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Abstract

We geometrically derive the explicit form of the unitary representation of the
Poincaré group for vector-valued wave functions and use it to apply speed-of-
light boosts to simple polarization basis to end up with Hawton-Baylis photon
position operator with commuting components. We give explicit formulas for
other photon boost eigenmodes. We investigate the underlying affine connections
on the light cone in momentum space and find that while Pryce connection is
metric semi-symmetric, the flat Hawton-Baylis connection is not semi-symmetric.
Finally we discuss localizability of photon states on closed loops and show that
photon states on the circle, both unnormalized improper states and finite norm
wave packet smeared over washer-like regions are strictly localized not only with
respect to Hawton-Baylis operators with commuting components but also with
respect to the noncommutative Jauch-Piron-Amrein POV measure.
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1 Introduction

In classical relativistic field theory the electric and magnetic field strengths are com-
bined into a closed two-form F over the Minkowski spacetime. Since F is closed,
dF = 0, it admits a four-vector potential A, (a 1-form) so that F = dA. While in
classical theory A is convenient, but not strictly necessary, when we move to quan-
tum theory A is almost unavoidable. There, when describing the interaction of the
electromagnetic field with charged matter (particles or fields), A has a simple geo-
metrical interpretation as a connection one-form in a complex line bundle, and F
becomes a curvature of this connection (physicists sometimes like to use the term “a
non-integrable phase factor” for the fact that we are dealing with a connection form
of a no-zero curvature). This simple and beautiful geometrical picture gets, however,
somewhat lost when we move to the quantum theory of electromagnetic field itself
(both first and second quantized).1 Photons - the quanta of the electromagnetic field,
are treated there as relativistic elementary particles, and as such are described by irre-
ducible unitary representations of the Poincaré group. The whole machinery of Lie
algebras, Casimir operators, Lie groups, induced representations and “little groups”
is being brought forward, and geometry gets almost completely forgotten. Physicists
construct one-particle Hilbert spaces and multi-particle Fock spaces (while the first
quantization is a ‘miracle’, the second quantization is a functor), move into the algebra
of operators, and this is a whole new world, with little place for differential geometry.
V.S. Varadarajan in his classic monograph “Geometry of Quantum Theory”, chapter
“Representations in vector bundles and wave equations” comes very close to fulfilling
this task, unfortunately, when it comes to photons, the chapter ends with the sentence
“We do not get into these ideas here.” - [2, p. 371].

The group-theoretical analysis of elementary relativistic quantum systems lead to
the concept of imprimitivity systems, developed by G.W. Mackey (cf. e.g. [2, Ch. VI]
and references therein), and to the associated concept of the localization of elementary
quantum particles. A.S. Wightman [3] applied these concepts to the study of localiz-
ability of quantum mechanical systems and came to conclusion confirming the previous
analysis of T.D. Newton and E.P Wigner [4], namely that photons (as well as other
particles of rest mass zero and helicity ≥ 1) are covariantly non-localizable in a strict
sense of an imprimitivity system based on the 3-d Euclidean group acting on R3..

J.M. Jauch and C. Piron [5], developed a concept of “weak localizability” replacing
projection-valued measure by POV (positive operator-valued) measures, and A.O.
Amrein [6] proved that there exist photon states strictly POV-localized in arbitrarily
small regions of space, while, more recently, I. and Z. Bialynicki-Birula [7] argued that
photons cannot be sharply localized because of a kind of complementarity between
magnetic and electric energy localization.

Closely related to the problem of a photon’s localization is the problem of existence
of the photon position operator Q. The problem is not exactly the same since a given
vector-valued operator may have infinitely many representations in terms of POV mea-
sures (except when Qi’s commute, and then there is a distinguished projection-valued
spectral measure). It is known [8] that the standard requirements of the covariance

1A promising new way of keeping the geometry alive also in quantum field theory (within the algebraic
framework) has been suggested by D. Buchholz et al. - c.f. [1] and references therein.
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with respect to the Euclidean group and inversions lead to a unique Q, - known as
the Pryce photon position operator2, the trouble is that the components Qi do not
commute, which makes the simple probabilistic interpretation for the photon’s local-
ization problem impossible.3 B.S. Skagerstam [10] interpreted noncommutativity of

components of the Pryce operators QPR
i in terms of the curvature of a connection in

a photon’s momentum space4, and applied it to derivation of the Berry phase for a
photon [13]. The same idea has been discussed before by I. and Z. Bialynicki-Birula
[14], except that in their paper the same connection has been derived independently
of the photon’s position operator question.

