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Abstract. Each complex hyperplane arrangement gives rise to a Milnor fibration of its
complement. Although the Betti numbers of the Milnor fiber F can be expressed in terms
of the jump loci for rank 1 local systems on the complement, explicit formulas are still
lacking in full generality, even for b1pFq. We study here the “generic” case (in which
b1pFq is as small as possible), and look deeper into the algebraic topology of such Milnor
fibrations with trivial algebraic monodromy. Our main focus is on the cohomology jump
loci and the lower central series quotients of π1pFq. In the process, we produce a pair of
arrangements for which the respective Milnor fibers have the same Betti numbers, yet non-
isomorphic fundamental groups: the difference is picked by the higher-depth characteristic
varieties and by the Schur multipliers of the second nilpotent quotients.
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1. Introduction

1.1. The Milnor fibration. In a seminal book [43], Milnor introduced a fibration which
soon became the central object of study in singularity theory. In its simplest form, the
construction associates to a homogeneous polynomial f P Crz0, . . . , zds a smooth fibration
over C˚, defined by restricting the map f : Cd`1 Ñ C to the complement of its zero-set. The
Milnor fiber, F “ f ´1p1q, is a smooth complex affine variety of complex dimension d. The
monodromy of the fibration, h : F Ñ F, is given by hpzq “ e2π i {nz, where n “ deg f . A
key question is to compute the characteristic polynomials of the induced homomorphisms
in homology, hq : HqpF;Cq Ñ HqpF;Cq.

We are mainly interested in the case when f has singularities in codimension 1. Ar-
guably the simplest situation in this regard is when the polynomial f completely factors
into distinct linear forms. This situation is neatly described by a hyperplane arrangement,
that is, a finite collection A of codimension-1 linear subspaces in Cd`1. Choosing a linear
form fH with kernel H for each hyperplane H P A , we obtain a homogeneous polynomial,
f “

ś

HPA fH, which in turn defines the Milnor fibration of the complement of the arrange-
ment, M “ MpA q, with fiber F “ FpA q. More generally, if m : A Ñ N, H ÞÑ mH is a
choice of multiplicities for the hyperplanes comprising A , we may consider the polynomial
fm “

ś

HPA f mH
H and the corresponding Milnor fibration, with fiber Fm.

To analyze these fibrations, it is most natural to use the rich combinatorial structure en-
coded in the intersection lattice of A , that is, the poset of all intersections of hyperplanes
in A , ordered by reverse inclusion and ranked by codimension. A much-studied ques-
tion in the subject asks: Is the characteristic polynomial of the algebraic monodromy of
the (usual) Milnor fibration, ∆A ,qptq “ detptI ´ hqq, determined by the intersection sub-
lattice Lďq`1pA q? Despite much effort—and some progress—over the past 30–40 years,
the problem is still open, even in degree q “ 1.

In this paper, we take a different tack, and focus instead on the “generic” situation, to
wit, on those hyperplane arrangements for which the monodromy of the Milnor fibration
acts trivially on the homology of the Milnor fiber, either with Z or with C coefficients.

1.2. Cohomology jump loci. We start by analyzing the structure of the characteristic
varieties (the jump loci for homology in rank 1 local systems) and the resonance varieties
(the jump loci of the Koszul complex associated to the cohomology algebra) of the Milnor
fiber of a multi-arrangement in the trivial algebraic monodromy setting.
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Let U “ PpMq be the projectivization of the complement M “ MpA q. Since U is a
smooth, connected, quasi-projective variety, its characteristic varieties, V q

s pUq, are finite
unions of torsion-translates of algebraic subtori of the character group, Hompπ1pUq,C˚q “

H1pU;C˚q, see [2, 6]. Since U is also a formal space, its resonance varieties, Rq
s pUq,

coincide with the tangent cone at the trivial character to V q
s pUq, see [15, 22, 21]. As

shown in [28], the varieties R1
s pUq may be described solely in terms of multinets on sub-

arrangements of A . In general, though, the varieties V 1
s pUq may contain components

which do not pass through the origin, see [61, 10, 16]. We explain in detail the relationship
between the cohomology jump loci of M and U in Proposition 3.3 and Corollary 6.13.

Now let pA ,mq be a multi-arrangement in Cd`1 and let Fm Ñ M Ñ C˚ be the Milnor
fibration of the complement, with monodromy h : Fm Ñ Fm, We then have a regular ZN-
cover, σm : Fm Ñ U, where N “

ř

HPA mH. In Theorem 5.7, we prove the following
result, which relates the degree 1 cohomology jump loci of Fm to those of U “ PpMq,
under a trivial algebraic monodromy assumption.

Theorem 1.1. Suppose the map h : Fm Ñ Fm induces the identity on H1pFm;Qq. Then,

(1) The induced homomorphism σ˚
m : H1pU;Cq Ñ H1pFm;Cq is an isomorphism that

identifies R1
s pUq with R1

s pFmq, for all s ě 1.
(2) The induced homomorphism σ˚

m : H1pU;C˚q Ñ H1pFm;C˚q0 is a surjection with
kernel isomorphic to ZN . Moreover,
(a) For each s ě 1, the map σ˚

m establishes a bijection between the sets of irre-
ducible components of V 1

s pUq and W 1
s pFmq that pass through the identity.

(b) The map σ˚
m : V 1

1 pUq Ñ W 1
1 pFmq is a surjection.

Here, H1pFm;C˚q0 denotes the identity component of the character group H1pFm;C˚q,
while W 1

s pFmq denotes its intersection with V 1
s pFmq. The theorem builds on and sharpens

results of Dimca and Papadima from [20].

1.3. Abelian duality and propagation. It has long been recognized that complements of
complex hyperplane arrangements satisfy certain vanishing properties for homology with
coefficients in local systems. In [18, 19], we revisited this subject, in a more general frame-
work.

Given a connected, finite-type CW-complex X with fundamental group G, we say that X
is an ab-duality space of dimension m if HqpX;ZGabq “ 0 for q ‰ m and HmpX;ZGabq is
non-zero and torsion-free. Replacing the abelianization of G by the torsion-free abelianiza-
tion, Gabf “ Gab{ Tors, we obtain the analogous notion of abf-duality space (of dimension
m). These properties imposes stringent conditions on the cohomological invariants of the
space X. Most notably, as shown in [19], if X is an ab-duality space of dimension n, then
the characteristic varieties of X propagate, that is, t1u “ V 0

1 pXq Ď V 1
1 pXq Ď ¨ ¨ ¨ Ď V m

1 pXq.



4 ALEXANDRU I. SUCIU

It was shown in [18, 19] that complements of hyperplane arrangements are ab-duality
spaces; see also [17, 37] for generalizations of this result. Moreover, it was shown in
[19] that the ab-duality property behaves well under a certain type of “ab-exact” fibrations.
Making use of these results, together with their adaptations in the abf-duality/abf-exact
context, we establish in Theorem 6.15 and Corollary 6.16 the following:

Theorem 1.2. Let A be a central arrangement of rank r and let Fm “ FmpA q be the
Milnor fiber associated to a multiplicity vector m : A Ñ N.

(1) Suppose the monodromy action on H1pFm;Zq is trivial. Then,
(a) Fm is an ab-duality space of dimension r ´ 1.
(b) The characteristic varieties of Fm propagate; that is,

V 1
1 pFmq Ď V 2

1 pFmq Ď ¨ ¨ ¨ Ď V r´1
1 pFmq.

(2) Suppose the monodromy action on H1pFm;Qq is trivial. Then.
(a) Fm is an abf-duality space of dimension r ´ 1.
(b) The restricted characteristic varieties of Fm propagate; that is,

W 1
1 pFmq Ď W 2

1 pFmq Ď ¨ ¨ ¨ Ď W r´1
1 pFmq.

This result strengthens [19, Thm. 6.7], where only part (1) is proved (in the particular
case when F “ FpA q is the usual Milnor fiber of an essential arrangement), but not part
(2). We also show: If the monodromy action on HipFm;Qq is trivial for i ď q, then the
resonance varieties of Fm propagate in that range; that is, R1

1 pFmq Ď ¨ ¨ ¨ Ď Rq
1 pFmq.

1.4. Associated graded Lie algebras. The lower central series (LCS) of a group G is
defined inductively by setting γ1pGq “ G and γk`1pGq “ rG, γkpGqs for k ě 1. This series
is both normal and central; therefore, its successive quotients, grkpGq “ γkpGq{γk`1pGq, are
abelian groups. The first such quotient coincides with the abelianization, Gab “ H1pG;Zq.
The associated graded Lie algebra of the group, grpGq, is the direct sum of the groups
grkpGq, with Lie bracket (compatible with the grading) induced from the group commutator.
Important in this context is also the Chen Lie algebra of G, that is, the associated graded
Lie algebra grpG{G2q of the maximal metabelian quotient of G.

When the group G is finitely generated, the LCS quotients of G are also finitely gen-
erated. We let ϕkpGq B rankpgrkpGqq be the ranks of these abelian groups and we let
θkpGq B rankpgrkpG{G2qq be the Chen ranks of G. Quite a bit is known about the LCS
ranks and the Chen ranks of arrangement groups, though almost nothing is known about
the corresponding ranks for the Milnor fiber groups. As a first step in this direction, we
show that the former determine the latter when the algebraic monodromy is trivial. More
precisely, we prove in Theorems 7.1 an 7.2 the following statements.

Theorem 1.3. Let pA ,mq be a multi-arrangement and let Fm be the corresponding Milnor
fiber, with monodromy h : Fm Ñ Fm. Set G “ π1pMpA qq and K “ π1pFmq.
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(1) If h˚ : H1pFm;Zq Ñ H1pFm;Zq is the identity map, then grě2pKq – grě2pGq and
grě2pK{K2q – grě2pG{G2q, as graded Lie algebras.

(2) If h˚ : H1pFm;Qq Ñ H1pFm;Qq is the identity map, then grě2pKq bQ – grě2pGq b

Q and grě2pK{K2q b Q – grě2pG{G2q b Q, as graded Lie algebras.

In either case, ϕkpKq “ ϕkpGq and θkpKq “ θkpGq for all k ě 2.

Consequently, if the algebraic monodromy is trivial, both the LCS ranks and the Chen
ranks of π1pFmq are combinatorially determined.

1.5. Constructions and examples. In Section 8, we describe several classes of hyper-
plane arrangements for which the Milnor fibration has trivial algebraic monodromy. The
simplest are the Boolean arrangements, followed by the generic arrangements. In both
cases, complete answers regarding the homology of the Milnor fiber are known. We review
these classical topics, in the more general context of arrangements with multiplicities.

Next, we consider the class of decomposable arrangements. Following [48], we say that
an arrangement A is decomposable (over Q) if there are no elements in gr3pπ1pMpA qqbQ

besides those coming from the rank 2 flats; that is, if ϕ3pπ1pMpA qq “
ř

XPL2pA q

`

µpXq

2

˘

,
where µ : LpA q Ñ Z is the Möbius function. As shown in [70], for any choice of mul-
tiplicities m on such an arrangement, the algebraic monodromy of the Milnor fibration,
h˚ : H1pFm;Qq Ñ H1pFm;Qq, is trivial, provided a certain technical condition is satisfied.
Other classes of arrangements for which this conclusion holds are those for which certain
multiplicities conditions are satisfied (see [10, 33, 74, 75, 39]), or the associated double
point graph is connected and satisfies some additional requirements (see [4, 58, 73]).

In [25], Falk constructed a pair of rank-3 arrangements that have non-isomorphic inter-
section lattices, yet whose complements are homotopy equivalent. In Section 9, we analyze
in detail the Milnor fibrations of these arrangements. In both cases, the monodromy acts
as the identity on first integral homology of the Milnor fiber. Nevertheless, the respective
Milnor fibers are not homotopy equivalent. The difference is picked by both the degree-1,
depth-2 characteristic varieties, and by the Schur multipliers of the second nilpotent quo-
tients of their fundamental groups.

As shown in [61], deleting a suitable hyperplane from the B3 reflection arrangement
yields an arrangement A of 8 hyperplanes for which the variety V 1

1 pMpA qq has an ir-
reducible component (a subtorus translated by a character of order 2) that does not pass
through the identity of the character torus. As a consequence, there is a choice of multi-
plicities m on A such that the monodromy h : Fm Ñ Fm acts trivially on H1pFm;Qq “ Q7

but not on H1pFm;Zq “ Z7 ‘ Z2
2, see [9, 16]. We illustrate our techniques in Section

10 with a computation of the degree-1 characteristic varieties of Fm and the low-degree
LCS quotients and Chen groups of π1pFmq. Using a different approach, Yoshinaga con-
structed in [76] an arrangement A of 16 hyperplanes such that the usual Milnor fiber itself,
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F “ FpA q, has non-trivial 2-torsion. We summarize in Section 11 the information our
techniques yield in this case regarding the LCS quotients and the Chen groups of π1pFq.

1.6. Organization of the paper. Roughly speaking, the paper is divided into three parts.
The first one deals with some basic notions regarding hyperplane arrangements. In §2
we discuss the combinatorics of an arrangement A , as it relates to the topology of the
complement MpA q, while in §3 we review the resonance and characteristic varieties of A .

The second part covers the Milnor fibration of a multi-arrangement pA ,mq. In §4 we
discuss the homology of the Milnor fiber Fm and the monodromy action in homology.
Under the assumption that this action is trivial, we investigate several topological invariants
of the Milnor fiber: the cohomology jump loci in §5, abelian duality and propagation of
cohomology jump loci in §6, and the lower central series of π1pFmq in §7.

The third part starts with §8, where we describe ways to construct arrangements with
trivial algebraic monodromy. The techniques developed in this work are illustrated with
several examples worked out in detail: the pair of Falk arrangements in §9, the deleted B3

arrangement in §10, and Yoshinaga’s icosidodecahedral arrangement in §11.

2. Complements of hyperplane arrangements

2.1. Hyperplane arrangements. An arrangement of hyperplanes is a finite set A of
codimension-1 linear subspaces in a finite-dimensional complex vector space Cd`1. The
combinatorics of the arrangement is encoded in its intersection lattice, LpA q, that is, the
poset of all intersections of hyperplanes in A (also known as flats), ordered by reverse
inclusion, and ranked by codimension.

Without much loss of generality, we will assume throughout that the arrangement is
central, that is, all the hyperplanes pass through the origin. For each hyperplane H P A ,
let fH : Cd`1 Ñ C be a linear form with kernel H. The product f “

ś

HPA fH, then, is a
defining polynomial for the arrangement, unique up to a non-zero constant factor. Notice
that f is a homogeneous polynomial of degree equal to n “ |A |, the number of hyperplanes
comprising A .

The complement of the arrangement, MpA q “ Cd`1 z
Ť

HPA H, is a connected, smooth,
complex quasi-projective variety. Moreover, M “ MpA q is a Stein manifold, and thus
it has the homotopy type of a CW-complex K of dimension at most d ` 1. In fact, M
splits off the complex linear subspace

Ş

HPA H, whose dimension we call the corank of
A . Thus, setting rankpA q B d ` 1 ´ corankpA q, we have that dimpKq ď rankpA q. If
corankpA q “ 0, we will say that A is essential. .

The groupC˚ acts freely onCd`1 z t0u via ζ¨pz0, . . . , zdq “ pζz0, . . . , ζzdq. The orbit space
is the complex projective space of dimension d, while the orbit map, π : Cd`1 z t0u Ñ CPd,
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z ÞÑ rzs, is the Hopf fibration. The set PpA q “ tπpHq : H P A u is an arrangement of
codimension 1 projective subspaces in CPd. Its complement, U “ UpA q, coincides with
the quotient PpMq “ M{C˚. The Hopf map restricts to a bundle map, π : M Ñ U, with
fiber C˚. Fixing a hyperplane H0 P A , we see that π is also the restriction to M of the
bundle map Cd`1 z H0 Ñ CPd

z πpH0q – Cd. This latter bundle is trivial, and so we have a
diffeomorphism M – U ˆ C˚.

2.2. Fundamental group. Fix a basepoint x0 in the complement of A , and consider the
fundamental group GpA q “ π1pMpA q, x0q. For each hyperplane H P A , pick a meridian
curve about H, oriented compatibly with the complex orientations on Cd`1 and H, and let
γH denote the based homotopy class of this curve, joined to the basepoint by a path in M.
By the van Kampen theorem, then, the arrangement group, G “ GpA q, is generated by
the set tγH : H P A u. Using the braid monodromy algorithm from [13], one may obtain a
finite presentation of the form G “ Fn{R, where Fn is the rank n free group on the set of
meridians and the relators in R belong to the commutator subgroup F 1

n. Consequently, the
abelianization of the arrangement group, Gab “ H1pG;Zq, is isomorphic to Zn.

Example 2.1. The reflection arrangement of type An´1, also known as the braid arrange-
ment, consists of the diagonal hyperplanes Hi j “ tzi ´ z j “ 0u in Cn. The intersection
lattice is the lattice of partitions of the set t1, . . . , nu, ordered by refinement. The comple-
ment M is the configuration space of n ordered points in C, which is a classifying space for
the Artin pure braid group on n strings, Pn. ^

Under the diffeomorphism M – U ˆ C˚, the arrangement group splits as π1pMq –

π1pUq ˆ π1pC˚q, where the central subgroup π1pC˚q “ Z corresponds to the subgroup of
π1pMq generated by the product of the meridional curves γH (taken in the order given by
an ordering of the hyperplanes). We shall denote by γH “ π7pγHq the image of γH under
the induced homomorphism π7 : π1pMq↠ π1pUq “ π1pMq{Z.

