
ar
X

iv
:2

40
1.

17
47

0v
3 

 [
m

at
h.

C
O

] 
 6

 M
ay

 2
02

4

THE AUGMENTED EXTERNAL ACTIVITY COMPLEX OF A

MATROID

ANDREW BERGET AND DANIA MORALES

Abstract. For a matroid, we define a new simplicial complex whose facets are
indexed by its independent sets. This complex contains the external activity complex
as a subcomplex. We call our complex the augmented external activity complex since
its definition is motivated by the recently defined augmented tautological classes of
matroids. We prove that our complex is shellable and show that our shelling satisfies
the stronger property of being an H-shelling. This explicates our result that the
h-vector of our complex is the f -vector of the independence complex. We also define
an augmented no broken circuit complex, which contains the usual no broken circuit
complex as a subcomplex. We prove its shellability and show that our shelling is also
an H-shelling. The h-vector of this complex is the f -vector of the no broken circuit
complex.

1. Introduction

While any simplicial complex can be assembled one face at a time in an apparently
haphazard way, shellable simplical complexes are those that can be assembled with some
measure of control on the topology of this process. One requires that the facets of the
complex can be added in such an order that when adding a new facet, it meets the
previously built complex along a pure subcomplex. Such an ordering of the facets is
called a shelling of the complex, and among other important consequences, shellability
implies that a simplicial complex is Cohen-Macaulay and homotopy equivalent to a wedge
of spheres.

Matroids give rise to supernumerary examples of shellable simplicial complexes. Two
of the most important and earliest results in this area are the shellability of the inde-
pendence complex and the order complex of the lattice of flats of a matroid, due to
Provan and Billera, and Garsia, respectively. Provan also showed that the no broken
circuit complex of M is shellable. For all of these results in one place, see [Bjö92]. The
Bergman complex of a matroid, used in the resolution of the Rota-Heron-Welsh con-
jecture [AHK17], is homeomorphic to the order complex of its lattice of proper flats
[AK06] and is, thus, shellable. The augmented Bergman complex of a matroid, used
in the resolution of the Dowling-Wilson conjecture [BHM+23], interpolates between the
independence complex and the lattice of flats, and was recently shown to be shellable
[BKR+22]. An interesting phenomenon appears in each of these examples: it is possible
to describe not just one, but many different shellings of these complexes. As a simplest
example, any linear order of the ground set of a matroid induces a lexicographic ordering
on its bases, and this is a shelling. This property can be used to characterize matroids
among all simplicial complexes.
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In [AB16] a curiously defined complex called the external activity complex was dis-
covered. This complex arises naturally in the study of what is now called the Schubert
variety of a linear space, which was used in the proof of the Dowling-Wilson conjecture
of a realizable matroid [HW17]. This variety is almost always singular. A consequence of
[AB16] is the Cohen-Macaulay property of the external activity complex, which means
that it has, in a sense, mild singularities. In [ACS16] the topology of the external activity
complex was studied in greater depth, and it was shown to be shellable.

The facets of the external activity complex are in bijection with the bases of the
matroid, however they record finer information than just the bases: they record each
basis B along with its external activity EA(B), which is to say the elements e not in
the basis B that are the maximum of the unique circuit of B ∪ {e}. External activity is
a concept dating back to Whitney’s description of the chromatic polynomial of a graph
in terms of no broken circuit sets [Whi32] and made formal in Crapo’s definition of the
Tutte polynomial [Cra69]. There is a notion of internal activity IA(B) of a basis, which is
obtained from external activity by matroid duality. In a systematic study of orderings of
bases of matroids that are known to give shellings, Las Vergnas [LV01] introduced partial
orders on the bases of a matroid coming from internal and external activity. The main
result in [ACS16] shows that linear extensions of Las Vergnas’s external/internal partial
order induce shelling orders on both the external activity complex and the independence
complex, which is a subcomplex of the external activity complex.

In the current work, we describe a naturally occurring simplicial complex whose facets
are indexed by the independent sets of a matroid. The facet of an independent set records,
essentially, its internal and external activity. Our main results are summarized below.
We use the notation xS =

∏
i∈S xi to describe monomials, and a simplicial complex is

described by a listing a collection of square free monomials corresponding to its facets.

Theorem. Let M be a matroid of rank r on the set E. Define a simplicial complex ∆M ,
the augmented external activity complex of M , with ground set {xe, ye, ze : e ∈ E} and a
facet,

xI∪EP(I)yY zI∪EA(I)

for each independent set I of M , where I = B \Y , with B a basis and Y ⊆ IA(B). Here
EA,EP, IA are external activity and passivity, and internal activity, respectively. Then,

(1) ∆M contains the external activity complex of [ACS16] as a subcomplex.
(2) Any linear extension of the Las Vergnas’s external/internal order on independent

sets of M gives a shelling of ∆M . In particular, ∆M is Cohen-Macaulay.
(3) The h-vector of ∆M is the f -vector of the independence complex of M .
(4) ∆M contains a shellable subcomplex ∆nbc

M , itself containing the no broken cir-
cuit complex of M , NBC(M). The h-vector of ∆nbc

M is equal to the f -vector of
NBC(M).

While our results might at first appear to be a modest extension of the results of
[ACS16], it is worth emphasizing a main difficulty in their genesis: simply coming up
with a definition.

1.1. Geometric Motivation. We include here the geometric motivation for our defi-
nition and results. This material is not needed to understand the combinatorics in the
body of our paper, and can be skipped if desired. In spite of this, we feel it is important
to emphasize that our complex ∆M was not divined out of the ether or was an obvious
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generalization of [ACS16], but had a concrete and interesting geometric origin. We will
not prove the results stated here, reserving these for a future work.

The Schubert variety of a linear space L ⊂ Cn is obtained by embedding Cn ⊂ (P1)n

and taking the closure of L in (P1)n. The resulting variety YL is multiplicity free in the
sense that its multidegree, which is a polynomial in t1, . . . , tn, is the basis generating
function of the matroid M of L. By results of Brion [Bri03] this implies YL is normal,
has rational singularities and is Cohen-Macaulay. It also implies that YL flatly deforms
to a reduced union of Schubert varieties in (P1)n.

Let ŶL ⊂ (C2)n be the multiaffine cone of YL. Viewing (C2)n as Cn × Cn affords

a different description of ŶL, coming from the tautological bundles of linear spaces in
[BEST23]: ŶL is obtained from the sum of tautological bundles SL ⊕ O(−β) on the
permutohedral variety Xn as

SL ⊕O(−β) Cn ×Cn ×Xn

ŶL Cn ×Cn

Here the horizontal arrows are inclusions and the vertical arrows are projections. That
is, we may define ŶL to be the image of the bundle under the projection mapping.
The computation of the Z2-graded multidegree in [AB16], for example, now becomes a
computation involving the Segre classes of SL and O(−β), which is done in [BEST23]
and yields (essentially) TM (q, 1). From this point of view, it is natural to extend the
construction of the Schubert variety of a linear space in any number of ways by varying
the bundle. The main ingredient is a subbundle of a trivial bundle over a smooth
projective variety.

Our complex ∆M comes from changing the permutohedral variety Xn to the stellahe-
dral variety Xn, and modifying the bundles involved to be the augmented tautological
bundles defined in [EHL23]. Specifically, we use the bundle EL := Q∨

L ⊕ π∗
E(OPE (1))∨,

which is a subbundle of a trivial bundle with fiber Cn ×Cn ×Cn+1. Applying [EHL23,

Theorem 1.11], we see that the subvariety ÊL of Cn ×Cn ×Cn+1 produced by EL will
have degree equal to the number of independent subsets of the matroid M of L. We may
view ÊL as the multi-affine cone over a subvariety EL ⊂ (P1)n × Pn. It is immediate
from the definition and the main theorem of [Li18] that EL is multiplicity free, and that
its Zn multidegree is the generating function for the independent sets of M . We can thus
apply the same results of Brion above, and conclude that EL has rational singularities,
is Cohen-Macaulay and flatly deforms to a reduced union of Schubert varieties.

