fy;C) is an isomorphism that
identifies Z1(U) with Z! (Fn), for all s > 1.
(2) The induced homomorphism o : H' (U;C*) — H'(Fuy;C*)% is a surjection with
kernel isomorphic to Zy. Moreover,
(a) For each s > 1, the map o, establishes a bijection between the sets of irre-
ducible components of ¥V,!(U) and ' (Fw) that pass through the identity.
(b) The map o2 ¥'(U) — #,'(Fm) is a surjection.

Here, H'(Fp; C*)° denotes the identity component of the character group H'(Fp,; C*),
while #,!(Fp,) denotes its intersection with #;! (Fy,). The theorem builds on and sharpens
results of Dimca and Papadima from [20].

1.3. Abelian duality and propagation. It has long been recognized that complements of
complex hyperplane arrangements satisfy certain vanishing properties for homology with
coeflicients in local systems. In [18, 19], we revisited this subject, in a more general frame-
work.

Given a connected, finite-type CW-complex X with fundamental group G, we say that X
is an ab-duality space of dimension m if HY(X;ZG™) = 0 for g # m and H™(X; ZG™) is
non-zero and torsion-free. Replacing the abelianization of G by the torsion-free abelianiza-
tion, Gt = G,/ Tors, we obtain the analogous notion of abf-duality space (of dimension
m). These properties imposes stringent conditions on the cohomological invariants of the
space X. Most notably, as shown in [19], if X is an ab-duality space of dimension n, then
the characteristic varieties of X propagate, that is, {1} = ¥*(X) < #/(X) < --- < ¥"(X).
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It was shown in [18, 19] that complements of hyperplane arrangements are ab-duality
spaces; see also [17, 37] for generalizations of this result. Moreover, it was shown in
[19] that the ab-duality property behaves well under a certain type of “ab-exact” fibrations.
Making use of these results, together with their adaptations in the abf-duality/abf-exact
context, we establish in Theorem 6.15 and Corollary 6.16 the following:

Theorem 1.2. Let </ be a central arrangement of rank r and let Fy, = Fy,(<7) be the
Milnor fiber associated to a multiplicity vector m: o/ — N.

(1) Suppose the monodromy action on H,(Fy,;Z) is trivial. Then,
(a) Fn is an ab-duality space of dimension r — 1.
(b) The characteristic varieties of Fy, propagate; that is,

%I(Fm) < %Z(Fm) S %r_l(Fm)-

(2) Suppose the monodromy action on H,(Fy,; Q) is trivial. Then.
(a) Fn is an abf-duality space of dimension r — 1.
(b) The restricted characteristic varieties of Fy, propagate; that is,

W (Fu) € WP (Fu) € - € 7 (Fu).

This result strengthens [19, Thm. 6.7], where only part (1) is proved (in the particular
case when F = F(.</) is the usual Milnor fiber of an essential arrangement), but not part
(2). We also show: If the monodromy action on H;(Fy,;Q) is trivial for i < g, then the
resonance varieties of F, propagate in that range; that is, 2| (Fm) S - -+ € Z} (Fm).

1.4. Associated graded Lie algebras. The lower central series (LCS) of a group G is
defined inductively by setting y;(G) = G and y;,{(G) = [G,y«(G)] for k > 1. This series
is both normal and central; therefore, its successive quotients, gr,(G) = ¥(G)/yi+1(G), are
abelian groups. The first such quotient coincides with the abelianization, G, = H,(G;Z).
The associated graded Lie algebra of the group, gr(G), is the direct sum of the groups
gr,(G), with Lie bracket (compatible with the grading) induced from the group commutator.
Important in this context is also the Chen Lie algebra of G, that is, the associated graded
Lie algebra gr(G/G") of the maximal metabelian quotient of G.

When the group G is finitely generated, the LCS quotients of G are also finitely gen-
erated. We let ¢,(G) := rank(gr,(G)) be the ranks of these abelian groups and we let
0 (G) = rank(gr,(G/G")) be the Chen ranks of G. Quite a bit is known about the LCS
ranks and the Chen ranks of arrangement groups, though almost nothing is known about
the corresponding ranks for the Milnor fiber groups. As a first step in this direction, we
show that the former determine the latter when the algebraic monodromy is trivial. More
precisely, we prove in Theorems 7.1 an 7.2 the following statements.

Theorem 1.3. Let (<7, m) be a multi-arrangement and let Fy, be the corresponding Milnor
fiber, with monodromy h: Fy — Fp. Set G = n(M(7)) and K = 71 (Frn).
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(1) If hy: Hi(Fm;Z) — H,(Fwm;Z) is the identity map, then gr-,(K) = gr-,(G) and
gro,(K/K") = gr_,(G/G"), as graded Lie algebras.

(2) Ifhy: Hi(Fm; Q) — Hi(Fm; Q) is the identity map, then gr-,(K)®Q = gr-,(G)®
Qand gr-,(K/K") ® Q = gr.,(G/G") ® Q, as graded Lie algebras.

In either case, ¢r(K) = ¢(G) and 6,(K) = 0x(G) for all k = 2.

Consequently, if the algebraic monodromy is trivial, both the LCS ranks and the Chen
ranks of 7| (Fy,) are combinatorially determined.

1.5. Constructions and examples. In Section 8, we describe several classes of hyper-
plane arrangements for which the Milnor fibration has trivial algebraic monodromy. The
simplest are the Boolean arrangements, followed by the generic arrangements. In both
cases, complete answers regarding the homology of the Milnor fiber are known. We review
these classical topics, in the more general context of arrangements with multiplicities.

Next, we consider the class of decomposable arrangements. Following [48], we say that
an arrangement .«7 is decomposable (over Q) if there are no elements in gr; (7 (M(«7)) ®Q
besides those coming from the rank 2 flats; that is, if ¢3(m1(M () = Y ixer, () (”(ZX)),
where u: L(</) — Z is the Mobius function. As shown in [70], for any choice of mul-
tiplicities m on such an arrangement, the algebraic monodromy of the Milnor fibration,
he: H(F; Q) — H(Fy; Q), is trivial, provided a certain technical condition is satisfied.
Other classes of arrangements for which this conclusion holds are those for which certain
multiplicities conditions are satisfied (see [10, 33, 74, 75, 39]), or the associated double

point graph is connected and satisfies some additional requirements (see [4, 58, 73]).

In [25], Falk constructed a pair of rank-3 arrangements that have non-isomorphic inter-
section lattices, yet whose complements are homotopy equivalent. In Section 9, we analyze
in detail the Milnor fibrations of these arrangements. In both cases, the monodromy acts
as the identity on first integral homology of the Milnor fiber. Nevertheless, the respective
Milnor fibers are not homotopy equivalent. The difference is picked by both the degree-1,
depth-2 characteristic varieties, and by the Schur multipliers of the second nilpotent quo-
tients of their fundamental groups.

As shown in [61], deleting a suitable hyperplane from the Bj; reflection arrangement
yields an arrangement . of 8 hyperplanes for which the variety #;'(M (<)) has an ir-
reducible component (a subtorus translated by a character of order 2) that does not pass
through the identity of the character torus. As a consequence, there is a choice of mullti-
plicities m on .27 such that the monodromy /4: F,, — Fy, acts trivially on H,(Fy,; Q) = Q’
but not on H,(Fn;Z) = Z' @ Z2, see [9, 16]. We illustrate our techniques in Section
10 with a computation of the degree-1 characteristic varieties of F, and the low-degree
LCS quotients and Chen groups of m;(Fy,). Using a different approach, Yoshinaga con-
structed in [76] an arrangement .7 of 16 hyperplanes such that the usual Milnor fiber itself,
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F = F(47), has non-trivial 2-torsion. We summarize in Section 11 the information our
techniques yield in this case regarding the LCS quotients and the Chen groups of 7| (F).

1.6. Organization of the paper. Roughly speaking, the paper is divided into three parts.
The first one deals with some basic notions regarding hyperplane arrangements. In §2
we discuss the combinatorics of an arrangement .o/, as it relates to the topology of the
complement M(.<7 ), while in §3 we review the resonance and characteristic varieties of <7

The second part covers the Milnor fibration of a multi-arrangement (.7, m). In §4 we
discuss the homology of the Milnor fiber Fy, and the monodromy action in homology.
Under the assumption that this action is trivial, we investigate several topological invariants
of the Milnor fiber: the cohomology jump loci in §5, abelian duality and propagation of
cohomology jump loci in §6, and the lower central series of 7y (Fy,) in §7.

The third part starts with §8, where we describe ways to construct arrangements with
trivial algebraic monodromy. The techniques developed in this work are illustrated with
several examples worked out in detail: the pair of Falk arrangements in §9, the deleted B;
arrangement in §10, and Yoshinaga’s icosidodecahedral arrangement in §11.

2. COMPLEMENTS OF HYPERPLANE ARRANGEMENTS

2.1. Hyperplane arrangements. An arrangement of hyperplanes is a finite set o/ of
codimension-1 linear subspaces in a finite-dimensional complex vector space C¢*!. The
combinatorics of the arrangement is encoded in its intersection lattice, L(<7), that is, the
poset of all intersections of hyperplanes in .o/ (also known as flats), ordered by reverse
inclusion, and ranked by codimension.

Without much loss of generality, we will assume throughout that the arrangement is
central, that is, all the hyperplanes pass through the origin. For each hyperplane H € <7,
let fi;: C¥*! — C be a linear form with kernel H. The product f =[] Heo JH» then, is a
defining polynomial for the arrangement, unique up to a non-zero constant factor. Notice
that f is a homogeneous polynomial of degree equal to n = |.<7 |, the number of hyperplanes
comprising <7 .

The complement of the arrangement, M (/) = C**'\ | J,,.., H, is a connected, smooth,
complex quasi-projective variety. Moreover, M = M(</) is a Stein manifold, and thus
it has the homotopy type of a CW-complex K of dimension at most d + 1. In fact, M
splits off the complex linear subspace (),.,, H, whose dimension we call the corank of
</ . Thus, setting rank(./) := d + 1 — corank(.</), we have that dim(K) < rank(«/). If
corank (%) = 0, we will say that <7 is essential. .

The group C* acts freely on C1\ {0} via {-(zo, . ..,24) = ({20, - - .,{zq). The orbit space
is the complex projective space of dimension d, while the orbit map, 7: C¢*'\ {0} — CP,
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z — |[z], is the Hopf fibration. The set P(«/) = {n(H): H € </} is an arrangement of
codimension 1 projective subspaces in CP. Its complement, U = U(</), coincides with
the quotient P(M) = M/C*. The Hopf map restricts to a bundle map, 7: M — U, with
fiber C*. Fixing a hyperplane H, € </, we see that x is also the restriction to M of the
bundle map C4+'\ Hy — CP*\ n(H,) = C¢. This latter bundle is trivial, and so we have a
diffeomorphism M = U x C*.

2.2. Fundamental group. Fix a basepoint x, in the complement of <7, and consider the
fundamental group G(.%7) = m;(M(</), xo). For each hyperplane H € <7, pick a meridian
curve about H, oriented compatibly with the complex orientations on C?*! and H, and let
vu denote the based homotopy class of this curve, joined to the basepoint by a path in M.
By the van Kampen theorem, then, the arrangement group, G = G(7), is generated by
the set {yy : H € </}. Using the braid monodromy algorithm from [13], one may obtain a
finite presentation of the form G = F, /R, where F), is the rank n free group on the set of
meridians and the relators in R belong to the commutator subgroup F,. Consequently, the
abelianization of the arrangement group, G, = H,(G;Z), is isomorphic to Z".

Example 2.1. The reflection arrangement of type A,_;, also known as the braid arrange-
ment, consists of the diagonal hyperplanes H;; = {z; —z; = 0} in C". The intersection

lattice is the lattice of partitions of the set {1,...,n}, ordered by refinement. The comple-
ment M 1is the configuration space of n ordered points in C, which is a classifying space for
the Artin pure braid group on n strings, P,. &

Under the diffeomorphism M =~ U x C*, the arrangement group splits as m;(M) =
m(U) x m;(C*), where the central subgroup 7, (C*) = Z corresponds to the subgroup of
71 (M) generated by the product of the meridional curves yy (taken in the order given by
an ordering of the hyperplanes). We shall denote by ¥, = m;(yy) the image of vy under
the induced homomorphism 7 : 7, (M) - 7 (U) = n(M)/Z.

For the purpose of computing the group G(&/) = m;(M(</)), it is enough to assume that
the arrangement <7 lives in C3, in which case .27 = P(.<7) is an arrangement of (projective)
lines in CP?. This is clear when the rank of <7 is at most 2, and may be achieved otherwise
by taking a generic 3-slice, an operation which does not change either the poset L<,(.%7) or
the group G(.«7). For a rank-3 arrangement, the set L, (<) is in 1-to-1 correspondence with
the lines of .7, while L,(.«) is in 1-to-1 correspondence with the intersection points of .27.
Moreover, the poset structure of L., (.2/) mirrors the incidence structure of the point-line

configuration .o/

The localization of an arrangement .o at a flat X € L(.<7) is defined as the sub-arrange-
ment o7y = {H € o/ | H > X}. The inclusion @%x — &/ gives rise to an inclusion of
complements, jx: M(/) < M(g/). Choosing a point x, sufficiently close to 0 € C¢*!,
we can make it a common basepoint for both M(.<7) and all the local complements M (.2 ).
As shown in [18], there exist basepoint-preserving maps ry: M(a/y) — M(</) such that
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Jx o ry ~ id relative to xq; moreover, if H € o/ and H D X, then the map ry o jx o ry is
null-homotopic. Consequently, the induced homomorphisms (rx);: G(<%x) — G(<7) are
all injective.

For an arrangement <7 in C?, we will say that a rank-2 flat X has multiplicity ¢ = gx if
|| = g, or, equivalently, if the point P(X) has exactly ¢ lines from ./ passing through
it. In this case, the localized sub-arrangement .7y is a pencil of g planes. Consequently,
M (ax) is homeomorphic to (C\ {g — 1 points}) x C* x C, and thus it is a classifying space
for the group G(#%) = F,_ x Z.

2.3. Cohomology ring. The cohomology ring of a hyperplane arrangement complement
M = M (<) was computed by Brieskorn [5], building on the work of Arnol’d on the coho-
mology ring of the pure braid group. In [46], Orlik and Solomon gave a simple description
of this ring, solely in terms of the intersection lattice L(.<7), as follows. Fix a linear order
on &7, and let E be the exterior algebra over Z with generators {ey | H € </} in degree 1.
Next, define a differential 0: E — E of degree —1, starting from d(1) = 0 and d(ey) = 1,
and extending ¢ to a linear operator on E, using the graded Leibniz rule. Finally, let (<)
be the ideal of E generated by de, for all # < 7 such that codim (,,., H < |%|, where

ez = | [ ey €n- Then
(2.1 H*(M(«),Z) ~ E/I(<).