Abandoning the requirement of a covariance with respect to the 3D rotation group
opens the way towards the construction of a huge family of “position operators”
for photons, including those with commuting components and therefore admitting a
unique spectral decomposition. M. Hawton [15] has started a whole series of works in
this direction. Commuting of the components of the position operator implies a flat
(curvature zero) connection on the positive light cone in momentum space. Connec-
tions of this type (no curvature, but torsion) has been long ago investigated by A.
Staruszkiewicz [16, 17], who required that the parallel transport preserves the natural
(degenerate) metric, the volume form, and that the connection is semi-symmetric (a
constraint on the torsion). Hawton and Baylis [18] investigated a particular photon

position operator QHB with commuting components, the Hawton-Baylis operator ,
with axial symmetry. 5 Recently these ideas have been further developed by Dobrski
et al. [19, 20].

The present work started with the realization that there is an apparent discrep-
ancy between the geometrical picture of the photon wave function as a section of the
tangent or cotangent bundle6, and the way the Lorentz boosts act on vector-valued
functions within the unitary representation of the Poincaré group considered in all
papers dealing with the photon wave function and with photon position operators.7 In
the present paper we start with a geometrical description of massive vector fields trans-
forming naturally under the Poincaré group. We work in the momentum space8 and
discuss the natural unitary representation acting on the Hilbert space of sections of the
tangent bundle of the positive mass hyperboloid, square integrable with respect to the
natural Lorentz invariant measure. The natural Riemannian metric appearing there

2The proof of uniqueness provided in this reference has a hole, as it requires an additional restriction on
the form of the operator. But the hole in the proof can be completed, and no extra assumptions are in fact
necessary.

3While Qi admits a natural decomposition with respect to a POV measure, K. Kraus [9] has shown that
there exists more than one such measure, so that the question appears which one of them is more natural
than others, and why?

4Skagerstam is using Jackiw’s concept of “three-cocycle” [11], developed before under a different name
(generalized imprimitivity system) by the present author [12].

5If Berry phase is related to a non-zero curvature of the connection responsible for the parallel transport,
as it is usually assumed, then any such position operator must lead to a vanishing Berry phase.

6Whenever a (non-degenerate) metric is available, there is no need to distinguishes between tangent and
cotangent bundles. The distinction between the two becomes relevant only in premetric formulations of
electrodynamics - c.f. [21] and references therein.

7For the photon wave function see e.g. [22], while for photon position operators discussed in a similar
context as that taken in the present paper see [20] and references therein.

8A good introduction to photon’s wave mechanics, in both momentum and position space, as well as to
the photon’s localization problem, can be found in the review article [23], and in the monograph [24], by
Ole Keller.

3



becomes degenerate in the limit m = 0. For m > 0, taking the positive square root
of this metric we split the tangent space at each point into two mutually orthogonal
parts: the longitudinal-transversal split with respect to the mass-independent stan-
dard Euclidean metric. This enables us to twist the unitary representation along the
longitudinal part. We obtain an explicit form of so obtained irreducible unitary repre-
sentation and then take the limit m = 0, which now is finite (though not irreducible).
Only then the Lie algebra of the Poincaré group acquires the standard form.

We then use the explicit form of the boost unitary operators to obtain rather unex-
pected result: the polarization basis used for constructing the teleparallel connection
by Hawton and Baylis [18] can be obtained by taking the speed-of-light limit in the z-
direction of simple Hertz-type potentials e1 ∼ p×w and e2 ∼ p×(p×w),w = (0, 0, 1).
We then discuss the Hawton-Baylis connection and the associated photon position
operator with commuting components, and compare it to the Pryce connection with
non-zero curvature and torsion. In particular we find that the Pryce connection is met-
ric semi-symmetric, while Hawton-Baylis connection does not have the semi-symmetry
property.

In the last part of this paper we analyze photon states fℓ localized on loops ℓ
in photon’s position space. They are given as simple superpositions of plane waves
localized at the points of the loop. For the particular case when the loop is a circle on
a z = 0 plane we show that fl are localized on the circle not only with respect to the
Jauch-Piron-Amrein POV measure F (∆) (what was known before), but also (which

came as a surprise), with respect to QHB.
We construct simple wave packets made of these circle states that provide nor-

malized photon states localized in arbitrarily small washer-like regions of space, again

both with respect to QHB and F (∆).
Notation
We work in the momentum representation, spacetime signature (−+++).. Coordinates
(p0, p1, p2, p3) = (p0,p), p2 = p2−(p0)2. We will write R3 to denote the 3-dimensional
real vector space of the momentum vectors p. Greek indices µ, ν, ρ, σ run from 0 to 3.
Latin indices i, j, k, l run from 1 to 3. We use the Greek letter α, also running from 1
to 3 for numbering the basis vectors in momentum space. Summation over repeated
indices is implied. Only positive energies, p0 > 0, are being used. We will use the
notation π to denote the dimensionless unit vector in the direction of the momentum
p: π = p/|p|.