Armed with these results, one hopes that ÊL has a Gröbner deformation (which is
flat) to a Cohen-Macaulay simplicial complex that only depends on the matroid of M .
This is indeed what happens and our complex ∆M is the result of a careful analysis of the
initial ideal under an appropriate term order. Implicit in this is the result that the initial
ideal of ÊL only depends on the matroid M , and so we are able to give a definition that
makes no reference to the geometric motivators of linear spaces, tautological bundles or
varieties. As a consequence, our main theorem is entirely combinatorial. It is a natural
strengthening of the statement that EL is Cohen-Macaulay.

The proof of our main theorem builds upon the techniques used in [ACS16], which
involves an intricate analysis of Las Vergnas’s external/internal order on the bases of a
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matroid. Our complex ∆M contains the external activity complex of M as a subcom-
plex and the argument we employ reduces to the argument in [ACS16] when restricted
to this subcomplex. However, we need to extend Las Vergnas’s result to define an ex-
ternal/internal order on all independent sets, and extra care must be taken here as new
obstacles are encountered.

1.2. Organization. The structure of our paper is as follows: In Sections 2 and 3 we
review known material on matroid activities and shellings. In Section 4 we review the
construction and results of [ACS16], highlighting the results we will need later. In
Section 5 we define the augmented external activity complex and prove our main result
on its shellability. We include a fully worked example to aid the reader in following the
delicacies of our proof. In Section 6 we describe the restriction sets of our shellings, as
well as a related shelling which produces a two-variable shelling polynomial. We use our
knowledge of the restriction sets to describe the h-vector of our complex and to prove
that our shellings are a special kind of shelling called an H-shelling, studied previously in
[ER94]. Finally, in Section 7 we define an augmented analogue of the no broken circuit
complex of a matroid, proving results parallel to those in Sections 5 and 6.

Acknowledgements. The authors would like to thank the Kennerud Visiting Math
Scholars Fund at Western Washington University for helping facilitate the nascent stages
of this project. AB would like to thank Colin Crowley for useful discussions.

2. Matroid Activities

A matroid M is a pair (E, I) where E is a finite set and I = I(M) is a simplicial
complex on E satisfying the following axiom:

if I, J ∈ I and |I| < |J |, then there is e ∈ J \ I with I ∪ {e} ∈ I.

The sets in I are the independent sets of M and the facets of I are the bases of M .
We denote the collection of bases of M by B = B(M). We refer the reader to the book
of Oxley [Oxl11] for basic elements of matroid theory. We will recall further, less basic,
elements of the theory below.

2.1. Activities. We recall the definitions for matroid external and internal activities,
following Las Vergnas [LV01]. We abuse notation slightly in this section and all that
follow, by writing the union (and set difference) of a set B with a singleton set {e} by
suppressing the set braces for the singleton set. That is, we denote B ∪{e} := B ∪ e and
similarly we denote B \ {e} := B \ e.

Let M be a matroid on E and fix once and for all an arbitrary linear order < on E.

Remark 2.1. There are three orders that appear in our paper that may be difficult to
keep track of on a first reading. The first is the one just introduced, <, which is a total
order on E, the ground set of our matroid. The second is ≤ext/int, which will first be a
partial order on the bases and then extended to a partial order on the independent sets
of M . Finally, there will be a linear extension ≺ of ≤ext/int. Which order is being used
will make it clear what types of objects are being compared.

Definition 2.2. Let S be a subset of E. An element e ∈ E \S is called externally active
with respect to S (and M) if there exists a circuit γ of M contained in S ∪ e so that e is
the maximum element in γ. Otherwise, e is called externally passive with respect to S
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(and M). Denote the set of elements that are externally active (externally passive) with
respect to S by EA(S) (resp., EP(S)).

Typically we will not say “externally active for S and M”, but only “externally active
for S”. However, we need the enhanced emphasis on M to make the next definition.

Definition 2.3. An element i ∈ S is called internally active with respect to S (and M)
if i is externally active with respect to E \ S and M⊥, where M⊥ is the dual matroid
with the same order on the ground set. Otherwise i ∈ S is called internally passive with
respect to S (and M). Denote the set of elements that are internally active (internally
passive) with respect to S by IA(S) (resp., IP(S)).

For a basis B of M , note that e /∈ B is externally active with respect to B if and only
if there is no element e′ > e with e′ ∈ B and B \ e′ ∪ e a basis of M . Dually, e ∈ B is
internally active with respect to B if and only if there is no element e′ > e with e′ /∈ B
and B \ e ∪ e′ a basis of M .

The following result of Crapo was used in his definition of the Tutte polynomial of a
matroid.

Proposition 2.4. [Cra69] Let M be a matroid on the ground set E and let < be a linear
order on E.

(1) Every subset S of E can be uniquely written in the form S = B \ Y ∪ X for
some basis B, with X ⊂ EA(B) and Y ⊂ IA(B). Equivalently, the intervals
[B \ IA(B), B ∪ EA(B)] form a partition of the poset of subsets of E ordered by
inclusion.

(2) Every independent set I of E can be uniquely written in the form I = B \ Y
for some basis B and some subset Y ⊂ IA(B). Equivalently, the intervals [B \
IA(B), B] form a partition of the independence complex, I(M).

The second item here will be particularly important for us.

2.2. Active orders for matroid bases. In his study of matroid activities Las Vergnas
introduced three partial orders on the collection of bases of M . We summarize a few of
his results here, taking them as definitions.

Definition 2.5. [LV01, Proposition 3.1] We define the external order on B(M) by the
following equivalent conditions

(1) A ≤ext B
(2) A ⊂ B ∪ EA(B)
(3) A ∪ EA(A) ⊂ B ∪ EA(B)

Dually, we have the following.

Definition 2.6. [LV01, Proposition 5.2] We define the internal order on B(M) by the
following equivalent conditions

(1) A ≤int B
(2) A \ IA(A) ⊂ B
(3) A \ IA(A) ⊂ B \ IA(B)

The external/internal order on bases is the weakest order that simultaneously extends
the external and internal orders.
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Definition 2.7. [LV01, Proposition 6.3] We define the external/internal order on B(M)
by the following equivalent conditions

(1) A ≤ext/int B
(2) IP(A) ∩ EP(B) = ∅
(3) A \ IA(A) ∪ EA(A) ⊂ B \ IA(B) ∪ EA(B)
(4) IP(A) ∪ EA(A) ⊂ IP(B) ∪ EA(B)

Example 2.8. Consider the following running example. Let M be the matroid on
E = {1, 2, 3, 4, 5} (with the natural order) realized by the affine point configuration
below.

1

2

3

4

5

We summarize here the bases along with their activities.

B EA(B) EP(B) IA(B) IP(B)
345 ∅ 12 345 ∅
135 ∅ 24 35 1
245 ∅ 13 45 2
235 ∅ 14 5 23
125 3 4 5 12
134 5 2 3 14
234 5 1 ∅ 234
124 35 ∅ ∅ 124

The Hasse diagrams of the external and internal orders on B(M) are shown at left and
right below.

345 135 235245

234134 125

124

345

135 245

235125134

234124
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The external/internal order on B(M) refines both of these, and its Hasse diagram is
shown below.

345

135

245

235

125134 234

124

2.3. Active orders for independent sets. We wish to extend Las Vergnas’s exter-
nal/internal order to the collection of independent sets of a matroid. To do this, we
associate each independent set to a basis as in Proposition 2.4 and consider external
activity and internal passivity.

Definition 2.9. We say that independent sets I and J of M are internally related if
there exists a basis B of M with I = B \ YI and J = B \ YJ where YI , YJ ⊂ IA(B).
When no confusion will arise, we will sometimes simply say I and J are related.