The inclusions {jx}xer () assemble into a map j: M — HXEL( s M (x). The work of
Brieskorn [5] insures that the homomorphism induced by j in cohomology is an isomor-
phism in all positive degrees. By the Kiinneth formula, then, we have that H*(M;Z) =~
Dxera(r) H*(M(<t);Z), for all k > 1. It follows that the homology groups of the com-
plement of <7 are torsion-free, with ranks given by

(2.2) b(M) = > (=D'u(X),

Xely (Qf)

where u: L(«/) — Z is the Mdbius function, defined inductively by u(C4*!) = 1 and
u(X) = — >, ox#(Y). The homology groups of the projectivized complement, U = P(M),
are also torsion free, with ranks computed inductively from the formulas by(U) = 1 and
bk(U) + bk_l(U) = bk(M) fork > 1.

In particular, we have that H,(M;Z) ~ Z", with basis {xy : H € &/}, where xy is the
homology class represented by the meridional curve yy. Moreover, H,(U;Z) = H,(M;Z)/
(Dpes xu) = Z"~'. We will denote by Xy = [y] the image of x in H,(U; Z).

2.4. Formality. A connected, finite-type CW-complex X is said to be formal if its rational
cohomology algebra, H*(X;Q), can be connected by a zig-zag of quasi-isomorphisms to
A}, (X), the algebra of polynomial differential forms on X defined by Sullivan in [72]. The
notion of g-formality is defined similarly, with the cdga morphisms in the zig-zag only
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being required to induce isomorphisms in degrees up to ¢ and monomorphisms in degree
q + 1. It is known that a g-formal CW-complex of dimension g + 1 is actually formal.
Moreover, if ¥ — X is a finite, regular cover and Y is g-formal, then X is also g-formal.
For more on this topic we refer to [71, 67] and references therein.

For an arrangement <7 in C?*!, the complement M is formal, in a very strong sense. In-
deed, for each H € &7, the 1-form wy = ﬁd log f on C¥*! restricts to a 1-form on M. As
shown by Brieskorn [5], if & denotes the subalgebra of the de Rham algebra Q7 (M) gen-
erated over R by these 1-forms, the correspondence wy — [wy] induces an isomorphism
2 — H*(M;R). Sullivan’s machinery from [72] then implies that M is formal. Alterna-
tively, it is known that the mixed Hodge structure on H*(M;Q) is pure; thus, the “purity
implies formality” results of Dupont [23] and Chataur—Cirici [7] yield another proof of the

formality of M.

3. COHOMOLOGY JUMP LOCI OF ARRANGEMENTS

3.1. Resonance varieties. Let A be a graded, graded-commutative algebra over C. We
will assume that each graded piece A¢ is finite-dimensional and A° = C. For each element
a € A', we turn the algebra A into a cochain complex, (A, §,), with differentials of. A1 —
A9ty s qu. The fact that 6Z+] o 82 = 0 follows at once from the observation that a*> =
—a? (by graded-commutativity of multiplication in A), which implies a> = 0. By definition,
the (degree g, depth s) resonance varieties of A are the jump loci for the cohomology of
this complex,

(3.1) H1(A) = {aec A" | dimc HY(A,5,) = s}.

These sets are Zariski-closed, homogeneous subsets of the affine space A!; in partic-
ular, they are either empty or they contain the zero-vector 0 € A'. Setting b,(A,a) =
dime H9(A, 6,) for the Betti numbers of the cochain complex (A, d,), we see that b,(A, 0)
is equal to the usual Betti number b,(A) = dimc A?. Therefore, the point 0 € A' belongs
to Z1(A) if and only if b,(A) > s. In particular, since A = C, we have that Z%(A) = {0}
and Z0(A) = @ if s > 1.

We will mostly consider the degree one resonance varieties. Clearly, these varieties de-
pend only on the truncated algebra AS?. More explicitly, Z! (A) consists of 0, together with
all elements a € A! for which there exist u,, .. ., u; € A' such that the span of {a,uy,... us}
has dimension s + 1 and au; = --- = au, = 0 in A% Finally, if ¢: A — B is a mor-
phism of commutative graded algebras, and ¢ is injective in degree 1, then the linear map
¢': A" - B' embeds Z!(A) into Z!(B), for each s > 1.

Completely analogous definitions work for algebras A over a field k of characteristic
different from 2. When char(k) = 2, special care needs to be taken, to account for the fact
that the square of an element a € A! may not vanish in this case; we refer to [66] for details.
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Now let X be a connected, finite-type CW-complex. Its cohomology algebra, A =
H*(X;C), with multiplication given by the cup-product, satisfies the properties listed at
the start of this section. Therefore, we may define the resonance varieties of the space X
to be the sets Z1(X) := Z!(H*(X;C)), viewed as homogeneous subsets of the affine space
H'(X;C), and likewise for Z!(X,k) < H'(X;k). When M = M(</) is an arrangement
complement, the fact that H, (M; Z) is torsion-free implies that a* = 0 for all a € H'(M; k),
even when char(k) = 2; thus, the usual definition of resonance works for all fields.

3.2. Multinets and pencils. The resonance varieties of complements of hyperplane ar-
rangements were introduced in the mid-1990s by Falk [26] and further studied in the ensu-
ing decade in papers such as [15, 41, 34, 60, 61]. Work of Falk and Yuzvinsky [28] greatly
clarified the nature of the degree 1 resonance varieties of arrangements. Let us briefly
review their construction.

A multinet ./ on an arrangement ./ consists of a partition .7, U --- U 2% of &/ into
k > 3 subsets; an assignment of multiplicities m = {my}yc./; and a subset 2~ < L,(«),
called the base locus, such that the following conditions hold:

(1) There is an integer £ such that },,,_ , my = ¢, for all i € [k].
(2) For any two hyperplanes H and K in different classes, H n K € 2.
(3) For each X € 2, the sum nx := >, ... y—x My is independent of i.

(4) Foreach 1 < i < kand H, K € 47, there is a sequence H = H,,...,H, = K such
thatHj_l ﬁH,'¢ %forl <]<r

We say that a multinet 4" as above is a (k, £)-multinet, or simply a k-multinet. Without
essential loss of generality, we may assume that gcd(m) = 1. If all the multiplicities are
equal to 1, the multinet is said to be reduced. If, furthermore, every flat in 2" is contained
in precisely one hyperplane from each class, the multinet is called a (k, £)-net.

For instance, a 3-net on .7 is a partition into 3 non-empty subsets with the property that,
for each pair of hyperplanes H, K € </ in different classes, we have H N K = Hn K n L,
for some hyperplane L in the third class. As another example, if X € L,(/) is a 2-flat of
multiplicity at least 3, we may form a net on @/ by assigning to each hyperplane H > X
the multiplicity 1, putting one hyperplane in each class, and setting .2~ = {X}.

Now let f = [ [,.., fu be a defining polynomial for 7. Given a k-multinet .4 on <7,
with parts .7 and multiplicity vector m, write f; = | [,.,, fy" and define a rational map
Y: C — CP' by ¢(x) = [fi(x): fo(x)]. Thereis then aset D = {[a; : b\],..., [ay : b]}
of k distinct points in CP' such that each of the degree d polynomials fi,..., f; can be
written as f, = a;f» — b;f;, and, furthermore, the image of y: M(2/) — CP' misses
D, see [28]. The corestriction ¢ : M(.e/) — CP'\ D, then, is the pencil associated to
the multinet .4". Following [54, 64], we may describe the homomorphism induced in
homology by this pencil, as follows. Let a/,...,a; be compatibly oriented simple closed
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curves on § = CP'\ D, going around the points of D, so that H,(S;Z) is generated by the
homology classes ¢; = [a;], subject to the single relation Zf;] ¢; = 0. Then the induced
homomorphism . : H;(M;Z) — H;(S;Z) is given by ¢, (xy) = myc; for H € <, and
thus y*: H'(S;Z) — H'(M;Z) is given by y*(c)') = u;, where ¢’ is the Kronecker dual
of Ci and u;, = ZHGAJI' mgyég.

It follows from the above discussion that the map y*: H'(S; C) — H'(M;C) is injective,
and thus sends %, (S) to %Z|(M). Let us identify %, (S) with H'(S;C) = C*', and
view Py = ¢*(H'(S;C)) as lying inside %, (/) = %#|(M). Then P 4 is the (k — 1)-
dimensional linear subspace spanned by the vectors u, — uy,...,u; — u;. Moreover, as
shown in [28, Thms. 2.4-2.5], this subspace is an essential component of %, (.</); that
is, P_y is not contained in any proper coordinate subspace of H'(M;C). More generally,
suppose there is a sub-arrangement % < .o/ supporting a multinet .4". In this case, the
inclusion M(&/) — M(%) induces a monomorphism H'(M(%);C) — H'(M(«/);C),
which restricts to an embedding %, (%) — Z,(</). The linear space P s, then, lies inside
H#\(A), and thus, inside #Z,(<7). Conversely, as shown in [28, Thm. 2.5] all (positive-
dimensional) irreducible components of %, (<) arise in this fashion.

3.3. Characteristic varieties. Let X be a connected, finite-type CW-complex. Fix a base-
point x, at a 0-cell; then the fundamental group G = (X, x) is a finitely generated (in
fact, finitely presented) group. Therefore, the group T¢ = Hom(G, C*) of C-valued, multi-
plicative characters on G 1is an affine, commutative algebraic group, which we will identify
with H'(X;C*). Its identity 1 is the trivial representation g — 1 € C*; the connected com-
ponent of G containing the identity, T2, is an algebraic torus isomorphic to (C*)", where
n = b;(G). Moreover, Tg/T% is in bijection with the finite abelian group Tors(G,p).

The characteristic varieties of X (in degree g and depth s, where ¢, s > 0) are the jump
loci for homology with coefficients in rank-1 local systems on X:

(3.2) V4(X) = {p e H'(X;C*) | dimc H,(X;C,) > s}.

Here C, = C, with C[G]-module structure defined by the character p: G — C* by
setting g - z := p(g)c for g € G and z € C, while H,(X;C,) denotes the homology of the
chain complex C,(X; C) ®cjg) C,, where C,.(X; C) is the G-equivariant chain complex of
the universal cover of X, with coeflicients in C.

The sets ¥,?(X) are Zariski-closed subsets of the character group. We will denote by
#:1(X) the intersection of ¥;?(X) with T%. Observe that the (degree ¢) depth of a character
p, defined as depth, (o) := dime H,(X;C,), is equal to max{s | p € #{/(X)}; in particular,
depth, (1) = by(X), the g-th Betti number of X. Note also that #/°(X) = {1} and ¥;°(X) =
@ if s > 1, while ¥;(X) = H'(X;C*) forall ¢ > 0.
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Completely analogous definitions work for the characteristic varieties ¥ (X, k), viewed
as subsets of H!'(X;k*), for any field k.

Example 3.1. Let X, , be a Riemann surface of genus g with n punctures (g, n > 0), and let
x = x(Zg.) = 2—2g —nbe its Euler characteristic. Then ¥,!(Z,,) is equal to H' (X, ,; C*)
if s < —y and it is contained in {1}, otherwise. o

The characteristic varieties #;!(X) depend only on the fundamental group G = m;(X);
thus, we will often denote them by 7' (G). At least away from the trivial character, ¥;!(G)
is the zero set of the ideal ann(/\'G’/G” ® C), where the ZG,,-module structure on the
group G'/G” arises from the short exact sequence 1| — G'/G" — G/G" — G'/G" — 1,
see, e.g., [09] and references therein. Therefore, the characteristic varieties ¥,'(G) of a
finitely generated group G depend only on its maximal metabelian quotient, G/G".

3.4. Homology of finite abelian covers. The characteristic varieties control the Betti
numbers of regular, connected, finite abelian covers p: ¥ — X. For instance, suppose
that the deck-transformation group is cyclic of order N. Then the cover is determined by an
epimorphism y: G = Zy, so that ker(y) = im(py). Fix an inclusion ¢: Zy — C*, by send-
ing 1 to ¢**'/N. With this choice, the map y yields a torsion character, p = 1o y: G — C*.
Since y is surjective, the induced morphism between character groups, y*: Tz, — Tg,
is injective, and so im(y*) =~ Zy. Furthermore, if £: G — C* is a non-trivial character
belonging to im(y*), then & = p"/¥ for some positive integer k dividing N.

Now view the homology groups H,(Y;C) as modules over the group algebra C[Zy] =
C[t]/(#" — 1). By a transfer argument, the invariant submodule, H,(Y; C)%, is isomorphic
to the trivial module H,(X;C) =~ (C[t]/(t — 1))%™). In fact, a result proved in various
levels of generality in [32, 57, 30, 42, 16] yields isomorphisms of C[Zy]-modules,

HY;C)=FH P C

s>1 geim(y*)n 1 d(X)

~ H,(X:0)® (‘B (C[t]/q)k<t))depthq(pzv/k)’

1<k|N

(3.3)

where ®@(7) is the k-th cyclotomic polynomial. Consequently,

by(Y) = ) lim(x*) n %(X))|

s=>1

= by(X) + ), @(k) - depth, (p"/¥),

1<k|N

3.4)

where (k) = deg ®,(r) is the Euler totient function. Moreover, if 7: ¥ — Y is the deck
transformation corresponding to the generator 1 € Zy, then the characteristic polynomial
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A,(t) = det(t-id —h,.) of the induced automorphism &, : H,(Y;C) — H,(Y;C) is given by
(3.5) Ag(t) = (= 1) TT @r)erm™.

1<k|N

3.5. Characteristic varieties of arrangements. Let M be a smooth, quasi-projective va-
riety. A general result of Arapura [?] (as refined in [6]), insures that the characteristic
varieties #;1(M) are finite unions of torsion-translated subtori of the character torus. In
degree g = 1, these varieties can be described more precisely, as follows.

Let S = (%,,,u) be a Riemann surface of genus g > 0, with r > 0 points removed
(so that £,y = X,), and with & > 0 marked points, (pi,u1), ..., (Pnpn), wWith g; > 2. A
surjective, holomorphic map y: M — X, , is called an orbifold fibration (or, a pencil) if
the fiber over any non-marked point is connected, the multiplicity of each fiber ¢ ~!(p;)
is equal to u;, and ¥ has an extension to the respective compactifications, : M — 2,
which is also a surjective, holomorphic map with connected generic fibers. Then each
positive-dimensional component of ¥;' (M) is of the form T = y*(H'(S;C*)), for some
pencil y: M — S for which the orbifold Euler characteristic of the surface, y**(Z, ,, u) =

X(Z¢r) — Zf:l (1 —1/w;), is negative.

The following result of Artal Bartolo, Cogolludo, and Matei ([3, Prop. 6.9]) helps locate
characters that lie in the higher-depth characteristic varieties.

Theorem 3.2 ([3]). Let M be a smooth, quasi-projective variety. Suppose T\ and T, are two
distinct, positive-dimensional irreducible components of ¥,'(M) and ¥, (M), respectively.
If € € T\ n Ty is a torsion character, then & € V1 (M).

Now let .27 be an arrangement of n hyperplanes in C?*!, with complement M = M (/).
The characteristic varieties ¥;’(M) are subsets of the character torus H!(M;C*) = (C*)".
Moreover, the tangent cone at the identity 1 to ¥;?(M) coincides with the resonance vari-
ety Z1(M), for each ¢, s > 1. This “Tangent Cone Theorem” (which does not hold for
all quasi-projective manifolds) relies in an essential way on the formality of the arrange-
ment complement, and was proved in [ 15, 34, 22, 21] in various levels of generality. Let
exp: H'(M;C) — H'(M;C*) be the coefficient homomorphism induced by the exponen-
tial map C — C*. Then, if P ¢ H'(M;C) is one of the linear subspaces comprising
(M), its image under the exponential map, exp(P) < H'(M;C*), is one of the subtori
comprising ¥;?(M). Furthermore, the correspondence P ~» T = exp(P) gives a bijec-
tion between the components of Z{(M) and the components of ¥;?(M) passing through 1,
which in turn yields an identification TCy(¥(M)) = #1(M) for each ¢, s > 1.

