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We theoretically explore Josephson diode effect (JDE) in superconductor/quantum dot
(QD)/superconductor junction in the presence of a magnetic field and Rashba spin-orbit interaction
(RSOI). We calculate the Josephson current in our QD junction using Keldysh non-equilibrium
Green’s function technique. We show that JDE is induced in our chiral QD junction with large
rectification coefficient (RC) in the presence of RSOI and external magnetic field simultaneously.
Interestingly, the sign and magnitude of the RC are highly controllable by the magnetic field and
RSOI. For realistic RSOI strength in the presence of magnetic field and chirality, the RC can be
tuned to be as high as 70% by an external gate potential, indicating a giant JDE in our QD junc-
tion. Our proposed QD based Josephson diode (JD) may serve as a potential superconducting
device component.

I. INTRODUCTION

Unidirectional operation mechanisms have made
diodes an inevitable part of modern electronic devices,
like current rectifiers, spintronics, quantum computers,
switching devices, etc. Experimental advancements have
led the path of diode formation from semiconductor
diode [1] to the very recent fabrication of supercon-
ducting diode (SD) [2]. In the breakthrough experi-
ment, Ando et al. observed a superconducting diode ef-
fect (SDE) in a non-centrosymmetric Rashba superlattice
by sandwiching Nb/V/Ta layers [2]. In the follow-up ex-
periment, Baumgartner et al. showed the supercurrent
rectification through the magnetochiral anisotropy in a
two-dimensional electron gas (2DEG) [3]. The reason
behind this evolution toward the SDE is inscribed into
the directional preference of dissipationless supercurrent,
while the conventional diodes are entirely based on dissi-
pative current [4]. Afterward, the tunability of the uni-
directional supercurrent via the phase difference between
superconductor leads has drawn the attention of the com-
munity and brought JDs to the forefront of research dur-
ing the last couple of years [5–19]. The possibility of wide
applications has further sharpened the questions related
to achieving higher rectification with possible external
tunabilities.

To realize JDE, both inversion symmetry (IS) and
time-reversal symmetry (TRS) breaking have been uti-
lized in the literature, leading to the asymmetric current-
phase relation (CPR): Ic(Φ) ≠ −Ic(−Φ) [15, 20, 21]. IS-
breaking differentiates the current carried by electrons
from the hole counterpart. On the other hand, break-
ing of the temporal symmetry ensures that the flow of
up-spin electrons differs from the down-spin electrons.
To break the IS, the presence of chirality [22] or spin-
orbit interaction (SOI) [2] is worth considering. For TRS
breaking, one of the most convenient ways is applying an
external Zeeman field, which offers additional freedom for
controlling the nonreciprocal current. Otherwise, intro-
ducing intrinsic magnetism is also helpful for obtaining
the JDE [23, 24]. Thus, depending on the ways of TRS

breaking, JDs are classified into two categories: (1) ex-
trinsic JDs where the TRS is broken by external magnetic
field or flux [25, 26] and (2) intrinsic JDs with intrinsically
broken TRS without any external source of TRS break-
ing as supported by recent works [8, 27]. In some works,
JDE was explained in terms of finite momentum cooper-
pairs where both TRS and IS are broken [10, 26, 28].
These findings have opened the possibility of achieving
efficient JDs in various ways.

Several works have been done to show JDE consider-
ing Rashba superconductor [2, 29], van der Waals het-
erostructure [30], topological insulator [18, 31], Dirac-
semimetal [25, 32], 2DEG [33], single magnetic atom [34],
carbon nanotube [35], InSb nanoflag [36], normal
metal [37] band asymmetric metal [38], topological su-
perconductor [39, 40] etc. Not only higher dimensional
systems, zero-dimensional QD has also been used to show
JDE [22, 41, 42]. The context of QDs is very relevant
since QDs are thoroughly explored in Josephson junc-
tions (JJs) [20, 42–47] due to its potential applications
to quantum information [48], spin qubits [49], single-
electron transport [50], spintronic devices [51], and also
medical science and nanotechnology [52].

Very recently, Cheng et al. have shown JDE in chi-
ral QD based JJ in the presence of an external mag-
netic field [22], while Sun et al. have studied JDE in
QD based JJ with magnetic impurity [41]. In the chi-
ral QD, the chiral asymmetry can be introduced through
distortion thus making it suitable for nonreciprocity [32].
However, the study of JDE in QD based junctions is
very limited. An extensive study is necessary to ex-
ploit QDs meticulously for JDE or other SDEs. Note-
worthy, in Ref. [22], Cheng et al. have not considered
any RSOI [53]. In reality, the presence of RSOI is antic-
ipated in such junctions [45, 54, 55]. It not only breaks
the spin-degeneracy [56, 57], but also the splitting due
to RSOI is tunable [58, 59] via an external electric field,
which makes it perfect for studying the current. Very re-
cently, Mao et al. have explored RSOI in superconducting
nanowire to generate a spin diode effect [60].

With this motivation, we show JDE in a QD based JJ
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FIG. 1. The schematic diagram of QD-based JJ in presence of
an external magnetic field and gate-voltage. A direct coupling
between the superconducting leads is marked by the blue dot-
ted line.

where a QD with RSOI is coupled to two superconduc-
tor leads in the presence of an external magnetic field.
To calculate the current flowing through the junction,
we employ the non-equilibrium Keldysh Green’s function
method [61] where the self-energy and the Keldysh re-
tarded and advanced Green’s functions are found using
Dyson’s equation of motion [62]. We obtain the critical
current for a range of superconducting phases, magnetic
field, and RSOI. The energy of the single-level QD is con-
trollable via an external gate-voltage [63]. We also study
the effect of the gate voltages on the RC of our JD since
gate-voltage can control the rectification phenomenon as
shown in a recent experiment [64]. Interestingly, the non-
reciprocity of the critical currents, i.e., I+c (positive criti-
cal current) ≠ I−c (negative critical current) in our chiral
QD-based JD is enhanced compared to the previously
studied non-RSOI chiral QD junction [22]. Most inter-
estingly, the sign and magnitude of the RC are tunable by
the external magnetic field, RSOI, and the gate voltage.