Note that by Proposition 2.4(2) every independent set is related to a unique basis and
every basis is related to itself. The following result is immediate from the definition.

Proposition 2.10. Suppose that I is related to a basis B and Y ⊂ IA(B). Then I \ Y
is related to B.

The following result describes how the activities of independent sets are determined
by their related bases. We will use it frequently.

Proposition 2.11 ([LV01, Proposition 2.4(v)]). Let I be an independent set of M related
to the basis B. Then EA(I) = EA(B) and IP(I) = IP(B). Moreover,

I \ IA(I) ∪ EA(I) = B \ IA(B) ∪ EA(B).

The following definition extends the external/internal order on bases to all indepen-
dent sets.

Definition 2.12. Let I and J be independent sets of M . We say that I ≤ext/int J if
and only if I and J are not internally related and I \ IA(I)∪EA(I) ⊂ J \ IA(J)∪EA(J)
or I and J are internally related and I ⊂ J .

One checks that this is indeed a partial order. It is immediate that two bases B and
C satisfy B ≤ext/int C in the previous sense if and only if they do in the current sense.
Further, if an independent set I is internally related to a basis C then I ≤ext/int C.
More generally, we have the following.

Proposition 2.13. Let I and K be independent sets related to bases A and C, respec-
tively with A 6= C. We have that I ≤ext/int K if and only if A ≤ext/int C.
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Example 2.14. We continue Example 2.8. The Hasse diagram of the external/internal
order on the independent sets of M is shown below.

345

453534

543

∅

135

13 15

1

2

25 24

245

235

23

134

14

125

12
234

124

Note that in this example, we replace each basis C in Example 2.8 with a copy of a
boolean lattice of sets of the form {S ∪ IP(C) : S ⊂ IA(C)}.

The phenomenon of this example persists in general.

Proposition 2.15. Let B and C be bases of M with C covering B in the exter-
nal/internal order on bases. Then, in the external/internal order on independent sets
the interval (B,C] can be described as the boolean lattice,

(B,C] = {S ∪ IP(C) : S ⊂ IA(C)}.

Proof. Assume that I is such that B <ext/int I ≤ext/int C. We claim that I is internally
related to C. If not then I is internally related to a basis C′ 6= C. Since I\IA(I)∪EA(I) =
C′ \ IA(C′) ∪EA(C′), it follows that B <ext/int C

′ <ext/int C, which is a contradiction.
Since I is related to C, it is obtained by deleting some subset of internally active

elements from C. It follows that I = S ∪ IP(C) where S ⊂ IA(C). The restriction of
≤ext/int to subsets of this form gives a boolean lattice by definition. �

Remark 2.16. The proposition displays a curious non-trivial automorphism on the
collection of independent sets of matroid: Every closed interval (B,C] can be “flipped
upside down”. That is, the map S ∪ IP(C) 7→ (IA(C) \ S) ∪ IP(C) is an involutive
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bijection I(M) → I(M). It follows from this that
∑

I∈I(M)

q|I| =
∑

I∈I(M)

q| IA(CI)−YI |+| IP(CI)|

where we write I = CI \ YI where CI is a basis and YI ⊂ IA(CI).

Las Vergnas shows that on B(M), ≤ext/int defines a lattice [LV01, Theorem 6.4].

Denote the meet and join by ∧B and ∨B. We offer the following extension of this result.

Proposition 2.17. The order relation ≤ext/int defines a lattice on I(M), with meet ∧
and join ∨ given by

(1) I ∧ J = I ∩ J , I ∨ J = I ∪ J whenever I and J are internally related;
(2) If I and J are related to different bases A and B, then I ∧ J = A ∧B B and

I ∨ J = IP(A ∨B B).

Proof. If I and J are internally related to a basis C this is immediate from Proposition 2.15.
If I and J are not related, the uniqueness of greatest lower bounds and least upper bounds
is determined by the uniqueness of taking the meet and join of the related bases. �

3. Shellings

Here we introduce some background on shellings of simplicial complexes.

3.1. Shellable complexes. We offer the first two sections of [Bjö92] as a particularly
relevant reference on shellability of simplicial complexes, h-polynomials, etc. as it relates
to matroids and related complexes.

Recall that a simplicial complex is pure if all its facets have the same cardinality. The
dimension of a face of a simplicial complex is one less than its cardinality.

Definition 3.1. Let ∆ be a pure simplicial complex with dimension d. A shelling order
is an ordering of the facets F1, F2, . . . , Fs such that for every i < k there exists j < k
and e ∈ Fk with Fi ∩ Fk ⊆ Fj ∩ Fk = Fk \ e. If a shelling order exists, then we call ∆
shellable.

It is equivalent to demand that, for all 2 ≤ j ≤ s, the complex generated by
F1, . . . , Fj−1 meets the complex generated by Fj in a pure subcomplex of dimension
d− 1.

Given a shelling order and a facet Fj , there is a subset Rj such that for every A ⊆ Fj ,
we have that Rj ⊆ A if and only of A 6⊆ Fi for every i < j. That is, when we add the
facet Fj to the subcomplex generated by F1, . . . , Fj−1, the new faces that we introduce
are precisely those in the interval [Rj , Fj ]. The set Rj is called the restriction set of Fj

in the shelling order.

Definition 3.2. The f -vector of a d − 1-dimensional simplicial complex ∆ is f =
(f0, . . . , fd) where fi is the number of faces of ∆ with dimension i − 1. The h-vector
h = (h0, . . . , hd) is defined by

f0(q − 1)d + f1(q − 1)d−1 + · · ·+ fd(q − 1)0 = h0q
d + h1q

d−1 + · · ·+ hdq
0.

The h-polynomial of ∆ is h∆(q) =
∑

i hiq
d−i.

If ∆ is a shellable simplicial complex then the h-vector can also be obtained from the
restriction sets of the shelling order.
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Proposition 3.3. If ∆ is a pure simplicial complex with shelling order F1, . . . , Fs then
hi = #{Rj : |Rj | = i}.

3.2. h-complexes and H-shellings. Let ∆ be a shellable simplicial complex with ver-
tex set E whose facets F1, F2, . . . , Fs are listed here in a shelling order. Let R1, R2, . . . , Rs

be the restriction sets for this shelling. Assume that the collection Γ = {R1, . . . , Rs} is,
itself, a simplicial complex. This following situation, improbable as it may seem, is
known to arise in several contexts and was studied by Edelman and Reiner [ER94]. In
this situation, the shelling of ∆ is called an h-shelling and Γ is called an h-complex.

The following result describes the f -vector of an h-complex.

Proposition 3.4. If ∆ has an h-shelling with corresponding h-complex Γ then the h-
vector of ∆ is the f -vector of Γ.

Edelman and Reiner say that the shelling F1, . . . , Fs has property (H) if whenever
e ∈ E and G ∈ ∆ is a face contained in a facet F , the following implication holds,

(H) if e ∈ G ⊂ F and e ∈ R(F ), then e ∈ R(G).

Here we employ the convention that for a facet Fi, R(Fi) = Ri, and for a non-facet G, if
G ∈ [Ri, Fi] then R(G) = Ri. In verifying (H), it is sufficient to takeG to be codimension
one in F by [ER94, Theorem 2.6]. (Technically our property (H) is property (H ′) in
[ER94], but since these are equivalent we proceed with the un-primed notation.)

Theorem 3.5 ([ER94, Theorem 2.7]). If a shelling has property (H) then it is an h-
shelling.

We call such a shelling an H-shelling. Property (H) is strictly stronger than being an
h-shelling; see [ER94, Figure 1]. In the cases we encounter, it will be immediate that the
shellings we produce are h-shellings since the associated collections of restriction sets will
be familiar complexes. We will also show that our shellings satisfy the stronger property
(H)

4. The External Activity Complex

In this section we review the construction and results of Ardila, Castillo and Samper
[ACS16]. All the results in this section are attributable to this work.