In degree ¢ = 1, each positive-dimensional component of #;' (M) that passes through 1
is of the form T = y*(H'(S;C*)), for some pencil y: M — S = CP'\ {k points} with
k > 3. An easy computation shows that ¥!(S) = H!(S;C*) = (C*)*! forall s < k — 2.
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Hence, the subtorus 7 is a (k — 1)-dimensional component of #;' (M) that contains 1 and
lies inside 7' ,(M).

3.6. Torsion-translated subtori. Let (X, ,,u) be a 2-dimensional orbifold as above. For
our purposes here we may assume r > 1, in which case the orbifold fundamental group I :=
n™ (X, 1), is isomorphic to the free product F, «Z,, #- - -+ Z,,, where n = 2g+r— 1. Note
that 'y, = Z"® A, where A = Z, @ - - D Z,, is the torsion subgroup, and each component
of the character group T = T? x Ty is of the form A - Tg for some 4 = (4;...,4,) € Tx.
Let £(1) = |{i: A4; # 1}|. A computation detailed in [3, Prop. 2.10] shows that

Tr ifs<n-—1,

(3.6) YD) =< (Tr\TY) u {1}  ifs=n,

S

Uf(4)>n—s+1 A- T(ll ifn<s<n+h,
and is empty if s > n + h.

Now suppose M is a smooth, quasi-projective variety, and y: M — (X, ,,u) is an orb-
ifold pencil with eithern > 2, orn = 1 and A > 0. Since the generic fiber of i is con-
nected, the induced homomorphism on orbifold fundamental groups, y;: G = 7 (M) —
I = 79 (%, ,,p), is surjective. Therefore, the induced morphism 1//;*: Tr — T embeds
#.1(I')—as computed in (3.6)—into ¥,! (M), for all s > 1. In particular, if : M — (C*,m)
is an orbifold pencil with a single multiple fiber of multiplicity m > 2, then there is a 1-
dimensional algebraic subtorus T < H'(M;C*) and a torsion character p ¢ T such that

¥,!(M) contains the translated tori p7, ...,p" 'T.

As shown in [01], the (degree 1, depth 1) characteristic variety of an arrangement com-
plement may have irreducible components that do not pass through the origin (see Section
10.2). A combinatorial machine for producing translated subtori in the characteristic va-
rieties of certain arrangements was given in [16]. Namely, suppose </ admits a pointed
multinet, that is, a multinet .#” and a hyperplane H € </ for which my > 1, and my | ny
for each flat X in the base locus such that X < H. Letting &/’ = o/ \ {H} be the dele-
tion of & with respect to H, it turns out that ¥;'(M(<7")) has a component which is a
1-dimensional subtorus of H'(M(&/'); C*), translated by a character of order my. Whether
all positive-dimensional translated subtori in the (degree 1, depth 1) characteristic vari-
eties of arrangements occur in this fashion is an open problem. It is also an open problem
whether the isolated (torsion) points in the characteristic varieties of an arrangement are
combinatorially determined.

3.7. Cohomology jump loci of the projectivized complement. Once again, let <7 be a
(central) hyperplane arrangement in C?*!. The next result relates the cohomology jump
loci of the complement M = M (/) to those of the projectivized complement, U = P(M).
A more precise relationship in degrees g > 1 will be given in Corollary 6.13.
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Proposition 3.3. Let 1: M — U be the restriction of the Hopf map, m: C4+1\ {0} — CP¥,
to the complement of <f, and set n = |</|. Then,

(1) The induced homomorphism n*: H'(U; C) — H'(M;C) restricts to isomorphisms
ZNU) = ZNM) forall | < s < nand Z1(U) v %" (U) = % (M) for all
qg=1

(2) The induced morphism n*: H'(U;C*) — H'(M;C*) restricts to isomorphisms
YN U) = YN (M) forall 1 < s < nand ¥'(U) v %" (U) = ¥1(M) for all
qg=>1

Proof. As noted previously, upon fixing a hyperplane Hy € 7, the restriction to M =
M(.a7) of the (trivial) bundle map 7: C**'\ Hy — CP\ n(H,) yields a diffeomorphism
M => U x C* so that the following diagram commutes,

M ——— U xC*

(3.7) N %
U.

Thus, we may replace in the argument the map 7: M — U by the first-coordinate projection
map pr;: U x C* — U. At this stage, the claims in depth s = 1 follow from the product
formulas for cohomology jump loci from [52, Prop. 13.1]. For completeness, we provide a
full argument, which works in all cases.

For part (1), consider the cohomology algebras A = H*(U x C*;C), A} = H*(U;C),
and A, = H*(C*;C), and let a = (aj,az) be an element in A' = A} ® Al. By the
Kiinneth formula, the cochain complex (A, d,) splits as a tensor product of cochain com-
plexes, (A1,d,,) ®c (Az, d,,). Therefore,

(3.8) by(A.a) = ). bi(Ar,a1)b;(Ar.ar).

i+j=q
Clearly, by(A»,0) = b1(A,,0) = 1 and b;(Az, a2) = 0 otherwise. Therefore,

bq(Al,a1)+bq_1(A1,al) ifa2 IO,

(3.9) by(A, (a1,a7)) = {0 if ay # 0.

In particular, b, (A, (a;,0)) = b1(Ay,a;) if a; # 0 and b;(A,0) = b;(A1,0) + 1. The first
claim follows at once from these formulas.

For part (2), let us identify G = m;(U x C*) with 7r;(U) x Z and the universal cover of
U x C* with U x C. We then have a G-equivariant isomorphism of chain complexes,
C*(m*) ~ C,(U) ®c C.(C). Given a character p = (p;,p,) in Hom(G,C*) =~
Hom(mr;(U),C*) x C*, we obtain an isomorphism C.(U x C*,C,) = C.(U,C,) ®c
C.(C*,C,,). Therefore, H,(U x C*;C,) = @iﬂ.:q H;(U;C,,) ®c H;(C*;C,,), and the
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second claim follows from the fact that Hy(C*; C) = H,(C*;C) = C and H,;(C*;C,,) = 0,
otherwise. O

Now fix an ordering Hj,..., H, of the hyperplanes in ./ and set Hy = H,. Then
H'(M;C*) may be identified with (C*)", with coordinates ¢t = (¢y,...,t,) and H'(U;C*)

may be identified with (C*)"~!, with coordinates (¢, ...,%, ;). The characteristic varieties
of U are then given by
(3.10) YIU)={te (C)"|te ¥I(M)andt, ---t, = 1};

that is, ¥;7(U) is the subvariety of (C*)" obtained by intersecting ¥;’(M) with the subtorus
(C*)"' = {r:t,---t, = 1}. Furthermore, the induced homomorphism n*: H'(U;C*) —
H'(M;C*) may be identified with the monomial map

(3.11) (C)" S (C), (tryeestut) = (tyee ottt

n—1

In turn, this map restricts to isomorphisms ¥, (U) — #}(M) for all 1 < s < n and
V(U)o ¥ (U) = ¥7(M) for all ¢ > 1, where, in fact, #/(U) u %7~ (U) = #(U),
as we shall see in Corollary 6.12.

Similar considerations apply to the resonance varieties of M and U, with the induced
homomorphism 7n*: H'(U;C) — H'(M;C) being identified with the linear map C"~! —
Cn, (Xl, e ,anl) —> (xl, cees Xn—1, —(xl + -+ anl)).

4. MILNOR FIBRATIONS OF ARRANGEMENTS

4.1. The Milnor fibration of a multi-arrangement. Let .o/ be a central arrangement of
n hyperplanes in C?*!, and fix an ordering on 7. To each hyperplane H € </, we may
associate a multiplicity my € N. This yields a multi-arrangement (<7, m), where m =
(my)ges € N is the resulting multiplicity vector, and a homogeneous polynomial,

(4.1) fo= 11 50"

Hedl
of degree N = > _,,_., my. Note that f;, is a proper power if and only if gcd(m) > 1, where
ged(m) = ged(my: H € o).

The polynomial map fy,: C*! — C restricts to a map fi,: M(«/) — C*. As shown by
Milnor [43] in a much more general context, f;, is the projection map of a smooth, locally
trivial bundle, known as the (global) Milnor fibration of the multi-arrangement (<7, m),

(4.2) Fp — M Iy C*,

The typical fiber of this fibration, f;;'(1), is a smooth manifold of dimension 2d, called
the Milnor fiber of the multi-arrangement, denoted Fy, = Fiy(.%7). It is readily seen that Fy,
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is a Stein domain of complex dimension d, and thus has the homotopy type of a finite CW-
complex of dimension at most d—in fact, of dimension at most rank(.27) — 1. Moreover, Fy,
is connected if and only if gcd(m) = 1, a condition we will assume henceforth. As shown
in [64], the homomorphism ( fi)s: 711 (M) — 7, (C*) induced on fundamental groups by fm
is the map pp : (M) — Z given by xy — my. In the case when all the multiplicities my
are equal to 1, the polynomial f = f;, is the usual defining polynomial and F' = Fy, is the
usual Milnor fiber of 7.

For each 6 € [0, 1], let Fy = f;;!(e*"'?) be the fiber over the point ¢**1? € C*. For each
z € M, the path y,: [0, 1] — C*, t — ¥ lifts to a path J,.: [0, 1] — M, t — e¥/N
which satisfies ¥,.(0) = z. Notice that fp,(¥6.(1)) = "% fu(2); thus, if z € Fy = Fy, then
¥o.(1) € Fy. By definition, the monodromy of the Milnor fibration is the diffeomorphism
h: Fo — F; given by h(z) = %.(1). In view of these observations, we may interpret & as
the self-diffeomorphism /4: Fy, — Fp, of order N given by z — ¢*1/Vz, and identify the
complement M with the mapping torus of 4.

4.2. The Milnor fiber as a finite cyclic cover. The monodromy diffeomorphism 4: Fp, —
Fm generates a cyclic group of order N = > ,,_, my which acts freely on Fp,. The quotient
space, Fin/Zy, may be identified with the projective complement, U = P(M), in a manner
such that the projection map, oy, : Fiy » Fu/Zy, coincides with the restriction of the Hopf
fibration map, n: M - U, to the subspace Fy,. Letting ¢, : Fy,, — M denote the inclusion
map, all this information may be summarized in the diagram

C*

N

(4.3) Fo m g fm} C*,

where both the row and the column are fibrations and the diagonal arrows are N-fold cyclic
covers. Consequently, the Euler characteristic of the Milnor fiber is given by y(Fp) =
N - x(U). Taking fundamental groups in (4.3), we obtain the diagram

Z
Uu\
(4.4) 1 — n1(Fn) LN mM) 257 — 1,

(m ;u

7T1(U)

y/i
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with exact row and column. By construction, o, = 7 © ¢y, and so the lower triangle
commutes. The upper triangle in (4.4) also commutes, since v;(1) is the product of the
meridians yy (taken in the order given by an ordering of the hyperplanes), and since N =
> ey Mmu. Hence, the homomorphism iy, : 71 (M) — Z descends to an epimorphism,

4.5) Xm: T (U) —» Zy,

given by ¥, — my mod N. As shown in [12, 9, 62, 64], the regular, N-fold cyclic cover
om: Fm — U is classified by this epimorphism. In particular, the usual Milnor fiber
F = F(&) is classified by the “diagonal” homomorphism, y: m;(U) - Z,, given by
x(yy) =1,forall H e <.

4.3. The characteristic polynomial of the algebraic monodromy. We now fix an order-
ing on the n hyperplanes of <7, and identify the character group H'(U;C*) with (C*)"~!,
Recall we also fixed an embedding j: Zy < C*, 1 — ¢*/N. By (4.5), the character
Pm = joxm: m1(U) — C* is given by y,, — €**"#/N; hence, for each divisor k of N, the
character p)/* takes ¥, to e**i/k. By formula (3.4), the Betti numbers of the Milnor fiber
Fm = Fiy(47) are given by

(4.6) by(Fm) = b,(U) + ) ¢(k) depth, ().

1<k|N
Likewise, formula (3.5) implies that the characteristic polynomial of the algebraic mon-
odromy A, : Hy(Fm;C) — H,(Fm;C) is given by

(4.7) Ag(t) = (1= 1@ T @ (1) 2Pt em)
1<k|N

In the above expressions, the crucial quantities are the (non-negative) depths of the char-

acters pﬁ/ ‘e H '(U;C*), which depend on the position of these characters with respect
to the characteristic varieties ¥;?(U). Here are some basic (well-known) examples of how
such a computation goes.

Example 4.1. Let ./ be a pencil of n > 3 lines through the origin of C? defined by the
polynomial f = x"* — y". Then U is homeomorphic to Xy, = C\ {n — 1 points}, and so

its characteristic varieties are #,'(U) = --- = ¥ (U) = (C*)" ' and ¥' (U) = {1}
(see Example 3.1). It follows that b;(F) = n— 1+ (n —2)(n — 1) = (n — 1)? and
Ai(t) = (¢t — 1)(#* — 1)"2. In turn, either this computation or an Euler characteristic

argument shows that F = X, ,, a Riemann surface of genus g = (”;1) with n punctures. <

Example 4.2. Let <7 be the braid arrangement in C>, defined by the polynomial f =
(x+y)(x—y)(x+2)(x—2) (y+2z) (y—2z). Its complement M is, up to a C factor, homeomorphic
to the complement of the reflection arrangement of type Az in C*; thus, 7;(M) = P,.
Labeling the hyperplanes of .o as the factors of f, the flats in L,(.</') may be labeled as
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Figure 1. A (3,2)-net on the braid arrangement

136, 145, 235, and 246. The braid arrangement supports a (3, 2)-net, corresponding to the
partition (12|34/56) depicted in Figure 1. This net defines a rational map, i : CP* --> CP',
sending [x,y,z] — [x* — y%, x> — Z2]. In turn, this map restricts to a pencil, ¢: U — X3 =
CP'\ {[0,1],[1,0],[1, 1]}, which yields by pullback a 2-dimensional essential component
of #{'(U), namely, the subtorus

(4.8) T = {(s,s,t,t,(st)"") : 5,t € C*}.

Letting p: 7, (U) — C*, ¥, — €*™/° be the diagonal character which defines the Z-
cover o: F — U, we have that p* € T, yet p ¢ T. Since ¥,'(U) = {1}, it follows that
bi(F) =5+ ¢(3)-depth,(p*) =5+2-1=T7and A((¢) = (t — 1)°(> +t + 1). o

More generally, as shown in [54, Thm. 1.6], if an arrangement of projective lines in
CP? has only double or triple points, then the characteristic polynomial of the algebraic
monodromy of the Milnor fibration is given by a completely combinatorial formula.

For an arrangement < and a prime p, define 8,(«7) := max{s : w € Z}(M();Z,)},
where w = Y, ey € H'(M(«);Z,). Clearly, the non-negative integer 3,(<7) depends
only on L<,(%7) and p.