2 Massive vector field

For m > 0, we denote by V +
m the hyperboloid p2 +m2 = 0, p0 > 0, i.e.

p0 = +
√

p2 +m2. (1)

Later on we will be interested in the limit m → 0. The mass hyperboloid V +
m is

globally parametrized by p ∈ R3. In the limit m → 0, V +
m becomes the positive cone

V +
0 , and we will remove the origin p = 0.
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2.1 The tangent bundle

Let TV +
m be the tangent bundle of V +

m . Let pµ(t) be a (differentiable) path in V +
m ,

with (pµ(0)) = (p0 =
√

p2 +m2,p). For each t we have

p0(t)2 = p(t)2 +m2. (2)

Differentiating at t = 0 and setting vµ = (dpµ(t)/dt)|t=0, we get

v0p0 = v · p, (3)

therefore, in TV +
m , at p, we can use only the coordinates vi, the coordinate v0 being

given by

v0(p) =
v · p
p0

. (4)

2.2 Action of the Lorentz group

Let η = (ηµν) be the matrix η = diag(−1,+1,+1,+1). The inverse matrix η−1 = (ηµν)
has the same matrix elements. Indices are being raised and lowered with the matrices
η−1 and η respectively. In particular pi = pi, and p0 = −p0.9

Let L↑ be the orthochronous Lorentz group, that is the group of those 4 × 4 real
matrices L = (Lµ

ν) satisfying η−1LT η = L−1, L0
0 > 0.

The group L↑ acts on V +
m via p 7→ Lp, (Lp)µ = Lµ

νp
ν . On the mass hyperboloid

V +
m , p0 is determined by p. Therefore, on V +

m , we can write (Lp)i = Li
jp

j + Li
0 p

0,

where p0 =
√

p2 +m2. Let p 7→ Lp denote this action:

(Lp)i = Li
j p

j + (Li)0 p
0. (5)

It induces the action on the tangent bundle TV +
m as follows.

If vµ is a vector tangent to V +
m at p, then (Lv)µ = Lµ

νv
ν is tangent to V +

m at Lp.
Using now Eq. (4) we obtain

(Lv)i = (Li
j +

Li
0pj
p0

)vj . (6)

We set

˜D(m)
i

j
(L,p) = Li

j +
Li

0pj
p0

. (7)

The wave functions of the massive spin 1 particle are sections of the tangent bundle
TV +

m . We denote by Sec(TV +
m ) the space of these sections. If p 7→ f(p) is in Sec(TV +

m ),
then Lf is defined through the formula

(Lf)(Lp) = L(f(p)), (8)

9We will never use p0.
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or, in coordinates:

(Lf)i(Lp) = ˜D(m)
i

j
(L,p)f j(p). (9)

Replacing Lp with p and p with L−1p, we get

(Lf)i(p) = ˜D(m)
i

j
(L,L−1p)f j(L−1p). (10)

The formula (10) defines a natural linear action of L↑ on Sec(TV +
m ).

It can be verified by a direct calculation that the matrices ˜D(m)(L,p) satisfy the
following “cocycle relations”:

˜D(m)(L1L2,p) = ˜D(m)(L1, L2p) ˜D(m)(L2,p), (11)

which is equivalent to

(L1L2)f = L1(L2f), (12)

which means, that we have a linear representation of the group L↑ on Sec(TV +
m ). So

far no restriction on sections p 7→ f(p) are needed. The minimal assumption is that
they are (Borel) measurable. Notice also that f(p) can be assumed to be real. As
long as we are interested only in pure Lorentz transformations, and not in spacetime
translations, there is no need to complexify TV +

m .

2.3 Riemannian metric on V +
m .

For m > 0 the fibers of TV +
m carry a natural Lorentz invariant Riemannian structure:

the scalar product v · v′ = v · v′ − v0v′
0
is evidently Lorentz-invariant. Substituting

the expression (4) we obtain the coordinate expression for the Riemannian metric
g(m)ij(p)

g(m)ij(p) = δij −
pipj

|p|2 +m2
. (13)

Its inverse is given by

gij(m) = δij +
pipj

m2
. (14)

Since the flat metric η is invariant under the linear action of the Lorentz group, the
induced metric gm is invariant under the induced action. We have

˜D(m)(L,p)
T g(m)(Lp) ˜D(m)(L,p) = g(m)(p). (15)

In what follows we will need the positive square root of g(m). Since, as long as
m > 0, g(m) is positive definite, there exists a unique positive-definite square root

h(m) = (h(m)i
j) of g(m). It can be verified that h(m) is given by the following explicit

expression:

h(m)
i
j
(p) = δij + λ(p)πiπj , (16)

λ(p) =
m

p0
− 1. (17)

6



We will also need its inverse (h(m))
−1, which is given by

h(m)
−1i

j
(p) = δij + µ(p)πiπj , (18)

µ(p) =
p0

m
− 1. (19)

Remark 1. We have two scalar products in R3
p, the standard, Euclidean one, δij,

and the one determined by the metric g(m)ij . In the following whenever we write the
dot product or raise or lower the space index (i, j, . . .), we will always use the standard
Euclidean metric.