Let E be a set with n elements and define E(x, z) := {xe, ze : e ∈ E}. We will employ
the following notation: For subsets S, T ⊆ E, xS denotes {xi : i ∈ S} and zT is defined
similarly. We will write xSzT for the union xS ∪ zT .

Definition 4.1. Let M = (E,B) be a matroid with a fixed linear order < on E. The
external activity complex, denoted ∆M , is the simplicial complex with ground set E(x, z)
and facets

F (B) := xB∪EP(B)zB∪EA(B)

for each basis B.

It is immediate that ∆M is pure of dimension n+ r− 1, when M is a matroid of rank
r on n elements.
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Example 4.2. Here are the bases and corresponding facets of the external activity
complex in our running example.

B EA(B) EP(B) F (B)
345 ∅ 12 x12345z345
135 ∅ 24 x12345z135
245 ∅ 13 x12345z245
235 ∅ 14 x12345z235
125 3 4 x1245z1235
134 5 2 x1234z1345
234 5 1 x1234z2345
124 35 ∅ x124z12345

4.1. Shellings of the external activity complex. In this section we describe a large
set of shelling orders of the external activity complex ∆M . We will later extend these
results to the augmented external activity complex.

Theorem 4.3 ([ACS16, Theorem 1.1]). Let M be a matroid with linear order on the
ground set, E. For any linear extension of Las Vergnas’s external/internal order ≤ext/int

on the collection of bases of M , the corresponding ordering of the facets is a shelling order
of the external activity complex, ∆M .

Before we review the proof of this result, it is worthwhile to note that the facets of
the external activity complex are defined by the bases of a matroid along with their
corresponding external activities. However, it is asserted that any linear extension of
Las Vergnas’s external/internal ordering of the bases produces a shelling order of this
complex. This result cannot be relaxed to Las Vergnas’s external order or internal order
alone. Which is to say, linear extensions of ≤ext on the bases of M and linear extensions
of ≤int on the bases of M do not necessarily produce shelling orders of ∆M . See [ACS16,
Examples 3.1,3.2]. Our point here is that internal activity is a crucial feature of the proof
of their result, but this is not reflected in the definition of external activity complex itself.
Our augmented external activity complex has both external and internal activity used in
the definition of the complex, which is a natural reflection of the external/internal order
used in the proof of Theorem 4.3.

The proof of Theorem 4.3 is organized as follows. Let ≺ be an arbitrary linear order
on the collection of bases of a matroid and consider the corresponding ordering of the
facets of ∆M . Recall by Definition 3.1, ≺ induces a shelling of the external activity
complex if for every A ≺ C there exists B ≺ C and c ∈ E so that

F (A) ∩ F (C) ⊆ F (B) ∩ F (C) = F (C) \ cxz

where cxz denotes one of xc or zc. The following result equivalently characterizes shelling
orders of the external activity complex.

Lemma 4.4 ([ACS16, Lemma 4.2]). Let ≺ be a linear order on the collection of bases a
matroid. Then ≺ induces a shelling of the external activity complex ∆M , if and only if
for any bases A ≺ C there exists a basis B ≺ C so that

(1) B = C \ c ∪ b where b 6= c,
(2) c /∈ A and c ∈ EA(B) if and only if c ∈ EA(A), and
(3) for any d /∈ B ∪ C we have d ∈ EA(B) if and only if d ∈ EA(C).
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It is then shown that any linear extension of Las Vergnas’s external/internal order
on the collection of bases of M satisfies Lemma 4.4 and this proves Theorem 4.3. In
particular, let ≺ be a linear extension of Las Vergnas’s external/internal order on the
collection of bases of M and let A ≺ C. This implies that C 6≤ext/int A. Ardila, Castillo
and Samper produce a basis B with B ≤ext/int C, so that B precedes C in ≺, and then
they carefully show that B satisfies the conditions of Lemma 4.4.

In the following lemma we summarize the results that we will make use of and extend
towards our discussion of the augmented external activity complex and its shellability.

Lemma 4.5. For any bases C 6≤ext/int A there exists a basis B so that

(1) B <ext/int C,
(2) B = C \ c ∪ b where b 6= c,
(3) c /∈ A and c ∈ EA(B) if and only if c ∈ EA(A), and
(4) for any d /∈ B ∪ C we have d ∈ EA(B) if and only if d ∈ EA(C).
(5) Furthermore, c ∈ IP(C) ∩ EP(A) ∩ EP(B), and
(6) F (A) ∩ F (C) ⊂ F (B) ∩ F (C) = F (C) \ zc.

Proof. The first four claims occur in [ACS16] when showing that any linear extension
of ≤ext/int on the bases of M satisfies [ACS16, Lemma 4.2]. Claim (5) follows by the
construction of B = C \ c ∪ b in the proof of [ACS16, Theorem 1.1] and then applying
(3). To be specific, c ∈ C is chosen so that c ∈ IP(C) ∩ EP(A) and (3) implies that
c ∈ EP(B). The last claim is justified as follows: claims (2), (3) and (4) imply that
F (A)∩F (C) ⊂ F (B)∩F (C) = F (C)\ cxz where cxz denotes one of xc or zc and (5) has
that c ∈ EP(B). We conclude that c /∈ EA(B)∪B and this means zc does not appear in
F (B), giving (6). �

5. The Augmented External Activity Complex

In this section we define the augmented external activity complex and prove our main
result on its shellability. Before we give this rather technical proof, we include a fully
worked example which will explain the structure of the proof.

5.1. Basic properties and statement of the main theorem. We will need the
following notation. Let E be a finite set and define E(x, y, z) := {xe, ye, ze : e ∈ E}. We
write E(x), E(y, z), etc. for the obvious subsets of E(x, y, z). For subsets S, T, U ⊆ E,
xS denotes {xi : i ∈ S}, and zT , yU are defined similarly. We will write xSyUzT for the
union xS ∪ yU ∪ zT . We now define our complex.

Definition 5.1. Let M = (E, I) be a matroid and let < be a linear order on E. Define
a simplicial complex ∆M with ground set E(x, y, z) and facets

F (I) := xI∪EP(I)yY zI∪EA(I)

for every independent set I where I = B \Y , with B a basis and Y ⊂ IA(B) (recall that
every I is uniquely expressible in this way). We call ∆M the augmented external activity
complex of M .

We emphasize that this definition is new. It is immediate that ∆M is pure of dimension
n + r − 1, when M is a matroid of rank r on n elements. Observe that the external
activity complex, ∆M , is the subcomplex of the augmented external activity complex ∆M
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generated by the facets F (B) where B is a basis ofM . Also, we have ∆M∩E(x, z) = ∆M ,
which is to say, that ∆M is the subcomplex of faces that contain no ye, e ∈ E.

In what follows we will write suppx(G) for {e ∈ E : xe ∈ G} where G ∈ ∆M . We call
this the x-support of the face G. Analogous notation will be used for y and z.

Proposition 5.2. Each basis B of M has suppy(F (B)) = ∅.

Proposition 5.3. Suppose that I is internally related to a basis B, then suppx(F (I)) =
suppx(F (B)).

Proof. We need to show that I ∪ EP(I) = B ∪ EP(B). Since I is internally related to
the basis B we have EA(I) = EA(B) by Proposition 2.11. Taking the complement in E
gives I ∪ EP(I) = B ∪ EP(B). �

Proposition 5.4. Suppose that I = B\Y is internally related to B, then suppz(F (I)) =
suppz(F (B)) \ Y .

Proof. Suppose that I is internally related to the basis B so that I = B \ Y with
Y ⊂ IA(B). We make note that EA(I) = EA(B) by Proposition 2.11 and compute,

suppz(F (I)) = I ∪EA(I) = (B \Y )∪EA(B) = (B∪EA(B))\Y = suppz(F (B))\Y. �

Corollary 5.5. Suppose that I = B \ Y is internally related to the basis B. The facet
F (I) is given by taking the facet F (B) and replacing zY with yY . That is, F (I) =
F (B) \ zY ∪ yY .