We organize the rest of the article as follows. In Sec. II,
we present our QD-based JD model and the Keldysh
Green’s function formalism. We present our results and
discussions in Sec. III. Finally, in Sec. IV, we summarize
our findings and conclude with some remarks.

II. MODEL AND FORMALISM

Our model for QD JJ is schematically shown in Fig. 1
where a QD is sandwiched between the left and right su-
perconductor leads, denoted by L and R, respectively. An
external magnetic field is applied along the direction per-
pendicular to the flow of the current (within the plane)
as depicted in Fig. 1. For the sake of simplification, we
consider the QD consisting of a single energy level that is
tunable by an external gate-voltage Vg. A direct coupling
between the two superconducting leads is also introduced
to incorporate the effect of RSOI in the single level QD
junction by virtually creating an extra path for electron
transport. In the literature, this direct coupling between
the leads has been extensively utilized theoretically and
experimentally for decades to study the interference and
tunnelling [65–67].

We describe our QD-based JJ using the tight-binding

FIG. 2. Density of states D(E) of the superconductor leads
and the energy levels of the QD.

Hamiltonian as

H =HQD +HRSOI +HL +HR +HT +HLR (1)

where HQD, HRSOI, HL(R), HT and HLR represent the
Hamiltonian for QD, RSOI, the superconducting left
(right) lead, the tunneling between the QD and leads,
and the direct coupling between the two leads. These
individual Hamiltonians read as

HQD = ∑
σ

[(εd − eVg + σB + σλI)c†dσcdσ, (2)

HRSOI = αR∑
d′d

[tx
d′d
(c†d′,σcd,σ − c

†
d′ ,σ̄

cd,σ̄)

+ tz
d′d
(c†

d′ ,σ̄
cd,σ − c†d,σ̄cd′ ,σ)], (3)

HL(R) = ∑
α∈{kL,k′R},σ

εαa
†
ασaασ + ∑

α∈{kL,k′R}

[∆αaα↓a−α↑

+∆∗αa
†
−α↑a

†
α↓], (4)

HT = ∑
σ

[∑
kL

vLa
†
kLσcdσ +∑

k′R

vRa
†
k′Rσcdσ + h.c.] ,

(5)

HLR = tLR(a†
kLσak′Rσ + a†

k′RσakLσ). (6)

In Eq. (2), εd represents the energy level of the QD, which
is tunable by the external voltage Vg (shown in Fig. 1), B
is the external magnetic field applied along z-direction.
Following Lenz’s law, introducing the chirality in the QD
generates an induced magnetic field which is proportional
to the current flowing through the dot. The fourth term
of Eq. (2) is responsible for the induced magnetic field
with λ being the proportionality constant [22]. The Pauli

matrix σ acts on the spin degree of freedom. c†dσ(cdσ) is
the creation (annihilation) operator for the electrons in
the QD where the notation d is used to identify the dot.
In Eq. (3), αR is the strength of the RSOI. Due to the

RSOI, the single energy level of the QD is split in two
levels as shown in Fig. 2. Considering two states d and

d
′

in the QD, the first term of Eq. (3) represents the hop-
ping of same spin electrons between two different states
and the second term corresponds to the spin-flip hopping.
The second quantized form of the RSOI is derived [68]
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from the Hamiltonian given by,

HRSOI = ŷ ⋅ αR

h̵
[σ × (p + eA

c
)] (7)

where A is the magnetic vector potential and p is the
momentum of electrons. Using the gauge (0,Bx,0), we
can express the hopping as t

x(z)

d′d
= ∫ drψ∗d′ (r)px(z)ψd(r)

where ψd(r) is the orbital wavefunction for the QD elec-
trons.

In Eq. (4), εα with α ∈ {kL, k′R} denotes the onsite

energy of electrons in both leads, a†
kL(k′R)σ

(akL(k′R)σ)
is the creation (annihilation) operator of the electrons
in the left (right) lead with momentum kL (k′R). The
superconducting pair potential is denoted by: ∆L(R) =
∆0e

iΦL(R) where ΦL (ΦR) is the superconducting phase
for the left (right) lead. The coupling strength between
the left (right) superconductor and the QD is described
by vL(vR) in Eq. (5) and the direct tunneling coefficient
between the two leads is represented by tLR in Eq. (6) [44,
68].

In order to simplify the total Hamiltonian, we now ap-
ply two unitary transformations. In one transformation,

the superconducting phase ΦL(R) and energy gap ∆0 will
be decoupled using the generator U1, while in the other
transformation based on the generator U2, the effect of
RSOI will be included in the tunneling current. Hence,
the two consecutive unitary transformations are applied
to Eq. (1) with the following generators:

U1 = exp[ ∑
kL(k′R)σ

iΦL(R)

2
a†
kL(k′R),σ

akL(k′R),σ], (8)

U2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 (x < xL)
1
√
2
e−ikR(x−xL)σ (xL < x < xR)

1
√
2
e−ikR(xR−xL)σ (xR < x)

(9)

where kR = αR
m∗

h̵2 . The transformed Hamiltonian reads
as

H̃ = eU2eU1He−U1e−U2 . (10)

The interlevel hopping and the spin-flip terms are ne-
glected since our QD has a single energy level [44, 68].
We obtain the transformed Hamiltonian as,

H̃ = ∑
α∈{kL,k′R},σ

[εαa†
ασaασ +∆0aα↓a−α↑ +∆∗0a

†
−α↑a

†
α↓] +

⎡⎢⎢⎢⎢⎣
∑
kL,σ

vLe
iΦL
2 a†

kLσcdσ + ∑
k′R,σ

vRe
iΦR
2 a†

k′Rσcdσe
−iσϕRS + h.c.