For the purpose of computing the group GpA q “ π1pMpA qq, it is enough to assume that
the arrangement A lives in C3, in which case ¯A “ PpA q is an arrangement of (projective)
lines in CP2. This is clear when the rank of A is at most 2, and may be achieved otherwise
by taking a generic 3-slice, an operation which does not change either the poset Lď2pA q or
the group GpA q. For a rank-3 arrangement, the set L1pA q is in 1-to-1 correspondence with
the lines of ¯A , while L2pA q is in 1-to-1 correspondence with the intersection points of ¯A .
Moreover, the poset structure of Lď2pA q mirrors the incidence structure of the point-line
configuration ¯A .

The localization of an arrangement A at a flat X P LpA q is defined as the sub-arrange-
ment AX B tH P A | H Ą Xu. The inclusion AX Ă A gives rise to an inclusion of
complements, jX : MpA q ãÑ MpAXq. Choosing a point x0 sufficiently close to 0 P Cd`1,
we can make it a common basepoint for both MpA q and all the local complements MpAXq.
As shown in [18], there exist basepoint-preserving maps rX : MpAXq Ñ MpA q such that
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jX ˝ rX » id relative to x0; moreover, if H P A and H Č X, then the map rX ˝ jX ˝ rH is
null-homotopic. Consequently, the induced homomorphisms prXq7 : GpAXq Ñ GpA q are
all injective.

For an arrangement A in C3, we will say that a rank-2 flat X has multiplicity q “ qX if
|AX| “ q, or, equivalently, if the point PpXq has exactly q lines from ¯A passing through
it. In this case, the localized sub-arrangement AX is a pencil of q planes. Consequently,
MpAXq is homeomorphic to pC z tq ´ 1 pointsuqˆC˚ ˆC, and thus it is a classifying space
for the group GpAXq – Fq´1 ˆ Z.

2.3. Cohomology ring. The cohomology ring of a hyperplane arrangement complement
M “ MpA q was computed by Brieskorn [5], building on the work of Arnol’d on the coho-
mology ring of the pure braid group. In [46], Orlik and Solomon gave a simple description
of this ring, solely in terms of the intersection lattice LpA q, as follows. Fix a linear order
on A , and let E be the exterior algebra over Z with generators teH | H P A u in degree 1.
Next, define a differential B : E Ñ E of degree ´1, starting from Bp1q “ 0 and BpeHq “ 1,
and extending B to a linear operator on E, using the graded Leibniz rule. Finally, let IpA q

be the ideal of E generated by BeB, for all B Ă A such that codim
Ş

HPB H ă |B|, where
eB B

ś

HPB eH. Then

(2.1) H˚
pMpA q;Zq – E{IpA q.

The inclusions t jXuXPLpA q assemble into a map j : M Ñ
ś

XPLpA q MpAXq. The work of
Brieskorn [5] insures that the homomorphism induced by j in cohomology is an isomor-
phism in all positive degrees. By the Künneth formula, then, we have that HkpM;Zq –
À

XPLkpA q HkpMpAXq;Zq, for all k ě 1. It follows that the homology groups of the com-
plement of A are torsion-free, with ranks given by

(2.2) bkpMq “
ÿ

XPLkpA q

p´1q
kµpXq,

where µ : LpA q Ñ Z is the Möbius function, defined inductively by µpCd`1q “ 1 and
µpXq “ ´

ř

YĽX µpYq. The homology groups of the projectivized complement, U “ PpMq,
are also torsion free, with ranks computed inductively from the formulas b0pUq “ 1 and
bkpUq ` bk´1pUq “ bkpMq for k ě 1.

In particular, we have that H1pM;Zq – Zn, with basis txH : H P A u, where xH is the
homology class represented by the meridional curve γH. Moreover, H1pU;Zq “ H1pM;Zq{
`
ř

HPA xH
˘

– Zn´1. We will denote by xH “ rγHs the image of xH in H1pU;Zq.

2.4. Formality. A connected, finite-type CW-complex X is said to be formal if its rational
cohomology algebra, H˚pX;Qq, can be connected by a zig-zag of quasi-isomorphisms to
A˚

PLpXq, the algebra of polynomial differential forms on X defined by Sullivan in [72]. The
notion of q-formality is defined similarly, with the cdga morphisms in the zig-zag only
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being required to induce isomorphisms in degrees up to q and monomorphisms in degree
q ` 1. It is known that a q-formal CW-complex of dimension q ` 1 is actually formal.
Moreover, if Y Ñ X is a finite, regular cover and Y is q-formal, then X is also q-formal.
For more on this topic we refer to [71, 67] and references therein.

For an arrangement A in Cd`1, the complement M is formal, in a very strong sense. In-
deed, for each H P A , the 1-form ωH “ 1

2π id log fH on Cd`1 restricts to a 1-form on M. As
shown by Brieskorn [5], if D denotes the subalgebra of the de Rham algebra Ω˚

dRpMq gen-
erated over R by these 1-forms, the correspondence ωH ÞÑ rωHs induces an isomorphism
D Ñ H˚pM;Rq. Sullivan’s machinery from [72] then implies that M is formal. Alterna-
tively, it is known that the mixed Hodge structure on H˚pM;Qq is pure; thus, the “purity
implies formality” results of Dupont [23] and Chataur–Cirici [7] yield another proof of the
formality of M.

3. Cohomology jump loci of arrangements

3.1. Resonance varieties. Let A be a graded, graded-commutative algebra over C. We
will assume that each graded piece Aq is finite-dimensional and A0 “ C. For each element
a P A1, we turn the algebra A into a cochain complex, pA, δaq, with differentials δq

a : Aq Ñ

Aq`1, u ÞÑ au. The fact that δq`1
a ˝ δ

q
a “ 0 follows at once from the observation that a2 “

´a2 (by graded-commutativity of multiplication in A), which implies a2 “ 0. By definition,
the (degree q, depth s) resonance varieties of A are the jump loci for the cohomology of
this complex,

(3.1) Rq
s pAq “ ta P A1

| dimC Hq
pA, δaq ě su.

These sets are Zariski-closed, homogeneous subsets of the affine space A1; in partic-
ular, they are either empty or they contain the zero-vector 0 P A1. Setting bqpA, aq B
dimC HqpA, δaq for the Betti numbers of the cochain complex pA, δaq, we see that bqpA, 0q

is equal to the usual Betti number bqpAq “ dimC Aq. Therefore, the point 0 P A1 belongs
to Rq

s pAq if and only if bqpAq ě s. In particular, since A0 “ C, we have that R0
1 pAq “ t0u

and R0
s pAq “ H if s ą 1.

We will mostly consider the degree one resonance varieties. Clearly, these varieties de-
pend only on the truncated algebra Aď2. More explicitly, R1

s pAq consists of 0, together with
all elements a P A1 for which there exist u1, . . . , us P A1 such that the span of ta, u1, . . . , usu

has dimension s ` 1 and au1 “ ¨ ¨ ¨ “ aus “ 0 in A2. Finally, if φ : A Ñ B is a mor-
phism of commutative graded algebras, and φ is injective in degree 1, then the linear map
φ1 : A1 Ñ B1 embeds R1

s pAq into R1
s pBq, for each s ě 1.

Completely analogous definitions work for algebras A over a field k of characteristic
different from 2. When charpkq “ 2, special care needs to be taken, to account for the fact
that the square of an element a P A1 may not vanish in this case; we refer to [66] for details.
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Now let X be a connected, finite-type CW-complex. Its cohomology algebra, A “

H˚pX;Cq, with multiplication given by the cup-product, satisfies the properties listed at
the start of this section. Therefore, we may define the resonance varieties of the space X
to be the sets Rq

s pXq B Rq
s pH˚pX;Cqq, viewed as homogeneous subsets of the affine space

H1pX;Cq, and likewise for Rq
s pX, kq Ď H1pX; kq. When M “ MpA q is an arrangement

complement, the fact that H1pM;Zq is torsion-free implies that a2 “ 0 for all a P H1pM; kq,
even when charpkq “ 2; thus, the usual definition of resonance works for all fields.

3.2. Multinets and pencils. The resonance varieties of complements of hyperplane ar-
rangements were introduced in the mid-1990s by Falk [26] and further studied in the ensu-
ing decade in papers such as [15, 41, 34, 60, 61]. Work of Falk and Yuzvinsky [28] greatly
clarified the nature of the degree 1 resonance varieties of arrangements. Let us briefly
review their construction.

A multinet N on an arrangement A consists of a partition A1 \ ¨ ¨ ¨ \ Ak of A into
k ě 3 subsets; an assignment of multiplicities m “ tmHuHPA ; and a subset X Ď L2pA q,
called the base locus, such that the following conditions hold:

(1) There is an integer ℓ such that
ř

HPAi
mH “ ℓ, for all i P rks.

(2) For any two hyperplanes H and K in different classes, H X K P X .
(3) For each X P X , the sum nX :“

ř

HPAi : HĄX mH is independent of i.
(4) For each 1 ď i ď k and H,K P Ai, there is a sequence H “ H0, . . . ,Hr “ K such

that H j´1 X H j R X for 1 ď j ď r.

We say that a multinet N as above is a pk, ℓq-multinet, or simply a k-multinet. Without
essential loss of generality, we may assume that gcdpmq “ 1. If all the multiplicities are
equal to 1, the multinet is said to be reduced. If, furthermore, every flat in X is contained
in precisely one hyperplane from each class, the multinet is called a pk, ℓq-net.

For instance, a 3-net on A is a partition into 3 non-empty subsets with the property that,
for each pair of hyperplanes H,K P A in different classes, we have H X K “ H X K X L,
for some hyperplane L in the third class. As another example, if X P L2pA q is a 2-flat of
multiplicity at least 3, we may form a net on AX by assigning to each hyperplane H Ą X
the multiplicity 1, putting one hyperplane in each class, and setting X “ tXu.

Now let f “
ś

HPA fH be a defining polynomial for A . Given a k-multinet N on A ,
with parts Ai and multiplicity vector m, write fi “

ś

HPAi
f mH
H and define a rational map

ψ : C3 Ñ CP1 by ψpxq “ r f1pxq : f2pxqs. There is then a set D “ tra1 : b1s, . . . , rak : bksu

of k distinct points in CP1 such that each of the degree d polynomials f1, . . . , fk can be
written as fi “ ai f2 ´ bi f1, and, furthermore, the image of ψ : MpA q Ñ CP1 misses
D, see [28]. The corestriction ψ : MpA q Ñ CP1

z D, then, is the pencil associated to
the multinet N . Following [54, 64], we may describe the homomorphism induced in
homology by this pencil, as follows. Let α1, . . . , αk be compatibly oriented simple closed
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curves on S “ CP1
z D, going around the points of D, so that H1pS ;Zq is generated by the

homology classes ci “ rαis, subject to the single relation
řk

i“1 ci “ 0. Then the induced
homomorphism ψ˚ : H1pM;Zq Ñ H1pS ;Zq is given by ψ˚pxHq “ mHci for H P Ai, and
thus ψ˚ : H1pS ;Zq Ñ H1pM;Zq is given by ψ˚pc_

i q “ ui, where c_
i is the Kronecker dual

of ci and ui “
ř

HPAi
mHeH.

It follows from the above discussion that the map ψ˚ : H1pS ;Cq Ñ H1pM;Cq is injective,
and thus sends R1

1 pS q to R1
1 pMq. Let us identify R1

1 pS q with H1pS ;Cq “ Ck´1, and
view PN B ψ˚pH1pS ;Cqq as lying inside R1pA q B R1

1 pMq. Then PN is the pk ´ 1q-
dimensional linear subspace spanned by the vectors u2 ´ u1, . . . , uk ´ u1. Moreover, as
shown in [28, Thms. 2.4–2.5], this subspace is an essential component of R1pA q; that
is, PN is not contained in any proper coordinate subspace of H1pM;Cq. More generally,
suppose there is a sub-arrangement B Ď A supporting a multinet N . In this case, the
inclusion MpA q ãÑ MpBq induces a monomorphism H1pMpBq;Cq ãÑ H1pMpA q;Cq,
which restricts to an embedding R1pBq ãÑ R1pA q. The linear space PN , then, lies inside
R1pBq, and thus, inside R1pA q. Conversely, as shown in [28, Thm. 2.5] all (positive-
dimensional) irreducible components of R1pA q arise in this fashion.

3.3. Characteristic varieties. Let X be a connected, finite-type CW-complex. Fix a base-
point x0 at a 0-cell; then the fundamental group G “ π1pX, x0q is a finitely generated (in
fact, finitely presented) group. Therefore, the group TG “ HompG,C˚q of C-valued, multi-
plicative characters on G is an affine, commutative algebraic group, which we will identify
with H1pX;C˚q. Its identity 1 is the trivial representation g ÞÑ 1 P C˚; the connected com-
ponent of G containing the identity, T0

G, is an algebraic torus isomorphic to pC˚qn, where
n “ b1pGq. Moreover, TG{T0

G is in bijection with the finite abelian group TorspGabq.

The characteristic varieties of X (in degree q and depth s, where q, s ě 0) are the jump
loci for homology with coefficients in rank-1 local systems on X:

(3.2) V q
s pXq “

␣

ρ P H1
pX;C˚

q | dimC HqpX;Cρq ě s
(

.

Here Cρ “ C, with CrGs-module structure defined by the character ρ : G Ñ C˚ by
setting g ¨ z B ρpgqc for g P G and z P C, while H˚pX;Cρq denotes the homology of the
chain complex C˚prX;Cq bCrGs Cρ, where C˚prX;Cq is the G-equivariant chain complex of
the universal cover of X, with coefficients in C.

The sets V q
s pXq are Zariski-closed subsets of the character group. We will denote by

W q
s pXq the intersection of V q

s pXq with T0
G. Observe that the (degree q) depth of a character

ρ, defined as depthqpρq B dimC HqpX;Cρq, is equal to maxts | ρ P V q
s pXqu; in particular,

depthqp1q “ bqpXq, the q-th Betti number of X. Note also that V 0
1 pXq “ t1u and V 0

s pXq “

H if s ą 1, while V q
0 pXq “ H1pX;C˚q for all q ě 0.



12 ALEXANDRU I. SUCIU

Completely analogous definitions work for the characteristic varieties V q
s pX, kq, viewed

as subsets of H1pX; k˚q, for any field k.

Example 3.1. Let Σg,n be a Riemann surface of genus g with n punctures (g, n ě 0), and let
χ B χpΣg,nq “ 2 ´ 2g ´ n be its Euler characteristic. Then V 1

s pΣg,nq is equal to H1pΣg,n;C˚q

if s ď ´χ and it is contained in t1u, otherwise. ^

The characteristic varieties V 1
s pXq depend only on the fundamental group G “ π1pXq;

thus, we will often denote them by V 1
s pGq. At least away from the trivial character, V 1

s pGq

is the zero set of the ideal annp
ŹsG1{G2 b Cq, where the ZGab-module structure on the

group G1{G2 arises from the short exact sequence 1 Ñ G1{G2 Ñ G{G2 Ñ G1{G2 Ñ 1;
see, e.g., [69] and references therein. Therefore, the characteristic varieties V 1

s pGq of a
finitely generated group G depend only on its maximal metabelian quotient, G{G2.

3.4. Homology of finite abelian covers. The characteristic varieties control the Betti
numbers of regular, connected, finite abelian covers p : Y Ñ X. For instance, suppose
that the deck-transformation group is cyclic of order N. Then the cover is determined by an
epimorphism χ : G ↠ ZN , so that kerpχq “ impp7q. Fix an inclusion ι : ZN ãÑ C˚, by send-
ing 1 to e2π i {N . With this choice, the map χ yields a torsion character, ρ “ ι ˝ χ : G Ñ C˚.
Since χ is surjective, the induced morphism between character groups, χ˚ : TZN Ñ TG,
is injective, and so impχ˚q – ZN . Furthermore, if ξ : G Ñ C˚ is a non-trivial character
belonging to impχ˚q, then ξ “ ρN{k for some positive integer k dividing N.

Now view the homology groups HqpY;Cq as modules over the group algebra CrZNs –

Crts{ptN ´ 1q. By a transfer argument, the invariant submodule, HqpY;CqZN , is isomorphic
to the trivial module HqpX;Cq – pCrts{pt ´ 1qqbqpXq. In fact, a result proved in various
levels of generality in [32, 57, 30, 42, 16] yields isomorphisms of CrZNs-modules,

(3.3)

HqpY;Cq –
à

sě1

à

ξPimpχ˚qXV q
s pXq

Cξ

– HqpX;Cq ‘
à

1ăk|N

`

Crts{Φkptq
˘depthqpρN{kq

,

where Φkptq is the k-th cyclotomic polynomial. Consequently,

bqpYq “
ÿ

sě1

|impχ˚
q X V q

s pXq|

“ bqpXq `
ÿ

1ăk|N

φpkq ¨ depthqpρN{k
q,

(3.4)

where φpkq “ degΦkptq is the Euler totient function. Moreover, if h : Y Ñ Y is the deck
transformation corresponding to the generator 1 P ZN , then the characteristic polynomial
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∆qptq “ detpt ¨ id ´h˚q of the induced automorphism h˚ : HqpY;Cq Ñ HqpY;Cq is given by

(3.5) ∆qptq “ pt ´ 1q
bqpXq

¨
ź

1ăk|N

ΦkptqdepthqpρN{kq.

3.5. Characteristic varieties of arrangements. Let M be a smooth, quasi-projective va-
riety. A general result of Arapura [2] (as refined in [6]), insures that the characteristic
varieties V q

s pMq are finite unions of torsion-translated subtori of the character torus. In
degree q “ 1, these varieties can be described more precisely, as follows.