Proof. This is an immediate consequence of the definition along with Proposition 5.3
and Proposition 5.4. �

Example 5.6. Consider, from our running example, the basis B = 245, which has
IA(B) = 45, with its internally related independent sets. The corresponding facets are
listed below.

I B \ YI F (I)
245 245 \ ∅ x12345z245
25 245 \ 4 x12345y4z25
24 245 \ 5 x12345y5z24
2 245 \ 45 x12345y45z2

We are now ready to state our main result.

Theorem 5.7. Let M be a matroid with linear order < on the ground set, E. For any
linear extension of Las Vergnas’s external/internal order on the independent sets of M ,
the corresponding ordering of the facets of ∆M is a shelling order.

The proof of this theorem will occupy the rest of this section. We outline the proof
with an example in Section 5.2 and then we will provide all the details in Section 5.3.

5.2. Proof outline and example. Let ≺ be a linear extension of Las Vergnas’s exter-
nal/internal order on the collection of independent sets of M . Recall, by Definition 3.1,
≺ gives a shelling order of the augmented external activity complex if for independent
sets I ≺ K there exists an independent set J ≺ K and c ∈ E so that

F (I) ∩ F (K) ⊂ F (J) ∩ F (K) = F (K) \ cxyz
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where cxyz denotes one of xc, yc or zc. In our proof, given any I ≺ K we will produce
an independent set J ≺ K and c ∈ E satisfying,

F (I) ∩ F (K) ⊂ F (J) ∩ F (K) = F (K) \ zc.(∗)

To do this, we will need to consider two cases. The first case occurs when I and K are
internally related and the second case is when they are not. We now provide an example
for each case. We begin with the case that I and K are internally related.

Consider the linear extension of ≤ext/int on the independent sets from our running
example indicated below.

I K
∅ ≺ 3 ≺ 4 ≺ 5 ≺ 34 ≺ 35 ≺ 45 ≺ 345 ≺ · · · ≺ 124

The sets I = 3 and K = 45 (suppressing brackets) are indicated here with I ≺ K. These
sets are internally related to the basis C = 345, which has IA(C) = 345. See that,

I = C \ YI , K = C \ YK ,
3 = 345 \ 45, 45 = 345 \ 3.

Since I ≺ K are internally related, this implies that K 6≤ext/int I and K 6⊂ I. Choose
c ∈ K \ I and notice that c ∈ IA(C).

Now we define J := K \ c and argue that this is the requisite independent set J in
(∗). In our example, we see that K \ I = 45 and we will choose c = 4, which is in
IA(C) = 345. We have,

J := K \ c
5 := 45 \ 4.

Here is a figure showing I, J and K in the external/internal order on independent sets
(only part of the poset is shown here).

C = 345

K = 453534

J = 54I = 3

∅

Recall that the facet corresponding to the basis C is F (C) = x12345z345. For the inde-
pendent sets I, J and K internally related to C we have the corresponding facets,

F (I) = x12345y45z3, F (J) = x12345y34z5, F (K) = x12345y3z45.

Comparing the facets gives the desired result:

F (I) ∩ F (K) ⊂ F (J) ∩ F (K) = F (K) \ zc
x12345 ⊂ x12345y3z5 = F (45) \ z4.

Summarizing, given I ≺ K that are internally related to C, we will show that K 6⊂ I
and that there is c ∈ K \ I ⊂ IA(C). We will then prove that J = K \ c is a set and c is
an element that satisfies (∗).
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We proceed to the case that I and K are not internally related. Consider the following
linear extension of ≤ext/int on the independent sets from our running example shown
below.

I K
· · · ≺ 345 ≺ · · · ≺ 245 ≺ · · · ≺ 135 ≺ · · · ≺ 23 ≺ · · · ≺ 14 ≺ · · · ≺ 124

The sets I = 23 and K = 14 are indicated here with I ≺ K. The set I is internally
related to the basis A = 235, which has IA(A) = 5 and the set K is internally related to
the basis C = 134, which has IA(C) = 3. See that,

I = A \ YA, K = C \ Y,
23 = 235 \ 5, 14 = 134 \ 3.

To produce the required independent set J that satisfies (∗), we first consider the
bases A and C and choose a basis B that satisfies Lemma 4.5. We then construct the
independent set J from the basis B by deleting a subset of its internally active elements.

Observe that since I andK are independent sets related to bases A and C, respectively
with K 6≤ext/int I then C 6≤ext/int A. Choose a basis B = C \ c ∪ b that satisfies
Lemma 4.5. In this example, we choose c = 4 and b = 5 so that,

B = C \ c ∪ b

135 = 134 \ 4 ∪ 5.

Here is a figure showing A, B and C in the external/internal order on bases.

345

B = 135

245

A = 235

125C = 134 234

124

Recall for the bases A, B and C, we have the corresponding facets,

F (A) = x12345z235, F (B) = x12345z135, F (C) = x1234z1345.

Comparing the facets for these bases gives,

F (A) ∩ F (C) ⊂ F (B) ∩ F (C) = F (C) \ zc
x1234z35 ⊂ x1234z135 = F (134) \ z4.

We now construct the set J from the basis B. We claim that the basis B produced
necessarily has Y ⊂ IA(C) ⊂ IA(B). In this example, we observe that,

Y ⊂ IA(C) ⊂ IA(B)
3 ⊂ 3 ⊂ 35.
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The above inclusion allows us to define J := B \ Y so that J is internally related to B.
We argue that J is the desired independent set that is a witness to (∗). In our example,
we have

J := B \ Y

15 := 135 \ 3.

Here is a figure showing I, J and K in the external/internal order on independent sets.

345

453534

543

∅

B = 135

13 J = 15

1

2

25 24

245

A = 235

I = 23

C = 134

K = 14

125

12

234

124

For the independent sets I, J and K internally related to A, B and C, respectively, re-
call that the corresponding facets of ∆M are obtained by migrating a subset of internally
active z’s to y’s. In our example we have,

F (I) = x12345y5z23, F (J) = x12345y3z15, F (K) = x1234y3z145.

Comparing the facets gives the following desired result:

F (I) ∩ F (K) ⊂ F (J) ∩ F (K) = F (K) \ zc,
x1234 ⊂ x1234y3z15 = F (14) \ z4.

Summarizing, given I ≺ K that are internally related to the bases A and C, we
will show that C 6≤ext/int A and choose a basis B = C \ c ∪ b that satisfies Lemma 4.5.
Further, given that K = C \Y where Y ⊂ IA(C), we will show that Y ⊂ IA(C) ⊂ IA(B).
We will then prove that J = B\Y is an independent set and c is an element that satisfies
(∗).
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5.3. Proof of the main theorem. Fix a linear extension ≺ of the order ≤ext/int on
I(M). Assume that I ≺ K, equivalently, K 6≤ext/int I. We will produce an independent
set J and element c such that J <ext/int K and (∗) holds.

Mirroring our example, we begin with case that I and K are both internally related
to the basis C.

Lemma 5.8. Suppose that I and K are independent sets internally related to a basis C
with K 6≤ext/int I. Then

(1) K \ I ⊂ IA(C),
(2) there exists c ∈ K \ I, and
(3) the independent set J := K \ c is internally related to C with J <ext/int K.
(4) Also, c ∈ EP(I).