⎤⎥⎥⎥⎥⎦
+HQD +HLR. (11)

Notably, the overall RSOI strength is now represented by
the RSOI-induced phase factor ϕRS which appears in the
tunneling part of the transformed Hamiltonian and it is

related to the αR by the expression, ϕRS = αR
m∗

h̵2 l, where
l is the length scale of RSOI.
With this transformed Hamiltonian, the Josephson

current in our QD-based junction can be found using the
relation [69, 70]

I = −e ⟨
dNL(R)

dt
⟩ = ie ⟨[NL(R), H̃]⟩ (12)

where the number operator is given by NL =
∑

kL,σ
a†
kLσakLσ. To calculate the current, we use the

Keldysh non-equilibrium Green’s function formalism
which is one of the most efficient techniques to solve
quantum transport problems. For the Keldysh lesser
Green’s functions, we use the fluctuation-dissipation the-
orem [71, 72] and obtain the Josephson current expres-
sion as,

I = e

π
∫ dϵ∑

σ

Re[vLe
iΦL
2 {G<dL,11(ϵ) +G<dL,33(ϵ)}

+ tLR{G<RL,11(ϵ) +G<RL,33(ϵ)}] (13)

where G<ii(ϵ) is the ii−th element of the Fourier trans-

formed time-dependent Keldysh Green’s function G<(t).

For our model Hamiltonian in Eq. (1), the Keldysh
lesser Green’s function can be written as,

G< =
⎛
⎜
⎝

G<LL G<LR G<Ld
G<RL G<RR G<Rd
G<dL G<dR G<dd

⎞
⎟
⎠

(14)

which is a 12 × 12 matrix in the spin ⊗ Nambu basis
and it follows G<RL = −(G<LR)∗. Moreover, the Keldysh
retarded Green’s function can be expressed in terms of
the self-energy using the Dyson equation of motion [62]:
Gr = gr + grΣrGr, where gr is the Keldysh retarded
Green’s function for the uncoupled QD and leads. The
self-energy Σr carries all the information about the tun-
nelings. We refer to Appendix A for the details of the
self-energy calculations. Finally, using Eq. (13), we cal-
culate the Josephson current self-consistently considering
the effect of the induced field.
To quantify the quality of the rectification by our JD,

we define the diode RC as,

R = I
+
c − ∣I−c ∣
Im

× 100% (15)

where we normalize the rectificaion by the mean current
given by Im = (I+c + ∣I−c ∣)/2.
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FIG. 3. (a) Josephson current (I) in units of e∆0 as a function of superconducting phase difference (Φ) at B = 0.6 with
and without Rashba phase. (b) - (d): A comparison between I+c and ∣I−c ∣ for Φ/2π values along the x-axis given by (b) I+c :
0.02 ≤ Φ/2π ≤ 0.07 and ∣I−c ∣: 0.75 ≤ Φ/2π ≤ 0.78, (c) I+c : 0.03 ≤ Φ/2π ≤ 0.07 and ∣I−c ∣: 0.72 ≤ Φ/2π ≤ 0.76, and (d) I+c :
0.03 ≤ Φ/2π ≤ 0.08 and ∣I−c ∣: 0.71 ≤ Φ/2π ≤ 0.75, respectively.

Throughout the rest of the manuscript, we consider
the superconducting phases in the two leads as ΦL = Φ/2
and ΦR = −Φ/2 so that the phase difference becomes
ΦL − ΦR = Φ. We use the natural units where m∗ = 1
and h̵ = 1, and calculate the Josephson current I in
units of e∆0. Also, we set vL = vR = 0.5∆0, λ = 0.05,
tLR = 0.2∆0, and eVg = 0 unless specified. We discuss
the effects due to the change in the parameter values in
the upcoming section. It is important to mention that
we consider the magnetic field only along the perpendic-
ular direction to maximize the rectification following the
discussions in some recent works [22, 29, 73]. We show
all the results only for symmetric leads where the pair
potential is the same for both leads. A detailed discus-
sion on the effects of asymmetric leads can be found in
Appendix B.

III. RESULTS AND DISCUSSIONS

In this section, we present and discuss the behaviors of
the current followed by the RC for the various parameters
considered in our model.

A. Current-phase relation

We begin by referring to Fig. 3(a), where we show the
CPR at a particular magnetic field for various Rashba

phases. The phase difference between the two leads es-
tablishes a Josephson current with the CPR I = Ic sinΦ
similar to an ordinary JJ as the Cooper pair tunnels
through the channels of the QD (see Fig. 2). The Joseph-
son current in our junction also follows I(nπ) = 0 where
n = ±1,±2, ... and so on. For a better understanding
of the current profiles, we zoom around the peaks and
skip showing the current around Φ/(2π) = 0.5. In order
to compare the magnitudes, we again show the positive
(I+c ) and the negative (∣I−c ∣) critical currents separately
in Fig. 3(b-d) for Rashba phases ϕRS = 0, π/4, and π/2,
respectively. In Fig. 3(b), we observe that the positive
critical current I+c = max[I(0 < Φ < π)] is not the same
as the negative critical current I−c =max[−I(π < Φ < 2π)]
i.e., I+c ≠ ∣I−c ∣. This describes that for a particular phase
difference, the forward current is different from the re-
verse current, indicating a JDE. At ϕRS = 0, the JDE
happens in the QD junction due to the presence of the
external (B ≠ 0) and induced field (λ ≠ 0) that simultane-
ously break the TRS and chiral symmetry, respectively,
similar to the results presented in Ref. [22]. However,
the difference between I+c and ∣I−c ∣, where I+c > ∣I−c ∣, is
very low in the absence of RSOI (see Fig. 3(b)).