Theorem 4.3 ([54]). Suppose Ly(</) has only flats of multiplicity 2 and 3. Then B;(</) €
{0, 1,2} and

At) = (t— D71 41+ 1P,
Moreover, B5(2/) # 0 if and only if <7 supports a 3-net.

4.4. Trivial algebraic monodromy. Henceforth, we will concentrate mainly on the case
when the algebraic monodromy of the Milnor fibration is trivial. More precisely, suppose
Fm — M — C* is the Milnor fibration of a multi-arrangement (.27, m), with monodromy
diffeomorphism h: F,, — Fy. We say that (.7, m) has trivial algebraic monodromy over
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k (where k is either Z or a field) if h,: Hy(Fm;k) — H,(Fn; k) is the identity. Clearly,
when k a field, this condition only depends on the characteristic of k.

The condition that A, : H,(Fm; Q) — H,(Fm; Q) be the identity is equivalent to A,(f) =
(t — 1)”‘1(F m) Thus, in view of formulas (4.6) and (4.7), the condition is equivalent to
by(Fm) = b,(U), where U = P(M). Therefore, (27, m) has trivial algebraic monodromy
over Q if and only if H,(Fy,; Q) = H,(U; Q). In fact, more is true. As noted previously, the
homology groups of both U and M are torsion-free. Making use of the Kiinneth formula
for M =~ U x C* and the Wang exact sequence for the fibration F,, - M — C*, we
conclude that (.7, m) has trivial algebraic monodromy over k (where k = Z or k a field) if
and only if H,(Fm;k) = H,(U;k). Likewise, hy: H|(Fm;Z) — H.(Fn;Z) is the identity
if and only if H,(Fy;Z) = Z"!, where n = |.«/|.

Remark 4.4. Triviality of the algebraic monodromy in degree ¢ = 1 does not imply trivi-
ality of the action in higher degrees. For instance, if .7 is a graphic arrangement, that is, a
sub-arrangement of the braid arrangement of type A, _; from Example 2.1, then A, always
acts trivially on H;(F(</);Q), except when & is a reflection arrangement of type A, or
As, see [40, Thm. B]. On the other hand, if <7 is the braid arrangement of type A,_1, then
h, always acts non-trivially on the top homology group, H, ,(F(</);Q), see [14, §7].

Unlike the homology groups of the complement M, examples from [9, 16, 76] show that
the homology groups of the Milnor fiber F, may have non-trivial torsion. Therefore, if the
monodromy h: Fy, — Fy, acts as the identity on H,(Fm; Q), for some g > 1, we cannot
conclude that it also acts as the identity on H,(Fy;Z). Indeed, if H,(Fm;Z) has torsion,
then the Wang sequence of the fibration Fy, — M — C* shows that h,: H,(Fm;Z) —
H,(Fw;Z) cannot be equal to the identity. We will illustrate this point in Sections 10-11.

4.5. Triviality tests. Let .o/ be a central arrangement of n hyperplanes in C3. For the usual
Milnor fiber F = F(</), there are two useful tests informing on whether the algebraic
monodromy h,: H;(F;C) — H,(F;C) is equal to the identity. Both of these tests are
based on the nature of the multinets supported by L(.<7) and of the characteristic varieties
of the complement M = M(<7).

We start with a criterion insuring the triviality of the algebraic monodromy. We will say
that a subvariety of the algebraic torus (C*)" is essential if it is not contained in any proper
coordinate subtorus.

Proposition 4.5. If the characteristic variety ¥}'(M) has no essential irreducible compo-

nents, then the algebraic monodromy h,: H,(F;C) — H,(F;C) is trivial.

Proof. Setn = |<7|. By formulas (3.4) and (4.5), the first Betti number of F is given by

(4.9) bi(F) = ), [im(x*) n %' (U)

s=1

o
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where U = P(M) and x: 7 (U) — Z, is the homomorphism that sends each meridian
curve y, to 1. The cyclic subgroup im(y*) < H'(U;C*) =~ (C*)"~! is generated by the
character p = (£,...,Z), where £ = ¥/,

Recall that the Hopf map n: M — U induces a homomorphism n*: H'(U;C*) —
H'(M;C*) which restricts to an isomorphism #;'(U) = #;'(M). Recall also that the map
n*: (C*)"! — (C*)" is given in coordinates by formula (3.11). Since " = 1, it follows
that 7* (im(y*)) is the cyclic subgroup of (C*)" generated by p = (¢, ..., {). Therefore,
m*(im(y*)) is contained in the diagonal subtorus Ty = {(z,...,z) | z€ C*} < (C*)".

Now let C be an irreducible component of ¥;'(M). By our assumption, C lies in a proper
coordinate subtorus of H'(M;C*) = (C*)"; hence, C intersects intersects T only at the
identity. It follows that 7* (im(y*)) n %, (M) = {1}, and therefore im(xy*) n ¥'(U) = {1}.
In view of (4.9), this shows that b, (F) = n — 1, and the proof is complete. i

The following criterion for non-triviality of the algebraic monodromy is proved in [54,
Thm. 8.3], based on results from [20] and [28].

Proposition 4.6 ([54]). Let </ be a central arrangement in C*. If </ admits a reduced
multinet, then the algebraic monodromy (in degree 1) over C is non-trivial.

If an arrangement supports essential multinets, but none of those multinets is reduced,
then the algebraic monodromy (over C) may still be trivial, as illustrated by the B; reflection
arrangement from Section 10.1, though it may also be non-trivial, as illustrated by the
complex reflection arrangements of type G(3d + 1, 1, 3) with d > 0 from [54, Ex. 8.11].

5. CoHOMOLOGY JUMP LOCI OF MILNOR FIBERS

In this section, we analyze the resonance and characteristic varieties of the Milnor fibers
of a hyperplane arrangement, under the assumption that the algebraic monodromy of the
Milnor fibration is trivial.

5.1. Cohomology jump loci in finite regular covers. We start with some general results
regarding the behavior of jump loci in finite regular covers. These results were proved by
Dimca and Papadima in [20, Prop. 2.1, Cor. 2.2, Thm. 2.8]. In the next two propositions,
we state them in a slightly modified form, that is better adapted to our context.

Proposition 5.1 ([20]). Let p: Y — X be a finite regular cover. Then,
(1) The induced homomorphism p*: H'(X;C) — H'(Y;C) is an injection which re-
stricts to maps p*: LX) — ZL(Y), forallq = 0and s > 1.
(2) The morphism p*: H'(X;C*) — H'(Y;C*) restricts to maps p*: V{(X) — V(Y),
forallg > 0and s > 1.
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When the action of the group of deck transformations of the cover is homologically
trivial (in degree 1), more can be said.

Proposition 5.2 ([20]). Let p: Y — X be a finite regular cover. Suppose the group of deck
transformations acts trivially on H\(Y; Q). Then,

(1) The map p*: H'(X;C) — H'(Y;C) is an isomorphism that identifies Z!(X) with
RZNY), forall s > 1.

(2) The map p*: H'(X;C*)° — H'(Y;C*) is a surjection with finite kernel. Moreover,
if X is 1-formal, this map establishes a bijection between the sets of irreducible
components of W}(X) and W, (Y) that pass through the identity, for all s > 1.

Let us note that the homological triviality hypothesis of this proposition is definitely
needed. For instance, if X is a wedge of n circles (n > 2), and p: ¥ — X is a k-fold cover
(k = 2), then Z!(X) = C", whereas Z!(Y) = CK"=U+! and so the map p*: Z!(X) —
2/ (Y) is not surjective.

5.2. Cohomology jump loci in extensions. Next, we recall some general results relating
cohomology jump loci in group extensions. In [69], we made a detailed analysis of how
the characteristic and resonance varieties behave under certain split extensions with trivial
monodromy action in homology. We summarize those results in the form that will be
needed here.

Theorem 5.3 ([69]). Let 1 — K —> G —» Q —> 1 be a split exact sequence of finitely
generated groups. Assume Q is abelian. Then,

(1) If Q acts trivially on H\(K;Z), then the induced homomorphism *: H'(G;C*) —
H'(K;C*) restricts to maps *: V\(G) — V.N(K) for all s > 1; furthermore,
¥ NG) — ¥N(K) is a surjection.

(2) If Q is torsion-free and acts trivially on H,(K; Q), then the map *: H'(G;C*)° —
H'(K;C*)° restricts to maps *: W, (G) — #.\(K) for all s > 1; furthermore,
W NG) — #(K) is a surjection.

(3) If Q acts trivially on H,(K;Q) and G is 1-formal, then the map *: H'(G;C) —
H'(K;C) restricts to maps 1*: Z(G) — Z(K) for all s > 1; furthermore,
*: X, (G) — Z,(K) is a surjection.

All these results are sharp. For instance, regarding part (3), we make the following
observation: In depth s > 1, the map ¢*: Z!(G) — Z!(K) is not necessarily a surjection,
while in depth s = 1 it is not necessarily an isomorphism. We illustrate both assertions

with an example (see [50, 51] for the necessary background).

Example 5.4. Let G = {ay,...,a4 | [a1,a2] = [a2,a3] = [a3,a4] = 1) be the right-angled
Artin group associated to a path I" on 4 vertices, and let K be the corresponding Bestvina—
Brady group. We then have an exact sequence 1 — K > G %> Z — 1, where v is the
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homomorphism sending each generator a; to 1. Since I' is a tree, the group K is free (of rank
3), and so Z| (K) = %3(K) = C°. On the other hand, Z| (G) = {x, = 0} U {x; = 0} and
Xy(G) = {xa = x3 = x4 = 0} U {x| = x, = x3 = 0}. Thus, the map t*: Z)(G) — Z!(K)
is not a surjection for s = 2 and is not an isomorphism for s = 1. O

5.3. Cohomology jump loci of Milnor fibers. As before, let (27, m) be a multi-arrange-
ment. Denote by ¢y : Fy < M the inclusion map of the Milnor fiber Fy, = Fp(<7) into
the complement M = M(</) and by 0y, = 7 0 tyy: Fyy — U the restriction of the Hopf
map 7: M — U = P(M) to Fy,. Applying Proposition 5.1 to the finite, regular cover
om: Fm — U, we obtain the following immediate corollary.

Corollary 5.5. Forall q, s > 1, the following hold.

(1) The induced morphism o : H' (U;C) — H'(Fn;C) restricts to maps Z{(U) —
s (Fm).
(2) The morphism o : H'(U;C*) — H'(Fy; C*) restricts tomaps V! (U) — ¥{!(F).

Consider now the usual Milnor fiber, F = F(./), and the finite cyclic cover o: F —
U. In general, the morphism o*: ¥'(U) — ¥,!(F) from Corollary 5.5, part (2) is not
surjective. For instance, suppose </ admits a non-trivial, reduced multinet, and let 7 be
the corresponding component of #;'(U). It is then shown in [20, Cor. 3.3] that #;'(F) has
a component W passing through the identity and containing o™ (7') as a proper subset. We
illustrate this phenomenon with a concrete example.

Example 5.6. Let <7 be the braid arrangement from Example 4.2. Recall that ¥;'(U) <
(C*)5 has four local components, T1,..., T4, corresponding to the four triple points of
2/, and an essential, 2-dimensional component T, corresponding to the (3,2)-net de-
picted in Figure 1. Let y: U — § = X3 be the pencil defined by this net, so that
T = y*(H'(S;C*)). Note that S = U(%), where Z is the arrangement in C> defined
by the polynomial xy(x — y); therefore, the Milnor fiber of this arrangement, § = F(%),
may be identified with £, 3 = §' x §'\ {3 points} (see Example 4.1). Let v: § — S be the
corresponding Z3-cover, and consider the pull-back diagram,

# S

L

— S.
In the above, 7: U — U is the pull-back along ¢ of the cover v: § — S. By construc-
tion, 7 is the Zz-cover defined by the diagonal homomorphism 71 (U) — Z;. It is readily
seen that H,(U;Z) = Z’. By [77, Prop. 2], the map ¢ is an (irrational) pencil on U; there-

fore, the 4-dimensional torus W, = *(H'(S;C*)) is a component of the characteristic
variety 7;' (U) < (C*)".

(5.1)

S
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Finally, let F = F(</) be the Milnor fiber of «/. Note that the Z¢-cover o: F —
U factors as the composite F 5 U 5 U, where « is a 2-fold cover. Therefore, the

characteristic variety ¥,'(F) has four 2-dimensional components, o*(T}),...,0*(T4), as
well as a 4-dimensional component, W = «*(W,), which strictly contains o* (7). Direct
computation shows that #;'(F) has no other irreducible components. O

5.4. Arrangements with trivial algebraic monodromy. We return now to the general
case of a multi-arrangement (.7, m). As usual, let Fy, be the Milnor fiber of the multi-
arrangement, and let o, : F — U be the corresponding Zy-cover, where N = >’ Heo MH-
Using the machinery developed above, we obtain the following theorem, which sharpens
results from [20] in a way that will be needed later on.

Theorem 5.7. Suppose the monodromy h: Fy, — Fy, induces the identity on Hy(Fy; Q).
Then,

(1) The induced homomorphism o,: H'(U;C) — H'(Fy;C) is an isomorphism that
identifies Z!(U) with Z}(Fw), for all s > 1.
(2) The induced homomorphism o : H'(U;C*) — H'(Fn;C*)? is a surjection with
kernel isomorphic to Zy. Moreover,
(a) For each s > 1, the map o7}, establishes a bijection between the sets of irre-
ducible components of V,\(U) and #,'(Fy) that pass through the identity.
(b) The map oy: ¥,'(U) — W, (Fm) is a surjection.

Proof. We start with some preliminary observations. From the discussion in Section 4.2,
we know that the map o, : Fry, — U is a regular Zy-cover, corresponding to the exact
sequence

(O'm))i

(5.2) 1 — m(F) — m(U) =2 Zy —> 1.

As noted in Section 4.4, the assumption that h: Fp,, — Fy, induces the identity on H (Fy,; Q)
is equivalent to H;(Fp; Q) = H;(U;Q). It follows that we have an exact sequence,

(/\’m)*> Zn S 0.

(5.3) 0 — Hy(Fm:Z)/ Tors ~™%5 H,(U;Z)

We now proceed with the proof. Claim (1) follows directly from Proposition 5.2, part (1).
To prove the first assertion of Claim (2), we apply the functor H'(—; C*) = Hom(—,C*)
to the exact sequence (5.3). Since the abelian groups C* is divisible, and thus an injective
Z-module, we obtain an exact sequence,

(5.4) 0 ¢— H'(FiC*)0 <2 H\(U;C*) <2 H1(Z,;C*) <— 0.

Identifying the group H'(Zy; C*) with its Pontryagin dual, Zy, completes the proof of the
first part of Claim (2).
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Since the space U is formal, Claim (2a) follows from Proposition 5.2, part (2).
Finally, recall from diagram (4.4) that we have a (split) exact sequence,

Hm

(5.5) 1 — m(Fm) LN m (M) > Z —> 1.