Proof. Since I and K are internally related to the basis C then C contains K and I
contains IP(C) by Proposition 2.4(2). It follows that K \ I ⊂ C \ IP(C) = IA(C). The
independent sets I and K are internally related with K 6≤ext/int I and so by definition,
K 6⊂ I. This implies that there must exist c ∈ K \ I ⊂ IA(C). Suppose that K = C \ Y
where Y ⊂ IA(C). The independent set

J := K \ c = C \ (Y ∪ c)

has Y ∪ c ⊂ IA(C) and hence J is internally related to the basis C. Moreover, J ⊂ K
so by definition, J <ext/int K. Recall that I is internally related to the basis C so
by Proposition 5.3, I ∪ EP(I) = C ∪ EP(C). However, c ∈ C and c /∈ I and thus
c ∈ EP(I). �

Lemma 5.9. Suppose that I and K are independent sets internally related to a basis C
with K 6≤ext/int I. Let J and c ∈ K be an independent set and element as furnished by
Lemma 5.8. Then,

(1) J <ext/int K; in particular J precedes K in any linear extension of ≤ext/int.
(2) F (I) ∩ F (K) ⊂ F (J) ∩ F (K) = F (K) \ zc.

Proof. The first claim is a restatement of Lemma 5.8(3) and the definition of being a
linear extension.

For the second claim, we compare the supports of the corresponding facets. For
the x-support, recall that I, J and K are all internally related to the basis C. By
Proposition 5.3, suppx(F (I)) = suppx(F (J)) = suppx(F (K)) and hence,

suppx(F (I)) ∩ suppx(F (K)) = suppx(F (J)) ∩ suppx(F (K)) = suppx(F (K)).

We now consider the y-support of these facets, by first comparing the facets corre-
sponding to J and K. Suppose that K = C \Y and J = C \ (Y ∪ c) with Y ∪ c ⊂ IA(C).
We have,

suppy(F (J)) ∩ suppy(F (K)) = (Y ∪ c) ∩ Y = Y = suppy(F (K)).

This implies,

suppy(F (I)) ∩ suppy(F (K)) ⊂ suppy(F (K)) = suppy(F (J)) ∩ suppy(F (K)).
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For the z-support, again, we first compare the facets corresponding to J and K and
note that c /∈ EA(C) since c ∈ K \ I ⊂ C. We compute,

suppz(F (J)) ∩ suppz(F (K)) = (J ∪ EA(J)) ∩ (K ∪ EA(K))

= (J ∩K) ∪ EA(C) (EA(J) = EA(K) = EA(C) by Proposition 2.11)

= (K \ c) ∪ EA(C)

= (K ∪ EA(K)) \ c

= suppz(F (K)) \ c.

To include the facet corresponding to I in our comparison, we recall that c ∈ EP(I) by
Lemma 5.8(4). This implies that c /∈ I ∪ EA(I) = suppz(F (I)). We conclude that

suppz(F (I)) ∩ suppz(F (K)) ⊂ suppz(F (K)) \ c = suppz(F (J)) ∩ suppz(F (K)).

This completes the proof of our lemma. �

This lemma proves that the required shelling property holds when I and K are inter-
nally related. We now consider the case that I and K are not internally related. We will
take I and K related to bases A and C, respectively, in what follows. The argument then
proceeds in three lemmas: The first lemma builds on the results of [ACS16] discussed in
Section 4. The second lemma uses the first to define the independent set J and element
c that verifies the shelling property. Finally, the third lemma proves that the proposed J
and c defined satisfy the required shelling property and this completes the proof of our
main theorem.

Lemma 5.10. Suppose that A and C are bases with C 6≤ext/int A and produce a basis
B ≤ext/int C with B = C \ c ∪ b as in Lemma 4.5. Then IA(C) ⊂ IA(B).

Proof. Let us begin by defining X := C \ c so that C = X ∪ c and B = X ∪ b. Since
B ≤ext/int C by Definition 2.7 we have,

IP(B) ∪ EA(B) ⊂ IP(C) ∪ EA(C).

Recall, that c ∈ EP(B) by Lemma 4.5(5). This implies that c /∈ IP(B) ∪ EA(B) and
thus,

IP(B) ∪ EA(B) ⊂ (X ∩ IP(C)) ∪ EA(C).

Further, Lemma 4.5(4) yields, EA(C) ⊂ EA(B) ∪ b and this implies,

IP(B) ∪ EA(B) ⊂ (X ∩ IP(C)) ∪ EA(B) ∪ b.

Next, we will consider two cases according to the internal activity of b ∈ B. If it is the
case that b ∈ IP(B) then,

(X ∩ IP(B)) ∪ EA(B) ∪ b ⊂ (X ∩ IP(C)) ∪ EA(B) ∪ b.

We conclude that X ∩ IP(B) ⊂ X ∩ IP(C). If it is the case that b /∈ IP(B) then
IP(B) = X ∩ IP(B) and so,

(X ∩ IP(B)) ∪ EA(B) ⊂ (X ∩ IP(C)) ∪ EA(B).

Again, we conclude that X ∩ IP(B) ⊂ X ∩ IP(C). In both cases, taking the complement
in X , gives

X ∩ IA(C) ⊂ X ∩ IA(B) ⊂ IA(B).
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Recall, c ∈ IP(C) by Lemma 4.5(5) and soX∩IA(C) = IA(C) and the result follows. �

We are now ready to construct the needed independent set J .

Lemma 5.11. Suppose that the independent sets K 6≤ext/int I are not internally related.
Further suppose that A and C are the distinct bases internally related to I and K,
respectively. Write K = C \ Y where Y ⊂ IA(C).

Observe that C 6≤ext/int A and let B <ext/int C and c be a basis and element produced
as in Lemma 4.5 from A and C. We have,

(1) Y ⊂ IA(B),
(2) the independent set J := B \ Y is internally related to B,
(3) J <ext/int K, and
(4) c ∈ EP(I).

Proof. The independent set K = C \ Y has Y ⊂ IA(C) and applying Lemma 5.10 gives
the desired inclusion, Y ⊂ IA(C) ⊂ IA(B).

By definition, J := B \ Y where Y ⊂ IA(B) by (1) and therefore J is an independent
set internally related to B.

We have that the independent sets J and K are internally related to the bases B and
C, respectively, with B <ext/int C and this gives J <ext/int K.

Recall that c ∈ EP(A) by Lemma 4.5(5) and I is internally related to A. Proposition 5.3
yields I ∪ EP(I) = A ∪ EP(A). However, c /∈ A ⊃ I and therefore c ∈ EP(I). �

We conclude by proving that the J produced in the previous lemma satisfies (∗).

Lemma 5.12. Maintaining the notation from Lemma 5.11, we have

(1) J <ext/int K; in particular J precedes K in any linear extension of ≤ext/int.
(2) F (I) ∩ F (K) ⊂ F (J) ∩ F (K) = F (K) \ zc.

Proof. The first claim is a restatement of Lemma 5.11(3) and the definition of being a
linear extension.

For the second claim, we compare the supports of the facets F (I), F (J) and F (K).
For the x-support, first observe that by Lemma 4.5(6), the facets corresponding to the
bases A, B and C satisfy

suppx(F (A)) ∩ suppx(F (C)) ⊂ suppx(F (B)) ∩ suppx(F (C)) = suppx(F (C)).

Since I, J and K are internally related to the bases A, B and C, respectively, by
Proposition 5.3, this gives suppx(F (I)) = suppx(F (A)), suppx(F (J)) = suppx(F (B))
and suppx(F (K)) = suppx(F (C)). We conclude that,

suppx(F (I)) ∩ suppx(F (K)) ⊂ suppx(F (J)) ∩ suppx(F (K)) = suppx(F (K)).

We now consider the y-support of the facets F (I), F (J) and F (K) by first comparing
the facets corresponding to J and K. By definition of K and construction of J ,

suppy(F (J)) ∩ suppy(F (K)) = Y = suppy(F (K)).

This implies,

suppy(F (I)) ∩ suppy(F (K)) ⊂ suppy(F (K)) = suppy(F (J)) ∩ suppy(F (K)).
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For the z-support, we first observe that by Lemma 5.10(6), the facets corresponding
to the bases A, B and C satisfy

suppz(F (A)) ∩ suppz(F (C)) ⊂ suppz(F (B)) ∩ suppz(F (C)) = suppz(F (C)) \ c.