2.4 The Hilbert space and unitary representation

We have √
det g(m) =

m

p0
, (20)

therefore, since g(m) is Lorentz invariant, d3p/p0 is a Lorentz invariant measure on

V +
m . We define the Hilbert space H̃m as the Hilbert space of sections f(p) of TV +

m

square integrable with respect to the scalar product

(f , f ′)m =

∫
g(m)ij(p)f̄

i(p)f ′j(p)
d3p

p0
. (21)

By construction the formula

(Ũ(L)f)(p)
.
= (Lf)(p) = ˜D(m)(L,L

−1p)f(L−1p) (22)

defines a unitary representation of L↑ on H̃m.
The unitary representations of L↑ for different values of m have the same form but

act in Hilbert spaces with different scalar products in the fibers. In order to be able
to take the limit m = 0 it is convenient to use just one standard fiber scalar product,
independent of the value of m, but make the form of the representation m-dependent.
To this end let Hm be the Hilbert space of sections of TV +

m square integrable with
respect to the standard Hermitian scalar product

< f , f ′ >m=

∫
f̄(p) · f ′(p)d

3p

p0
, (23)

where f̄ denotes the complex conjugate (not needed if f is real). Then the map

h(m) : f(p) 7→ h(m)(p)f(p), (24)

where h(m) is given by Eq. (16), is an isometry from H̃m to Hm. Correspondingly we

have a unitary representation L 7→ Um(L) = h(m) ◦ Ũ(L) ◦ h(m)
−1 of L↑ on Hm. It

7



follows then from the definition that U(L) can be written as

(Um(L)f)(p) = Dm(L,L−1p)f(L−1p), (25)

where

Dm(L,p) = h(m)(Lp) ˜D(m)(L,p)h
−1
(m)(p). (26)

By using Eq. (15) and the definition of h(m) we find that the matrices Dm(L,p) are
orthogonal, which makes the property of unitarity of Um(L) evident. 10

2.4.1 The longitudinal-transversal split

Assuming p ̸= 0, the eigenvalue equation g(m)f = λf for the real symmetric matrix
g(m) reads

f i(p)− p · f(p)
|p|2 +m2

pi = λf i(p),

i.e.

(1− λ)f i(p) =
p · f(p)
|p|2 +m2

pi. (27)

Thus either λ = 1, and then p · f(p) = 0, or λ ̸= 1, and then f(p) is propor-
tional to p. For each p ̸= 0 let P0(p) be the orthogonal projection (in R3 endowed
with the Euclidean metric δij) on the one-dimensional subspace consisting of vectors
proportional to p :

P0(p) f(p) = (π · f(p))π. (28)

Then P0(p) projects onto the eigenspace of g(m)(p) belonging to the eigenvalue
m2/(|p|2 + m2). Let P1(p) = I − P0(p) be the orthogonal projection on the
complementary subspace of vectors corresponding to the eigenvalue 1:

P1(p)f(p) = f(p)− (π · f(p))π, (29)

so that

g(m)(p) =
m2

|p|2 +m2
P0(p) + P1(p). (30)

Then we immediately get

h(m)(p) =
m√

|p|2 +m2
P0(p) + P1(p), (31)

and

h(m)
−1(p) =

√
|p|2 +m2

m
P0(p) + P1(p). (32)

It should be noticed, however, that, as long as m > 0, the split above is not invariant
under the action of boosts of the Lorentz group on V +

m .

10Using the terminology of [2, p. 175] one says that the cocycles ˜D(m) and Dm are strictly cohomologous.
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2.5 The limit m = 0

For m = 0 the matrices ˜D(m)(p) are still given by Eq. (7), but now p0 = |p|. It is less
obvious that the matrices Dm given by Eq. (26) remain finite in the zero mass limit.
In Proposition 1 below we show that, for all L in L↑ and p in V +

m , the limit

D0(L,p) = lim
m=0

Dm(L,p) (33)

exists, and we provide its explicit form.
Proposition 1. D0(L,p) is finite and it is given by the following explicit formula:

D0
i
j(L,p) = Li

j + Li
0πj − π′iL0

j + π′iπj(1− L0
0), (34)

where π′ = Lp
|Lp| . For each L ∈ L↑ and p ̸= 0 the matrix D0(L,p) is orthogonal

D0(L,p)
T = D0(L,p)

−1. (35)

The representation
(U0(L)f)(p)

.
= D0(L,L

−1p)f(L−1p) (36)

of L↑ on the Hilbert space H0 = L2(R3
p, d

3p/|p|)⊗ C3 is unitary.