Our hypothesis on the monodromy 4 says that Z acts trivially on H;(Fy,; Q). Thus, we
may apply Theorem 5.3 and conclude that the morphism ¢ : H'(M;C*) — H'(Fp;C*)°
restricts to a surjection, ¢, : #;'(M) - #;'(Fm). On the other hand, as shown in Propo-
sition 3.3, part (2), the map n*: H'(U;C*) — H'(M;C*) restricts to an isomorphism,
YN U) = Y1 (M). Since o = 7 © ty, Claim (2b) follows, and the proof is com-
plete. O

6. ABELIAN DUALITY AND PROPAGATION OF COHOMOLOGY JUMP LOCI

6.1. Abelian duality spaces. Let X be a space having the homotopy type of a connected,
finite CW-complex of dimension m. Without loss of generality, we may assume X has a
single O-cell, say, xo. Letting G = m1(X, x¢) be the fundamental group of X, the group ring
of its abelianization, R = Z[G|, may be viewed as a module over ZG via extension of
scalars. Inspired by the classical notion of “duality group” due to Bieri and Eckmann, the
following concept was introduced in [19].

We say that X is an abelian duality space (for short, ab-duality space) of dimension m
if HY(X;R) = 0 for ¢ # m and H"(X, R) is non-zero and torsion-free. In that case, for all
(left) R-modules A and all g > 0, we have isomorphisms

(6.1) HY(X;A) = Tors_ (D:A) = H,_¢(Gu; D ®z A),

where D = H™(X;R), viewed as an R-module. Consequently, if ¥ — X is a connected,

regular abelian cover, classified by an epimorphism G 2, G 5 H, where H is a (finitely
generated) abelian group, then H,(Y;Z) =~ Ext, (D, H), forall ¢ = 0.

Motivated by our work in [69], we adapt this definition to a related context. Let G,y =
Gav/ Tors be the maximal torsion-free abelian quotient of G. We say that X is a torsion-free
abelian duality space (for short, abf-duality space) of dimension m if the above conditions
are satisfied with R = Z[G ] replaced by Z[G ). Clearly, if X is an abelian duality space
and G, = H(X;Z) is torsion-free, then X is a torsion-free abelian duality space.

6.2. Formality. Recall that both an arrangement complement, M = M(<7), and its pro-
jectivization, U = P(M), are (rationally) formal spaces. Moreover, for every choice of
multiplicities m on <7, the Milnor fiber Fy, is a cyclic, regular cover of U. This raises the
question of whether these Milnor fibers are also formal spaces—or, at least g-formal, for
some g > 1. The following lemma gives a sufficient condition for this to happen.
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Lemma 6.1 ([20]). Let Y — X be a finite, regular cover, and suppose the group of deck-
transformations acts trivially on H;(Y;Q), for all i < q. Then Y is g-formal if and only if
X is g-formal.

Corollary 6.2. Let (<7, m) be a multi-arrangement of rank r, with Milnor fiber Fy, and
monodromy h: Fy — Fp,.

(1) If the algebraic monodromy hy: H;(Fy; Q) — H;(Fu;Q) is the identity for all
i < q, for some q > 1, then Fy, is g-formal.
(2) If hy: Hi(Fi; Q) — H;(Fi; Q) is the identity for all i < r — 2, then Fy, is formal.

Proof. Part (1) follows directly from the above lemma. For part (2), first recall that Fy, has
the homotopy type of a finite CW-complex of dimension at most r — 1. Thus, the claim
follows from part (1) and the discussion in Section 2.4. m|

In general, though, Milnor fibers may be non-formal, as illustrated by the following
example of Zuber [77].

Example 6.3. Let &7 = .27 (3, 3, 3) be the monomial arrangement in C* defined by the poly-
nomial f = (x* —y*)(y* —2%) (x> — z%). There are four (3, 3)-nets on <7, associated with the
partitions (123]456|789), (147|258|369), (159|267|348), and (168|249|357) in a suitable
ordering of the hyperplanes. The first of these nets defines a rational map, ¢ : CP* --> CP',
[x:y:z] = [x* —y*:x* — 7], which in turn restricts to a pencil : U — S from U = U(«)
toS = CP'\ {[1:0],[0:1],[1:1]}. Let T = y*(H"'(S;C*)) be the essential 2-dimensional
component of 7/11 (U) obtained by pullback along this pencil. The subgroup generated by
the diagonal character p: m(U) — C* intersects #,'(U) at the identity 1 and two other
points, both lying on 7', and both of order 3. Hence, A;(¢) = (t — 1)¥(1 + 1 + £*)%.

Next, let Z be the arrangement in C? defined by the polynomial xy(x — y), and let
v:§ = F(%#) — S = U(Z%) be the corresponding 3-fold cover. As shown in [77, Prop. 2],
the rational pencil ¢: U — § = X3 lifts to an irrational pencil, §: U — § = X3, as in
diagram (5.1). Here t: U — U is the pull-back of v along , that is, the Z5-cover defined by
the diagonal homomorphism 7 (U) -» Zs. Itis readily seen that H,(U;Z) = Z'?; therefore,
the 4-dimensional torus Wy = §/*(H'(S;C*)) is a component of the characteristic variety
HH(0) = (C)"

Finally, let F = F(./) be the Milnor fiber of o7. Then the Zy-cover o: F — U factors
as the composite F 5 U 5 U, where « is a 3-fold cover. Therefore, the characteristic
variety #,'(F) has a 4-dimensional component, W = «*(Wj), which strictly contains the 2-
dimensional subtorus o*(T'). Write W = exp(L), for some linear subspace L = H'(F;C).
Using the mixed Hodge structure on H*(F;C), Zuber showed in [77] that L cannot be a
component of the resonance variety %, (F). Therefore, TC;(¥;' (F)) & %/ (F), and so, by
the Tangent Cone theorem of [22], F is not 1-formal. &
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6.3. Ab- and abf-exactness. Let F — E -=» B be a fibration sequence of connected
CW-complexes. Setting K = m;(F), G = m(E), and Q = m;(B), we have an exact
sequence K 565 Q — 1. Moreover, the exact sequence of low-degree terms in the
Serre spectral sequence of the fibration takes the form

(62) Hy(E:Z) = Hy(B:Z) -5 H\(F;Z)y = H\(E;Z) = H\(B;Z) — 0,

where H,(F;Z)¢ denotes the coinvariants of K, = H,(F;Z) under the action of Q.

Following [19], we say that the fibration is ab-exact if (1) Q acts trivially on K,,; and (2)
the homomorphism ¢ is zero. In the presence of the first condition, the second condition is
equivalent to the exactness of the sequence 0 — K, — G — Q,, — 0. Finally, as shown
in [69, Prop. 8.4], if K < G and the sequence | - K — G — Q — 1 is exact and admits a
splitting, then the fibration is ab-exact if and only if Q acts trivially on K.

As shown in [19, Prop. 4.13], the notion of ab-duality behaves well with respect to ab-
exact fibrations: if any two of the spaces have the abelian duality property, then the third
one does, too. In particular, the product of two ab-exact exact spaces is again ab-exact. We
record here the part of this result that will be needed later on.

Proposition 6.4 ([19]). Suppose F — E — B is an ab-exact fibration of connected, finite-
type CW-complexes. If E and B are ab-duality spaces of dimensions m and n, respectively,
and if dim F = m — n, then F is an ab-duality space of dimension m — n.

By analogy with the above notions, we say that a fibration F — E — B is abf-exact if

Q acts trivially on K,,s and the composite H,(B;Z) O H, (F;Z)g —» K is zero. In the
presence of the first condition, the second condition is equivalent to the exactness of the
sequence 0 — Kyt — Gar — QOur — 0. Alternatively, let 6q: H,(B; Q) — H,(K;Q)
be the analog of the map ¢ in the exact sequence (6.2) with Q-coeflicients. Since Ky is
finitely generated, an argument similar to the one used in [69, Lem. 9.2] shows that the
fibration is abf-exact if and only if Q acts trivially on H,(F;Q) and Jq is the zero map.
Finally, as shown in [69, Prop. 9.4], if K < G and the sequence ]| - K - G — Q — 1is
split exact, then the fibration is abf-exact if and only if Q acts trivially on H;(F; Q).

The same argument as in [19], using now the Serre spectral sequence of the fibration
F — E — B with coefficients in Z[G | instead of Z[G ], shows the following: if any two
of the spaces have the torsion-free abelian duality property, then the third one does, too.
In particular, the product of two abf-exact exact spaces is again abf-exact. We record here
only the result that we shall need later in this section.

Proposition 6.5. Suppose F — E — B is an abf-exact fibration of connected, finite-type
CW-complexes. If E and B are abf-duality spaces of dimensions m and n, respectively, and
ifdim F = m — n, then F is an abf-duality space of dimension m — n.
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6.4. Propagation of jump loci. One of the main motivations for the study of the abelian
duality properties of spaces is the implications these properties have on the nature of the
cohomology jump loci and the Betti numbers of those spaces. We start with a result relating
ab-duality to propagation of characteristic varieties.

Theorem 6.6 ([19]). Let X be an abelian duality space of dimension m. Then the char-
acteristic varieties of X propagate; that is, for any character p € H'(X;C*) such that
H?(X;C,) # 0, it follows that H1(X;C,) # 0 for all p < q < m. Equivalently,

(6.3) {1} =7(X) = N'(X) < 7(X) < - € H(X).

Applying this theorem to the trivial character p = 1, it follows at once that b,(X) > 0
for 0 < ¢ < m. Moreover, as shown in [19, Prop. 5.9], we also have b;(X) > m. Finally, as
noted in [37, Thm. 1.8], the above result implies that the “signed Euler characteristic” of an
m-dimensional ab-duality space, (—1)"y(X), is non-negative. A similar argument—using
[19, Prop. 2.8], applied to the C[G ,¢]-chain complex C,(X; C[Gqpe|)—yields the following

result.
Theorem 6.7. Let X be an abf-duality space of dimension m. Then
(6.4) B =X cm'(X) (X)) < c#"X).

Now suppose X is formal. Then, the Tangent Cone theorem of [22, 21], allows us to
identify the tangent cone at 1 to #;?(X) with Z](X) for all ¢ < m. Applying Theorem 6.6,
we obtain the following immediate corollary.

Corollary 6.8. Let X is an abelian duality space of dimension m. If X is g-formal, for some
g < m, then Z/(X) < --- < Z}(X). In particular, if X is formal, then the resonance
varieties of X propagate; that is, Z,(X) < --- < Z"(X).

Remark 6.9 ([19]). If X is a connected, finite, 2-dimensional CW-complex with y(X) > 0
and by (X) > 0, then both the characteristic and the resonance varieties of X propagate (that
is, ,'(X) € 72(X) and Z} (X) = #;(X)), even though X may be neither an abelian duality
space nor a formal space. On the other hand, if X is a closed, orientable 3-manifold with
b(X) even and non-zero, then the resonance varieties do not propagate, since %, (X) =
H'(X;C), whereas Z; (X) = {0}.

6.5. Abelian duality and propagation for arrangements. A basic topological property
of arrangement complements is provided by the following result, which is proved in [18,
Thm. 5.6] (see also [19, Thm. 6.1]).

Theorem 6.10 ([ 18, 19]). Let <7 be a central arrangement of rank r. Then the complement
M = M(<7) is an abelian duality space of dimension r and the projectivized complement
U = P(M) is an abelian duality space of dimension r — 1.
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In particular, if .7 is a central, essential arrangement of hyperplanes in C¢*!, then M (/)
is an abelian duality space of dimension d + 1 and U(«7) is an abelian duality space of
dimension d.

Remark 6.11. More generally, let M be a connected, smooth, complex quasi-projective
variety of dimension m. Suppose M has a smooth compactification M for which the com-
ponents of M\ M form a non-empty arrangement of hypersurfaces, .<7, such that, for each
submanifold X in the intersection poset L(.<7), the complement of the restriction of .7 to X
is either empty or a Stein manifold. Then, by [17, Thm. 1.1], M is an abelian duality space
of dimension m. Another generalization of Theorem 6.10 is given in [37, Thm. 1.10]: If M
has a smooth compactification M with b; (M) = 0 and M admits a proper, semi-small map
to a complex algebraic torus, then the same conclusion holds.

Recall now that arrangement complements are also formal. It follows from Theorem 6.10
and Corollary 6.8 that both their characteristic and resonance varieties propagate. More
precisely, we have the following corollary.

Corollary 6.12. Let < be a central arrangement of rank r, with complement M = M(<)
and projectivized complement U = P(M). Then

(1) V(M) < - < ¥ (M) and Z (M) < --- < Z/(M).

2) YNU) << ¥ " (U)and Z(U) < --- < 2] (U).

In view of part (2) of this result, Proposition 3.3 yields the following immediate corollary.

Corollary 6.13. Let 1: M — U be the restriction of the Hopf map. Then,

(1) The induced homomorphism n*: H'(U; C) — H'(M, C) restricts to isomorphisms
X1(U) = Z1(M) forall g > 1.

(2) The induced morphism n*: H'(U;C*) — H'(M;C*) restricts to isomorphisms
Y1(U) = ¥ (M) forall g > 1.

6.6. Abelian duality and propagation for Milnor fibers. We now turn to the Milnor
fibration F,, — M — C* of a multi-arrangement (<7, m). To start with, let us note that
Corollary 5.5, when used in conjunction with Proposition 3.3 and Corollary 6.13, has the
following consequence.

Corollary 6.14. Let 1y, : Fyy < M be the inclusion map of the Milnor fiber into the com-
plement of <.

(1) The epimorphism ct,: H'(M;C) -» H'(Fn; C) restricts to maps Z (M) — X! (Fn),
forall s > 1, and Z#] (M) — Z](Fw), forall g > 1.

(2) The epimorphism it: H'(M;C*) —» H'(Fy;C*) restricts to maps V,'(M) —
VN (Fm), foralls =1, and V(M) — ¥ 1(Fw), forall ¢ > 1.
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The next result strengthens [ 19, Thm. 6.7], where only part (1) is proved (in the particular
case when F = F(.</) is the usual Milnor fiber of an essential arrangement), but not part

Q).

Theorem 6.15. Let o/ be a central arrangement of rank r and let Fy, = Fy (/) be the
Milnor fiber associated to a multiplicity vector m: o/ — N.

(1) If the monodromy action on H\(F\y,;Z) is trivial, then Fy, is an ab-duality space of
dimension r — 1.

(2) If the monodromy action on H|(Fy; Q) is trivial, then Fy, is an abf-duality space
of dimension r — 1.

Proof. From Theorem 6.10, we know that the total space of the Milnor fibration, M =
M(<f), is an ab-duality space of dimension r. Thus, M is also and abf-duality space of the
same dimension, since H,(M;Z) = 7| is torsion-free. Clearly, the base of the fibration,
B = C*, is both an ab- and abf-duality space of dimension 1. In view of our hypothesis on
the monodromy of the fibration, the two claims regarding the fiber F,, now follow directly
from Propositions 6.4 and 6.5, respectively. O

Applying this theorem, we obtain the following corollary regarding propagation of co-
homology jump loci of Milnor fibers of arrangements with trivial algebraic monodromy.

Corollary 6.16. Let <7 be a central arrangement of rank r, and letm: o/ — N be a choice
of multiplicities.

(1) If the monodromy action on H,(Fy;Z) is trivial, then the characteristic varieties of
Fw propagate; that is, V' (Fy) € V}(Fm) S -+ € %7 (Fm).