We wish to compare the facets corresponding to J andK, first. Making use of Proposition 5.4
we write the z-supports of J and K in terms of z-supports of their corresponding bases.
This gives suppz(F (J)) = suppz(F (B))\Y and suppz(F (K)) = suppz(F (C))\Y . Noting
that c ∈ IP(C), and Y ⊂ IA(C) we have the following,

suppz(F (B)) ∩ suppz(F (C)) = suppz(F (C)) \ c,

(suppz(F (B)) ∩ suppz(F (C))) \ Y = (suppz(F (C)) \ c) \ Y,

(suppz(F (B)) \ Y ) ∩ (suppz(F (C)) \ Y ) = (suppz(F (C)) \ Y ) \ c,

suppz(F (J)) ∩ suppz(F (K)) = suppz(F (K)) \ c.

To include the facet corresponding to I in our comparison, we recall from Lemma 5.11(4)
that c ∈ EP(I) and so c /∈ I ∪ EA(I) = suppz(F (I)). We conclude that

suppz(F (I)) ∩ suppz(F (K)) ⊂ suppz(F (K)) \ c = suppz(F (J)) ∩ suppz(F (K)).

This completes the proof. �

6. Restriction Sets

Here we investigate the restriction sets of two different families of shelling orders of
∆M . In one case we find that the restriction sets form (a complex isomorphic to) the
independence complex of M . In the second case the restriction sets give rise to a two-
variable enrichment of the h-polynomial that has a nice expression in terms of the Tutte
polynomial.

6.1. Restriction sets of linear extensions of ≤ext/int.

Proposition 6.1. Let ≺ be a linear extension of ≤ext/int on I(M). For each independent
set I of M , then the restriction set of F (I) in this order is equal to zI.

Proof. Our argument proceeds in two parts:

(1) We begin by showing that zI is a new face when F (I) is added to the complex
generated by the facets preceding it in ≺. For this, we will prove that if zI ⊆ F (J)
then I ≤ext/int J which means that I must come before J in ≺.

(2) We complete the proof by showing that zI is the minimal new face when F (I) is
added to the complex generated by the facets preceding it in ≺. To accomplish
this, we argue that if zS ( zI then zS must be contained in a facet that precedes
F (I) in ≺.

For (1), write I = A\YA and J = B \YB with A, B bases, YA ⊂ IA(A) and YB ⊂ IA(B).
Since zI ⊂ F (J) we have I ⊂ J ∪ EA(J). If I and J are not related then

IP(A) = IP(I) ⊂ I ⊂ J ∪ EA(J) ⊂ B ∪ EA(B).

It follows that IP(A)∩EP(B) = ∅ and so A ≤ext/int B by Definition 2.7(2). This implies
I ≤ext/int J . If I and J are related then A = B and I ⊂ J ∪ EA(J) implies that I ⊂ J ,
so I ≤ext/int J and we are done.

For (2), observe that S ( I so S is an independent set. Write S = B \ G where B
is a basis and G ⊆ IA(B) by Proposition 2.4(2) and I = A \ Y where A is a basis and
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Y ⊂ IA(A). Notice that S = B \ G ⊂ B ∪ EA(B) so that zS is contained in the facet
F (B). If A 6= B then

IP(B) ⊂ B \G = S ( I ⊂ A.

By Definition 2.6(2) this implies that B <ext/int A. Because I is internally related to
A, we obtain B <ext/int I. We have just shown that zS is contained in the facet F (B)
and F (B) precedes F (I) in ≺. It remains to consider the case A = B. If A = B then
S = A \G where G ⊂ IA(A). This gives S ( I with I and S are both internally related
to the basis A. Further, zS is contained in the facet F (S), with S <ext/int I by definition
and thus F (S) precedes F (I) in ≺. �

The following corollary is immediate from the definition of the Tutte polynomial.

Corollary 6.2. The h-polynomial of ∆M is
∑

I∈I(M)

qn+r−|I| = qnTM (1 + q, 1)

where TM is the Tutte polynomial of M .

Recall from Section 3.2 that a shelling of a simplicial complex is called an h-shelling
if its restriction sets form a subcomplex. Since the restriction sets of a shelling of ∆M

produced from any linear extension of ≤ext/int forms a complex visibly isomorphic to
the independence complex of M , it is immediate that this is an h-shelling. However, we
can say more.

Corollary 6.3. For any linear extension of ≤ext/int, the corresponding shelling of ∆M

has property (H).

This further explains why the h-vector of ∆M is the f -vector of I(M).

Proof. Assume that G ⊂ F (J) is face. It is sufficient to consider the case that G is
codimension one in F (J), by [ER94, Theorem 2.6]. Say that G is obtained by deleting
some xi, yi with i ∈ E, or zi with i /∈ J , from F (J). Then G ∈ [zJ , F (J)] and hence
R(G) = R(F (J)) = zJ and the implication in (H) is trivial.

Assume G = F (J) \ zj with j ∈ J . Say that G ∈ [zI , F (I)] for some independent set
I. To show property (H), it is sufficient to prove that J \ j ⊂ I. For a facet of ∆M ,
we can recover its corresponding independent set by intersecting its x and z supports.
Thus,

J \ j = suppx(G) ∩ suppz(G) ⊂ suppx(F (I)) ∩ suppz(F (I)) = I. �

6.2. A bivariate h-polynomial. Recall that ≤ext/int is a partial order on I(M) defined
by saying I ≤ext/int J if and only if the related bases A and B are distinct and satisfy
A ≤ext/int B, or the bases related to I and J are the same and I ⊂ J . In this section
we consider a different partial order on I(M).

For I, J ∈ I(M), say that I ≤′
ext/int J if and only if the related bases A and B are

distinct and satisfy A ≤ext/int B, or the bases related to I and J are the same and J ⊂ I.
Informally, one obtains ≤′

ext/int from ≤ext/int by flipping each small boolean lattice in

≤ext/int upside down; see the Hasse diagram in Example 2.14 and Remark 2.16.
It is a straightforward generalization of the (admittedly subtle) arguments in Section 5

that every linear extension of ≤′
ext/int gives a shelling of ∆M . We leave the details to

the motivated reader.
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We wish to describe the restriction sets for shelling orders, ≺′, on ∆M that are pro-
duced from linear extensions of ≤′

ext/int. Before we state and prove our result we will

require a lemma.

Lemma 6.4. Let A be a basis with a ∈ IP(A) and define the basis

D := A \ a ∪ d

where d is a maximum. Then D <ext/int A and IA(A) ⊂ IA(D).

Proof. Let us begin by defining X := A \ a so that A = X ∪ a and D = X ∪ d. Notice
that d ∈ IA(D) and this gives IP(D) ⊂ X ⊂ A. We obtain D <int A by Definition 2.6(2)
and hence D <ext/int A.

To show that IA(A) ⊂ IA(D), first observe that D <int A and so by Definition 2.6(3),
IP(D) ⊂ IP(A). Since d /∈ IP(D) this gives IP(D) = IP(D) ∩ X . Also, a /∈ D ⊃ IP(D)
and thus

IP(D) ∩X = IP(D) ⊂ IP(A) ∩X.

Taking the complement in X gives

IA(A) ∩X ⊂ IA(D) ∩X ⊂ IA(D).

Recall, a ∈ IP(A) and this implies that IA(A) = IA(A) ∩X . The result follows. �

Proposition 6.5. Let ≺′ be a linear extension of ≤′
ext/int on I(M). For each indepen-

dent set I related to a basis A, write I = A \ YI where YI ⊂ IA(A). Then the restriction
set of F (I) in ≺′ is equal to yYI

zIP(A).