Proof. Substituting Eqs. (31) and (32) into Eq. (26) we obtain for Dm(L,p) the sum
of four terms t1, t2, t3, t4, where

t1(m) =

√
|p|2 +m2√
|Lp|2 +m2

P0(Lp) ˜D(m)(L,p)P0(p), (37)

t2(m) = P1(Lp) ˜D(m)(L,p)P1(p), (38)

t3(m) =
m√

|Lp|2 +m2
P0(Lp) ˜D(m)(L,p)P1(p), (39)

t4(m) =

√
|p|2 +m2

m
P1(Lp) ˜D(m)(L,p)P0(p). (40)

Noticing that the orthogonal projections P0 and P1 do not depend of m we see that
t1(0) and t2(0) are finite, and are given by

t1(0) =
|p|
|Lp|

P0(Lp)D̃(0)(L,p)P0(p), (41)

t2(0) = P1(Lp)D̃(0)(L,p)P1(p), (42)

while the third term vanishes
t3(0) = 0. (43)

We will now show that, surprisingly, the fourth term t4(m) also vanishes in the limit
m = 0. To this end we consider first the product

DP0(m)
.
= ˜D(m)(L,p)P0(p) (44)
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of its last two factors. Using the definitions we have

DP0(m)
i
k =

(
Li

j +
Li

0pj
p0

)
pjpk
|p|2

=

(
Li

jp
j

|p|2
+

Li
0

p0

)
pk. (45)

Setting p′ = Lp, we have Li
jp

j = p′i − Li
0p

0, therefore

DP0(m)
i
k =

p′ipk
|p|2

+ Li
0

(
1

p0
− p0

|p|2

)
pk =

p′ipk
|p|2

−m2 L
i
0pk

p0|p|2
. (46)

Now, the projection P1(p
′) vanishes on the first term p′ipk

|p|2 , as the range of this matrix

is in the longitudinal subspace at p′, and

√
|p|2+m2

m P1(Lp) acting on the second term
vanishes linearly in m. Therefore also t4(0) = 0, and so

D0(L,p) =
|p|
|p′|

P0(p
′)D̃(0)(L,p)P0(p) + P1(p

′)D̃(0)(L,p)P1(p). (47)

Since the subbundle of longitudinal vectors is invariant under the action of D̃(0),

we have P1(p
′)D̃(0)(L,p)P0(p) = 0 and P0(p

′)D̃(0)(L,p)P0(p) = D̃(0)(L,p)P0(p).
Therefore Eq. (47) simplifies to

D0(L,p) = D̃(0)(L,p) +
|p|
|p′|

D̃(0)(L,p)P0(p)− P0(p
′)D̃(0)(L,p). (48)

The matrix D̃(0)(L,p)P0(p) we have already calculated - we just set m = 0 in Eq.
(46). Using now the fact that LT ηL = η, a straightforward algebra gives us

(P0(p
′)D̃(0)(L,p))

i
j
= π′i(L0

j + πjL
0
0), (49)

and leads to the formula (34) of Proposition 1.11 The matrices D0(L,p) are orthogonal
as limits of a continuous family of orthogonal matrices, and, since the measure d3p/p0

is Lorentz invariant, the representation U0 is unitary.

We notice that for pure space rotations: Li
0 = L0

j = 0, L0
0 = 1, we have D0i

j =
Li

j .

2.6 The Poincaré group Lie algebra

So far we have discussed only the homogeneous transformations form the Poincaré
group - the Lorentz transformations from L↑. Now we add translations. They are
implemented by complex phase rotations:

(U0(a)f)(p) = eia·pf(p) = ei(a
1p1+a2p2+a3p3−a0p0)f(p). (50)

11Notice that ˜D(0)(L,p) gives the first two terms of the right hand side of (34).
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These transformations are evidently unitary on H0. Having the unitary representation
of the whole group we will calculate now the self-adjoint infinitesimal generators. For
translations we define Pµ = −i(dU(a)/daµ)|a=0, obtaining

P if(p) = pif(p), P 0f(p) = |p|f(p). (51)

The Lie algebra of the orthogonal group SO(4) consists of antisymmetric matrices
m̃µν given by

(m̃µν)
σρ = δσµδ

ρ
ν − δσν δ

ρ
µ. (52)

The matrices mµν = m̃µνη form then a basis in the Lie algebra of the Lorentz group

(mµν)
σ
ρ = δσµηνρ − δσν ηµρ. (53)

Defining m = (mi) and n = (ni) through mi = 1
2ϵ

ijkmjk, n
i = m0i, we obtain the

commutation relations

[mi,mj ] = −ϵijkm
k, [mi, nj ] = −ϵijkn

k, [ni, nj ] = ϵijkm
k. (54)