(2) If the monodromy action on Hy(Fy; Q) is trivial, then the restricted characteristic
varieties of Fu propagate; that is, #;'(Fm) € #2(Fm) € -+ S #] " (Fm).

(3) If the monodromy action on H;(Fm;Q) is trivial for i < q, then the resonance
varieties of Fw propagate in that range; that is, #\(Fm) < - -+ S Z}(Fm).

(4) If the monodromy action on H;(Fy,; Q) is trivial for i < r — 2, then the resonance
varieties of Fy propagate; that is, Z} (Fw) € -+ € %Z|"" (Fm).

Proof. Claim (1) follows from Theorem 6.6 and Theorem 6.15, part (1), while Claim (2)
follows from Theorem 6.7 and Theorem 6.15, part (2).

Claims (3) and (4) follow from claim (2) and the Tangent Cone theorem, using Corollary
6.2, parts (1) and (2), respectively. O

In particular, if .7 is a central, essential arrangement in C* and the monodromy action
on H,(Fm; Q) is trivial, then #,'(Fn) € #*(Fm) and %, (Fm) S %Z;(Fm).
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Remark 6.17. More generally, let f € Clzo,...,zs] be a homogeneous polynomial of
degree n, and set M = C4™'\{f = 0}. We then have a (global) Milnor fibration, f: M —
C*, with fiber F = f~!(1) and monodromy h: F — F given by h(z) = ¢*1/"z. Now
suppose M satisfies one of the conditions laid out in Remark 6.11, so that M is an abelian
duality space of dimension d + 1, and suppose further that &, : H,(F;Q) — H,(F;Q) is
the identity. Then similar proofs show that F is an abf-duality space of dimension d and
the restricted characteristic varieties of F propagate, that is, #,'(F) < --- < #;*(F).

7. TRIVIAL ALGEBRAIC MONODROMY AND LOWER CENTRAL SERIES

In this section, we investigate the lower central series ranks and the Chen ranks of the
fundamental groups of Milnor fibers of arrangements for which the algebraic monodromy
is trivial.

7.1. Lower central series and nilpotent quotients. The lower central series (LCS) of a
group G is defined inductively by setting y,(G) = G and y;41(G) = [G,yx(G)] for all
k = 1. This is a central series (i.e., [G,¥x(G)] € yi+1(G) for all k > 1), and thus, a normal
series (i.e., yx(G) < G for all k > 1). Consequently, each LCS quotient,

(7.1) 21(G) = %4(G)/7411(G),

lies in the center of G/y;.1(G), and thus is an abelian group. The first such quotient,
gr,(G) = G/y2(G), coincides with the abelianization G,, = H;(G;Z). The associated
graded Lie algebra of G is the direct sum gr(G) = @,-, gr;(G); the addition in gr(G) is
induced from the group multiplication, while the Lie bracket (which is compatible with the
grading) is induced from the group commutator. By construction, the Lie algebra gr(G)
is generated by its degree 1 piece. Thus, if Gy, 1s finitely generated, then so are the LCS
quotients of G; we let ¢ (G) = rank gr,(G) be ranks of those quotients.

Replacing in this construction the group G by its maximal metabelian quotient, G/G”,
leads to the Chen Lie algebra gr(G/G”), and, in the case when Gy, is finitely generated, the
Chen ranks 6;(G) = rank gr,(G/G"). It is readily seen that 6,(G) < ¢(G) for all k > 1,
with equality for k < 3.

For each k > 1, the group G /vy, (G) is nilpotent, and in fact, the maximal k-step nilpo-
tent quotient of G. Letting gx: G/yi+1(G) — G/yi(G) be the projection maps, we obtain a
tower of nilpotent groups, starting at G/y,(G) = G,,. Moreover, at each stage in the tower,
there is a central extension,

(7.2) 0 — g,(G) — G/%41(G) = G/%(G) — 0,

which is classified by an extension class (or, k-invariant), y,: H(G/yx(G);Z) — gr,(G).
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7.2. Lower central series of arrangement groups. The LCS ranks, the Chen ranks, and
the nilpotent quotients of arrangement groups have been much studied. The most basic
example is that of the free group, F,, = m;(C\ {n points}), of rank n > 2. Work of P. Hall,
W. Magnus, and E. Witt from the 1930s shows that, for each k > 1, the abelian group
gr, (F,) is torsion-free, of rank equal to

(7.3) $i(Fy) = 1> u(d)n,

d|k

where y: N — {0, 41} denotes the Mobius function. Furthermore, work of K.T. Chen
from 1951 shows that the group gr, (F,/F) are also torsion-free, of rank equal to

n—l—k—2>

(7.4) O(F,) = (k— 1)( fork > 2.

Now let M = M(</) be any arrangement complement, and let G = 7; (M) be its funda-
mental group. As mentioned previously, M is formal, and hence the group is G is 1-formal.
Classical results of Quillen and Sullivan in rational homotopy theory insure that the LCS
ranks ¢ (G) are determined by the (truncated) cohomology algebra H<?(M; Q). Since this
algebra is determined by the (truncated) intersection lattice L<,(<7), it follows that the
LCS ranks of G are combinatorially determined. Explicit combinatorial formulas for these
ranks are known in a few cases, e.g., when &7 is either supersolvable [27] or decomposable
[49], but no such formula is known in general, even for ¢3(G). As shown in [48], the Chen
ranks 6;(G) are also combinatorially determined. An explicit combinatorial formula was
conjectured in [60], expressing those ranks in terms of the dimensions of the irreducible
components of %, (M), at least for k large enough. This formula has been verified by Cohen
and Schenck in [1 1] (see also [ 1] for a more general setting).

Turning to the nilpotent quotients of an arrangement group G = G(&7), it was shown in
[55] that all the quotients G/y,(G) are combinatorially determined when <7 is decompos-
able (see Section 8.3 below for more on this). On the other hand, Rybnikov [56] showed
that the third nilpotent quotient, G/y4(G), is not combinatorially determined, in general.
Nevertheless, the second nilpotent quotient, G/y3(G), is always determined by L<,(.<).
To see why, recall from Section 2.3 that H*(M;Z) = E/I, where E = /\ Gy, and I = I(</)
is the Orlik—Solomon ideal associated to L(.2/). As shown in [41, Prop. 1.14], the abelian
group gr,(G) is the Z-dual of I? (and thus, it is torsion-free), and the exact sequence (7.2)
with k = 2 is classified by the homomorphism y,: H>(Gu;Z) — gr,(G) dual to the inclu-
sion map I — E?. Setn = |.</| and let F, be the free group on generators {xy : H € .o/ }.
It follows that G/y;(G) is the quotient of the free, 2-step nilpotent group F,/ys(F,) by the
normal subgroup generated by all commutation relations of the form

7.5) [ T T 2]

Ked/
KoX
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indexed by all pairs of hyperplanes H € </ and flats X € L,(</) such that H o> X.
From this description, it is apparent that the second nilpotent quotient of an arrangement
group is combinatorially determined; that is, if L,(.) =~ L,(%), then G(<7)/y3(G()) =
G(2)/vs(G(2)).

7.3. LCS and Chen ranks of Milnor fibers. Let (.27, m) be a multi-arrangement, with
complement M = M(</). Let Fyy, = Fyy(7) be the Milnor fiber and let h: Fy,, — Fy, be
the monodromy of the corresponding Milnor fibration.

Denoting by G = m(M) and K = m|(Fy,) the fundamental groups of the respective
spaces, we have a (split) exact sequence, | - K — G — Z — 1, so that the arrangement
group splits as the semidirect product G = K X, Z, where ¢ = hy € Aut(K) is the automor-
phism of K = 7 (Fy,) induced by h. Note that ¢,,: K, — K, may be identified with the
(integral) algebraic monodromy, &, : Hy(Fuy;Z) — Hi(Fm;Z).

Theorem 7.1. Suppose h,: H\(Fu;Z) — H(Fwm;Z) is the identity map. We then have the
following isomorphisms of graded Lie algebras.
(1) gr(G) = gr(K) x4 Z, where ¢: Z — Der(gr(K)) is the morphism of Lie algebras
induced by the homomorphism ¢: Z — Aut(K) sending 1 to hy.
(2) gro,(K) = gr,(G).
(3) gros(K/K") = gr.,(G/G").

Proof. Part (1) follows from a well-known result of Falk and Randell [27, Thm. 3.1], as
refined in [68, Cor. 6.7]. Part (2) is a direct consequence of part (1). Finally, part (3)
follows from [69, Cor. 8.10]. |

Theorem 7.2. Suppose h,: H|(Fy; Q) — H,(Fy; Q) is the identity map. We then have the
following isomorphisms of graded Lie algebras.

(1) gr(G) ®@Q = (gr(K) x5 Z) ® Q.
(2) gr>2(K) ®Q = gr>2(G) ®Q.
(3) gro,(K/K") @ Q = gr.,(G/G") @ Q.
Consequently, ¢(71(Fm)) = dx(m1(M)) and 6y (7ty (Fr)) = Oc(m1(M)) for all k = 2.

Proof. Parts (1) and (2) follow from Proposition 7.5 and Theorem 9.5 from [6&], while part
(3) follows from [69, Cor. 8.10]. The equality between the respective LCS and Chen ranks
follows at once from parts (2) and (3). O

Consequently, if the algebraic monodromy h, : H|(Fy; Q) — H|(Fp; Q) is trivial, then
both the LCS ranks and the Chen ranks of 7| (F,,) are determined by L<,(.<7). Moreover,
letting U = P(M), we have that ¢y (1 (F)) = ¢ (1 (U)) and 6y (7 (Fpn)) = k(1 (U)) for
allk > 1.
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8. CONSTRUCTIONS OF ARRANGEMENTS WITH TRIVIAL ALGEBRAIC MONODROMY

In this section, we describe several classes of hyperplane arrangements for which the
Milnor fibration has trivial algebraic monodromy (in some range).

8.1. Boolean arrangements. Arguably the simplest kind of arrangements are the Boolean
arrangements, %,, consisting of the coordinate hyperplanes {z; = 0} in C". The intersec-
tion lattice L(%,) is the Boolean lattice of subsets of {0, 1}", while the complement M(%,)
is the complex algebraic torus (C*)".

Given a multiplicity function m: %, — N, the map fu: (C*)" — C*, z — " - "
is a morphism of complex algebraic groups. Hence, the Milnor fiber F,,, = ker(f;,) is an
algebraic subgroup, realized as the disjoint union of ged(m) copies of (C*)"~!, with the
monodromy automorphism, 4: Fy, — Fy,, permuting those copies in a circular fashion.

Now suppose gcd(m) = 1. Then F,, is an algebraic (n — 1)-torus and 4 is isotopic to
the identity, through the isotopy /,(z) = e*1//Nz. Thus, the bundle Fy, — M(%,) — C* is
trivial, and the algebraic monodromy, h, : Hy(F;Z) — H.(Fn;Z), is equal to the identity
map. Consequently, the characteristic polynomial of the algebraic monodromy is given by
A1) = (=1 for0 < g <n.

8.2. Generic arrangements. Let .<7 be a central arrangement of n hyperplanes in C4*!,
where n > d + 1 > 2. We say .o/ is generic if the intersection of every subset of d + 1
distinct hyperplanes is the origin, in which case, .o/ is the cone over an affine, general
position arrangement .7’ of n — 1 hyperplanes in C¢, see [45, 47].

By a classical result of Hattori ([29, Thm. 1]), the complement of ./’ is homotopy
equivalent to the d-skeleton of the real, (n — 1)-dimensional torus 7"~'. Since U(«/) =~
M(A"), it follows that 7 (U(«/)) = Z"' and b,(U(<)) = (";1) for ¢ < d. More-
over, if p: m(U(«/)) — C* is a non-trivial character, then [29, Thm. 4] insures that
H,(U(#/);C,) = 0 for ¢ # d and dimc H,(U(%/);C,) = (”;2) It follows that the
characteristic varieties of U(.</) are given by

q

Cc! forg=dand1<s< ("))

(8.1) VAU () =

N

{{1} forg<dand1<s< ("),

and are empty otherwise.

Now let m: &/ — N be a choice of multiplicities, and let Fy,, be the corresponding
Milnor fiber. Applying formula (3.4), we find that b,(Fm) = (";1) forg < d—1 and

by(Fr) = (";1) +(n—1) (”;2). Consequently, the algebraic monodromy /,: H,(Fm; Q) —

H,(Fn;Q) is equal to the identity if ¢ < d, and the characteristic polynomial of 4, takes
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the form

RN ) . B
(8.2) Aq(t):{(l 1) ifg<d-—1,

(t— DD — 1D ifg=d.

In the case when Fy, = F (/) is the usual Milnor fiber, this recovers a result of Orlik and
Randell [45] (see also [47, 12]).

8.3. Decomposable arrangements. Recall from Section 2.2 that every flat X € L,(./)
gives rise to a “localized” sub-arrangement, <7, which consists of all hyperplanes H € o
that contain X. Furthermore, the inclusions oy — & yield inclusions of complements,
Jx: M(&/) — M(a), which assemble into a map

(8.3) J=0x): M —> lxer, o) M(%).

Let ji: G() = [ Ixer, () G(Fx) be the induced homomorphism on fundamental groups.
It was shown in [24, 49] that the morphism

(8.4) gr(s): e(G()) —> [xery(w) 21(G (%))

between the respective associated graded Lie algebras is an isomorphism in degree 2 and,
after tensoring with Q, becomes surjective in all degrees greater than 2. Since each of the
groups G(.x) is isomorphic to F,x) X Z, it follows that the LCS ranks of G(.«/)) admit the
lower bounds

(8.5) $(G() = Y, (Fuw)
XeLy (<)
for all k > 2, with equality for k = 2.

Following [49], we say that a hyperplane arrangement o7 is decomposable (over Q) if
the third LCS rank of the group G(<7) attains the lower bound from (8.5); that is,

(X)
(8.6) 63(G (7)) = ).
> ()

XELz(Jz{

It is shown in [49] that once this condition is satisfied, equality is attained in (8.5) for all
k = 2; in fact, the morphism gr(j;) ® Q restricts to an isomorphism of graded Lie algebras
in degrees > 2.

More generally, let h(.2') be the holonomy Lie algebra of <7, that is, the quotient of the
free Lie algebra on generators {xy : H € </} by the ideal generated by the Lie brackets of
the form

(8.7) ENE

Ked/
KoX
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for all hyperplanes H € </ and 2-flats X € L,(</) such that H > X. There is then
an epimorphism (/) - gr(G(</)) that becomes an isomorphism upon tensoring with
Q (due to the 1-formality of the arrangement group). The arrangement .o/ is said to be
decomposable over k (where k is either Z or a field) if h;(.«7) ® k decomposes as the direct
sum @Dy, () H3(#x) k. Itis shown in [49] that once this condition is satisfied, a similar
decomposition holds in all degrees k > 2. Furthermore, the following is shown in [55,
Thm. 8.8]: If &7 is decomposable over Z, then all the nilpotent quotients G(.«7)/y,(G(</))
are determined by L<,(.7). The same proof works if .7 is decomposable over Q, with the
nilpotent quotients replaced by their rationalizations.