Proof. Similar to Proposition 6.1, our proof is organized in two parts:

(1) We begin by showing that yYI
zIP(A) is a new face when F (I) is added to the

complex generated by the facets preceding it in ≺′.
(2) We finish by showing that yYI

zIP(A) is the minimal new face when F (I) is added
to the complex generated by the facets preceding it in ≺′.

For (1), let I = A \ YI and J = B \ YJ be independent sets internally related to the
bases A, B with YI ⊂ IA(A) and YJ ⊂ IA(B). It is sufficient to show that if yYI

zIP(A) is
contained in a facet F (J) then I ≤′

ext/int J .

Suppose that yYI
zIP(A) ⊂ F (J). Consideration of the z-support gives

IP(A) ⊂ J ∪ EA(J) ⊂ B ∪ EA(B).

This implies that IP(A) ∩ EP(B) = ∅ and thus A ≤ext/int B. Since A and B are bases
we obtain, A ≤′

ext/int B. If A and B are distinct bases then I ≤′
ext/int J and we are

done. Otherwise A = B, and we examine the y-supports. We see that YI ⊂ YJ and this
implies that J = A \ YJ ⊂ A \ YI = I. Again, we conclude that I ≤′

ext/int J .

For (2), let I = A \ YI with A a basis and Y ⊂ IA(I). It is sufficient to show that if
ySzT ( yYI

zIP(A) then ySzT is contained in a facet that precedes F (I) in ≺′.
Let us assume that ySzT ( yYI

zIP(A). We will consider two cases according to the
y-support. In both cases, we will construct an independent set J so that the facet F (J)
contains the face ySzT and J <′

ext/int I.

For the first case, say that S ( YI . Define J := A \ S and observe that J is an
independent set internally related to A. We claim that the face ySzT is contained in the
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facet F (J). To see this, we have S = suppy(F (J)) by definition. Also,

T ⊂ IP(A) ⊂ J ⊂ suppz(F (J)).

Further, I = A \ YI ( A \ S = J is properly contained in J and thus J <′
ext/int I.

For the second case, say that S = YI and T ( IP(A). Let a ∈ IP(A) \ T and define
the basis,

D := A \ a ∪ d

where d is a maximum. The basis D satisfies Lemma 6.4. This gives D <ext/int A so
that D <′

ext/int A. Also, S = YI ⊂ IA(A) ⊂ IA(D). We claim that J := D \ S is the

needed independent set. To see this, observe that it is immediate that J <′
ext/int I, so

we argue that ySzT is contained in the facet F (J).
For the y-support, we have S = suppy(F (J)) by definition. For the z-support, by

construction

T ⊂ IP(A) \ a ⊂ A \ a ⊂ D.

Now recall that YI ∩ IP(A) = ∅, S = YI and T ⊂ IP(A). This implies that S ∩ T = ∅.
Since T ⊂ D, we obtain the following inclusion,

T ⊂ D \ S = J ⊂ suppz(F (J)).

We have just shown that ySzT is contained in the facet F (J) with J <′
ext/int I and so

we are done. �

The restriction sets here have more information associated to them than their size
alone: We may record how the restriction set are partitioned into y’s and z’s, thus
obtaining a bivariate h-polynomial. This polynomial depends on ≤′

ext/int but not ≺
′.

Corollary 6.6. Maintaining the notation above, the bivariate h-polynomial of ∆M is
∑

I∈I(M)

q−|YI |tn+r−| IP(I)| = tnTM ((1/q + 1)t, 1).

Setting t = q gives the h-polynomial we computed earlier. Note that the bivariate
information is strictly finer than the information of the normal h-polynomial.

Proof. First note that IP(I) is the internal passivity of its related basis. We use the
well-known expansion for the Tutte polynomial,

TM (q, t) =
∑

B∈B(M)

q| IA(B)|t|EA(B)|.

We have,

tnTM ((1/q + 1)t, 1) =
∑

B∈B(M)

(1/q + 1)| IA(B)|tn+r−| IP(B)|

=
∑

B∈B(M)

∑

Y ⊂IA(B)

q−|Y |tn+r−| IP(B)|.

Exchanging the order of summation gives the result. �
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7. The augmented no broken circuit complex

Given a matroid M on a set E totally ordered by <, a circuit with its maximum
element deleted is called a broken circuit. The collection of subsets S that contain no
broken circuit form a simplicial complex NBC(M) – the no broken circuit complex
of M . The faces of NBC(M) are called nbc sets and it is immediate that every nbc
set is independent in M . An independent set I is at once seen to be nbc if and only if
EA(I) = ∅. The following result due to Provan is well-known; see [Bjö92, Theorem 7.4.3].

Theorem 7.1. For any matroid M , NBC(M) is shellable under any lexicographic or-
dering of its facets. Its h-polynomial is TM (q, 0).

As a first attempt at augmenting the nbc complex of M , we might consider the
subcomplex of ∆M generated by those F (I) where EA(I) = ∅. This turns out to have
a large number of cone points: the elements of E(x) are obvious cone points, although
there are more. Deleting these elements, we obtain the following definition.

Definition 7.2. The augmented nbc complex of M is the complex ∆nbc
M on E(y, z) with

facets G(I) := yBI\IzI for every nbc set I of M related a basis BI .

This is a subcomplex of ∆M , pure of dimension r − 1. The nbc complex is visibly
isomorphic to the subcomplex of ∆nbc

M induced by E(z) ⊂ E(y, z). Our main results on
the augmented nbc complex is the following.

Theorem 7.3. For any linear extension ≺ of ≤ext/int on NBC(M), the corresponding

ordering of the facets of ∆nbc
M is a shelling.

Proof. It is sufficient to check that for any for any pair of nbc sets I ≺ K there is an nbc
set J ≺ K and c ∈ E satisfying

G(I) ∩G(K) ⊂ G(J) ∩G(K) = G(K) \ zc.

Since I and K are independent sets, the proof of Theorem 5.7 produces J and c satisfying

F (I) ∩ F (K) ⊂ F (J) ∩ F (K) = F (K) \ zc

We will show that J can be chosen to be nbc, and deleting the elements of E(x) from
these facets gives the needed statement.

In the case that J and c are produced as in Lemma 5.8 we have J and K are internally
related and hence they have equal external activity by Proposition 2.11. Since K is nbc,
it follows that J is too. In the case that J is produced as in Lemma 5.11 it suffices to
assume that I and K are nbc bases and apply parts (3) and (4) of Lemma 4.5 to see
that EA(J) = ∅ if EA(K) = ∅. �

The following two results are now immediate.

Corollary 7.4. Let ≺ be a linear extension of ≤ext/int on NBC(M). For each indepen-
dent set I of M , the restriction set of G(I) in this order is equal to zI .

Corollary 7.5. The h-polynomial of ∆nbc
M is equal to TM (1+q, 0). That is, the h-vector

of ∆nbc
M is the f -vector of NBC(M).

Since the restriction sets in one of our shellings of ∆nbc
M form a complex isomorphic

to NBC(M), they are h-shellings as in Section 3.2.
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Corollary 7.6. For any linear extension ≺ of ≤ext/int on NBC(M), the corresponding

shelling of ∆nbc
M has property (H).

Proof. Assume S ⊂ G(J) is codimension one. If S is obtained by deleting some yi from
G(J) then S ∈ [zJ , G(J)] and the implication in (H) is trivial. If S = G(J) \ zj for some
j ∈ J then assume S ∈ [zI , G(I)] for some no broken circuit set I. It is immediate that
J \ j ⊂ I by taking z-supports and this is what (H) demands. �

8. Questions

We close with a short selection of questions for future work.

(1) We can identify the lattice of flats of M as a sublattice of the poset I(M) (with
the order ≤ext/int). Here a flat X corresponds to the unique independent set
I satisfying I ∪ EA(I) = X . Is this poset non-pure shellable? Similarly, is the
external or internal order on B(M) (pure) shellable?

(2) Does any direct sum of tautological bundles give rise to a shellable simplicial
complex, as in Section 1.1?
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