Then the densely defined self-adjoint operators M i, N i are given by

M i = −idU(exp(tmi))/dt|t=0, N
i = −idU(exp(t ni))/dt|t=0. (55)

Using our explicit formulas, we obtain:

M = L+ s, (56)

N = K+ k, (57)

where

L = −ip× ∂/∂p, K = i|p|∂/∂p, k = π × s, (58)

s = −im. (59)

The commutation relations obtained from the definitions are the standard ones:

[N i, P j ] = iδijP 0, [N i, P 0] = iP i, [M i, P j ] = iϵijkP
k, [M i, P 0] = 0, (60)

[N i, N j ] = −iϵijkM
k, [M i, N j ] = iϵijkN

k, [M i,M j ] = iϵijkM
k. (61)

Replacing M by L and N by K we obtain the same commutation relations.
Remark 2. The representation U0 defined by (36) is unitary on the Hilbert space H0

of vector-valued functions square integrable with respect to the scalar product

< f , f ′ >0=

∫
f†(p)f ′(p)

d3p

|p|
. (62)
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In Sec. 4 we will use a different scalar product using a non-Lorentz-invariant measure
d3p. To make the representation U0 unitary with respect to this scalar product, we need
to adjust D0 by introducing an extra scaling factor and defining

D(L,p) =

√
|p|
|Lp|

D0(L,p). (63)

The expression for infinitesimal generators for this unitary representation remains the
same, except that in the definition of K we must replace i|p|∂/∂p by i|p|∂/∂p+ 1

2π.
Notice however, that with the scalar product (62), and with D0 replaced by D, the

transversal components of f(p) cannot be directly interpreted as tangent vectors, since
they do not have the correct transformation properties under boosts.

The unitary space inversion operator Π and antiunitary time inversion operator Θ
for this representation are given by

(Πf)(p) = f(−p), (Θf)(p) = f∗(−p). (64)

For a general representation of the Poincaré group one defines the four-dimensional
Pauli-Lubanski pseudovector Wµ as

Wµ =
1

2
ϵνρσµ P

νMρσ. (65)

We have

W 0 = P ·M, W = P 0 M−P×N. (66)

It follows from the very definition that ηµνP
µW ν = 0. For mass zero representa-

tions Pµ is lightlike, and therefore Wµ is proportional to Pµ:

Wµ = ΛPµ. (67)

The proportionality operator Λ commutes with all the generators and is called the
helicity operator (see e.g. [25, p.64]). In our case one finds that for generators Pµ,L,K
we have Wµ = 0, therefore Λ = 0, while for the generators Pµ,M,N we have

Λ = π ·M = π · s, (68)

or explicitly, using Eq. (59),

(Λf)(p) = iπ × f(p). (69)

The spectrum of Λ is discrete and consists of three points λ = ±1 and 0. Therefore Λ2

is a projection onto the subspace Hph of H0. Hph is a direct sum of eigenspaces H± of
Λ corresponding to eigenvalues λ = ±1. The photon states are represented by vectors
in Hph. The orthogonal complement Hl of Hph in H0 describes a spinless particle. It
follows from these definitions that

12



Hph = {f ∈ H0 : p · f(p) = 0} (70)

and that
Hl = {f ∈ H0 : f(p) = c(p)p} (71)

for some scalar function c(p). Since Λ commutes with all the generators of the Poincaré
group, they leave the subspaces Hph and Hl invariant.

3 Application of the explicit form: photon
polarization vectors boosted to the speed of light

3.1 Action of pure boosts

We will be interested in one-parameter subgroups of Lorentz transformations L(w, s),
w ∈ R3,w2 = 1, s ∈ R, defined by

L(w, s) = exp(−sw · n) = exp

(
s

(−w1 0 0 0
−w2 0 0 0
−w3 0 0 0
0 −w1 −w2 −w3

))
. (72)

For the matrix L(w, s)µν we then obtain12

L0
i = Li

0 = −wi sinh(s),

Li
j = δij + wiwj(cosh(s)− 1), (73)

L0
0 = cosh(s).

For a fixed w we have the group property:

L(w, s1)L(w, s2) = L(w, s1 + s2). (74)

In particular we have L(w, s)−1 = L(w,−s).
For some special sections f(p) of TV +

0 we will be interested in calculating the limits

lim
s→±∞

U0(L(w, s))f . (75)

Having in mind Eq. (36) let

D′
0(w, s,p)

.
= D0(L(w, s), L(w, s)−1p). (76)

The following Proposition shows that the limits

D′
0(w,p)± = lim

s→±∞
D′

0(w, s,p) (77)

exist, and provides their explicit form.