Now, with finite RSOI (ϕRS ≠ 0), the magnitudes of the
critical currents and also the asymmetry between them
increases as depicted in Fig. 3. The inclusion of RSOI
breaks the IS, which results in the enhancement of the
nonreciprocity of the current, and thus, the diode effect
increases. Here, we want to make a note that in the ab-
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FIG. 4. Josephson current (I) in units of e∆0 as a function of
superconducting phase difference (Φ). Inset: Current profile
around Φ = 0.

sence of any chirality (λ = 0) and magnetic field (B = 0),
the CPR in a RSOI coupled QD junction follows the
analytical form I ≃ vL cos ϕRS

2
[sin (Φ+ϕRS

2
) + sin (Φ−ϕRS

2
)]

(see Appendix C for the derivation). We refer to Ap-
pendix D for the results with λ = 0. Also, we show all
the results for one particular coupling strength (vL = vR).
Any change in the coupling strength will not affect the
qualitative behavior of the current in our junction as long
as it is less than the magnetic field.

In order to investigate the effect of the magnetic field
and RSOI in more detail, we now plot the same for vari-
ous magnetic fields in the absence and presence of RSOI
in Fig. 4. We see that with the increase in the mag-
netic field, the critical currents and also the asymmetry
between I+c and ∣I−c ∣ increase. The behavior of the en-
hancement of the current with the increasing magnetic
field is also found in the absence of RSOI [22]. In an or-
dinary JJ, the CPR follows I(Φ) = −I(−Φ). Interestingly,
in Fig. 4, we observe that this relation breaks down i.e,
I(Φ) ≠ −I(−Φ). We also find that in contrast to the usual
2π periodicity i.e., Ic(Φ + 2π) = Ic(Φ) found in an ordi-
nary JJ, the symmetry around Φ = 0 is lost in the pres-
ence of magnetic field and RSOI in the QD junction, re-
sulting in 4π periodicity of the current. A small finite cur-
rent is found to be present even at the zero superconduct-
ing phase difference, i.e., I(Φ = 0) ≠ 0 (see inset of Fig. 4)
where in an ordinary JJ, the CPR follows I(Φ = 0) = 0.
This indicates the appearance of an additional phase Φ0

in the CPR and is referred to as the anomalous Joseph-
son current in the literature [15, 20, 54, 74, 75]. The
shifting of I(Φ = Φ0) = 0 is also known as Φ0−JJ. The
combined effect of the IS and the TRS breaking is repon-
sible for this anomalous supercurrent or equivalently the
phase-shift in our junction. We check that the shifting of
the Φ0 phase intensifies with the external magnetic field
following B/vL(R) > 1 [76]. This anomalous behavior of
the current is explained in the literature in terms of the
spontaneous breaking of TRS at Φ = 0 [20, 54, 77–79].

B=0.4

B=0.8

0 π /2 π

0

1

2

3

ϕRS

ℛ

FIG. 5. Rectification coefficient (R% vs.Rashba phase (ϕRS).

B. Rectification without any gate voltage

Till now, we see that the phenomenon of non-
reciprocity follows I+c > I−c . It indicates that the forward
current is preferred over the reverse one for all the param-
eter values considered so far. To analyze the rectification
quality, we present the behavior of the RC using Eq. (15)
for our QD-based JD as a function of ϕRS in Fig. 5. On
the whole, RC of our JD initially increases and then de-
creases with the increase in Rashba phase. However, the
detailed behavior of the RC depends on the magnitude
of B. There appears an interplay between the RSOI
strength and magnetic field for determining the value of
RC. For illustration, at B = 0.8, the current in our QD-
based JD increases as ϕRS increases from 0 to π/2. As
ϕRS increases further, the RC reduces following a partial
mirror symmetry with respect to ϕRS = π/2. For a lower
magnetic field strength like B = 0.4, we observe a saddle
near ϕRS = π/2. So, it is evident that the correlation be-
tween the B and ϕRS plays a vital role in determining the
diode effect qualitatively and also quantitatively. Addi-
tionally, two more important observations are in order.
The RC is low in this parameter regime. Interestingly,
there exists a certain regime of RSOI, where we find neg-
ative values of the RC, which indicates that the backward
current is preferred more than the forward one.

In order to understand the competitive effect of the
RSOI and magnetic field on the diode quality, we now
study the RC for broad parameter regimes of the mag-
netic field (0 ≤ B ≤ 1 in panel (a) and −1 ≤ B ≤ 0 in
panel (b)) in the presence of RSOI by presenting a den-
sity plot of the RC in Fig. 6. Our observations are man-
ifold. (i) The RC is finite but very low for B = 0. This
is expected since external TRS breaking is not neces-
sary for the chiral QD JDE [8, 27, 30, 35] but the effec-
tive magnetic field can not induce sufficiently large JDE
in our RSOI coupled junction. (ii) RC varies with the
strength of the magnetic field. (iii) The diode effect is
sensitive to the direction of the applied magnetic field,
i.e., R(B) ≠ −R(−B) when the directions of Rashba field
and the supercurrent are unchanged. This is similar to
the experimental results reported in Ref. [29 and 73]. The
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FIG. 6. Density plot of the rectification coefficient (R%) as a function of the Rashba phase (ϕRS) and magnetic field (B)
applied along (a) +z and (b) −z-direction.

competitive effect of the magnetic field and the RSOI on
the RC is more substantial when the magnetic field is
applied along −z-direction. (iv) Most interestingly, not
only the magnitude of RC, tuning the magnetic field and
RSOI simultaneously, we can also tune the RC from the
positive to negative and vice-versa. Comparing the two
panels of Fig. 6, we observe that when the magnetic field
is applied along +z-direction, higher values of the RC are
achieved for strong magnetic fields only, whereas the RC
is amplified for a relatively much weaker magnetic field
for the same RSOI when it is applied along the opposite
direction. (v) Overall, we find that maximum R ∼ 42%
for +B and ∼ 57.5% for −B can be achieved in our QD-
based JD. To be noted, we have checked that in the ab-
sence of any chirality (λ = 0), the diode RC can be as
high as 43% due to only RSOI.