Let S “ pΣg,r, µq be a Riemann surface of genus g ě 0, with r ě 0 points removed
(so that Σg,0 “ Σg), and with h ě 0 marked points, pp1, µ1q, . . . , pph, µhq, with µi ě 2. A
surjective, holomorphic map ψ : M Ñ Σg,n is called an orbifold fibration (or, a pencil) if
the fiber over any non-marked point is connected, the multiplicity of each fiber ψ´1ppiq

is equal to µi, and ψ has an extension to the respective compactifications, ψ̄ : M Ñ Σg,
which is also a surjective, holomorphic map with connected generic fibers. Then each
positive-dimensional component of V 1

1 pMq is of the form T “ ψ˚pH1pS ;C˚qq, for some
pencil ψ : M Ñ S for which the orbifold Euler characteristic of the surface, χorbpΣg,r, µq B

χpΣg,rq ´
řh

i“1p1 ´ 1{µiq, is negative.

The following result of Artal Bartolo, Cogolludo, and Matei ([3, Prop. 6.9]) helps locate
characters that lie in the higher-depth characteristic varieties.

Theorem 3.2 ([3]). Let M be a smooth, quasi-projective variety. Suppose T1 and T2 are two
distinct, positive-dimensional irreducible components of V 1

r pMq and V 1
s pMq, respectively.

If ξ P T1 X T2 is a torsion character, then ξ P V 1
r`spMq.

Now let A be an arrangement of n hyperplanes in Cd`1, with complement M “ MpA q.
The characteristic varieties V q

s pMq are subsets of the character torus H1pM;C˚q “ pC˚qn.
Moreover, the tangent cone at the identity 1 to V q

s pMq coincides with the resonance vari-
ety Rq

s pMq, for each q, s ě 1. This “Tangent Cone Theorem” (which does not hold for
all quasi-projective manifolds) relies in an essential way on the formality of the arrange-
ment complement, and was proved in [15, 34, 22, 21] in various levels of generality. Let
exp: H1pM;Cq Ñ H1pM;C˚q be the coefficient homomorphism induced by the exponen-
tial map C Ñ C˚. Then, if P Ă H1pM;Cq is one of the linear subspaces comprising
Rq

s pMq, its image under the exponential map, exppPq Ă H1pM;C˚q, is one of the subtori
comprising V q

s pMq. Furthermore, the correspondence P { T “ exppPq gives a bijec-
tion between the components of Rq

s pMq and the components of V q
s pMq passing through 1,

which in turn yields an identification TC1pV q
s pMqq “ Rq

s pMq for each q, s ě 1.

In degree q “ 1, each positive-dimensional component of V 1
1 pMq that passes through 1

is of the form T “ ψ˚pH1pS ;C˚qq, for some pencil ψ : M Ñ S “ CP1
z tk pointsu with

k ě 3. An easy computation shows that V 1
s pS q “ H1pS ;C˚q “ pC˚qk´1 for all s ď k ´ 2.
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Hence, the subtorus T is a pk ´ 1q-dimensional component of V 1
1 pMq that contains 1 and

lies inside V 1
k´2pMq.

3.6. Torsion-translated subtori. Let pΣg,r, µq be a 2-dimensional orbifold as above. For
our purposes here we may assume r ě 1, in which case the orbifold fundamental group Γ B
πorb

1 pΣg,r, µq, is isomorphic to the free product Fn ˚Zµ1 ˚¨ ¨ ¨˚Zµh , where n “ 2g`r ´1. Note
that Γab “ Zn ‘Λ, where Λ “ Zµ1 ‘ ¨ ¨ ¨ ‘Zµℓ is the torsion subgroup, and each component
of the character group TΓ “ T0

Γ
ˆ TΛ is of the form λ ¨ T0

Γ
for some λ “ pλ1 . . . , λhq P TΛ.

Let ℓpλq “ |ti : λi ‰ 1u|. A computation detailed in [3, Prop. 2.10] shows that

(3.6) V 1
s pΓq “

$

’

&

’

%

TΓ if s ď n ´ 1,

pTΓ zT0
Γ
q Y t1u if s “ n,

Ť

ℓpλqěn´s`1 λ ¨ T0
Γ

if n ă s ă n ` h,

and is empty if s ě n ` h.

Now suppose M is a smooth, quasi-projective variety, and ψ : M Ñ pΣg,r, µq is an orb-
ifold pencil with either n ě 2, or n “ 1 and h ą 0. Since the generic fiber of ψ is con-
nected, the induced homomorphism on orbifold fundamental groups, ψ7 : G “ π1pMq Ñ

Γ “ πorb
1 pΣg,r, µq, is surjective. Therefore, the induced morphism ψ˚

7
: TΓ Ñ TG embeds

V 1
s pΓq—as computed in (3.6)—into V 1

s pMq, for all s ě 1. In particular, if ψ : M Ñ pC˚,mq

is an orbifold pencil with a single multiple fiber of multiplicity m ě 2, then there is a 1-
dimensional algebraic subtorus T Ă H1pM;C˚q and a torsion character ρ R T such that
V 1

1 pMq contains the translated tori ρT, . . . , ρm´1T .

As shown in [61], the (degree 1, depth 1) characteristic variety of an arrangement com-
plement may have irreducible components that do not pass through the origin (see Section
10.2). A combinatorial machine for producing translated subtori in the characteristic va-
rieties of certain arrangements was given in [16]. Namely, suppose A admits a pointed
multinet, that is, a multinet N and a hyperplane H P A for which mH ą 1, and mH | nX

for each flat X in the base locus such that X Ă H. Letting A 1 “ A z tHu be the dele-
tion of A with respect to H, it turns out that V 1

1 pMpA 1qq has a component which is a
1-dimensional subtorus of H1pMpA 1q;C˚q, translated by a character of order mH. Whether
all positive-dimensional translated subtori in the (degree 1, depth 1) characteristic vari-
eties of arrangements occur in this fashion is an open problem. It is also an open problem
whether the isolated (torsion) points in the characteristic varieties of an arrangement are
combinatorially determined.

3.7. Cohomology jump loci of the projectivized complement. Once again, let A be a
(central) hyperplane arrangement in Cd`1. The next result relates the cohomology jump
loci of the complement M “ MpA q to those of the projectivized complement, U “ PpMq.
A more precise relationship in degrees q ą 1 will be given in Corollary 6.13.
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Proposition 3.3. Let π : M Ñ U be the restriction of the Hopf map, π : Cd`1 z t0u Ñ CPd,
to the complement of A , and set n “ |A |. Then,

(1) The induced homomorphism π˚ : H1pU;Cq ãÑ H1pM;Cq restricts to isomorphisms
R1

s pUq
»

ÝÑ R1
s pMq for all 1 ď s ă n and Rq

1 pUq Y Rq´1
1 pUq

»
ÝÑ Rq

1 pMq for all
q ě 1.

(2) The induced morphism π˚ : H1pU;C˚q ãÑ H1pM;C˚q restricts to isomorphisms
V 1

s pUq
»

ÝÑ V 1
s pMq for all 1 ď s ă n and V q

1 pUq Y V q´1
1 pUq

»
ÝÑ V q

1 pMq for all
q ě 1.

Proof. As noted previously, upon fixing a hyperplane H0 P A , the restriction to M “

MpA q of the (trivial) bundle map π : Cd`1 z H0 Ñ CPd
z πpH0q yields a diffeomorphism

M »
ÝÑ U ˆ C˚ so that the following diagram commutes,

(3.7)
M U ˆ C˚

U.

»

π pr1

Thus, we may replace in the argument the map π : M ↠ U by the first-coordinate projection
map pr1 : U ˆ C˚ Ñ U. At this stage, the claims in depth s “ 1 follow from the product
formulas for cohomology jump loci from [52, Prop. 13.1]. For completeness, we provide a
full argument, which works in all cases.

For part (1), consider the cohomology algebras A “ H˚pU ˆ C˚;Cq, A1 “ H˚pU;Cq,
and A2 “ H˚pC˚;Cq, and let a “ pa1, a2q be an element in A1 “ A1

1 ‘ A1
2. By the

Künneth formula, the cochain complex pA, δaq splits as a tensor product of cochain com-
plexes, pA1, δa1q bC pA2, δa2q. Therefore,

(3.8) bqpA, aq “
ÿ

i` j“q

bipA1, a1qb jpA2, a2q.

Clearly, b0pA2, 0q “ b1pA2, 0q “ 1 and b jpA2, a2q “ 0 otherwise. Therefore,

(3.9) bqpA, pa1, a2qq “

#

bqpA1, a1q ` bq´1pA1, a1q if a2 “ 0,
0 if a2 ‰ 0.

In particular, b1pA, pa1, 0qq “ b1pA1, a1q if a1 ‰ 0 and b1pA, 0q “ b1pA1, 0q ` 1. The first
claim follows at once from these formulas.

For part (2), let us identify G “ π1pU ˆ C˚q with π1pUq ˆ Z and the universal cover of
U ˆ C˚ with rU ˆ C. We then have a G-equivariant isomorphism of chain complexes,
C˚p ČU ˆ C˚q – C˚p rUq bC C˚pCq. Given a character ρ “ pρ1, ρ2q in HompG,C˚q –

Hompπ1pUq,C˚q ˆ C˚, we obtain an isomorphism C˚pU ˆ C˚,Cρq – C˚pU,Cρ1q bC
C˚pC˚,Cρ2q. Therefore, HqpU ˆ C˚;Cρq –

À

i` j“q HipU;Cρ1q bC H jpC
˚;Cρ2q, and the
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second claim follows from the fact that H0pC˚;Cq “ H1pC˚;Cq “ C and H jpC
˚;Cρ2q “ 0,

otherwise. □

Now fix an ordering H1, . . . ,Hn of the hyperplanes in A and set H0 “ Hn. Then
H1pM;C˚q may be identified with pC˚qn, with coordinates t “ pt1, . . . , tnq and H1pU;C˚q

may be identified with pC˚qn´1, with coordinates pt1, . . . , tn´1q. The characteristic varieties
of U are then given by

(3.10) V q
s pUq “ tt P pC˚

q
n

| t P V q
s pMq and t1 ¨ ¨ ¨ tn “ 1u;

that is, V q
s pUq is the subvariety of pC˚qn obtained by intersecting V q

s pMq with the subtorus
pC˚qn´1 “ tt : t1 ¨ ¨ ¨ tn “ 1u. Furthermore, the induced homomorphism π˚ : H1pU;C˚q ãÑ

H1pM;C˚q may be identified with the monomial map

(3.11) pC˚
q

n´1 ãÑ pC˚
q

n, pt1, . . . , tn´1q ÞÑ
`

t1, . . . , tn´1, t´1
1 ¨ ¨ ¨ t´1

n´1

˘

.

In turn, this map restricts to isomorphisms V 1
s pUq

»
ÝÑ V 1

s pMq for all 1 ď s ă n and
V q

1 pUq Y V q´1
1 pUq

»
ÝÑ V q

1 pMq for all q ě 1, where, in fact, V q
1 pUq Y V q´1

1 pUq “ V q
1 pUq,

as we shall see in Corollary 6.12.

Similar considerations apply to the resonance varieties of M and U, with the induced
homomorphism π˚ : H1pU;Cq ãÑ H1pM;Cq being identified with the linear map Cn´1 ãÑ

Cn, px1, . . . , xn´1q ÞÑ px1, . . . , xn´1,´px1 ` ¨ ¨ ¨ ` xn´1qq.

4. Milnor fibrations of arrangements

4.1. The Milnor fibration of a multi-arrangement. Let A be a central arrangement of
n hyperplanes in Cd`1, and fix an ordering on A . To each hyperplane H P A , we may
associate a multiplicity mH P N. This yields a multi-arrangement pA ,mq, where m “

pmHqHPA P Nn is the resulting multiplicity vector, and a homogeneous polynomial,

(4.1) fm “
ź

HPA

f mH
H

of degree N “
ř

HPA mH. Note that fm is a proper power if and only if gcdpmq ą 1, where
gcdpmq “ gcdpmH : H P A q.

The polynomial map fm : Cd`1 Ñ C restricts to a map fm : MpA q Ñ C˚. As shown by
Milnor [43] in a much more general context, fm is the projection map of a smooth, locally
trivial bundle, known as the (global) Milnor fibration of the multi-arrangement pA ,mq,

(4.2) Fm M C˚.
fm

The typical fiber of this fibration, f ´1
m p1q, is a smooth manifold of dimension 2d, called

the Milnor fiber of the multi-arrangement, denoted Fm “ FmpA q. It is readily seen that Fm
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is a Stein domain of complex dimension d, and thus has the homotopy type of a finite CW-
complex of dimension at most d—in fact, of dimension at most rankpA q´1. Moreover, Fm
is connected if and only if gcdpmq “ 1, a condition we will assume henceforth. As shown
in [64], the homomorphism p fmq7 : π1pMq Ñ π1pC˚q induced on fundamental groups by fm
is the map µm : π1pMq Ñ Z given by xH ÞÑ mH. In the case when all the multiplicities mH

are equal to 1, the polynomial f “ fm is the usual defining polynomial and F “ Fm is the
usual Milnor fiber of A .

For each θ P r0, 1s, let Fθ “ f ´1
m pe2π i θq be the fiber over the point e2π i θ P C˚. For each

z P M, the path γθ : r0, 1s Ñ C˚, t ÞÑ e2π i tθ lifts to a path γ̃θ,z : r0, 1s Ñ M, t ÞÑ e2π i tθ{Nz
which satisfies γ̃θ,zp0q “ z. Notice that fmpγ̃θ,zp1qq “ e2π i θ fmpzq; thus, if z P F0 “ Fm, then
γ̃θ,zp1q P Fθ. By definition, the monodromy of the Milnor fibration is the diffeomorphism
h : F0 Ñ F1 given by hpzq “ γ̃1,zp1q. In view of these observations, we may interpret h as
the self-diffeomorphism h : Fm Ñ Fm of order N given by z ÞÑ e2π i {Nz, and identify the
complement M with the mapping torus of h.

4.2. The Milnor fiber as a finite cyclic cover. The monodromy diffeomorphism h : Fm Ñ

Fm generates a cyclic group of order N “
ř

HPA mH which acts freely on Fm. The quotient
space, Fm{ZN , may be identified with the projective complement, U “ PpMq, in a manner
such that the projection map, σm : Fm ↠ Fm{ZN , coincides with the restriction of the Hopf
fibration map, π : M ↠ U, to the subspace Fm. Letting ιm : Fm Ñ M denote the inclusion
map, all this information may be summarized in the diagram

(4.3)

C˚

Fm M C˚,

U

υ
zÞÑzN

ιm

σm

fm

π

where both the row and the column are fibrations and the diagonal arrows are N-fold cyclic
covers. Consequently, the Euler characteristic of the Milnor fiber is given by χpFmq “

N ¨ χpUq. Taking fundamental groups in (4.3), we obtain the diagram

(4.4)

Z

1 π1pFmq π1pMq Z 1,

π1pUq

¨Nυ7

pσmq7

pιmq7

π7

µm
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with exact row and column. By construction, σm “ π ˝ ιm, and so the lower triangle
commutes. The upper triangle in (4.4) also commutes, since υ7p1q is the product of the
meridians γH (taken in the order given by an ordering of the hyperplanes), and since N “
ř

HPA mH. Hence, the homomorphism µm : π1pMq↠ Z descends to an epimorphism,

(4.5) χm : π1pUq ZN ,

given by γH ÞÑ mH mod N. As shown in [12, 9, 62, 64], the regular, N-fold cyclic cover
σm : Fm Ñ U is classified by this epimorphism. In particular, the usual Milnor fiber
F “ FpA q is classified by the “diagonal” homomorphism, χ : π1pUq ↠ Zn, given by
χpγHq “ 1, for all H P A .

4.3. The characteristic polynomial of the algebraic monodromy. We now fix an order-
ing on the n hyperplanes of A , and identify the character group H1pU;C˚q with pC˚qn´1.
Recall we also fixed an embedding j : ZN ãÑ C˚, 1 ÞÑ e2π i {N . By (4.5), the character
ρm “ j ˝ χm : π1pUq Ñ C˚ is given by γH ÞÑ e2π i mH{N; hence, for each divisor k of N, the
character ρN{k

m takes γH to e2π i {k. By formula (3.4), the Betti numbers of the Milnor fiber
Fm “ FmpA q are given by

(4.6) bqpFmq “ bqpUq `
ÿ

1ăk|N

φpkq depthqpρ
N{k
m q.

Likewise, formula (3.5) implies that the characteristic polynomial of the algebraic mon-
odromy h˚ : HqpFm;Cq Ñ HqpFm;Cq is given by

(4.7) ∆qptq “ pt ´ 1q
bqpUq

¨
ź

1ăk|N

Φkptqdepthqpρ
N{k
m q.

In the above expressions, the crucial quantities are the (non-negative) depths of the char-
acters ρN{k

m P H1pU;C˚q, which depend on the position of these characters with respect
to the characteristic varieties V q

s pUq. Here are some basic (well-known) examples of how
such a computation goes.