12The parameter s is known as rapidity , s = atanh(β), β = v/c.
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Proposition 2. For all p not parallel to w, we have

D′
0(w,p)± = 1± πwT − wwT − (π ·w)πwT + ππT ±wπT

1± π ·w
. (78)

where for any two vectors a,b we denote by abT the matrix with components aib
j .

Proof. The proof is by a straightforward (though tedious) algebra. From the definition
of D′

0 and Eq. (34) we have the following explicit expression for D0(L,L
−1p):

D0(L,L
−1p)

i

j(L,p) = Li
j + Li

0π
′
j − πiL0

j + πiπ′
j(1− L0

0), (79)

where now π′ = L−1p
|L−1p| . Substituting there L(w, s) for L, we obtain fractions contain-

ing cosh(s), sinh(s), their squares and products. The terms with sinh(s) cosh(s) cancel
out, while the terms with cosh2(s), sinh2(s) collect so that we can apply the identity
cosh2(s) − sinh2(s) = 1. Dividing the numerators and denominators (which are now
linear in cosh(s) and sinh(s)) by cosh(s) we use the fact that lim

s→±∞
tanh(s) = ±1 to

obtain the result.

3.2 The polarization basis

Using the Euclidean metric we will silently rise and lower the space indices with the
Kronecker deltas δij and δij .

Let a be a unit (a · a = 1) vector in R3, and let p be a non-zero vector in R3, p
not parallel to a. Define the following two vectors ea1(p), e

a
2(p) in R3 as13

ea1(p) =
p× a

|p× a|
, (80)

ea2(p) =
p× (p× a)

|p× (p× a)|
. (81)

Adding the third vector field e∥ defined as

e∥(p) = π, (82)

we obtain an orthonormal basis, which can be considered as an orthonormal moving
frame in the (real) tangent bundle of the positive light cone in momentum space. The
sections ea1 and ea2 of the tangent bundle TV +

0 become singular on the straight line
determined by a.
Remark 3. One can check that Λe∥(p) = 0, and that the states ea1(p) ± iea2(p) are
eigenstates of the helicity operator to the eigenvalue ±1 :

Λ(ea1 ± iea2) = ±(ea1 ± iea2). (83)

13Cf. Ref. [26, Eq. (3.3)]

14



Proposition 3. The limits eaα
± = lim

s→±∞
U0(L(w, t)) eaα, α = 1, 2, exist, and are given

by

ea1
± =

±1√
1− (w · a)2

(
w × a− π · (w × a)

1± π ·w
(π ±w)

)
, (84)

ea2
± =

1√
1− (w · a)2

(
w × (w × a)− π · (w × (w × a))

1± π ·w
(π ±w)

)
. (85)

Moreover, the vector fields eαa are invariant under the boosts in w-direction. We have

(w ·N) eaα = 0, (86)

where N is the boost generator (57).

Proof. We know from Proposition 2 that the limits D′
0(w,p)± exist. On the other

hand, using the definitions of eaα and L(w, s)−1 = L(w,−s), as well as the fact that
lim

s→±∞
tanh(s) = ±1, we obtain

lim
s→±∞

ea1(L(w, s)−1p) =
±w × a√
1− (w · a)2

, (87)

lim
w→±∞

ea2(L(w, w)−1p) =
w × (w × a)√
1− (w · a)2

. (88)

The result follows then by an application of the matrix of D′
0(w,p)± given by for-

mula (78) to the vectors (87) and (88). The last statement of the proposition is the
immediate consequence of the definitions.

3.2.1 Lorentz-boost eigenmodes

Let us take for w the vector
w = (0, 0, 1),

(boost in the direction of the third axis), and for a the vector

a = (0, 1, 0).

We consider the case of lim
w→−∞

. Using the formulas (87) and (88) we obtain the

following two mutually orthogonal unit vector fields:

e1(p) =
1

1− π3

1− π3 − (π1)2

−π1π2

(1− π3)π1

 , e2(p) =
1

1− π3

 π1π2

−(1− π3) + (π2)2

−(1− π3)π2

 . (89)

These two vector fields are transversal; they define a photon polarization basis (notice
that while each of the original vector fields ea1 , e

a
2 has two singular points on the unit

sphere, in their speed-of-light limits these two singularities merge into just one—the
minimum required by the “hairy ball theorem” of algebraic topology). Together with
the third vector field
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e3(p) = π, (90)

which is longitudinal and spans the helicity-zero subspace, they form an orthonormal
basis in TpV

+
0 —cf. Fig. 1.

e1.pdf e2.pdf e3.pdf

Fig. 1 The vector fields e1(p), e2(p), e3(p) plotted at the unit sphere in momentum space.