We explain the observations as follows. Introduction
of the RSOI splits the QD energy level. When we si-
multaneously switch on the external magnetic field, it
extends the energy level splitting considering the spins
of the electrons. Therefore, the combined effect of the
magnetic field and the Rashba generates several possibil-
ities for the tunnelling of the Cooper pairs from the left
to the right superconducting lead. Hence, the correlation
among both interactions results in ample possibilities or
variations in the RC of our JD. It turns out that the direc-
tion of the supercurrent is strongly favored if the three
vectors i.e., supercurrent, magnetic field, and RSOI lie
along the Cartesian coordinates (clock-wise), which hap-
pens in the +B direction in our set-up. For the −B, there
are more fluctuations in the current with the sign of RC
being sensitive to the strength of the magnetic field for
any RSOI. It is essential to mention that the qualitative
nature of the RC with the change in the direction of the
external magnetic field from −z to +z matches well with
the experimental study on SDE on epitaxial Al-InAs JJ,
where the JDE due to strong RSOI is studied in the pres-
ence of an external magnetic field [73].

Before we proceed further, we comment on the direct
coupling. In our JJ model, we consider a single energy

level in the QD. For the single energy level, an external
direct coupling between the two leads via tLR is necessary
to include the Rashba effect in our system [20, 44]. This
coupling opens up a pseudo-channel for the electron to
tunnel. In reality, since a single QD is a very small region,
it is highly likely to have a direct coupling between the
two leads. Eventually, the strength of this direct hopping
has a significant effect on the RC, which we discuss in
Appendix E.

C. Gate-tunability of the diode effect

Till now, all results are shown only for the gate volt-
age eVg = 0. In Fig. 7, we show the RC as a function
of the Rashba phase for various gate voltages. The ap-
plied gate voltage tunes the QD energy levels. We find
that by only tuning the gate voltage, it is possible to
get the RC as high as 80% even in the absence of any
RSOI in the chiral QD. For the finite RSOI, the gate-
voltage induces an effective RSOI in the system since it
acts as an electric field [80, 81]. With the increase in
the gate voltage, the induced RSOI through the exter-
nal field becomes more effective compared to the RSOI
in the ungated junctions. With the increasing Rashba
phase, the RC gradually decreases for all finite gate volt-
ages. Keeping in mind the inevitable presence of RSOI
in such QD-based junction, it is possible to achieve RC
∼ 70% by tuning Vg for an optimum strength of ϕRS in
our proposed QD based JD, which is the highest RC of
a JD reported so far for the non-transparent junction
to the best of our knowledge. Also, by tuning the gate
voltage from the positive to the negative values, or vice
versa, we can determine the direction of the preferential
current flow in our JD as shown in Fig. 7. We find, at
a particular RSOI, R(eVg) ≃ −R(−eVg), i.e. the RC is
almost symmetric with respect to the zero gate voltage
at any RSOI.
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FIG. 7. Rectification coefficient (R%) vs. Rashba phase
(ϕRS) at B = 0.4.

IV. SUMMARY AND CONCLUSION

To summarize, we have studied the JDE in single en-
ergy level chiral QD based junction. To calculate the
Josephson current, we have employed the Keldysh non-
equilibrium Green’s function technique. We have found
that the critical current in our JJ increases with the in-
crease in RSOI strength. We show the JDE in our chiral
QD based JJ in the presence of RSOI and a magnetic
field. Noteworthy, in our RSOI coupled QD junction,
simultaneous presence of the chirality and the magnetic
field are not mandatory to achieve JDE, but they can
enhance the rectification. In the presence of RSOI, the
magnitude of the RC gets amplified and most impor-
tantly, it results in a sign-changing behavior of the RC.
Finally, we have shown that by tuning the QD energy
level via an external gate potential, it is possible to get
giant JDE with R ∼ 70% at an optimal strength of RSOI
in the presence of magnetic field.

From the experimental point of view, an estimation of
the induced current is in order. Using the Biot-Savart

law, the induced magnetic field is found to be B
′

= µ0I
2r

where r is the radius of the single turn of a current-
carrying helix. This induced magnetic field is propor-

tional to the current following B
′

= λI. Hence, compar-
ing both the relations, we obtain λ = µ0

2r
. Considering

the radius r = 1 nm, the induced field will be of the or-
der of 10−3 Oe for a current I = 0.5 nA. However, in
our work, the RSOI is playing the main role for induc-
ing the larger diode effect. The RSOI changes as per
the material property. In the widely used materials for
QDs like GaAs or InAs, the RSOI strength is found to
be very small ∼ 0.04 × 10−11 eVm and 0.28 × 10−11 eVm,
respectively [80, 82–84], whereas in InSb, RSOI is rel-
atively higher ∼ 1.16 × 10−11 eVm [85]. Therefore, for
the semiconductor QD with low RSOI strength, the gate
voltage could be tuned easily to achieve a very high RC,
as mentioned above. Our present results support three
major experimental works on the SDE of recent times: i)
it reconfirms Ref. [2 and 3], the breaking of IS through
Rashba materials can induce the JDE, ii) by tuning the

gate voltage [64], the RC of the JD can be increased by
a large amount, iii) even in the absence of an external
magnetic field it is possible to have a weak Josephson
diode effect [8, 27, 30]. All these newly verified results
are now explored in our QD junction.
Finally, we emphasize that including RSOI in modern

quantum systems can be supremely effective in studying
more efficient JDE. Our RSOI coupled QD junction ex-
plains the JDE theoretically, in a more general way, with
a highly efficient possibility of experimental fabrication
since RSOI is unavoidable in such low dimensional junc-
tions [86]. The tunability of the external magnetic field,
the superconducting phase difference, gate voltage, RSOI
and applications to a wide range of quantum materials
and correlated systems, like spin qubits, spin-transistors,
single electron transistors, topological materials, Dirac
semi-metals, superconductors, and many more [51] make
our proposed QD based JDs highly efficient for switching
devices.
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Appendix A: Calculations of Keldysh Green’s
function and the transport matrix