Example 4.1. Let A be a pencil of n ě 3 lines through the origin of C2 defined by the
polynomial f “ xn ´ yn. Then U is homeomorphic to Σ0,n “ C z tn ´ 1 pointsu, and so
its characteristic varieties are V 1

1 pUq “ ¨ ¨ ¨ “ V 1
n´2pUq – pC˚qn´1 and V 1

n´1pUq “ t1u

(see Example 3.1). It follows that b1pFq “ n ´ 1 ` pn ´ 2qpn ´ 1q “ pn ´ 1q2 and
∆1ptq “ pt ´ 1qptn ´ 1qn´2. In turn, either this computation or an Euler characteristic
argument shows that F “ Σg,n, a Riemann surface of genus g “

`n´1
2

˘

with n punctures. ^

Example 4.2. Let A be the braid arrangement in C3, defined by the polynomial f “

px`yqpx´yqpx`zqpx´zqpy`zqpy´zq. Its complement M is, up to aC factor, homeomorphic
to the complement of the reflection arrangement of type A3 in C4; thus, π1pMq “ P4.
Labeling the hyperplanes of A as the factors of f , the flats in L2pA q may be labeled as
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‚ ‚

‚

‚

x ` z x ´ y

y ` z

y ´ z

x ´ z x ` y

Figure 1. A p3, 2q-net on the braid arrangement

136, 145, 235, and 246. The braid arrangement supports a p3, 2q-net, corresponding to the
partition p12|34|56q depicted in Figure 1. This net defines a rational map, ψ : CP2 d CP1,
sending rx, y, zs ÞÑ rx2 ´ y2, x2 ´ z2s. In turn, this map restricts to a pencil, ψ : U Ñ Σ0,3 “

CP1
z tr0, 1s, r1, 0s, r1, 1su, which yields by pullback a 2-dimensional essential component

of V 1
1 pUq, namely, the subtorus

(4.8) T “ tps, s, t, t, pstq´1
q : s, t P C˚

u.

Letting ρ : π1pUq Ñ C˚, γH ÞÑ e2π i {6 be the diagonal character which defines the Z6-
cover σ : F Ñ U, we have that ρ2 P T , yet ρ R T . Since V 1

2 pUq “ t1u, it follows that
b1pFq “ 5 ` φp3q ¨ depth1pρ2q “ 5 ` 2 ¨ 1 “ 7 and ∆1ptq “ pt ´ 1q5pt2 ` t ` 1q. ^

More generally, as shown in [54, Thm. 1.6], if an arrangement of projective lines in
CP2 has only double or triple points, then the characteristic polynomial of the algebraic
monodromy of the Milnor fibration is given by a completely combinatorial formula.

For an arrangement A and a prime p, define βppA q B maxts : ω P R1
s pMpA q;Zpqu,

where ω “
ř

HPA eH P H1pMpA q;Zpq. Clearly, the non-negative integer βppA q depends
only on Lď2pA q and p.

Theorem 4.3 ([54]). Suppose L2pA q has only flats of multiplicity 2 and 3. Then β3pA q P

t0, 1, 2u and
∆1ptq “ pt ´ 1q

|A |´1
¨ pt2

` t ` 1q
β3pA q.

Moreover, β3pA q ‰ 0 if and only if A supports a 3-net.

4.4. Trivial algebraic monodromy. Henceforth, we will concentrate mainly on the case
when the algebraic monodromy of the Milnor fibration is trivial. More precisely, suppose
Fm Ñ M Ñ C˚ is the Milnor fibration of a multi-arrangement pA ,mq, with monodromy
diffeomorphism h : Fm Ñ Fm. We say that pA ,mq has trivial algebraic monodromy over
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k (where k is either Z or a field) if h˚ : H˚pFm; kq Ñ H˚pFm; kq is the identity. Clearly,
when k a field, this condition only depends on the characteristic of k.

The condition that h˚ : HqpFm;Qq Ñ HqpFm;Qq be the identity is equivalent to ∆qptq “

pt ´ 1qbqpFmq. Thus, in view of formulas (4.6) and (4.7), the condition is equivalent to
bqpFmq “ bqpUq, where U “ PpMq. Therefore, pA ,mq has trivial algebraic monodromy
overQ if and only if H˚pFm;Qq – H˚pU;Qq. In fact, more is true. As noted previously, the
homology groups of both U and M are torsion-free. Making use of the Künneth formula
for M – U ˆ C˚ and the Wang exact sequence for the fibration Fm Ñ M Ñ C˚, we
conclude that pA ,mq has trivial algebraic monodromy over k (where k “ Z or k a field) if
and only if H˚pFm; kq – H˚pU; kq. Likewise, h˚ : H1pFm;Zq Ñ H˚pFm;Zq is the identity
if and only if H1pFm;Zq “ Zn´1, where n “ |A |.

Remark 4.4. Triviality of the algebraic monodromy in degree q “ 1 does not imply trivi-
ality of the action in higher degrees. For instance, if A is a graphic arrangement, that is, a
sub-arrangement of the braid arrangement of type An´1 from Example 2.1, then h˚ always
acts trivially on H1pFpA q;Qq, except when A is a reflection arrangement of type A2 or
A3, see [40, Thm. B]. On the other hand, if A is the braid arrangement of type An´1, then
h˚ always acts non-trivially on the top homology group, Hn´2pFpA q;Qq, see [14, §7].

Unlike the homology groups of the complement M, examples from [9, 16, 76] show that
the homology groups of the Milnor fiber Fm may have non-trivial torsion. Therefore, if the
monodromy h : Fm Ñ Fm acts as the identity on HqpFm;Qq, for some q ě 1, we cannot
conclude that it also acts as the identity on HqpFm;Zq. Indeed, if HqpFm;Zq has torsion,
then the Wang sequence of the fibration Fm Ñ M Ñ C˚ shows that h˚ : HqpFm;Zq Ñ

HqpFm;Zq cannot be equal to the identity. We will illustrate this point in Sections 10–11.

4.5. Triviality tests. Let A be a central arrangement of n hyperplanes in C3. For the usual
Milnor fiber F “ FpA q, there are two useful tests informing on whether the algebraic
monodromy h˚ : H1pF;Cq Ñ H1pF;Cq is equal to the identity. Both of these tests are
based on the nature of the multinets supported by LpA q and of the characteristic varieties
of the complement M “ MpA q.

We start with a criterion insuring the triviality of the algebraic monodromy. We will say
that a subvariety of the algebraic torus pC˚qn is essential if it is not contained in any proper
coordinate subtorus.

Proposition 4.5. If the characteristic variety V 1
1 pMq has no essential irreducible compo-

nents, then the algebraic monodromy h˚ : H1pF;Cq Ñ H1pF;Cq is trivial.

Proof. Set n “ |A |. By formulas (3.4) and (4.5), the first Betti number of F is given by

(4.9) b1pFq “
ÿ

sě1

ˇ

ˇimpχ˚
q X V 1

s pUq
ˇ

ˇ ,
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where U “ PpMq and χ : π1pUq Ñ Zn is the homomorphism that sends each meridian
curve γH to 1. The cyclic subgroup impχ˚q Ă H1pU;C˚q – pC˚qn´1 is generated by the
character ρ “ pζ, . . . , ζq, where ζ “ e2π i {n.

Recall that the Hopf map π : M Ñ U induces a homomorphism π˚ : H1pU;C˚q Ñ

H1pM;C˚q which restricts to an isomorphism V 1
1 pUq

»
ÝÑ V 1

1 pMq. Recall also that the map
π˚ : pC˚qn´1 Ñ pC˚qn is given in coordinates by formula (3.11). Since ζn “ 1, it follows
that π˚pimpχ˚qq is the cyclic subgroup of pC˚qn generated by ρ̃ “ pζ, . . . , ζ, ζq. Therefore,
π˚pimpχ˚qq is contained in the diagonal subtorus T∆ “ tpz, . . . , zq | z P C˚u Ă pC˚qn.

Now let C be an irreducible component of V 1
1 pMq. By our assumption, C lies in a proper

coordinate subtorus of H1pM;C˚q “ pC˚qn; hence, C intersects intersects T∆ only at the
identity. It follows that π˚pimpχ˚qq XV 1

1 pMq “ t1u, and therefore impχ˚q XV 1
1 pUq “ t1u.

In view of (4.9), this shows that b1pFq “ n ´ 1, and the proof is complete. □

The following criterion for non-triviality of the algebraic monodromy is proved in [54,
Thm. 8.3], based on results from [20] and [28].

Proposition 4.6 ([54]). Let A be a central arrangement in C3. If A admits a reduced
multinet, then the algebraic monodromy (in degree 1) over C is non-trivial.

If an arrangement supports essential multinets, but none of those multinets is reduced,
then the algebraic monodromy (overC) may still be trivial, as illustrated by the B3 reflection
arrangement from Section 10.1, though it may also be non-trivial, as illustrated by the
complex reflection arrangements of type Gp3d ` 1, 1, 3q with d ą 0 from [54, Ex. 8.11].

5. Cohomology jump loci ofMilnor fibers

In this section, we analyze the resonance and characteristic varieties of the Milnor fibers
of a hyperplane arrangement, under the assumption that the algebraic monodromy of the
Milnor fibration is trivial.

5.1. Cohomology jump loci in finite regular covers. We start with some general results
regarding the behavior of jump loci in finite regular covers. These results were proved by
Dimca and Papadima in [20, Prop. 2.1, Cor. 2.2, Thm. 2.8]. In the next two propositions,
we state them in a slightly modified form, that is better adapted to our context.

Proposition 5.1 ([20]). Let p : Y Ñ X be a finite regular cover. Then,

(1) The induced homomorphism p˚ : H1pX;Cq Ñ H1pY;Cq is an injection which re-
stricts to maps p˚ : Rq

s pXq Ñ Rq
s pYq, for all q ě 0 and s ě 1.

(2) The morphism p˚ : H1pX;C˚q Ñ H1pY;C˚q restricts to maps p˚ : V q
s pXq Ñ V q

s pYq,
for all q ě 0 and s ě 1.
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When the action of the group of deck transformations of the cover is homologically
trivial (in degree 1), more can be said.

Proposition 5.2 ([20]). Let p : Y Ñ X be a finite regular cover. Suppose the group of deck
transformations acts trivially on H1pY;Qq. Then,

(1) The map p˚ : H1pX;Cq Ñ H1pY;Cq is an isomorphism that identifies R1
s pXq with

R1
s pYq, for all s ě 1.

(2) The map p˚ : H1pX;C˚q0 Ñ H1pY;C˚q0 is a surjection with finite kernel. Moreover,
if X is 1-formal, this map establishes a bijection between the sets of irreducible
components of W 1

s pXq and W 1
s pYq that pass through the identity, for all s ě 1.

Let us note that the homological triviality hypothesis of this proposition is definitely
needed. For instance, if X is a wedge of n circles (n ě 2), and p : Y Ñ X is a k-fold cover
(k ě 2), then R1

1 pXq “ Cn, whereas R1
1 pYq “ Ckpn´1q`1, and so the map p˚ : R1

1 pXq Ñ

R1
1 pYq is not surjective.

5.2. Cohomology jump loci in extensions. Next, we recall some general results relating
cohomology jump loci in group extensions. In [69], we made a detailed analysis of how
the characteristic and resonance varieties behave under certain split extensions with trivial
monodromy action in homology. We summarize those results in the form that will be
needed here.

Theorem 5.3 ([69]). Let 1 K G Q 1ι be a split exact sequence of finitely
generated groups. Assume Q is abelian. Then,

(1) If Q acts trivially on H1pK;Zq, then the induced homomorphism ι˚ : H1pG;C˚q Ñ

H1pK;C˚q restricts to maps ι˚ : V 1
s pGq Ñ V 1

s pKq for all s ě 1; furthermore,
ι˚ : V 1

1 pGq Ñ V 1
1 pKq is a surjection.

(2) If Q is torsion-free and acts trivially on H1pK;Qq, then the map ι˚ : H1pG;C˚q0 Ñ

H1pK;C˚q0 restricts to maps ι˚ : W 1
s pGq Ñ W 1

s pKq for all s ě 1; furthermore,
ι˚ : W 1

1 pGq Ñ W 1
1 pKq is a surjection.

(3) If Q acts trivially on H1pK;Qq and G is 1-formal, then the map ι˚ : H1pG;Cq Ñ

H1pK;Cq restricts to maps ι˚ : R1
s pGq Ñ R1

s pKq for all s ě 1; furthermore,
ι˚ : R1

1 pGq Ñ R1
1 pKq is a surjection.

All these results are sharp. For instance, regarding part (3), we make the following
observation: In depth s ą 1, the map ι˚ : R1

s pGq Ñ R1
s pKq is not necessarily a surjection,

while in depth s “ 1 it is not necessarily an isomorphism. We illustrate both assertions
with an example (see [50, 51] for the necessary background).

Example 5.4. Let G “ xa1, . . . , a4 | ra1, a2s “ ra2, a3s “ ra3, a4s “ 1y be the right-angled
Artin group associated to a path Γ on 4 vertices, and let K be the corresponding Bestvina–
Brady group. We then have an exact sequence 1 Ñ K ι

ÝÑ G ν
ÝÑ Z Ñ 1, where ν is the
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homomorphism sending each generator ai to 1. Since Γ is a tree, the group K is free (of rank
3), and so R1

1 pKq “ R1
2 pKq “ C3. On the other hand, R1

1 pGq “ tx2 “ 0u Y tx3 “ 0u and
R1

2 pGq “ tx2 “ x3 “ x4 “ 0u Y tx1 “ x2 “ x3 “ 0u. Thus, the map ι˚ : R1
s pGq Ñ R1

s pKq

is not a surjection for s “ 2 and is not an isomorphism for s “ 1. ^

5.3. Cohomology jump loci of Milnor fibers. As before, let pA ,mq be a multi-arrange-
ment. Denote by ιm : Fm ãÑ M the inclusion map of the Milnor fiber Fm “ FmpA q into
the complement M “ MpA q and by σm “ π ˝ ιm : Fm Ñ U the restriction of the Hopf
map π : M Ñ U “ PpMq to Fm. Applying Proposition 5.1 to the finite, regular cover
σm : Fm Ñ U, we obtain the following immediate corollary.

Corollary 5.5. For all q, s ě 1, the following hold.

(1) The induced morphism σ˚
m : H1pU;Cq ãÑ H1pFm;Cq restricts to maps Rq

s pUq ãÑ

Rq
s pFmq.

(2) The morphismσ˚
m : H1pU;C˚q Ñ H1pFm;C˚q restricts to maps V q

s pUq Ñ V q
s pFmq.

Consider now the usual Milnor fiber, F “ FpA q, and the finite cyclic cover σ : F Ñ

U. In general, the morphism σ˚ : V 1
1 pUq Ñ V 1

1 pFq from Corollary 5.5, part (2) is not
surjective. For instance, suppose A admits a non-trivial, reduced multinet, and let T be
the corresponding component of V 1

1 pUq. It is then shown in [20, Cor. 3.3] that V 1
1 pFq has

a component W passing through the identity and containing σ˚pT q as a proper subset. We
illustrate this phenomenon with a concrete example.

Example 5.6. Let A be the braid arrangement from Example 4.2. Recall that V 1
1 pUq Ă

pC˚q5 has four local components, T1, . . . ,T4, corresponding to the four triple points of
¯A , and an essential, 2-dimensional component T , corresponding to the p3, 2q-net de-

picted in Figure 1. Let ψ : U Ñ S “ Σ0,3 be the pencil defined by this net, so that
T “ ψ˚pH1pS ;C˚qq. Note that S “ UpBq, where B is the arrangement in C2 defined
by the polynomial xypx ´ yq; therefore, the Milnor fiber of this arrangement, Ŝ “ FpBq,
may be identified with Σ1,3 “ S 1 ˆ S 1 z t3 pointsu (see Example 4.1). Let ν : Ŝ Ñ S be the
corresponding Z3-cover, and consider the pull-back diagram,

(5.1)
Û Ŝ

U S .

τ

ψ̂

ν

ψ

In the above, τ : Û Ñ U is the pull-back along ψ of the cover ν : Ŝ Ñ S . By construc-
tion, τ is the Z3-cover defined by the diagonal homomorphism π1pUq Ñ Z3. It is readily
seen that H1pÛ;Zq “ Z7. By [77, Prop. 2], the map ψ̂ is an (irrational) pencil on Û; there-
fore, the 4-dimensional torus W0 “ ψ̂˚pH1pŜ ;C˚qq is a component of the characteristic
variety V 1

1 pÛq Ă pC˚q7.
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Finally, let F “ FpA q be the Milnor fiber of A . Note that the Z6-cover σ : F Ñ

U factors as the composite F κ
ÝÑ Û τ

ÝÑ U, where κ is a 2-fold cover. Therefore, the
characteristic variety V 1

1 pFq has four 2-dimensional components, σ˚pT1q, . . . , σ˚pT4q, as
well as a 4-dimensional component, W “ κ˚pW0q, which strictly contains σ˚pT q. Direct
computation shows that V 1

1 pFq has no other irreducible components. ^

5.4. Arrangements with trivial algebraic monodromy. We return now to the general
case of a multi-arrangement pA ,mq. As usual, let Fm be the Milnor fiber of the multi-
arrangement, and let σm : F Ñ U be the corresponding ZN-cover, where N “

ř

HPA mH.
Using the machinery developed above, we obtain the following theorem, which sharpens
results from [20] in a way that will be needed later on.

Theorem 5.7. Suppose the monodromy h : Fm Ñ Fm induces the identity on H1pFm;Qq.
Then,

(1) The induced homomorphism σ˚
m : H1pU;Cq Ñ H1pFm;Cq is an isomorphism that

identifies R1
s pUq with R1

s pFmq, for all s ě 1.
(2) The induced homomorphism σ˚

m : H1pU;C˚q Ñ H1pFm;C˚q0 is a surjection with
kernel isomorphic to ZN . Moreover,
(a) For each s ě 1, the map σ˚

m establishes a bijection between the sets of irre-
ducible components of V 1

s pUq and W 1
s pFmq that pass through the identity.

(b) The map σ˚
m : V 1

1 pUq Ñ W 1
1 pFmq is a surjection.