Let B(«/) = G(«7)'/G(</)" be the Alexander invariant of an arrangement <7, viewed
as module over the group ring Z[G (< ). ], and endowed with the filtration by the powers
of the augmentation ideal. An in-depth study of the Alexander invariant and of the Milnor
fibrations of a decomposable arrangement is done in [70]. We record in the next theorem
one of the main results of this study.

Theorem 8.1 ([70]). Let </ be an arrangement of rank 3 or higher. Suppose <f is de-
composable over Q and B(</) ® Q is separated in the I-adic topology. Then, for any
choice of multiplicities m: o/ — N, the algebraic monodromy of the Milnor fibration,
he: H(Fyy; Q) — H{(Fi; Q), is trivial.

A large supply of decomposable arrangements may be constructed by taking suitable
sections of products of (central) arrangements in C2. For such an arrangement .27, the group
G(«7) is a finite direct product of finitely generated free groups (see [8] for a detailed study
of such arrangements). We shall encounter two concrete examples of arrangements from
this class in Section 9.

In general, though, there are decomposable arrangements for which the arrangement
group is much more complicated. For instance, let ./ be the arrangement in C* defined by
the polynomial f = xyz(x+y)(x—z)(2z+y). Itis readily checked that <7 is decomposable
(over Z). Nevertheless, the group G(<7) does not even have a finite-dimensional classifying
space K(G(<7), 1), see [63, Rem. 12.4].

8.4. Multiplicity conditions. If F = F(.</) is the Milnor fiber of a central arrangement
o/ in C*! d > 1, there are various combinatorial conditions insuring that the algebraic
monodromy h,: H\(F;k) — H,(F;k) over k = Z or k a field is the identity, such as the
ones given in [10, 33, 74, 75, 39].

In [74], Williams gave a very nice combinatorial upper bound on the first Betti number of
F and a criterion for triviality of the algebraic monodromy over Z, stated in the case when
o/ is the complexification of a real arrangement. A partial generalization was obtained
in [75], and the result was recently proved by Liu and Xie [39] in full generality. We
summarize these results, as follows.
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Theorem 8.2 ([74, 75, 39]). Let o/ be a central arrangement of n hyperplanes. For each
hyperplane H € <7, set

su= ), (qx—2)(ged(gx,n) — 1),
XELz(JJ)
XcH

where qx = |x|. Then,

(1) dimy H,(F;k) <n—1+ min{sH cHe &%},forallﬁelds k.
(2) A(1) = (t — 1)"'p(¢), for some p(t) € C[t] dividing the polynomials

eed(axn) _ q x—2
(=)
forall X € L,().

(3) If there is a hyperplane H € </ such that gcd(gqx,n) = 1 for all 2-flats X with
qx > 2 (for instance, if n is a prime), then H\(F;Z) = 7",

8.5. The double point graph. Let 2/ be a central arrangement of planes in C?, and let
o/ = P(</) be the corresponding arrangement of projective lines in CP*. The double point
graph associated to 7 is the graph I with vertex set ./ and with an edge joining two
hyperplanes H, K € </ if H n K is a double point (see [4, 58]). The components of I' define
a partition of .&7 which is a refinement of all partitions induced by multinets on .o7.

Now suppose I' is connected. Using results from [54], Bailet showed in [4] that the
algebraic monodromy of the Milnor fibration, h,: H|(F;C) — H,(F;C), is the identity
map, provided |o| < 9 for all X € L,(<) and either 6 { |.<7|, or there exists a hyperplane
H € A such that |of| # 6, for all X ¢ H. Under the same connectivity assumption on T,
Salvetti and Serventi [58] show that < admits no multinet. Furthermore, they show that
h, = id if I' admits a “good” spanning tree, and conjecture that this holds for arbitrary
connected graphs. In [73] Venturelli establishes this conjecture under the assumption that
2/ has two multiple points, P; and P,, such that every line in ./ passes through either P,
or P,; in [70], we give another proof of this result, in a more general setting.

9. THE FALK ARRANGEMENTS

9.1. A pair of arrangements and their complements. In this section, we analyze in de-
tail a pair of hyperplane arrangements introduced by Falk in [25] and further studied in
[65]. The two arrangements, .« and o , are central arrangements of 6 planes in C*, defined
by the polynomials

=z(x = y)y(x +y)(x — 2)(x + 2),
2x+2)(x—2)00+2)y—2)(x —y + 2).

9.1) !
' f
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Figure 2. The Falk arrangements .«7 and ./

The projectivizations of ./ and o are depicted in Figure 2; the numbering of the lines
corresponds to the ordering of the linear factors in the respective defining polynomials.
Both P(<7) and P(.</) have 2 triple points and 9 double points, yet the two intersection
lattices are non-isomorphic: the two triple points of P(.7) do not lie on a common line,
whereas the triple points of P(Q%A ) lie on a common line (namely, fo). Nevertheless, as
shown by Falk in [25], the two projective complements, U = P(M) and U = P(M), are
homotopy equivalent. Let us note that P(;zf ) has a line (namely, £5) in general position with
the others. A well-known result of Oka and Sakamoto [44] then implies that m; (U ) splits
off a Z factor; it easily follows that both groups are isomorphic to F, x F, x Z.

The cohomology rings A = H*(U;Z) and A = H*(U; Z) are the quotients of the exterior
algebra E = A(ey,...,es) by the ideals I = (deja3, e45) and I = (e12, €34), respectively.
The automorphism E = E given by e; — e} —e3, e — ey — e3, €3 — ey, €3 —> €5,
and es — e, + e, + e3 induces an isomorphism A — A. It is readily verified that the
only multinets supported on sub-arrangements of either .o/ or o are those coming from
the triple points, and that the respective characteristic varieties are given by

KU = (=t =t5= 1} u{n = =1, = 1},

9.2) o
7/1(U)Z{f3=l4:l5=1}u{t]=l’2=l’5=1}.

9.2. The Milnor fibers of the Falk arrangements. Let F = F(.o/) and F = F(.</) be the
fibers of the Milnor fibrations f: M — C* and f: M — C*. Since both P(«) and P(</)
have only double and triple points, and since neither of the two arrangements supports a
3-net, Theorem 4.3 shows that the characteristic polynomial of the algebraic monodromy
acting on either H,(F;Q) or H,(F;Q) is (t — 1)°. Alternatively, it is easily verified that
both arrangements are decomposable (over Z); therefore, Theorem 8.1 shows once again
that their algebraic monodromy is trivial in degree 1. It now follows from Corollary 6.2
that both F and F' are formal spaces.
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Since &7 contains a line meeting the other ones only in double points, Theorem 8.2, part
(3) implies that H; (F ;Z) = Z°. Direct computation shows that H,(F;Z) = Z°, too, and so
the monodromy action on both these groups is trivial. Moreover, both Milnor fibers have
Euler characteristic 6 - 4 = 24, and thus H,(F;Z) = H,(F;Z) = Z?3. Let £ be a primitive
6th root of unity, and let .74 be the *-eigenspace of the monodromy action on H,(F;C).
Then, by [12], we have that dim¢ .7, = 4 for 1 < k < 5 and dim¢ 74 = 8.

Let K = m(F) and K = 7,(F) be the fundamental groups of the two Milnor fibers and
let G = m (M) = n;(M). Applying Theorem 7.1, we find that the associated graded Lie
algebras, respectively, the Chen Lie algebras of all these groups are isomorphic in degrees
2 and more:

gro,(K) = gr>2(f() = gr.,(G),
groo(K/K") = gro, (K/K") = gr_,(G/G").
From the discussion in Section 9.1, we have that G ~ F % x 7?*. Therefore, all the LCS

quotients and Chen groups of K and K are torsion-free, with ranks in degrees k > 2 given
by

9.3)

$u(K) = ¢u(R) = 2" p(d)2,
(9.4) dlk

0i(K) = 0(K) = 2(k — 1).

Although all these homological and group-theoretic invariants of F and F' agree, the two
Milnor fibers are not homotopy equivalent, as the next result shows.

Proposition 9.1. Let F and F be the Milnor fibers of the two Falk arrangements, and let K
and K be their fundamental groups. Then,

(1) K/K" # K/K".
(2) K/y3(K) # K/73(K).
Consequently, m,(F) # n,(F).

A proof of this proposition will be given in the next two subsections.

9.3. The characteristic varieties of F and £. The (degree 1) characteristic varieties of
the Milnor fibers of the two Falk arrangements were first computed in [65]. Since that
computation was based on a machine calculation, we redo it here by hand, using a method
which works for any arrangement with trivial algebraic monodromy in degree 1.

We start with the Milnor fiber F = F(<7). As remarked above, H,(F;Z) = Z°. The
inclusion map ¢: F — M induces a morphism ¢*: H'(M;C*) — H'(F;C*) on character
tori, given in coordinates by

9.5) (21545 26) = (21/22,22/23, 23/ 24 74/25, 25/ Z6)-



40 ALEXANDRU I. SUCIU

It follows from Theorem 5.7, part (2b), that the characteristic variety ¥,'(F) < H'(F;C*)
is the image under the map ¢* of ¥,'(M) < H'(M;C*). Therefore,
VHF) = ({(zbz 25 L L) | z,2€ C) u ({11, 124,25 ) | 24,25 € € )

2122

={(% a5, L) 2,2 CF O {(1,1, £, 2,223) | 2,25 € C*,

2’ %’ z5°

and so ¥'(F) < (C*)° is the union of two 2-dimensional subtori, 7, = {u € (C*)° |
wuguy = ug = us = 1} and T = {u € (C*)° | uy = up = uzujus = 1}. Notice that

(9.6) T,nT,={1,(1,1,w1,1),(1,1,0* 1,1)},

where w = exp(27i/3). By Theorem 3.2, the torsion characters comprising T n T, lie in
¥, (F). In fact, direct computation reveals that ¥,' (F) = Ty n T».

Proceeding in the same manner with the Milnor fiber of the second Falk arrangement,

A A

F = F(47), we obtain:

A

HE) = (@ LLL D) e Ch) v ({(L Laan L o) [ 23,24 € CT )

2122
{2l Lan) [mn e} U {(L L Biana) | nuec),

and so ¥\(F) = Ty u T, where T} = {u € (C*)° | wyudu;' = uy = uy = 1} and
T, = {u e (C*)° | uy = wpuzug = u2u4_1u5 = 1}. Notice that these two subtori intersect
only at the origin; in fact, direct computation shows that

9.7) VNE) =T nT, = {1}.

The above computations show that ;' (F) # #;'(F): the first variety consists of 3
points, while the second consists of a single point. Finally, recall from Section 3.3 that the
characteristic varieties ¥,'(G) of a (finitely generated) group G depend only on its maxi-
mal metabelian quotient, G/G”. Therefore, we have shown that K/K” % K / K", thereby
completing the proof of part (1) of Proposition 9.1. O

Remark 9.2. Since both Milnor fibers are formal, the tangent cones to their first charac-
teristic varieties coincide with the first resonance varieties. Using either this observation,
together with the computations from above, or Theorem 5.7, part (1), we find that

RL(F) ={x1 +2x+3x3 = x4 = x5 = 0} U {x; = xo = 3x3 + 2x4 + x5 = 0},

%f(ﬁ) ={x+2x0m—xs=x3=x4 =0} U{x; =X+ x3+ x4 =X — x4 + x5 = 0},

while Z)(F) = %)(F) = {0}. Thus, the resonance varieties do not distinguish between
m(F) and 7, (F).
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9.4. The second nilpotent quotients of K and K. We now give a proof of Proposition
9.1, part (2). First consider the projectivized complement U = U (/) and its fundamental
group, G = 7;(U). Recall that H*(U;Z) = E*/I*, where E = /\(ej,...,es) and [ =
(Oeins, es5). Writing E, = (E")Y and I, = (I")" for the Z-dual groups, the second nilpotent
quotient G/y3(G) is the central extension of gr,(G) = E; =~ Z° by gr,(G) = I, = Z?
classified by the cocycle y,: E, —» I, given by the matrix

I =1 10000000
T _
©8) o = (o 0 00000001)'

To compute the Schur multiplier H,(G /y3(G); Z), we use an approach similar to the one
used in the proof of [55, Thm. 4.1]. Consider the homology spectral sequence of the central

extension 0 — I, — G/y3(G) 2> E; — 0,
(9.9) El = H,(E;;H)(I;;Z)) = H,.,(G/ys(G);Z).

Since the (E,,d*) page of the cohomology spectral sequence is a CDGA, and since its
Z-dual is (E?, d,)—due to lack of torsion on either of these two pages—the differentials
dr: E;, — E_, ., in diagram (9.10) are determined by the map d3, = x».

2 Z
%
1 Z2 ZIO ZZO

0 7 ZS ZIO ZIO

0 1 2 3

Clearly, E5, = ker(d;,) = Z°. The differential o5, is dual to the composite E' ®
I’ — E'® E? -» E°, whose kernel is generated by the elements u; = (e; — ;) ® ey,
u, = (e — e3) ® deyaz, Uz = e4 ® eys, and uy, = es ® eys. Taking transposes, we see that
E}, = coker(d],) is equal to Z*, generated by the duals u," of those elements (written in
terms of the duals &; = ). Finally, note that the map d%,l : E,®1IL, — I, A I 1s surjective,
since it sends 0g123®&ys5 to the generator de3 A gys of ) AL, = Z; hence, Eg’z = (. Looking
at the domains and ranges of the higher-order differentials in the spectral sequence, we see

30 _
that E; = E 7 for p + g < 2. Therefore,

9.11) H,(G/y3(G);Z) = E3 ®E}, =2 Z' = 2.
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Consider next the Milnor fiber F = F(</). The inclusion map ¢: F(</) — M(<)
induces a monomorphism ¢,: H,(F;Z) — H;(M;Z) given in suitable bases by a; —
x; — xipp for 1 < i < 5. Letting @; = a;’, the ring morphism o*: H*(U;Z) — H*(F;Z)
is given in degree 1 by e, — a; + as, ¢, — —a; + a, + as, e3 — —a, + a3 + as,
ey — —az + ay + as, es — —ay + 2as. It follows that the group J? := o*(I?) is free abelian,
with basis U*<a€123) = 3(112 — 26113 + ans and o* (645) = d3q — 2(135 + 3(145.