In this section, we summarize some major steps of the
calculation of Keldysh Green’s function and the transport
matrix.
The self-energy included in the Dyson equation of mo-

tion for the Keldysh retarded Green’s function is ex-
pressed in the basis {ϵ↑,−ϵ↑, ϵ↓,−ϵ↓} as [44],

Σr =
⎛
⎜
⎝

0 tLR VL
t∗LR 0 VR
V ∗L V ∗R 0

⎞
⎟
⎠

(A1)

where

tLR =
⎛
⎜⎜⎜
⎝

tϵ↑,ϵ↑ 0 0 0
0 t−ϵ↑,−ϵ↑ 0 0
0 0 tϵ↓,ϵ↓ 0
0 0 0 t−ϵ↓,−ϵ↓

⎞
⎟⎟⎟
⎠
, (A2)

VL =

⎛
⎜⎜⎜⎜⎜
⎝

vLe
i
ΦL
2 0 0 0

0 −vLe−i
ΦL
2 0 0

0 0 vLe
i
ΦL
2 0

0 0 0 −vLe−i
ΦL
2

⎞
⎟⎟⎟⎟⎟
⎠

, (A3)

and
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VR =

⎛
⎜⎜⎜⎜⎜
⎝

vRe
i(

ΦR
2 −ϕRS) 0 0 0

0 −vRe−i(
ΦR
2 +ϕRS) 0 0

0 0 vRe
i(

ΦR
2 +ϕRS) 0

0 0 0 −vRe−i(
ΦR
2 −ϕRS)

⎞
⎟⎟⎟⎟⎟
⎠

. (A4)

ϕRS =
π

4

ϕRS =
π

2
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ℐ

FIG. 8. Josephson current I in units of e∆0 as a function of
the phase difference for the asymmetric JJ.

Here, tL(R) is the tunneling matrix and VL(R) represents
the coupling between the left (right) superconductor and
the QD. The Keldysh retarded Green’s function can be
expressed in a block form like

gr =
⎛
⎜
⎝

grLL 0 0
0 grRR 0
0 0 grdd

⎞
⎟
⎠
, (A5)

where

grαα =
⎛
⎜⎜⎜
⎝

grαα,ϵ↑,ϵ↑ grαα,ϵ↑,−ϵ↑ 0 0
grαα,−ϵ↑,ϵ↑ grαα,−ϵ↑,−ϵ↑ 0 0

0 0 grαα,ϵ↓,ϵ↓ grαα,ϵ↓,−ϵ↓
0 0 grαα,−ϵ↓,ϵ↓ grαα,−ϵ↓,−ϵ↓

⎞
⎟⎟⎟
⎠

(A6)

with α ∈ L/R. The retarded Green’s functions for the
each individual leads are expressed as, grαα,ϵσ,ϵσ = −iπρρα
and grαα,±ϵσ,∓ϵσ = −iπρρασ∆0/(ϵ+ iη+). Here, the density
of states of the QD is taken as ρ = 1 and the density of
states of the leads are given by

ρα =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣ϵ∣
√

ϵ2−∆2
0

∣ϵ∣ >∆0

−iϵ
√

∆2
0−ϵ

2
∣ϵ∣ <∆0.

(A7)

The Green’s function of the uncoupled QD is calcu-
lated as:

grdd =

⎛
⎜⎜⎜⎜⎜
⎝

1
ϵ+iη+−HQD,↑↑

0 0 0

0 1
−ϵ+iη+−HQD,↑↑

0 0

0 0 1
ϵ+iη+−HQD,↓↓

0

0 0 0 1
−ϵ+iη+−HQD↓↓

⎞
⎟⎟⎟⎟⎟
⎠

. (A8)

Using the Keldysh retarded Green’s function gr of the
uncoupled system and the individual coupling matrices
(VL, VR, tLR), the self-energy of the system Σr is calcu-
lated using the Dyson’s equation of motion. Further, the
Keldysh lesser Green’s function G< is computed numeri-
cally using the fluctuation-dissipation theorem following
G<(ϵ) = −f(ϵ)(Gr − Ga), where Ga = [Gr]†. Finally,
we calculate the Josephson current self-consistently us-
ing the matrix components of the Green’s function.

Appendix B: Effect of asymmetric leads

In this section, we study the effect of asymmetric su-
perconducting leads on the current profiles.

To impose the asymmetry between the two leads in
our JJ, we consider ∆L = 1 and ∆R = 0.6 and plot the

current in terms of the phase difference in Fig. 8. We ob-
serve that the positive and the negative critical currents
are different from each other. Comparing with Fig. 3, it
is clearly visible that for the asymmetric leads, the non-
reciprocity in the Josephson current increases. Also, the
negative current is now higher than the positive current
unlike the situation for the symmetric leads. We have
also checked (not shown to avoid increasing number of
figures) that the corresponding RC of our diode also in-
creases when the leads are asymmetric compared to that
for symmetric case.

Appendix C: Derivation of current expression

In this section, we present an analytical expression for
the Josephson current in the presence of RSOI. From
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FIG. 9. RC (R%) vs. Rashba phase in the absence of chirality.