Proof. We start with some preliminary observations. From the discussion in Section 4.2,
we know that the map σm : Fm Ñ U is a regular ZN-cover, corresponding to the exact
sequence

(5.2) 1 π1pFmq π1pUq ZN 1.
pσmq7 χm

As noted in Section 4.4, the assumption that h : Fm Ñ Fm induces the identity on H1pFm;Qq

is equivalent to H1pFm;Qq – H1pU;Qq. It follows that we have an exact sequence,

(5.3) 0 H1pFm;Zq{ Tors H1pU;Zq ZN 0.
pσmq˚ pχmq˚

We now proceed with the proof. Claim (1) follows directly from Proposition 5.2, part (1).
To prove the first assertion of Claim (2), we apply the functor H1p´;C˚q “ Homp´,C˚q

to the exact sequence (5.3). Since the abelian groups C˚ is divisible, and thus an injective
Z-module, we obtain an exact sequence,

(5.4) 0 H1pFm;C˚q0 H1pU;C˚q H1pZN;C˚q 0.
σ˚

m χ˚
m

Identifying the group H1pZN;C˚q with its Pontryagin dual, ZN , completes the proof of the
first part of Claim (2).
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Since the space U is formal, Claim (2a) follows from Proposition 5.2, part (2).

Finally, recall from diagram (4.4) that we have a (split) exact sequence,

(5.5) 1 π1pFmq π1pMq Z 1.
pιmq7 µm

Our hypothesis on the monodromy h says that Z acts trivially on H1pFm;Qq. Thus, we
may apply Theorem 5.3 and conclude that the morphism ι˚m : H1pM;C˚q Ñ H1pFm;C˚q0

restricts to a surjection, ι˚m : V 1
1 pMq ↠ W 1

1 pFmq. On the other hand, as shown in Propo-
sition 3.3, part (2), the map π˚ : H1pU;C˚q Ñ H1pM;C˚q restricts to an isomorphism,
π˚ : V 1

1 pUq
»

ÝÑ V 1
1 pMq. Since σm “ π ˝ ιm, Claim (2b) follows, and the proof is com-

plete. □

6. Abelian duality and propagation of cohomology jump loci

6.1. Abelian duality spaces. Let X be a space having the homotopy type of a connected,
finite CW-complex of dimension m. Without loss of generality, we may assume X has a
single 0-cell, say, x0. Letting G “ π1pX, x0q be the fundamental group of X, the group ring
of its abelianization, R “ ZrGabs, may be viewed as a module over ZG via extension of
scalars. Inspired by the classical notion of “duality group” due to Bieri and Eckmann, the
following concept was introduced in [19].

We say that X is an abelian duality space (for short, ab-duality space) of dimension m
if HqpX; Rq “ 0 for q ‰ m and HmpX,Rq is non-zero and torsion-free. In that case, for all
(left) R-modules A and all q ě 0, we have isomorphisms

(6.1) Hq
pX; Aq – TorR

m´qpD; Aq – Hm´qpGab; D bZ Aq,

where D “ HmpX; Rq, viewed as an R-module. Consequently, if Y Ñ X is a connected,
regular abelian cover, classified by an epimorphism G ab

ÝÑ Gab
χ
ÝÑ H, where H is a (finitely

generated) abelian group, then HqpY;Zq – Extm´q
R pD,Hq, for all q ě 0.

Motivated by our work in [69], we adapt this definition to a related context. Let Gabf “

Gab{ Tors be the maximal torsion-free abelian quotient of G. We say that X is a torsion-free
abelian duality space (for short, abf-duality space) of dimension m if the above conditions
are satisfied with R “ ZrGabs replaced by ZrGabfs. Clearly, if X is an abelian duality space
and Gab “ H1pX;Zq is torsion-free, then X is a torsion-free abelian duality space.

6.2. Formality. Recall that both an arrangement complement, M “ MpA q, and its pro-
jectivization, U “ PpMq, are (rationally) formal spaces. Moreover, for every choice of
multiplicities m on A , the Milnor fiber Fm is a cyclic, regular cover of U. This raises the
question of whether these Milnor fibers are also formal spaces—or, at least q-formal, for
some q ě 1. The following lemma gives a sufficient condition for this to happen.
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Lemma 6.1 ([20]). Let Y Ñ X be a finite, regular cover, and suppose the group of deck-
transformations acts trivially on HipY;Qq, for all i ď q. Then Y is q-formal if and only if
X is q-formal.

Corollary 6.2. Let pA ,mq be a multi-arrangement of rank r, with Milnor fiber Fm and
monodromy h : Fm Ñ Fm.

(1) If the algebraic monodromy h˚ : HipFm;Qq Ñ HipFm;Qq is the identity for all
i ď q, for some q ě 1, then Fm is q-formal.

(2) If h˚ : HipFm;Qq Ñ HipFm;Qq is the identity for all i ď r ´ 2, then Fm is formal.

Proof. Part (1) follows directly from the above lemma. For part (2), first recall that Fm has
the homotopy type of a finite CW-complex of dimension at most r ´ 1. Thus, the claim
follows from part (1) and the discussion in Section 2.4. □

In general, though, Milnor fibers may be non-formal, as illustrated by the following
example of Zuber [77].

Example 6.3. Let A “ A p3, 3, 3q be the monomial arrangement inC3 defined by the poly-
nomial f “ px3 ´y3qpy3 ´ z3qpx3 ´ z3q. There are four p3, 3q-nets on A , associated with the
partitions p123|456|789q, p147|258|369q, p159|267|348q, and p168|249|357q in a suitable
ordering of the hyperplanes. The first of these nets defines a rational map, ψ : CP2 d CP1,
rx :y :zs ÞÑ rx3 ´y3 : x3 ´z3s, which in turn restricts to a pencil ψ : U Ñ S from U “ UpA q

to S “ CP1
z tr1 : 0s, r0 : 1s, r1 : 1su. Let T “ ψ˚pH1pS ;C˚qq be the essential 2-dimensional

component of V 1
1 pUq obtained by pullback along this pencil. The subgroup generated by

the diagonal character ρ : π1pUq Ñ C˚ intersects V 1
2 pUq at the identity 1 and two other

points, both lying on T , and both of order 3. Hence, ∆1ptq “ pt ´ 1q8p1 ` t ` t2q2.

Next, let B be the arrangement in C2 defined by the polynomial xypx ´ yq, and let
ν : Ŝ “ FpBq Ñ S “ UpBq be the corresponding 3-fold cover. As shown in [77, Prop. 2],
the rational pencil ψ : U Ñ S “ Σ0,3 lifts to an irrational pencil, ψ̂ : Û Ñ Ŝ “ Σ1,3, as in
diagram (5.1). Here τ : Û Ñ U is the pull-back of ν along ψ, that is, the Z3-cover defined by
the diagonal homomorphism π1pUq↠ Z3. It is readily seen that H1pÛ;Zq “ Z12; therefore,
the 4-dimensional torus W0 “ ψ̂˚pH1pŜ ;C˚qq is a component of the characteristic variety
V 1

1 pÛq Ă pC˚q12.

Finally, let F “ FpA q be the Milnor fiber of A . Then the Z9-cover σ : F Ñ U factors
as the composite F κ

ÝÑ Û τ
ÝÑ U, where κ is a 3-fold cover. Therefore, the characteristic

variety V 1
1 pFq has a 4-dimensional component, W “ κ˚pW0q, which strictly contains the 2-

dimensional subtorus σ˚pT q. Write W “ exppLq, for some linear subspace L Ă H1pF;Cq.
Using the mixed Hodge structure on H˚pF;Cq, Zuber showed in [77] that L cannot be a
component of the resonance variety R1

1 pFq. Therefore, TC1pV 1
1 pFqq Ř R1

1 pFq, and so, by
the Tangent Cone theorem of [22], F is not 1-formal. ^
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6.3. Ab- and abf-exactness. Let F E Bι π be a fibration sequence of connected
CW-complexes. Setting K “ π1pFq, G “ π1pEq, and Q “ π1pBq, we have an exact
sequence K

ι7
ÝÑ G

π7

ÝÑ Q Ñ 1. Moreover, the exact sequence of low-degree terms in the
Serre spectral sequence of the fibration takes the form

(6.2) H2pE;Zq H2pB;Zq H1pF;ZqQ H1pE;Zq H1pB;Zq 0 ,
π˚ δ ι˚ π˚

where H1pF;ZqQ denotes the coinvariants of Kab “ H1pF;Zq under the action of Q.

Following [19], we say that the fibration is ab-exact if (1) Q acts trivially on Kab; and (2)
the homomorphism δ is zero. In the presence of the first condition, the second condition is
equivalent to the exactness of the sequence 0 Ñ Kab Ñ Gab Ñ Qab Ñ 0. Finally, as shown
in [69, Prop. 8.4], if K Ÿ G and the sequence 1 Ñ K Ñ G Ñ Q Ñ 1 is exact and admits a
splitting, then the fibration is ab-exact if and only if Q acts trivially on Kab.

As shown in [19, Prop. 4.13], the notion of ab-duality behaves well with respect to ab-
exact fibrations: if any two of the spaces have the abelian duality property, then the third
one does, too. In particular, the product of two ab-exact exact spaces is again ab-exact. We
record here the part of this result that will be needed later on.

Proposition 6.4 ([19]). Suppose F Ñ E Ñ B is an ab-exact fibration of connected, finite-
type CW-complexes. If E and B are ab-duality spaces of dimensions m and n, respectively,
and if dim F “ m ´ n, then F is an ab-duality space of dimension m ´ n.

By analogy with the above notions, we say that a fibration F Ñ E Ñ B is abf-exact if
Q acts trivially on Kabf and the composite H2pB;Zq

δ
ÝÑ H1pF;ZqQ ↠ Kabf is zero. In the

presence of the first condition, the second condition is equivalent to the exactness of the
sequence 0 Ñ Kabf Ñ Gabf Ñ Qabf Ñ 0. Alternatively, let δQ : H2pB;Qq Ñ H1pK;Qq

be the analog of the map δ in the exact sequence (6.2) with Q-coefficients. Since Kabf is
finitely generated, an argument similar to the one used in [69, Lem. 9.2] shows that the
fibration is abf-exact if and only if Q acts trivially on H1pF;Qq and δQ is the zero map.
Finally, as shown in [69, Prop. 9.4], if K Ÿ G and the sequence 1 Ñ K Ñ G Ñ Q Ñ 1 is
split exact, then the fibration is abf-exact if and only if Q acts trivially on H1pF;Qq.

The same argument as in [19], using now the Serre spectral sequence of the fibration
F Ñ E Ñ B with coefficients in ZrGabfs instead of ZrGabs, shows the following: if any two
of the spaces have the torsion-free abelian duality property, then the third one does, too.
In particular, the product of two abf-exact exact spaces is again abf-exact. We record here
only the result that we shall need later in this section.

Proposition 6.5. Suppose F Ñ E Ñ B is an abf-exact fibration of connected, finite-type
CW-complexes. If E and B are abf-duality spaces of dimensions m and n, respectively, and
if dim F “ m ´ n, then F is an abf-duality space of dimension m ´ n.



28 ALEXANDRU I. SUCIU

6.4. Propagation of jump loci. One of the main motivations for the study of the abelian
duality properties of spaces is the implications these properties have on the nature of the
cohomology jump loci and the Betti numbers of those spaces. We start with a result relating
ab-duality to propagation of characteristic varieties.

Theorem 6.6 ([19]). Let X be an abelian duality space of dimension m. Then the char-
acteristic varieties of X propagate; that is, for any character ρ P H1pX;C˚q such that
HppX;Cρq ‰ 0, it follows that HqpX;Cρq ‰ 0 for all p ď q ď m. Equivalently,

(6.3) t1u “ V 0
1 pXq Ď V 1

1 pXq Ď V 2
1 pXq Ď ¨ ¨ ¨ Ď V m

1 pXq.

Applying this theorem to the trivial character ρ “ 1, it follows at once that bqpXq ą 0
for 0 ď q ď m. Moreover, as shown in [19, Prop. 5.9], we also have b1pXq ě m. Finally, as
noted in [37, Thm. 1.8], the above result implies that the “signed Euler characteristic” of an
m-dimensional ab-duality space, p´1qmχpXq, is non-negative. A similar argument—using
[19, Prop. 2.8], applied to the CrGabfs-chain complex C˚pX;CrGabfsq—yields the following
result.

Theorem 6.7. Let X be an abf-duality space of dimension m. Then

(6.4) t1u “ W 0
1 pXq Ď W 1

1 pXq Ď W 2
1 pXq Ď ¨ ¨ ¨ Ď W m

1 pXq.

Now suppose X is formal. Then, the Tangent Cone theorem of [22, 21], allows us to
identify the tangent cone at 1 to V q

1 pXq with Rq
1 pXq for all q ď m. Applying Theorem 6.6 ,

we obtain the following immediate corollary.

Corollary 6.8. Let X is an abelian duality space of dimension m. If X is q-formal, for some
q ď m, then R1

1 pXq Ď ¨ ¨ ¨ Ď Rq
1 pXq. In particular, if X is formal, then the resonance

varieties of X propagate; that is, R1
1 pXq Ď ¨ ¨ ¨ Ď Rm

1 pXq.

Remark 6.9 ([19]). If X is a connected, finite, 2-dimensional CW-complex with χpXq ě 0
and b1pXq ą 0, then both the characteristic and the resonance varieties of X propagate (that
is, V 1

1 pXq Ď V 2
1 pXq and R1

1 pXq Ď R2
1 pXq), even though X may be neither an abelian duality

space nor a formal space. On the other hand, if X is a closed, orientable 3-manifold with
b1pXq even and non-zero, then the resonance varieties do not propagate, since R1

1 pXq “

H1pX;Cq, whereas R3
1 pXq “ t0u.

6.5. Abelian duality and propagation for arrangements. A basic topological property
of arrangement complements is provided by the following result, which is proved in [18,
Thm. 5.6] (see also [19, Thm. 6.1]).

Theorem 6.10 ([18, 19]). Let A be a central arrangement of rank r. Then the complement
M “ MpA q is an abelian duality space of dimension r and the projectivized complement
U “ PpMq is an abelian duality space of dimension r ´ 1.
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In particular, if A is a central, essential arrangement of hyperplanes in Cd`1, then MpA q

is an abelian duality space of dimension d ` 1 and UpA q is an abelian duality space of
dimension d.

Remark 6.11. More generally, let M be a connected, smooth, complex quasi-projective
variety of dimension m. Suppose M has a smooth compactification M for which the com-
ponents of M z M form a non-empty arrangement of hypersurfaces, A , such that, for each
submanifold X in the intersection poset LpA q, the complement of the restriction of A to X
is either empty or a Stein manifold. Then, by [17, Thm. 1.1], M is an abelian duality space
of dimension m. Another generalization of Theorem 6.10 is given in [37, Thm. 1.10]: If M
has a smooth compactification M with b1pMq “ 0 and M admits a proper, semi-small map
to a complex algebraic torus, then the same conclusion holds.

Recall now that arrangement complements are also formal. It follows from Theorem 6.10
and Corollary 6.8 that both their characteristic and resonance varieties propagate. More
precisely, we have the following corollary.

Corollary 6.12. Let A be a central arrangement of rank r, with complement M “ MpA q

and projectivized complement U “ PpMq. Then

(1) V 1
1 pMq Ď ¨ ¨ ¨ Ď V r

1 pMq and R1
1 pMq Ď ¨ ¨ ¨ Ď Rr

1pMq.
(2) V 1

1 pUq Ď ¨ ¨ ¨ Ď V r´1
1 pUq and R1

1 pUq Ď ¨ ¨ ¨ Ď Rr´1
1 pUq.

In view of part (2) of this result, Proposition 3.3 yields the following immediate corollary.

Corollary 6.13. Let π : M Ñ U be the restriction of the Hopf map. Then,

(1) The induced homomorphism π˚ : H1pU;Cq ãÑ H1pM;Cq restricts to isomorphisms
Rq

1 pUq
»

ÝÑ Rq
1 pMq for all q ě 1.

(2) The induced morphism π˚ : H1pU;C˚q ãÑ H1pM;C˚q restricts to isomorphisms
V q

1 pUq
»

ÝÑ V q
1 pMq for all q ě 1.

6.6. Abelian duality and propagation for Milnor fibers. We now turn to the Milnor
fibration Fm Ñ M Ñ C˚ of a multi-arrangement pA ,mq. To start with, let us note that
Corollary 5.5, when used in conjunction with Proposition 3.3 and Corollary 6.13, has the
following consequence.

Corollary 6.14. Let ιm : Fm ãÑ M be the inclusion map of the Milnor fiber into the com-
plement of A .

(1) The epimorphism ι˚m : H1pM;Cq↠ H1pFm;Cq restricts to maps R1
s pMq Ñ R1

s pFmq,
for all s ě 1, and Rq

1 pMq Ñ Rq
1 pFmq, for all q ě 1.

(2) The epimorphism ι˚m : H1pM;C˚q ↠ H1pFm;C˚q restricts to maps V 1
s pMq Ñ

V 1
s pFmq, for all s ě 1, and V q

1 pMq Ñ V q
1 pFmq, for all q ě 1.
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The next result strengthens [19, Thm. 6.7], where only part (1) is proved (in the particular
case when F “ FpA q is the usual Milnor fiber of an essential arrangement), but not part
(2).

Theorem 6.15. Let A be a central arrangement of rank r and let Fm “ FmpA q be the
Milnor fiber associated to a multiplicity vector m : A Ñ N.

(1) If the monodromy action on H1pFm;Zq is trivial, then Fm is an ab-duality space of
dimension r ´ 1.

(2) If the monodromy action on H1pFm;Qq is trivial, then Fm is an abf-duality space
of dimension r ´ 1.

Proof. From Theorem 6.10, we know that the total space of the Milnor fibration, M “

MpA q, is an ab-duality space of dimension r. Thus, M is also and abf-duality space of the
same dimension, since H1pM;Zq “ Z|A | is torsion-free. Clearly, the base of the fibration,
B “ C˚, is both an ab- and abf-duality space of dimension 1. In view of our hypothesis on
the monodromy of the fibration, the two claims regarding the fiber Fm now follow directly
from Propositions 6.4 and 6.5, respectively. □

Applying this theorem, we obtain the following corollary regarding propagation of co-
homology jump loci of Milnor fibers of arrangements with trivial algebraic monodromy.