The second nilpotent quotient of the group K = m;(F) fits into the central extension
0— J, — K/y3(K) 2 H — 0, where H = Ky, =~ 7% and J, = (J*)¥ = Z2. Furthermore,
the extension is classified by the cocycle y»: /\ZH - J, given by the matrix

12 13 23 14 24 34 15 25 35 45
32100000 0 0

T
©.12) o= (o 0 000100 -2 3)'

The spectral sequence of the extension has the same entries in the E? page as in display
(9.10). The differentials o5, and d; , are still surjective, giving E5, = Z° and Ej, = 0.
The difference, though, lies with the differential d%,o: the elements o*(u;)" are still in
coker(dio), generating a Z*-summand, but now there is an extra element of order 3 in that
cokernel, namely, a; ® (3a;, — 2ai3 + ap;). Therefore, Ef’] = 7' P Z;. Proceeding as
before, we find that H, (K /y3(K);Z) = Z"> ® Z.

o O

For the group K = m(F), an entirely similar computation shows that coker(d; ) = Z*,

and hence H,(K/y3(K);Z) = Z'*. Therefore, K/y3(K) % K/y3(K), thereby completing
the proof of Proposition 9.1, part (2). O

10. THE B3 ARRANGEMENT AND ITS DELETION

10.1. The B; arrangement. Let .o/ be the rank-3 reflection arrangement of type Bj, de-
fined by the polynomial

(10.1) f=xyz(x =y)(x+y)(x = 2)(x +2)(y = 2)(y + 2)-

Figure 3 shows a plane section of .«7. The B3 arrangement is of fiber-type, with exponents
{1,3,5}. Thus, the complement M = M(</) is aspherical and its projectivization, U =
P(M), has fundamental group which decomposes as a semidirect product of free groups,
m(U) = Fs5 x, F3. The braid monodromy algorithm from [13] shows that the monodromy
map a: F3; — Aut(Fs) takes values in the pure braid group Ps, viewed as a subgroup of
Aut(F’s) via the Artin representation. Denoting by u; the generators of F3 and by A;; the
standard generators of the pure braid group (corresponding to the meridians around the
hyperplanes H;; of the braid arrangement), the monodromy map is given by

(10.2) a(ur) = AAnAs, a(n) = A2 Axs, a(us) = AL,
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[\

Ficure 3. The Bj re- Ficure 4. The deleted
flection arrangement, B; arrangement, with
with (3, 4)-multinet multiplicities

where a® = b~ 'ab, see [61, Ex. 10.8]. Since pure braid automorphisms act trivially in
homology, the extension 1 — Fs — m;(U) — F3 — 1 is ab-exact. Thus, by the
aforementioned result of Falk and Randell [27], the LCS quotients gr,(m(U)) are iso-
morphic to gr,(Fs) @ gr,(F3), for all k > 1. Moreover, the Chen ranks are given by
Oc(m(U)) = (k—1)(3k + 19) for k = 4, see [60, 1 1],

We now turn to the cohomology jump loci of the B3 arrangement (see [15, Rem. 6.4]
and [28, Ex. 3.6]). Notably, .7 supports a (non-reduced) multinet .4, depicted in Figure 3;
ordering the hyperplanes as the factors of the defining polynomial (10.1), this multinet has
associated partition (189]267|345). The resonance variety %, (M) < H'(M;C) = C° has
7 local components, corresponding to the 4 triple points and 3 quadruple points, 11 com-
ponents corresponding to braid sub-arrangements, and one essential, 2-dimensional com-
ponent, P = P_y. All the components of the characteristic variety #;'(M) c H'(M;C*) =
(C*)? pass through the origin, and thus are obtained by exponentiating the linear subspaces
comprising #| (M). In particular, there is a single essential component, T = exp(P). More
explicitly, the multinet .4~ determines a pencil,

(10.3) w: M —> S =CP'\{[0:1],[1:0],[1:1]},

which is given by ¥/(x,y,z) = [x*(y* —z%):y*(x*>—2z?)]. In turn, the induced homomorphism
y*: H'(S;Z) — H'(M;Z) is given by ¢} — 2e; + eg + €9, ¢5 — 2e; + €5 + €7, ¢} —
2e5 + e4 + es, where ¢; = [y;] are the homology classes of standard loops around the
punctures of S (see Section 3.2). Hence,

(10.4) T = y*(H'(S;C*) = {(A, 5% (st) 2, 5,5, (st) ", (st) ", 1,1) : 5, € C*}.



44 ALEXANDRU I. SUCIU

Finally, let F = F(</) be the Milnor fiber of the B; arrangement; then none of the
aforementioned components of #;'(M) contributes to a jump in b;(F). In fact, as first
shown in [12], the monodromy h: F — F acts trivially on H|(F;Q); analyzing more
carefully that computation shows that & acts trivially on H;(F;Z). Applying Theorem 7.1,
we conclude that gr, (7 (F)) = gr,(Fs)®gr,(F3), and 6x (7, (F)) = 6x(7(U)) forall k > 1.

10.2. The deleted B; arrangement. Consider now the arrangement .7’ obtained from
</ by deleting the hyperplane {z = 0}, as shown in Figure 4. This is the deleted B;
arrangement, defined by the polynomial

(10.5) ==y (x+y)(x—2)(x+2)(y —2)(y +2).

This is again a fiber-type arrangement, with exponents {1,3,4}. Thus, the complement
M' = M(</) is aspherical and its projectivization, U’ = P(M’), has fundamental group
m(U') = F4 x4 F3, where, as noted in [60, Ex. 10.6], the monodromy automorphism &’ is
given by the pure braids A,3, Af323A24, and Af]‘j“.

The cohomology jump loci of M’ were computed in [61]. Briefly, the resonance va-
riety Z(M') < H'(M';C) = C® contains 7 local components, corresponding to the 6
triple points and 1 quadruple point, and 5 non-local components, corresponding to braid
sub-arrangements. In addition to the 12 subtori obtained by exponentiating these linear
subspaces, the characteristic variety ¥,'(M’) < H'(M’;C*) = (C*)® also contains a com-
ponent of the form p - 7', where T’ is a 1-dimensional algebraic subtorus and p is a root of
unity of order 2, given by

T = {1 L L) s re C,
(10.6)
p=(1,1,-1,-1,-1,-1,1,1).

As explained in [16, Ex. 5.7], this translated subtorus arises from the pencil ¢ from
(10.3), as follows. The point [0: 1] is not in the image of y; however, extending the domain
of y to M' = M U {z = 0} defines a map

(10.7) ' M — C* =CP"\{[0:1],[1:0]}.

Note that ¢/(x,y,0) = [x*y*: x*y?], so the fiber over [1 : 1] has multiplicity 2. There-
fore, we may view the map ¥': M’ — (C*,(2)) as an orbifold pencil, with one multiple
fiber of multiplicity 2. The orbifold fundamental group I' = 79" (C*, (2)) may be identified
with the free product Z = Z,, while the character group H'(I'; C*) may be identified with
C* x {#1}. It follows from (3.6) that ¥;'(I') = C* x {—1}. The map ¢’ induces an epi-
morphism y: 7r;(M’) - I, which in turn induces a monomorphism (¢})*: H T C*) —
H'(7;(M'); C*). The image of #;'(I') under this morphism is precisely the translated torus
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pT' < ¥/(M'). Moreover, if we let j: M < M’ be the inclusion map between the re-
spective complements, then the induced homomorphism, j*: H'(M’;C*) — H'(M;C*),
embeds pT" into the torus T from (10.4). In fact, T n {t € (C*)° : 13 = 1} = T' U pT".

10.3. Milnor fibrations of the deleted B; arrangement. It follows from the above dis-
cussion that the deleted B; arrangement .7’ supports no essential, reduced multinet. It
is readily verified that none of aforementioned components of #;'(M’) contributes to a
jump in the first Betti number of F’ = F(&/’). Direct computation shows that, in fact,
H,(F';Z) = Z8, and so the monodromy acts trivially on H,(F’;Z). For suitable choices
of multiplicities, though, the Milnor fiber of the multi-arrangement acquires non-trivial
2-torsion. We treat in detail one such choice.

Let F], = F(<’) be the Milnor fiber of the multi-arrangement (7', m) with multi-
plicity vectorm = (2,1,2,2,3,3,1,1). As noted in [9, 16], the monodromy of the Milnor
fibration acts trivially on H,(F},;Q), but not on H,(F},;Z), which has torsion subgroup

Z> @® Z, on which the monodromy acts as (9 1).

Let U' = U(«'), and consider the pullback square on the right side of the following
diagram

F

27 v G %
(10.8) U —— § =(C"(2,2,2))

on l W l
U —L 5 = (C*(2).

where ¢/ is the (projectivized) orbifold pencil from Section 10.2 and v is the orbifold 3-fold
cover corresponding to the epimorphism 7™ (S) = ZZ, —» Z; that sends the (meridional)
generator of 77 (C*) = Z to 1 and the generator of Z; to 0. The orbifold fundamental group
I' = 79®(S) is isomorphic to Z * Z, * Zy * Z,, and so Tr = T x {(+1,+1, +1)}, where

TP = C*. It follows from (3.6) that
H(T) = {1} U (Tr\TD),

10.9) %@ =(1,-1,-DT2 0 (1,1, -T2 U (-1, -1, D)T2 U (—1,—1,-1)TY,
#T) = (=1, —1,—1)T.

Moreover, the lift /' : U’ — § is again an orbifold pencil.

T

The Z;s-cover o : F!, — U’ factors as the composite F'. 5> U’ 5 U’, where « is
a 5-fold cover. By Theorem 5.7, part (2a), the subvariety 7/11 (F!,) has 12 components
passing through the identity of H!(F!;C*)° = (C*)”: eleven subtori of dimension 2 and
one subtorus of dimension 3 (which in fact is a component of #,'(F},)), all obtained by
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pullback along o,. By Theorem 5.7, part (2b), there is also a 1-dimensional component
of #,'(F},) of the form o (pT"), where pT’ is the translated subtorus in #;'(U’) from
(10.6). Pulling back along the map ()’ o k)*: H'(S;C*) — H'(F!;C*) the translated
tori comprising #;'(I') yields seven 1-dimensional components of ¥,'(F},), of the form
p'o i (T"), for certain order 2 characters p’. Of those, 4 are also components of ¥,'(Fy,),
while one of those, namely, (§/ok)*((—1, —1, —1)T?) = o (oT"), is the unique component
of 73 (Fl).

Finally, since <7’ is fiber-type with exponents {1, 3,4}, the lower central series quotients
gt (m;(U’)) are isomorphic to gr, (Fy4) @ gr,(F3) for k > 2, while, by [60, 11], the Chen
ranks 6;(m;(U’)) are equal to (k — 1)(k + 12) for k > 4. By Theorem 7.2, the group
K = m(F},) has the same LCS and Chen ranks as 71 (U’). In fact, it can be shown that
g (K)®2Z, = gr,(m(U')) ® Z, for all primes p # 2, and likewise for the Chen groups
of K. Direct computation shows that the first few lower central series quotients of K and
K/K" are as in the following table.

k 1 2 3 4 5
er, (K) Z7 @ Z% Z9 @ Zg ZZS @ ZéS Z78 @ Zéztl ZZSZ @ Zé”
g (K/K") | 707 | 207 | 720z | 7807 | 7807

11. YOSHINAGA’S ICOSIDODECAHEDRAL ARRANGEMENT

In this final section, we describe an arrangement, introduced by Yoshinaga in [76], which
exhibits 2-torsion in the first homology of its (usual) Milnor fiber.

11.1. Mod-2 Betti numbers of 2-fold covers. Before proceeding with the example, we
return to the general setup for computing the homology of finite abelian covers treated in
Section 3.4, approached this time from a different angle.

Let p: Y — X be a regular Zy-cover, classified by a homomorphism a: 7y (X) — Zy.
Alternatively, we may view @ as a cohomology class in H'(X; Zy), called the characteristic
class of the cover. The covering space ¥ = X“ is connected if and only if the homomor-
phism « is surjective, in which case 7;(Y) = ker(a). In the case when N = 2, more can be
said. The next two results were first proved in [76] and then strengthened in [66].

Lemma 11.1 ([76, 66]). Let p: Y — X be a connected Z,-cover, wiih characteristic class
@ € H'(X;Z,). Then p lifts to a connected, regular Zs-cover p: Y — X if and only if
a? =0.

Proposition 11.2 ([76, 66]). Let p: Y — X be a 2-fold cover, classified by a non-zero class
a € H'(X;Z,). Suppose that a* = 0. Then, for all g > 1,

(11.1) by(Y,Zy) = by(X,Z,) + dimg, H(H*(X;Z,),6,),
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Ficure 5. The icosidodecahedral arrangement

where the differential 6,: H*(X;Z,) — H*"1(X;Z,) is given by 6,(u) = au. In particular,
by(Y,Zy) = by(X, Zy).

Further work on the integral homology groups of double covers, and how this homology
relates to the homology with coefficients in rank 1 integral local systems on the base of the
cover can be found in [59, 36, 38].

11.2. Modular inequalities. Once again, let Y — X be a connected Z,-cover with char-
acteristic class @ € H'(X;Z,). Assuming H,(X;Z) is torsion-free, it follows from [53,
Thm. C] that

(11.2) by(Y) < by(X) + dimz, HY(H*(X;Z,), 6,).

When U = U(«) is the projectivized complement of a hyperplane arrangement .27, an
explicit formula was proposed in [54, Conjecture 1.9], expressing the first Betti number
by (F) of the Milnor fiber of the arrangement in terms of the resonance varieties %, (U, Z,),
for p = 2 and 3, generalizing the formula from Theorem 4.3. At the prime p = 2, the
conjecture is equivalent to the inequality (11.2) holding as equality in degree ¢ = 1 for the
2-fold cover U® — U corresponding to the class @ € H'(U;Z,) which evaluates to 1 on
each meridional generator of H,(U;Z,).

In recent work [31], Ishibashi, Sugawara, and Yoshinaga revisit this topic. In [31,
Cor. 2.5], they prove that equality holds in (11.2) if and only if H;(Y;Z) has no non-trivial
2-torsion. Therefore, the formula conjectured in [54] fails at the prime p = 2 precisely
when H;(U®; Z) has non-trivial 2-torsion. An explicit example where this happens is given
next.
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11.3. The icosidodecahesdral arrangement. In [76], Yoshinaga constructed an arrange-
ment of 16 hyperplanes in C*> with some remarkable properties. The construction is based
on the symmetries of a polyhedron in R?, called the icosidodecahedron. This is a quasireg-
ular polyhedron with 20 triangular and 12 pentagonal faces that has 30 vertices (each one
at the intersection of 2 triangles and 2 pentagons), and 60 edges (each one separating a
triangle from a pentagon). Letting ¢ = (1 + \@) /2 denote the golden ratio, the vertices
of an icosidodecahedron with edges of unit length are given by the even permutations of
(0,0, +1) and 1(+1, +¢, +¢%).

One can choose 10 edges to form a decagon, corresponding to great circles in the spher-
ical tiling; there are 6 ways to choose these decagons, thereby giving 6 planes. Each pen-
tagonal face has five diagonals, and there are 60 such diagonals in all, which partition in 10
disjoint sets of coplanar ones, thereby giving 10 planes, each containing 6 diagonals. These
16 planes form an arrangement <% in R?, whose complexification is the icosidodecahedral
arrangement ./ depicted in Figure 5.

The projective line arrangement P(.27) has 15 quadruple points and 30 double points.
The projective complement U = U(«) is aspherical [35], and has Poincaré polynomial
P(t) = 1 + 15t + 607*. Let F = F(&/) be the Milnor fiber of is arrangement. As shown
in [76], we have that H,(F;Z) = 7Y @ Z,. Thus, the algebraic monodromy of the Milnor
fibration is trivial over Q, but not over Z.

Since the monodromy of the Milnor fibration acts trivially on H, (F; k) for every field k of
characteristic different from 2, the results of [68] show that gr(7; (F)) ®k = gr(m(U)) ®k
for such fields k. Direct computation shows that the first few lower central series quotients
of the group K = mr;(F') and of its maximal metabelian quotient are given by

gr (K) 2507, | Z¥®Z] | Z°°eZ) | 2V T
gr(K/K") | Z° @Z, | Z¥0Z) | Z°°®Z) | 2@ T

where T is a finite abelian 2-group and T is a quotient of 7.
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