Eq. (11) we find the effect of Rashba interaction is in-
cluded in the tunneling Hamiltonian. Therefore, using
this effective Hamiltonian we calculate an approximate
analytical expression for the Josephson current in our
model.

The current can be defined in terms of the Free energy
F of the system as [15, 55],

I = 2e

h̵

∂F

∂Φ
(C1)

where e is the electronic charge and it is set as e = 1. It
can also expressed in terms of the partition function Z
as

I = 2e

h̵

∂(−T lnZ)
∂Φ

. (C2)

Now explicitly writing the partition function of the junc-
tion, we derive the current as

I = −2e
h̵

1

β

∂(lnTr[exp−βH̃])
∂Φ

≃ vL exp
−i

ϕRS
2 sin(Φ + ϕRS

2
) + vL expi

ϕRS
2 sin(Φ − ϕRS

2
) .

(C3)

Collecting the real part of the above expression we obtain

B=0.4

B=0.8

0 0.5 1

0

1

2

3

t LR

ℛ

FIG. 10. RC (R%) vs. hopping integral tLR for ϕRS = π/4.

the approximate relation for the CPR mentioned in the
main text.
Appendix D: Rectification in absence of chirality

In our QD-based JJ, we consider the presence of RSOI
which eventually breaks the IS. The QD is modelled to
have the chirality which also breaks the symmetry. To
obtain the JDE, the chirality is not any necessary con-
dition when RSOI is present. For the confirmation, we
present the behavior of RC as a function of Rashba phase
in the absence of λ for different magnetic fields in Fig. 9.
The qualitative nature of the RC with the variation of
RSOI is quite similar to that in the presence of chirality.
Comparing with Fig. 5, we find that the magnitude of
RC is higher in the presence of the chirality. However,
the sign changing phenomena is more prominent in the
absence of the chirality. The sign of RC changes from the
positive to the negative or vice versa with the change in
Rashba phase. Thus, the sign and magnitude of the RC
in our JD is sensitive to the chirality.

Appendix E: Effect of direct coupling

A direct coupling between the leads helps to tackle the
effect of the RSOI analytically. In experimental fabrica-
tion, the coupling between the leads could be changed by
forming the junction potential. Therefore, it is a control-
lable parameter in practice [74, 83]. In the main text,
we discuss all results for a particular value of the direct
coupling strength. Now, we show its impact on the RC
of our JD in Fig. 10. We find that the RC is oscillatory
with respect to tLR at a constant RSOI in the presence of
the finite magnetic field. The direct coupling essentially
plays the role of an extra-channel in the QD junction.
Tuning the strength effectively leads to the controlling
the extra channel which further modifies the tunneling
phenomena and results in the oscillations. The oscilla-
tions increases with the increase in the magnetic field.
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[29] L. Bauriedl, C. Bäuml, L. Fuchs, C. Baumgartner,
N. Paulik, J. M. Bauer, K.-Q. Lin, J. M. Lupton,
T. Taniguchi, K. Watanabe, C. Strunk, and N. Paradiso,
“Supercurrent diode effect and magnetochiral anisotropy
in few-layer nbse2,” Nature Communications 13, 4266
(2022).

[30] H. Wu, Y. Wang, Y. Xu, P. K. Sivakumar, C. Pasco,
U. Filippozzi, S. S. P. Parkin, Y.-J. Zeng, T. McQueen,
and M. N. Ali, “The field-free josephson diode in a van
der waals heterostructure,” Nature 604, 653–656 (2022).

[31] H. F. Legg, D. Loss, and J. Klinovaja, “Superconducting
diode effect due to magnetochiral anisotropy in topologi-
cal insulators and rashba nanowires,” Phys. Rev. B 106,
104501 (2022).

[32] K. Chen, B. Karki, and P. Hosur, “Intrinsic supercon-
ducting diode effects in tilted weyl and dirac semimetals,”
arXiv:2309.11501 (2023).

[33] A. Costa, J. Fabian, and D. Kochan, “Microscopic study
of the josephson supercurrent diode effect in josephson
junctions based on two-dimensional electron gas,” Phys.
Rev. B 108, 054522 (2023).

[34] M. Trahms, L. Melischek, J. F. Steiner, B. Mahendru,
I. Tamir, N. Bogdanoff, O. Peters, G. Reecht, C. B.
Winkelmann, F. von Oppen, and K. J. Franke, “Diode ef-
fect in josephson junctions with a single magnetic atom,”
Nature 615, 628–633 (2023).