Corollary 6.16. Let A be a central arrangement of rank r, and let m : A Ñ N be a choice
of multiplicities.

(1) If the monodromy action on H1pFm;Zq is trivial, then the characteristic varieties of
Fm propagate; that is, V 1

1 pFmq Ď V 2
1 pFmq Ď ¨ ¨ ¨ Ď V r´1

1 pFmq.
(2) If the monodromy action on H1pFm;Qq is trivial, then the restricted characteristic

varieties of Fm propagate; that is, W 1
1 pFmq Ď W 2

1 pFmq Ď ¨ ¨ ¨ Ď W r´1
1 pFmq.

(3) If the monodromy action on HipFm;Qq is trivial for i ď q, then the resonance
varieties of Fm propagate in that range; that is, R1

1 pFmq Ď ¨ ¨ ¨ Ď Rq
1 pFmq.

(4) If the monodromy action on HipFm;Qq is trivial for i ď r ´ 2, then the resonance
varieties of Fm propagate; that is, R1

1 pFmq Ď ¨ ¨ ¨ Ď Rr´1
1 pFmq.

Proof. Claim (1) follows from Theorem 6.6 and Theorem 6.15, part (1), while Claim (2)
follows from Theorem 6.7 and Theorem 6.15, part (2).

Claims (3) and (4) follow from claim (2) and the Tangent Cone theorem, using Corollary
6.2, parts (1) and (2), respectively. □

In particular, if A is a central, essential arrangement in C3 and the monodromy action
on H1pFm;Qq is trivial, then W 1

1 pFmq Ď W 2
1 pFmq and R1

1 pFmq Ď R2
1 pFmq.
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Remark 6.17. More generally, let f P Crz0, . . . , zds be a homogeneous polynomial of
degree n, and set M “ Cd`1zt f “ 0u. We then have a (global) Milnor fibration, f : M Ñ

C˚, with fiber F “ f ´1p1q and monodromy h : F Ñ F given by hpzq “ e2π i {nz. Now
suppose M satisfies one of the conditions laid out in Remark 6.11, so that M is an abelian
duality space of dimension d ` 1, and suppose further that h˚ : H1pF;Qq Ñ H1pF;Qq is
the identity. Then similar proofs show that F is an abf-duality space of dimension d and
the restricted characteristic varieties of F propagate, that is, W 1

1 pFq Ď ¨ ¨ ¨ Ď W d
1 pFq.

7. Trivial algebraic monodromy and lower central series

In this section, we investigate the lower central series ranks and the Chen ranks of the
fundamental groups of Milnor fibers of arrangements for which the algebraic monodromy
is trivial.

7.1. Lower central series and nilpotent quotients. The lower central series (LCS) of a
group G is defined inductively by setting γ1pGq “ G and γk`1pGq “ rG, γkpGqs for all
k ě 1. This is a central series (i.e., rG, γkpGqs Ď γk`1pGq for all k ě 1), and thus, a normal
series (i.e., γkpGq Ÿ G for all k ě 1). Consequently, each LCS quotient,

(7.1) grkpGq B γkpGq{γk`1pGq,

lies in the center of G{γk`1pGq, and thus is an abelian group. The first such quotient,
gr1pGq “ G{γ2pGq, coincides with the abelianization Gab “ H1pG;Zq. The associated
graded Lie algebra of G is the direct sum grpGq “

À

kě1 grkpGq; the addition in grpGq is
induced from the group multiplication, while the Lie bracket (which is compatible with the
grading) is induced from the group commutator. By construction, the Lie algebra grpGq

is generated by its degree 1 piece. Thus, if Gab is finitely generated, then so are the LCS
quotients of G; we let ϕkpGq B rank grkpGq be ranks of those quotients.

Replacing in this construction the group G by its maximal metabelian quotient, G{G2,
leads to the Chen Lie algebra grpG{G2q, and, in the case when Gab is finitely generated, the
Chen ranks θkpGq B rank grkpG{G2q. It is readily seen that θkpGq ď ϕkpGq for all k ě 1,
with equality for k ď 3.

For each k ě 1, the group G{γk`1pGq is nilpotent, and in fact, the maximal k-step nilpo-
tent quotient of G. Letting qk : G{γk`1pGq Ñ G{γkpGq be the projection maps, we obtain a
tower of nilpotent groups, starting at G{γ2pGq “ Gab. Moreover, at each stage in the tower,
there is a central extension,

(7.2) 0 grkpGq G{γk`1pGq G{γkpGq 0 ,
qk

which is classified by an extension class (or, k-invariant), χk : H2pG{γkpGq;Zq Ñ grkpGq.
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7.2. Lower central series of arrangement groups. The LCS ranks, the Chen ranks, and
the nilpotent quotients of arrangement groups have been much studied. The most basic
example is that of the free group, Fn “ π1pC z tn pointsuq, of rank n ě 2. Work of P. Hall,
W. Magnus, and E. Witt from the 1930s shows that, for each k ě 1, the abelian group
grkpFnq is torsion-free, of rank equal to

(7.3) ϕkpFnq “ 1
k

ÿ

d|k

µpdqnk{d,

where µ : N Ñ t0,˘1u denotes the Möbius function. Furthermore, work of K.T. Chen
from 1951 shows that the group grkpFn{F2

nq are also torsion-free, of rank equal to

(7.4) θkpFnq “ pk ´ 1q

ˆ

n ` k ´ 2
k

˙

for k ě 2.

Now let M “ MpA q be any arrangement complement, and let G “ π1pMq be its funda-
mental group. As mentioned previously, M is formal, and hence the group is G is 1-formal.
Classical results of Quillen and Sullivan in rational homotopy theory insure that the LCS
ranks ϕkpGq are determined by the (truncated) cohomology algebra Hď2pM;Qq. Since this
algebra is determined by the (truncated) intersection lattice Lď2pA q, it follows that the
LCS ranks of G are combinatorially determined. Explicit combinatorial formulas for these
ranks are known in a few cases, e.g., when A is either supersolvable [27] or decomposable
[49], but no such formula is known in general, even for ϕ3pGq. As shown in [48], the Chen
ranks θkpGq are also combinatorially determined. An explicit combinatorial formula was
conjectured in [60], expressing those ranks in terms of the dimensions of the irreducible
components of R1

1 pMq, at least for k large enough. This formula has been verified by Cohen
and Schenck in [11] (see also [1] for a more general setting).

Turning to the nilpotent quotients of an arrangement group G “ GpA q, it was shown in
[55] that all the quotients G{γkpGq are combinatorially determined when A is decompos-
able (see Section 8.3 below for more on this). On the other hand, Rybnikov [56] showed
that the third nilpotent quotient, G{γ4pGq, is not combinatorially determined, in general.
Nevertheless, the second nilpotent quotient, G{γ3pGq, is always determined by Lď2pA q.
To see why, recall from Section 2.3 that H˚pM;Zq “ E{I, where E “

Ź

Gab and I “ IpA q

is the Orlik–Solomon ideal associated to LpA q. As shown in [41, Prop. 1.14], the abelian
group gr2pGq is the Z-dual of I2 (and thus, it is torsion-free), and the exact sequence (7.2)
with k “ 2 is classified by the homomorphism χ2 : H2pGab;Zq Ñ gr2pGq dual to the inclu-
sion map I2 ãÑ E2. Set n “ |A | and let Fn be the free group on generators txH : H P A u.
It follows that G{γ3pGq is the quotient of the free, 2-step nilpotent group Fn{γ3pFnq by the
normal subgroup generated by all commutation relations of the form

(7.5)
”

xH,
ź

KPA
KĄX

xK

ı

,
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indexed by all pairs of hyperplanes H P A and flats X P L2pA q such that H Ą X.
From this description, it is apparent that the second nilpotent quotient of an arrangement
group is combinatorially determined; that is, if L2pA q – L2pBq, then GpA q{γ3pGpA qq –

GpBq{γ3pGpBqq.

7.3. LCS and Chen ranks of Milnor fibers. Let pA ,mq be a multi-arrangement, with
complement M “ MpA q. Let Fm “ FmpA q be the Milnor fiber and let h : Fm Ñ Fm be
the monodromy of the corresponding Milnor fibration.

Denoting by G “ π1pMq and K “ π1pFmq the fundamental groups of the respective
spaces, we have a (split) exact sequence, 1 Ñ K Ñ G Ñ Z Ñ 1, so that the arrangement
group splits as the semidirect product G “ K ¸φ Z, where φ “ h7 P AutpKq is the automor-
phism of K “ π1pFmq induced by h. Note that φab : Kab Ñ Kab may be identified with the
(integral) algebraic monodromy, h˚ : H1pFm;Zq Ñ H1pFm;Zq.

Theorem 7.1. Suppose h˚ : H1pFm;Zq Ñ H1pFm;Zq is the identity map. We then have the
following isomorphisms of graded Lie algebras.

(1) grpGq – grpKq ¸φ̄ Z, where φ̄ : Z Ñ DerpgrpKqq is the morphism of Lie algebras
induced by the homomorphism φ : ZÑ AutpKq sending 1 to h7.

(2) grě2pKq – grě2pGq.
(3) grě2pK{K2q – grě2pG{G2q.

Proof. Part (1) follows from a well-known result of Falk and Randell [27, Thm. 3.1], as
refined in [68, Cor. 6.7]. Part (2) is a direct consequence of part (1). Finally, part (3)
follows from [69, Cor. 8.10]. □

Theorem 7.2. Suppose h˚ : H1pFm;Qq Ñ H1pFm;Qq is the identity map. We then have the
following isomorphisms of graded Lie algebras.

(1) grpGq b Q – pgrpKq ¸φ̄ Zq b Q.
(2) grě2pKq b Q – grě2pGq b Q.
(3) grě2pK{K2q b Q – grě2pG{G2q b Q.

Consequently, ϕkpπ1pFmqq “ ϕkpπ1pMqq and θkpπ1pFmqq “ θkpπ1pMqq for all k ě 2.

Proof. Parts (1) and (2) follow from Proposition 7.5 and Theorem 9.5 from [68], while part
(3) follows from [69, Cor. 8.10]. The equality between the respective LCS and Chen ranks
follows at once from parts (2) and (3). □

Consequently, if the algebraic monodromy h˚ : H1pFm;Qq Ñ H1pFm;Qq is trivial, then
both the LCS ranks and the Chen ranks of π1pFmq are determined by Lď2pA q. Moreover,
letting U “ PpMq, we have that ϕkpπ1pFmqq “ ϕkpπ1pUqq and θkpπ1pFmqq “ θkpπ1pUqq for
all k ě 1.
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8. Constructions of arrangements with trivial algebraic monodromy

In this section, we describe several classes of hyperplane arrangements for which the
Milnor fibration has trivial algebraic monodromy (in some range).

8.1. Boolean arrangements. Arguably the simplest kind of arrangements are the Boolean
arrangements, Bn, consisting of the coordinate hyperplanes tzi “ 0u in Cn. The intersec-
tion lattice LpBnq is the Boolean lattice of subsets of t0, 1un, while the complement MpBnq

is the complex algebraic torus pC˚qn.

Given a multiplicity function m : Bn Ñ N, the map fm : pC˚qn Ñ C˚, z ÞÑ zm1
1 ¨ ¨ ¨ zmn

n

is a morphism of complex algebraic groups. Hence, the Milnor fiber Fm “ kerp fmq is an
algebraic subgroup, realized as the disjoint union of gcdpmq copies of pC˚qn´1, with the
monodromy automorphism, h : Fm Ñ Fm, permuting those copies in a circular fashion.

Now suppose gcdpmq “ 1. Then Fm is an algebraic pn ´ 1q-torus and h is isotopic to
the identity, through the isotopy htpzq “ e2π i t{Nz. Thus, the bundle Fm Ñ MpBnq Ñ C˚ is
trivial, and the algebraic monodromy, h˚ : H˚pFm;Zq Ñ H˚pFm;Zq, is equal to the identity
map. Consequently, the characteristic polynomial of the algebraic monodromy is given by
∆qptq “ pt ´ 1q

p
n´1

q q for 0 ă q ă n.

8.2. Generic arrangements. Let A be a central arrangement of n hyperplanes in Cd`1,
where n ą d ` 1 ą 2. We say A is generic if the intersection of every subset of d ` 1
distinct hyperplanes is the origin, in which case, A is the cone over an affine, general
position arrangement A 1 of n ´ 1 hyperplanes in Cd, see [45, 47].

By a classical result of Hattori ([29, Thm. 1]), the complement of A 1 is homotopy
equivalent to the d-skeleton of the real, pn ´ 1q-dimensional torus T n´1. Since UpA q –

MpA1q, it follows that π1pUpA qq “ Zn´1 and bqpUpA qq “
`n´1

q

˘

for q ď d. More-
over, if ρ : π1pUpA qq Ñ C˚ is a non-trivial character, then [29, Thm. 4] insures that
HqpUpA q;Cρq “ 0 for q ‰ d and dimC HdpUpA q;Cρq “

`n´2
d

˘

. It follows that the
characteristic varieties of UpA q are given by

(8.1) V q
s pUpA qq “

#

t1u for q ă d and 1 ď s ď
`n´1

q

˘

,

Cn´1 for q “ d and 1 ď s ď
`n´2

d

˘

and are empty otherwise.

Now let m : A Ñ N be a choice of multiplicities, and let Fm be the corresponding
Milnor fiber. Applying formula (3.4), we find that bqpFmq “

`n´1
q

˘

for q ď d ´ 1 and
bdpFmq “

`n´1
d

˘

`pn´1q
`n´2

d

˘

. Consequently, the algebraic monodromy hq : HqpFm;Qq Ñ

HqpFm;Qq is equal to the identity if q ă d, and the characteristic polynomial of hq takes
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the form

(8.2) ∆qptq “

#

pt ´ 1q
p

n´1
q q if q ď d ´ 1,

pt ´ 1q
p

n´2
d´1q

ptn ´ 1qp
n´2

d q if q “ d.

In the case when Fm “ FpA q is the usual Milnor fiber, this recovers a result of Orlik and
Randell [45] (see also [47, 12]).

8.3. Decomposable arrangements. Recall from Section 2.2 that every flat X P L2pA q

gives rise to a “localized” sub-arrangement, AX, which consists of all hyperplanes H P A
that contain X. Furthermore, the inclusions AX Ă A yield inclusions of complements,
jX : MpA q ãÑ MpAXq, which assemble into a map

(8.3) j “ p jXq : M
ś

XPL2pA q MpAXq.

Let j7 : GpA q Ñ
ś

XPL2pA q GpAXq be the induced homomorphism on fundamental groups.
It was shown in [24, 49] that the morphism

(8.4) grp j7q : grpGpA qq
ś

XPL2pA q grpGpAXqq

between the respective associated graded Lie algebras is an isomorphism in degree 2 and,
after tensoring with Q, becomes surjective in all degrees greater than 2. Since each of the
groups GpAXq is isomorphic to FµpXq ˆZ, it follows that the LCS ranks of GpA q admit the
lower bounds

(8.5) ϕkpGpA qq ě
ÿ

XPL2pA q

ϕkpFµpXqq

for all k ě 2, with equality for k “ 2.

Following [49], we say that a hyperplane arrangement A is decomposable (over Q) if
the third LCS rank of the group GpA q attains the lower bound from (8.5); that is,

(8.6) ϕ3pGpA qq “
ÿ

XPL2pA q

ˆ

µpXq

2

˙

.

It is shown in [49] that once this condition is satisfied, equality is attained in (8.5) for all
k ě 2; in fact, the morphism grp j7q bQ restricts to an isomorphism of graded Lie algebras
in degrees ě 2.

More generally, let hpA q be the holonomy Lie algebra of A , that is, the quotient of the
free Lie algebra on generators txH : H P A u by the ideal generated by the Lie brackets of
the form

(8.7)
”

xH,
ÿ

KPA
KĄX

xK

ı

,
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for all hyperplanes H P A and 2-flats X P L2pA q such that H Ą X. There is then
an epimorphism hpA q ↠ grpGpA qq that becomes an isomorphism upon tensoring with
Q (due to the 1-formality of the arrangement group). The arrangement A is said to be
decomposable over k (where k is either Z or a field) if h3pA q b k decomposes as the direct
sum

À

XPL2pA q h3pAXq b k. It is shown in [49] that once this condition is satisfied, a similar
decomposition holds in all degrees k ě 2. Furthermore, the following is shown in [55,
Thm. 8.8]: If A is decomposable over Z, then all the nilpotent quotients GpA q{γkpGpA qq

are determined by Lď2pA q. The same proof works if A is decomposable over Q, with the
nilpotent quotients replaced by their rationalizations.

Let BpA q “ GpA q1{GpA q2 be the Alexander invariant of an arrangement A , viewed
as module over the group ring ZrGpA qabs, and endowed with the filtration by the powers
of the augmentation ideal. An in-depth study of the Alexander invariant and of the Milnor
fibrations of a decomposable arrangement is done in [70]. We record in the next theorem
one of the main results of this study.

Theorem 8.1 ([70]). Let A be an arrangement of rank 3 or higher. Suppose A is de-
composable over Q and BpA q b Q is separated in the I-adic topology. Then, for any
choice of multiplicities m : A Ñ N, the algebraic monodromy of the Milnor fibration,
h˚ : H1pFm;Qq Ñ H1pFm;Qq, is trivial.