[35] J. J. He, Y. Tanaka, and N. Nagaosa, “The supercur-

https://onlinelibrary.wiley.com/doi/10.1002/andp.18752291207
http://dx.doi.org/ 10.1038/s41586-020-2590-4
http://dx.doi.org/ 10.1038/s41586-020-2590-4
http://dx.doi.org/ 10.1038/s41565-021-01009-9
http://dx.doi.org/ 10.1038/s41565-021-01009-9
http://dx.doi.org/10.1126/science.1087128
http://dx.doi.org/10.1126/science.1087128
http://dx.doi.org/ 10.1103/PhysRevB.103.245302
http://dx.doi.org/ 10.1103/PhysRevX.12.041013
http://dx.doi.org/ 10.1103/PhysRevX.12.041013
https://www.nature.com/articles/s41467-022-29990-2
http://dx.doi.org/10.1038/s41567-022-01700-1
http://dx.doi.org/10.1038/s41567-022-01700-1
https://www.nature.com/articles/s41565-022-01159-4
https://www.nature.com/articles/s41565-022-01159-4
http://dx.doi.org/10.1103/PhysRevLett.128.037001
http://dx.doi.org/10.1103/PhysRevLett.128.037001
http://dx.doi.org/ 10.1103/PhysRevB.107.224518
http://dx.doi.org/ 10.1103/PhysRevLett.130.266003
http://dx.doi.org/ 10.1103/PhysRevLett.129.267702
http://dx.doi.org/ 10.1103/PhysRevLett.129.267702
http://dx.doi.org/ 10.1103/PhysRevB.106.165419
http://dx.doi.org/10.1126/sciadv.abo0309
http://dx.doi.org/10.1126/sciadv.abo0309
http://dx.doi.org/ 10.1103/PhysRevResearch.4.033167
http://dx.doi.org/ 10.1103/PhysRevB.106.134514
http://dx.doi.org/ 10.1103/PhysRevB.106.134514
http://dx.doi.org/10.1103/PhysRevLett.131.096001
http://dx.doi.org/ 10.1103/PhysRevLett.132.046003
http://dx.doi.org/ 10.1103/PhysRevLett.132.046003
http://dx.doi.org/ 10.1103/PhysRevLett.103.147004
http://arxiv.org/abs/2312.05008
http://dx.doi.org/10.1103/PhysRevB.107.184511
http://dx.doi.org/10.1103/PhysRevLett.87.236602
http://dx.doi.org/10.1103/PhysRevLett.87.236602
http://dx.doi.org/10.1038/s41467-018-05759-4
http://dx.doi.org/10.1038/s41467-018-05759-4
http://dx.doi.org/10.1038/s41567-022-01699-5
http://dx.doi.org/10.1038/s41567-022-01699-5
http://dx.doi.org/ 10.1073/pnas.2119548119
http://dx.doi.org/ 10.1073/pnas.2119548119
http://dx.doi.org/10.1088/2053-1583/ac5b16
http://dx.doi.org/10.1088/1367-2630/ac6766
http://dx.doi.org/10.1088/1367-2630/ac6766
http://dx.doi.org/10.1038/s41467-022-31954-5
http://dx.doi.org/10.1038/s41467-022-31954-5
http://dx.doi.org/ 10.1038/s41586-022-04504-8
http://dx.doi.org/10.1103/PhysRevB.106.104501
http://dx.doi.org/10.1103/PhysRevB.106.104501
https://arxiv.org/abs/2309.11501
http://dx.doi.org/ 10.1103/PhysRevB.108.054522
http://dx.doi.org/ 10.1103/PhysRevB.108.054522
http://dx.doi.org/10.1038/s41586-023-05743-z


11

rent diode effect and nonreciprocal paraconductivity due
to the chiral structure of nanotubes,” Nature Communi-
cations 14, 3330 (2023).

[36] B. Turini, S. Salimian, M. Carrega, A. Iorio, E. Stram-
bini, F. Giazotto, V. Zannier, L. Sorba, and S. Heun,
“Josephson diode effect in high-mobility insb nanoflags,”
Nano Lett. 22, 8502–8508 (2022).

[37] T. Liu, M. Smith, A. V. Andreev, and B. Z. Spivak,
“Giant nonreciprocity of current-voltage characteristics
of noncentrosymmetric superconductor–normal metal–
superconductor junctions,” Phys. Rev. B 109, L020501
(2024).

[38] A. Soori, “Josephson diode effect in junctions of su-
perconductors with band asymmetric metals,” (2023),
arXiv:2312.14084 [cond-mat.supr-con].

[39] J. Cayao, N. Nagaosa, and Y. Tanaka, “Enhancing
the josephson diode effect with majorana bound states,”
(2023), arXiv:2309.15567 [cond-mat.supr-con].

[40] Z. Liu, L. Huang, and J. Wang, “Josephson diode
effect in topological superconductor,” arXiv:2311.09009
(2023).

[41] Y.-F. Sun, Y. Mao, and Q.-F. Sun, “Design of josephson
diode based on magnetic impurity,” Phys. Rev. B 108,
214519 (2023).

[42] C. Ortega-Taberner, A.-P. Jauho, and J. Paaske,
“Anomalous josephson current through a driven double
quantum dot,” Phys. Rev. B 107, 115165 (2023).

[43] Q.-f. Sun, J. Wang, and T.-h. Lin, “Control of the su-
percurrent in a mesoscopic four-terminal josephson junc-
tion,” Phys. Rev. B 62, 648–660 (2000).

[44] Q.-f. Sun, J. Wang, and H. Guo, “Quantum transport
theory for nanostructures with rashba spin-orbital inter-
action,” Phys. Rev. B 71, 165310 (2005).

[45] L. Dell’Anna, A. Zazunov, R. Egger, and T. Martin,
“Josephson current through a quantum dot with spin-
orbit coupling,” Phys. Rev. B 75, 085305 (2007).

[46] H.-Z. Tang, Y.-T. Zhang, and J.-J. Liu, “Josephson
current through a quantum dot coupled to a majorana
zero mode,” Journal of Physics: Condensed Matter 28,
175301 (2016).

[47] A. Soori, “Dc josephson effect in superconductor-
quantum dot-superconductor junctions,” (2021),
arXiv:1905.01925 [cond-mat.mes-hall].

[48] D. Loss and D. P. DiVincenzo, “Quantum computation
with quantum dots,” Phys. Rev. A 57, 120–126 (1998).

[49] G.-J. Qiao, Z.-L. Zhang, S.-W. Li, and C. P. Sun, “Con-
trolling superconducting transistor by coherent light,”
(2023), arXiv:2305.04442 [cond-mat.mes-hall].

[50] S. Lee, Y. Lee, E. B. Song, and T. Hiramoto, “Obser-
vation of single electron transport via multiple quantum
states of a silicon quantum dot at room temperature,”
Nano Lett. 14, 71–77 (2014).

[51] A. Hirohata, K. Yamada, Y. Nakatani, I.-L. Prejbeanu,
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