A large supply of decomposable arrangements may be constructed by taking suitable
sections of products of (central) arrangements in C2. For such an arrangement A , the group
GpA q is a finite direct product of finitely generated free groups (see [8] for a detailed study
of such arrangements). We shall encounter two concrete examples of arrangements from
this class in Section 9.

In general, though, there are decomposable arrangements for which the arrangement
group is much more complicated. For instance, let A be the arrangement in C3 defined by
the polynomial f “ xyzpx`yqpx´zqp2z`yq. It is readily checked that A is decomposable
(over Z). Nevertheless, the group GpA q does not even have a finite-dimensional classifying
space KpGpA q, 1q, see [63, Rem. 12.4].

8.4. Multiplicity conditions. If F “ FpA q is the Milnor fiber of a central arrangement
A in Cd`1, d ą 1, there are various combinatorial conditions insuring that the algebraic
monodromy h˚ : H1pF; kq Ñ H1pF; kq over k “ Z or k a field is the identity, such as the
ones given in [10, 33, 74, 75, 39].

In [74], Williams gave a very nice combinatorial upper bound on the first Betti number of
F and a criterion for triviality of the algebraic monodromy over Z, stated in the case when
A is the complexification of a real arrangement. A partial generalization was obtained
in [75], and the result was recently proved by Liu and Xie [39] in full generality. We
summarize these results, as follows.
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Theorem 8.2 ([74, 75, 39]). Let A be a central arrangement of n hyperplanes. For each
hyperplane H P A , set

sH “
ÿ

XPL2pA q

XĂH

pqX ´ 2qpgcdpqX, nq ´ 1q,

where qX “ |AX|. Then,

(1) dimk H1pF; kq ď n ´ 1 ` min
␣

sH : H P A
(

, for all fields k.
(2) ∆1ptq “ pt ´ 1qn´1 pptq, for some pptq P Crts dividing the polynomials

ˆ

tgcdpqX ,nq ´ 1
t ´ 1

˙qX´2

for all X P L2pA q.
(3) If there is a hyperplane H P A such that gcdpqX, nq “ 1 for all 2-flats X with

qX ą 2 (for instance, if n is a prime), then H1pF;Zq “ Zn´1.

8.5. The double point graph. Let A be a central arrangement of planes in C3, and let
¯A “ PpA q be the corresponding arrangement of projective lines in CP2. The double point

graph associated to A is the graph Γ with vertex set A and with an edge joining two
hyperplanes H,K P A if H̄ X K̄ is a double point (see [4, 58]). The components of Γ define
a partition of A which is a refinement of all partitions induced by multinets on A .

Now suppose Γ is connected. Using results from [54], Bailet showed in [4] that the
algebraic monodromy of the Milnor fibration, h˚ : H1pF;Cq Ñ H1pF;Cq, is the identity
map, provided |AX| ď 9 for all X P L2pA q and either 6 ∤ |A |, or there exists a hyperplane
H P A such that |AX| ‰ 6, for all X Ă H. Under the same connectivity assumption on Γ,
Salvetti and Serventi [58] show that A admits no multinet. Furthermore, they show that
h˚ “ id if Γ admits a “good” spanning tree, and conjecture that this holds for arbitrary
connected graphs. In [73] Venturelli establishes this conjecture under the assumption that

¯A has two multiple points, P1 and P2, such that every line in ¯A passes through either P1

or P2; in [70], we give another proof of this result, in a more general setting.

9. The Falk arrangements

9.1. A pair of arrangements and their complements. In this section, we analyze in de-
tail a pair of hyperplane arrangements introduced by Falk in [25] and further studied in
[65]. The two arrangements, A and ˆA , are central arrangements of 6 planes in C3, defined
by the polynomials

f “ zpx ´ yqypx ` yqpx ´ zqpx ` zq,

f̂ “ zpx ` zqpx ´ zqpy ` zqpy ´ zqpx ´ y ` zq.
(9.1)
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ℓ0
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ℓ2

ℓ3

ℓ4ℓ5

ℓ̂0

ℓ̂4

ℓ̂5

ℓ̂3

ℓ̂2ℓ̂1

Figure 2. The Falk arrangements A and ˆA

The projectivizations of A and ˆA are depicted in Figure 2; the numbering of the lines
corresponds to the ordering of the linear factors in the respective defining polynomials.
Both PpA q and Pp ˆA q have 2 triple points and 9 double points, yet the two intersection
lattices are non-isomorphic: the two triple points of PpA q do not lie on a common line,
whereas the triple points of Pp ˆA q lie on a common line (namely, ℓ̂0). Nevertheless, as
shown by Falk in [25], the two projective complements, U “ PpMq and Û “ PpM̂q, are
homotopy equivalent. Let us note that Pp ˆA q has a line (namely, ℓ̂5) in general position with
the others. A well-known result of Oka and Sakamoto [44] then implies that π1pÛq splits
off a Z factor; it easily follows that both groups are isomorphic to F2 ˆ F2 ˆ Z.

The cohomology rings A “ H˚pU;Zq and Â “ H˚pÛ;Zq are the quotients of the exterior
algebra E “

Ź

pe1, . . . , e5q by the ideals I “ pBe123, e45q and Î “ pe12, e34q, respectively.
The automorphism E »

ÝÑ E given by e1 ÞÑ e1 ´ e3, e2 ÞÑ e2 ´ e3, e3 ÞÑ e4, e3 ÞÑ e5,
and e5 ÞÑ e1 ` e2 ` e3 induces an isomorphism Â »

ÝÑ A. It is readily verified that the
only multinets supported on sub-arrangements of either A or ˆA are those coming from
the triple points, and that the respective characteristic varieties are given by

V 1
1 pUq “ tt1t2t3 “ t4 “ t5 “ 1u Y tt1 “ t2 “ t3 “ 1u,

V 1
1 pÛq “ tt3 “ t4 “ t5 “ 1u Y tt1 “ t2 “ t5 “ 1u.

(9.2)

9.2. The Milnor fibers of the Falk arrangements. Let F “ FpA q and F̂ “ Fp ˆA q be the
fibers of the Milnor fibrations f : M Ñ C˚ and f̂ : M̂ Ñ C˚. Since both PpA q and Pp ˆA q

have only double and triple points, and since neither of the two arrangements supports a
3-net, Theorem 4.3 shows that the characteristic polynomial of the algebraic monodromy
acting on either H1pF;Qq or H1pF̂;Qq is pt ´ 1q5. Alternatively, it is easily verified that
both arrangements are decomposable (over Z); therefore, Theorem 8.1 shows once again
that their algebraic monodromy is trivial in degree 1. It now follows from Corollary 6.2
that both F and F̂ are formal spaces.
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Since ˆA contains a line meeting the other ones only in double points, Theorem 8.2, part
(3) implies that H1pF̂;Zq “ Z5. Direct computation shows that H1pF;Zq “ Z5, too, and so
the monodromy action on both these groups is trivial. Moreover, both Milnor fibers have
Euler characteristic 6 ¨ 4 “ 24, and thus H2pF;Zq “ H2pF̂;Zq “ Z28. Let ζ be a primitive
6th root of unity, and let Hk be the ζk-eigenspace of the monodromy action on H2pF;Cq.
Then, by [12], we have that dimCHk “ 4 for 1 ď k ď 5 and dimCH0 “ 8.

Let K “ π1pFq and K̂ “ π1pF̂q be the fundamental groups of the two Milnor fibers and
let G “ π1pMq – π1pM̂q. Applying Theorem 7.1, we find that the associated graded Lie
algebras, respectively, the Chen Lie algebras of all these groups are isomorphic in degrees
2 and more:

grě2pKq – grě2pK̂q – grě2pGq,

grě2pK{K2
q – grě2pK̂{K̂2

q – grě2pG{G2
q.

(9.3)

From the discussion in Section 9.1, we have that G – F2
2 ˆ Z2. Therefore, all the LCS

quotients and Chen groups of K and K̂ are torsion-free, with ranks in degrees k ě 2 given
by

ϕkpKq “ ϕkpK̂q “ 2
k

ÿ

d|k

µpdq2k{d,

θkpKq “ θkpK̂q “ 2pk ´ 1q.

(9.4)

Although all these homological and group-theoretic invariants of F and F̂ agree, the two
Milnor fibers are not homotopy equivalent, as the next result shows.

Proposition 9.1. Let F and F̂ be the Milnor fibers of the two Falk arrangements, and let K
and K̂ be their fundamental groups. Then,

(1) K{K2 fl K̂{K̂2.
(2) K{γ3pKq fl K̂{γ3pK̂q.

Consequently, π1pFq fl π1pF̂q.

A proof of this proposition will be given in the next two subsections.

9.3. The characteristic varieties of F and F̂. The (degree 1) characteristic varieties of
the Milnor fibers of the two Falk arrangements were first computed in [65]. Since that
computation was based on a machine calculation, we redo it here by hand, using a method
which works for any arrangement with trivial algebraic monodromy in degree 1.

We start with the Milnor fiber F “ FpA q. As remarked above, H1pF;Zq “ Z5. The
inclusion map ι : F Ñ M induces a morphism ι˚ : H1pM;C˚q Ñ H1pF;C˚q on character
tori, given in coordinates by

(9.5) ι˚pz1, . . . , z6q “ pz1{z2, z2{z3, z3{z4, z4{z5, z5{z6q.
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It follows from Theorem 5.7, part (2b), that the characteristic variety V 1
1 pFq Ă H1pF;C˚q

is the image under the map ι˚ of V 1
1 pMq Ă H1pM;C˚q. Therefore,

V 1
1 pFq “ ι˚

`␣`

z1, z2,
1

z1z2
, 1, 1, 1

˘

| z1, z2 P C˚
(˘

Y ι˚
`␣

p1, 1, 1, z4, z5,
1

z4z5
q | z4, z5 P C˚

(˘

“
␣` z1

z2
, z1z2

2,
1

z1z2
, 1, 1

˘

| z1, z2 P C˚
(

Y
␣`

1, 1, 1
z4
, z4

z5
, z4z2

5

˘

| z4, z5 P C˚
(

,

and so V 1
1 pFq Ă pC˚q5 is the union of two 2-dimensional subtori, T1 “ tu P pC˚q5 |

u1u2
2u3

3 “ u4 “ u5 “ 1u and T2 “ tu P pC˚q5 | u1 “ u2 “ u3
3u2

4u5 “ 1u. Notice that

(9.6) T1 X T2 “ t1, p1, 1, ω, 1, 1q, p1, 1, ω2, 1, 1qu,

where ω “ expp2π i {3q. By Theorem 3.2, the torsion characters comprising T1 X T2 lie in
V 1

2 pFq. In fact, direct computation reveals that V 1
2 pFq “ T1 X T2.

Proceeding in the same manner with the Milnor fiber of the second Falk arrangement,
F̂ “ Fp ˆA q, we obtain:

V 1
1 pF̂q “ ι˚

`␣`

z1, z2, 1, 1, 1, 1
z1z2

˘

| z1, z2 P C˚
(˘

Y ι˚
`␣

p1, 1, z3, z4, 1, 1
z3z4

q | z3, z4 P C˚
(˘

“
␣` z1

z2
, z2, 1, 1, z1z2

˘

| z1, z2 P C˚
(

Y
␣`

1, 1
z3
, z3

z4
, z4, z3z4

˘

| z3, z4 P C˚
(

,

and so V 1
1 pF̂q “ T̂1 Y T̂2, where T̂1 “ tu P pC˚q5 | u1u2

2u´1
5 “ u3 “ u4 “ 1u and

T̂2 “ tu P pC˚q5 | u1 “ u2u3u4 “ u2u´1
4 u5 “ 1u. Notice that these two subtori intersect

only at the origin; in fact, direct computation shows that

(9.7) V 1
2 pF̂q “ T̂1 X T̂2 “ t1u.

The above computations show that V 1
2 pFq fl V 1

2 pF̂q: the first variety consists of 3
points, while the second consists of a single point. Finally, recall from Section 3.3 that the
characteristic varieties V 1

s pGq of a (finitely generated) group G depend only on its maxi-
mal metabelian quotient, G{G2. Therefore, we have shown that K{K2 fl K̂{K̂2, thereby
completing the proof of part (1) of Proposition 9.1. □

Remark 9.2. Since both Milnor fibers are formal, the tangent cones to their first charac-
teristic varieties coincide with the first resonance varieties. Using either this observation,
together with the computations from above, or Theorem 5.7, part (1), we find that

R1
1 pFq “ tx1 ` 2x2 ` 3x3 “ x4 “ x5 “ 0u Y tx1 “ x2 “ 3x3 ` 2x4 ` x5 “ 0u,

R1
1 pF̂q “ tx1 ` 2x2 ´ x5 “ x3 “ x4 “ 0u Y tx1 “ x2 ` x3 ` x4 “ x2 ´ x4 ` x5 “ 0u,

while R1
2 pFq “ R1

2 pF̂q “ t0u. Thus, the resonance varieties do not distinguish between
π1pFq and π1pF̂q.
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9.4. The second nilpotent quotients of K and K̂. We now give a proof of Proposition
9.1, part (2). First consider the projectivized complement U “ UpA q and its fundamental
group, G “ π1pUq. Recall that H˚pU;Zq “ E˚{I˚, where E “

Ź

pe1, . . . , e5q and I “

pBe123, e45q. Writing Er “ pErq_ and Ir “ pIrq_ for the Z-dual groups, the second nilpotent
quotient G{γ3pGq is the central extension of gr1pGq “ E1 – Z5 by gr2pGq “ I2 – Z2

classified by the cocycle χ2 : E2 ↠ I2 given by the matrix

(9.8) χ
⊺
2 “

ˆ

12 13 23 14 24 34 15 25 35 45

1 ´1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

˙

.

To compute the Schur multiplier H2pG{γ3pGq;Zq, we use an approach similar to the one
used in the proof of [55, Thm. 4.1]. Consider the homology spectral sequence of the central
extension 0 Ñ I2 Ñ G{γ3pGq

ab
ÝÑ E1 Ñ 0,

(9.9) E2
p,q “ HppE1; HqpI2;Zqq ñ Hp`qpG{γ3pGq;Zq.

Since the pE2, d2q page of the cohomology spectral sequence is a CDGA, and since its
Z-dual is pE2, d2q—due to lack of torsion on either of these two pages—the differentials
d2 : E2

p,q Ñ E2
p´2,q`1 in diagram (9.10) are determined by the map d2

2,0 “ χ2.

(9.10)

0 1 2 3

0

1

2

Z

Z2

Z

Z5 Z10 Z10

Z10 Z20

d 2
2,0d 2
2,0

d 2
3,0d 2
3,0

d 2
2,1d 2
2,1

Clearly, E3
2,0 “ kerpd2

2,0q “ Z8. The differential d2
3,0 is dual to the composite E1 b

I2 ãÑ E1 b E2 ↠ E3, whose kernel is generated by the elements u1 “ pe1 ´ e2q b Be123,
u2 “ pe2 ´ e3q b Be123, u3 “ e4 b e45, and u4 “ e5 b e45. Taking transposes, we see that
E3

1,1 “ cokerpd2
3,0q is equal to Z4, generated by the duals u_

i of those elements (written in
terms of the duals εi “ e_

i ). Finally, note that the map d2
2,1 : E2 b I2 Ñ I2 ^ I2 is surjective,

since it sends Bε123bε45 to the generator Bε123^ε45 of I2^I2 “ Z; hence, E3
0,2 “ 0. Looking

at the domains and ranges of the higher-order differentials in the spectral sequence, we see
that E3

p,q “ E8
p,q for p ` q ď 2. Therefore,

(9.11) H2pG{γ3pGq;Zq “ E3
2,0 ‘ E3

1,1 “ Z8
‘ Z4

“ Z12.
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Consider next the Milnor fiber F “ FpA q. The inclusion map ι : FpA q ãÑ MpA q

induces a monomorphism ι˚ : H1pF;Zq ãÑ H1pM;Zq given in suitable bases by αi ÞÑ

xi ´ xi`1 for 1 ď i ď 5. Letting αi “ a_
i , the ring morphism σ˚ : H˚pU;Zq Ñ H˚pF;Zq

is given in degree 1 by e1 ÞÑ a1 ` a5, e2 ÞÑ ´a1 ` a2 ` a5, e3 ÞÑ ´a2 ` a3 ` a5,
e4 ÞÑ ´a3 ` a4 ` a5, e5 ÞÑ ´a4 ` 2a5. It follows that the group J2 B σ˚pI2q is free abelian,
with basis σ˚pBe123q “ 3a12 ´ 2a13 ` a23 and σ˚pe45q “ a34 ´ 2a35 ` 3a45.

The second nilpotent quotient of the group K “ π1pFq fits into the central extension
0 Ñ J2 Ñ K{γ3pKq

ab
ÝÑ H Ñ 0, where H “ Kab – Z5 and J2 “ pJ2q_ – Z2. Furthermore,

the extension is classified by the cocycle χ2 :
Ź2H ↠ J2 given by the matrix

(9.12) χ
⊺
2 “

ˆ

12 13 23 14 24 34 15 25 35 45

3 ´2 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 ´2 3

˙

.

The spectral sequence of the extension has the same entries in the E2 page as in display
(9.10). The differentials d2

2,0 and d2
2,1 are still surjective, giving E3

2,0 “ Z8 and E3
0,2 “ 0.

The difference, though, lies with the differential d2
3,0: the elements σ˚puiq

_ are still in
cokerpd2

3,0q, generating a Z4-summand, but now there is an extra element of order 3 in that
cokernel, namely, a4 b p3a12 ´ 2a13 ` a23q. Therefore, E3

1,1 “ Z4 ‘ Z3. Proceeding as
before, we find that H2pK{γ3pKq;Zq “ Z12 ‘ Z3.

For the group K̂ “ π1pF̂q, an entirely similar computation shows that cokerpd2
3,0q “ Z4,

and hence H2pK̂{γ3pK̂q;Zq “ Z12. Therefore, K{γ3pKq fl K̂{γ3pK̂q, thereby completing
the proof of Proposition 9.1, part (2). □

10. The B3 arrangement and its deletion

10.1. The B3 arrangement. Let A be the rank-3 reflection arrangement of type B3, de-
fined by the polynomial

(10.1) f “ xyzpx ´ yqpx ` yqpx ´ zqpx ` zqpy ´ zqpy ` zq.

Figure 3 shows a plane section of A . The B3 arrangement is of fiber-type, with exponents
t1, 3, 5u. Thus, the complement M “ MpA q is aspherical and its projectivization, U “

PpMq, has fundamental group which decomposes as a semidirect product of free groups,
π1pUq “ F5 ¸α F3. The braid monodromy algorithm from [13] shows that the monodromy
map α : F3 Ñ AutpF5q takes values in the pure braid group P5, viewed as a subgroup of
AutpF5q via the Artin representation. Denoting by ui the generators of F3 and by Ai j the
standard generators of the pure braid group (corresponding to the meridians around the
hyperplanes Hi j of the braid arrangement), the monodromy map is given by

(10.2) αpu1q “ A23A24A34, αpu2q “ AA24A34
14 A25, αpu3q “ AA23A25

35 ,
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z2

x2

y2

y ` z

y ´ z

x ´ y x ` y

x ´ z x ` z

Figure 3. The B3 re-
flection arrangement,
with p3, 4q-multinet

2

1

1

1

2 2

3 3

Figure 4. The deleted
B3 arrangement, with
multiplicities

where ab “ b´1ab, see [61, Ex. 10.8]. Since pure braid automorphisms act trivially in
homology, the extension 1 Ñ F5 Ñ π1pUq Ñ F3 Ñ 1 is ab-exact. Thus, by the
aforementioned result of Falk and Randell [27], the LCS quotients grkpπ1pUqq are iso-
morphic to grkpF5q ‘ grkpF3q, for all k ě 1. Moreover, the Chen ranks are given by
θkpπ1pUqq “ pk ´ 1qp3k ` 19q for k ě 4, see [60, 11],

We now turn to the cohomology jump loci of the B3 arrangement (see [15, Rem. 6.4]
and [28, Ex. 3.6]). Notably, A supports a (non-reduced) multinet N , depicted in Figure 3;
ordering the hyperplanes as the factors of the defining polynomial (10.1), this multinet has
associated partition p189|267|345q. The resonance variety R1

1 pMq Ă H1pM;Cq “ C9 has
7 local components, corresponding to the 4 triple points and 3 quadruple points, 11 com-
ponents corresponding to braid sub-arrangements, and one essential, 2-dimensional com-
ponent, P “ PN . All the components of the characteristic variety V 1

1 pMq Ă H1pM;C˚q “

pC˚q9 pass through the origin, and thus are obtained by exponentiating the linear subspaces
comprising R1

1 pMq. In particular, there is a single essential component, T “ exppPq. More
explicitly, the multinet N determines a pencil,

(10.3) ψ : M S “ CP1
z tr0 : 1s, r1 : 0s, r1 : 1su,

which is given by ψpx, y, zq “ rx2py2 ´z2q:y2px2 ´z2qs. In turn, the induced homomorphism
ψ˚ : H1pS ;Zq Ñ H1pM;Zq is given by c_

1 ÞÑ 2e1 ` e8 ` e9, c_
2 ÞÑ 2e2 ` e6 ` e7, c_

3 ÞÑ

2e3 ` e4 ` e5, where ci “ rγis are the homology classes of standard loops around the
punctures of S (see Section 3.2). Hence,

(10.4) T “ ψ˚
pH1

pS ;C˚
qq “ tpt2, s2, pstq´2, s, s, pstq´1, pstq´1, t, tq : s, t P C˚

u.



44 ALEXANDRU I. SUCIU

Finally, let F “ FpA q be the Milnor fiber of the B3 arrangement; then none of the
aforementioned components of V 1

1 pMq contributes to a jump in b1pFq. In fact, as first
shown in [12], the monodromy h : F Ñ F acts trivially on H1pF;Qq; analyzing more
carefully that computation shows that h acts trivially on H1pF;Zq. Applying Theorem 7.1,
we conclude that grkpπ1pFqq – grkpF5q‘grkpF3q, and θkpπ1pFqq “ θkpπ1pUqq for all k ě 1.

10.2. The deleted B3 arrangement. Consider now the arrangement A 1 obtained from
A by deleting the hyperplane tz “ 0u, as shown in Figure 4. This is the deleted B3

arrangement, defined by the polynomial

(10.5) f 1
“ xypx ´ yqpx ` yqpx ´ zqpx ` zqpy ´ zqpy ` zq.

This is again a fiber-type arrangement, with exponents t1, 3, 4u. Thus, the complement
M1 “ MpA q is aspherical and its projectivization, U 1 “ PpM1q, has fundamental group
π1pU 1q “ F4 ¸α1 F3, where, as noted in [60, Ex. 10.6], the monodromy automorphism α1 is
given by the pure braids A23, AA23

13 A24, and AA24
14 .

The cohomology jump loci of M1 were computed in [61]. Briefly, the resonance va-
riety R1

1 pM1q Ă H1pM1;Cq “ C8 contains 7 local components, corresponding to the 6
triple points and 1 quadruple point, and 5 non-local components, corresponding to braid
sub-arrangements. In addition to the 12 subtori obtained by exponentiating these linear
subspaces, the characteristic variety V 1

1 pM1q Ă H1pM1;C˚q “ pC˚q8 also contains a com-
ponent of the form ρ ¨ T 1, where T 1 is a 1-dimensional algebraic subtorus and ρ is a root of
unity of order 2, given by

T 1
“ tpt2, t´2, t´1, t´1, 1, 1, t, tq : t P C˚

u,

ρ “ p1, 1,´1,´1,´1,´1, 1, 1q.
(10.6)

As explained in [16, Ex. 5.7], this translated subtorus arises from the pencil ψ from
(10.3), as follows. The point r0 : 1s is not in the image of ψ; however, extending the domain
of ψ to M1 “ M Y tz “ 0u defines a map

(10.7) ψ1 : M1 C˚ “ CP1
z tr0 : 1s, r1 : 0su.

Note that ψ1px, y, 0q “ rx2y2 : x2y2s, so the fiber over r1 : 1s has multiplicity 2. There-
fore, we may view the map ψ1 : M1 Ñ pC˚, p2qq as an orbifold pencil, with one multiple
fiber of multiplicity 2. The orbifold fundamental group Γ “ πorb

1 pC˚, p2qq may be identified
with the free product Z ˚ Z2, while the character group H1pΓ;C˚q may be identified with
C˚ ˆ t˘1u. It follows from (3.6) that V 1

1 pΓq “ C˚ ˆ t´1u. The map ψ1 induces an epi-
morphism ψ1

7
: π1pM1q ↠ Γ, which in turn induces a monomorphism pψ1

7
q˚ : H1pΓ;C˚q ãÑ

H1pπ1pM1q;C˚q. The image of V 1
1 pΓq under this morphism is precisely the translated torus
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ρT 1 Ă V 1
1 pM1q. Moreover, if we let j : M ãÑ M1 be the inclusion map between the re-

spective complements, then the induced homomorphism, j˚ : H1pM1;C˚q ãÑ H1pM;C˚q,
embeds ρT 1 into the torus T from (10.4). In fact, T X tt P pC˚q9 : t3 “ 1u “ T 1 Y ρT 1.

10.3. Milnor fibrations of the deleted B3 arrangement. It follows from the above dis-
cussion that the deleted B3 arrangement A 1 supports no essential, reduced multinet. It
is readily verified that none of aforementioned components of V 1

1 pM1q contributes to a
jump in the first Betti number of F 1 “ FpA 1q. Direct computation shows that, in fact,
H1pF 1;Zq “ Z8, and so the monodromy acts trivially on H1pF 1;Zq. For suitable choices
of multiplicities, though, the Milnor fiber of the multi-arrangement acquires non-trivial
2-torsion. We treat in detail one such choice.

Let F 1
m “ FmpA 1q be the Milnor fiber of the multi-arrangement pA 1,mq with multi-

plicity vector m “ p2, 1, 2, 2, 3, 3, 1, 1q. As noted in [9, 16], the monodromy of the Milnor
fibration acts trivially on H1pF 1

m;Qq, but not on H1pF 1
m;Zq, which has torsion subgroup

Z2 ‘ Z2 on which the monodromy acts as
`

0 1
1 1

˘

.

Let U 1 “ UpA 1q, and consider the pullback square on the right side of the following
diagram

(10.8)

F 1
m

Û 1 Ŝ “ pC˚, p2, 2, 2qq

U 1 S “ pC˚, p2qq.

κ

σm
τ

ψ̂1

ν

ψ1

where ψ1 is the (projectivized) orbifold pencil from Section 10.2 and ν is the orbifold 3-fold
cover corresponding to the epimorphism πorb

1 pS q “ Z˚Z2 ↠ Z3 that sends the (meridional)
generator of π1pC˚q “ Z to 1 and the generator of Z2 to 0. The orbifold fundamental group
Γ “ πorb

1 pŜ q is isomorphic to Z ˚ Z2 ˚ Z2 ˚ Z2, and so TΓ “ T0
Γ

ˆ tp˘1,˘1,˘1qu, where
T0
Γ

“ C˚. It follows from (3.6) that

V 1
1 pΓq “ t1u Y pTΓ zT0

Γq,

V 1
2 pΓq “ p1,´1,´1qT0

Γ Y p´1, 1,´1qT0
Γ Y p´1,´1, 1qT0

Γ Y p´1,´1,´1qT0
Γ,

V 1
3 pΓq “ p´1,´1,´1qT0

Γ.

(10.9)

Moreover, the lift ψ̂1 : Û 1 Ñ Ŝ is again an orbifold pencil.

The Z15-cover σm : F 1
m Ñ U 1 factors as the composite F 1

m
κ

ÝÑ Û 1 τ
ÝÑ U 1, where κ is

a 5-fold cover. By Theorem 5.7, part (2a), the subvariety W 1
1 pF 1

mq has 12 components
passing through the identity of H1pF 1

m;C˚q0 “ pC˚q7: eleven subtori of dimension 2 and
one subtorus of dimension 3 (which in fact is a component of W 1

2 pF 1
mq), all obtained by
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pullback along σm. By Theorem 5.7, part (2b), there is also a 1-dimensional component
of W 1

1 pF 1
mq of the form σ˚

mpρT 1q, where ρT 1 is the translated subtorus in V 1
1 pU 1q from

(10.6). Pulling back along the map pψ̂1 ˝ κq˚ : H1pŜ ;C˚q Ñ H1pF 1
m;C˚q the translated

tori comprising V 1
1 pΓq yields seven 1-dimensional components of V 1

1 pF 1
mq, of the form

ρ1σ˚
mpT 1q, for certain order 2 characters ρ1. Of those, 4 are also components of V 1

2 pF 1
mq,

while one of those, namely, pψ̂1˝κq˚
`

p´1,´1,´1qT0
Γ

˘

“ σ˚
mpρT 1q, is the unique component

of V 1
3 pF 1

mq.

Finally, since A 1 is fiber-type with exponents t1, 3, 4u, the lower central series quotients
grkpπ1pU 1qq are isomorphic to grkpF4q ‘ grkpF3q for k ě 2, while, by [60, 11], the Chen
ranks θkpπ1pU 1qq are equal to pk ´ 1qpk ` 12q for k ě 4. By Theorem 7.2, the group
K “ π1pF 1

mq has the same LCS and Chen ranks as π1pU 1q. In fact, it can be shown that
grkpKq b Zp – grkpπ1pU 1qq b Zp for all primes p ‰ 2, and likewise for the Chen groups
of K. Direct computation shows that the first few lower central series quotients of K and
K{K2 are as in the following table.

k 1 2 3 4 5

grkpKq Z7 ‘ Z2
2 Z9 ‘ Z5

2 Z28 ‘ Z15
2 Z78 ‘ Z41

2 Z252 ‘ Z117
2

grkpK{K2q Z7 ‘ Z2
2 Z9 ‘ Z5

2 Z28 ‘ Z15
2 Z48 ‘ Z?

2 Z68 ‘ Z?
2

11. Yoshinaga’s icosidodecahedral arrangement

In this final section, we describe an arrangement, introduced by Yoshinaga in [76], which
exhibits 2-torsion in the first homology of its (usual) Milnor fiber.

11.1. Mod-2 Betti numbers of 2-fold covers. Before proceeding with the example, we
return to the general setup for computing the homology of finite abelian covers treated in
Section 3.4, approached this time from a different angle.

Let p : Y Ñ X be a regular ZN-cover, classified by a homomorphism α : π1pXq Ñ ZN .
Alternatively, we may view α as a cohomology class in H1pX;ZNq, called the characteristic
class of the cover. The covering space Y “ Xα is connected if and only if the homomor-
phism α is surjective, in which case π1pYq “ kerpαq. In the case when N “ 2, more can be
said. The next two results were first proved in [76] and then strengthened in [66].

Lemma 11.1 ([76, 66]). Let p : Y Ñ X be a connected Z2-cover, with characteristic class
α P H1pX;Z2q. Then p lifts to a connected, regular Z4-cover p̄ : Y Ñ X if and only if
α2 “ 0.

Proposition 11.2 ([76, 66]). Let p : Y Ñ X be a 2-fold cover, classified by a non-zero class
α P H1pX;Z2q. Suppose that α2 “ 0. Then, for all q ě 1,

(11.1) bqpY,Z2q “ bqpX,Z2q ` dimZ2 Hq
pH˚

pX;Z2q, δαq,
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Figure 5. The icosidodecahedral arrangement

where the differential δα : H˚pX;Z2q Ñ H˚`1pX;Z2q is given by δαpuq “ αu. In particular,
bqpY,Z2q ě bqpX,Z2q.

Further work on the integral homology groups of double covers, and how this homology
relates to the homology with coefficients in rank 1 integral local systems on the base of the
cover can be found in [59, 36, 38].

11.2. Modular inequalities. Once again, let Y Ñ X be a connected Z2-cover with char-
acteristic class α P H1pX;Z2q. Assuming H˚pX;Zq is torsion-free, it follows from [53,
Thm. C] that

(11.2) bqpYq ď bqpXq ` dimZ2 Hq
pH˚

pX;Z2q, δαq.

When U “ UpA q is the projectivized complement of a hyperplane arrangement A , an
explicit formula was proposed in [54, Conjecture 1.9], expressing the first Betti number
b1pFq of the Milnor fiber of the arrangement in terms of the resonance varieties R1

s pU,Zpq,
for p “ 2 and 3, generalizing the formula from Theorem 4.3. At the prime p “ 2, the
conjecture is equivalent to the inequality (11.2) holding as equality in degree q “ 1 for the
2-fold cover Uα Ñ U corresponding to the class α P H1pU;Z2q which evaluates to 1 on
each meridional generator of H1pU;Z2q.

In recent work [31], Ishibashi, Sugawara, and Yoshinaga revisit this topic. In [31,
Cor. 2.5], they prove that equality holds in (11.2) if and only if H1pY;Zq has no non-trivial
2-torsion. Therefore, the formula conjectured in [54] fails at the prime p “ 2 precisely
when H1pUα;Zq has non-trivial 2-torsion. An explicit example where this happens is given
next.
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11.3. The icosidodecahesdral arrangement. In [76], Yoshinaga constructed an arrange-
ment of 16 hyperplanes in C3 with some remarkable properties. The construction is based
on the symmetries of a polyhedron in R3, called the icosidodecahedron. This is a quasireg-
ular polyhedron with 20 triangular and 12 pentagonal faces that has 30 vertices (each one
at the intersection of 2 triangles and 2 pentagons), and 60 edges (each one separating a
triangle from a pentagon). Letting ϕ “ p1 `

?
5q{2 denote the golden ratio, the vertices

of an icosidodecahedron with edges of unit length are given by the even permutations of
p0, 0,˘1q and 1

2p˘1,˘ϕ,˘ϕ2q.

One can choose 10 edges to form a decagon, corresponding to great circles in the spher-
ical tiling; there are 6 ways to choose these decagons, thereby giving 6 planes. Each pen-
tagonal face has five diagonals, and there are 60 such diagonals in all, which partition in 10
disjoint sets of coplanar ones, thereby giving 10 planes, each containing 6 diagonals. These
16 planes form an arrangement AR in R3, whose complexification is the icosidodecahedral
arrangement A depicted in Figure 5.

The projective line arrangement PpA q has 15 quadruple points and 30 double points.
The projective complement U “ UpA q is aspherical [35], and has Poincaré polynomial
Pptq “ 1 ` 15t ` 60t2. Let F “ FpA q be the Milnor fiber of is arrangement. As shown
in [76], we have that H1pF;Zq “ Z15 ‘ Z2. Thus, the algebraic monodromy of the Milnor
fibration is trivial over Q, but not over Z.

Since the monodromy of the Milnor fibration acts trivially on H1pF; kq for every field k of
characteristic different from 2, the results of [68] show that grpπ1pFqq b k – grpπ1pUqq b k
for such fields k. Direct computation shows that the first few lower central series quotients
of the group K “ π1pFq and of its maximal metabelian quotient are given by

k 1 2 3 4

grkpKq Z15 ‘ Z2 Z45 ‘ Z7
2 Z250 ‘ Z43

2 Z1,405 ‘ T

grkpK{K2q Z15 ‘ Z2 Z45 ‘ Z7
2 Z250 ‘ Z43

2 Z530 ‘ T

where T is a finite abelian 2-group and T is a quotient of T .
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