It is easily verified that

M3e1 = −ie2, M
3e2 = ie1, M

3e3 = 0, (91)

and
N3e1 = N3e2 = N3e3 = 0. (92)

Remark 4. The vector fields e1, e2 are real. Introducing their complex combinations

e± =
1√
2
(e2 ± ie1), (93)

we obtain two unit complex vector fields of definite helicity and the third component
of angular momentum:

M3e± = ∓e±, Λe± = ±e±. (94)

Evidently we also have
N3e± = 0. (95)

The basis eα, is naturally embedded into a one-parameter family of Lorentz-boost

eigenmodes14 e
(λ)
α defined by the formula below:

e(λ)α (p) = exp

(
iλ log

√
|p| − p3
|p|+ p3

)
eα(p), (α = 1, 2, 3), λ ∈ R. (96)

14For the scalar wave equation some of their properties have been discussed in Ref. [27].
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A straightforward verifications shows that e
(λ)
α still satisfies Eq. (91), but Eq. (92) is

replaced by
N3e(λ)α = λ e(λ)α . (97)

Remark 5. In fact one can show that every solution of the eigenvalue problem

N3f = λf (98)

is of the form

f(p) =

3∑
α=1

cα(p1, p2)e
(λ)
α (p). (99)

3.3 The teleparallel connection

In the following we will use the notation, assumptions and results of Sec. 3.2.1.

3.3.1 Stereographic coordinates on the lightcone

We will use the moving frame eα(p), (α = 1, 2, 3) on V +
0 to define teleparallel affine

connection on V +
0 . The frame has a singularity at the points p = (0, 0, t), t > 0, and the

natural rotational covariance with respect to rotations around the third axis. It takes
especially simple form in a coordinate system X = (x, y, ω) using the stereographic
projection from the unit sphere in the momentum space. 15

We set

p1 =
2xω

x2 + y2 + 1
, (100)

p2 =
2yω

x2 + y2 + 1
, (101)

p3 =
x2 + y2 − 1

x2 + y2 + 1
ω, (102)

and the inverse transform

x =
π1

1− π3
, (103)

y =
π2

1− π3
, (104)

ω = |p|. (105)

Given a coordinate systemXi and a vector ξ with coordinates ξi, we have the standard
transformation law to another coordinate system Xi′ :

ξi
′
=

∂Xi′

∂Xi
ξi. (106)

15Stereographic projection coordinates are also being used, in a similar context, in Refs. [16],[17], but the
coordinates x, y in these papers are twice ours x, y, as the projection plane in these papers is positioned at
the bottom of the unit sphere, and not through the center.
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Applying this law to the vectors e1, e2, e3 we obtain their components in stereographic
coordinates ω, x, y;16

e1 =

 1+x2+y2

2ω
0
0

 , e2 =

 0

− 1+x2+y2

2ω
0

 , e3 =

0
0
1

 . (107)

The Euclidean metric in stereographic coordinates has the form

g = (gij) =

 4ω2

(1+x2+y2)2 0 0

0 4ω2

(1+x2+y2)2 0

0 0 1

 , (108)

g−1 = (gij) =

 (1+x2+y2)2

4ω2 0 0

0 (1+x2+y2)2

4ω2 0
0 0 1

 , (109)

while the Lorentz invariant degenerate metric g0ij = δij − πiπj is obtained from gij
by replacing 1 with 0 in the right bottom corner. We can use the metric gij to obtain
the corresponding dual basis e1, e2, e3 in the cotangent bundle:

e1 =

 2ω
1+x2+y2

0
0

 , e2 =

 0
− 2ω

1+x2+y2

0

 , e3 =

0
0
1

 . (110)

The Lorentz invariant volume form vol = d3p/|p| becomes

vol =
4ω

(1 + x2 + y2)2
dω dx dy. (111)

3.3.2 The connection coefficients

The moving frame eα defines a unique flat affine connection on V0 in which the vector
fields eα are parallel:

∇ie
k
α

.
= ∂ie

k
α + Γk

ij e
j
α = 0. (112)

The coefficients Γk
ij of this teleparallel connection, in the coordinate system (Xi) =

(x, y, ω) are then given by

Γi
k
j = ekα

∂eαj
∂Xi

, (113)

where eα is the dual basis, thus ei
αejα = δji .

16Surprisingly they happen to essentially coincide with the basis E⃗1, E⃗2, E⃗3 considered in Ref. [19, Eq.

(2.42)]: e1 = −E⃗1, e2 = −E⃗2, e3 = E⃗3. In fact we have e1 = ∂̂x, e2 = −∂̂y, e3 = ∂̂ω = ∂ω, where the hat
over a vector denotes the unit vector in its direction.
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A straightforward calculation gives then the following expressions:

Γ1 =
−2x

a

1 0 0
0 1 0
0 0 0

 , Γ2 =
−2y

a

1 0 0
0 1 0
0 0 0

 ,Γ3 =
1

ω

1 0 0
0 1 0
0 0 0

 , (114)

where a = 1 + x2 + y2. Our connection Γ has the properties ∇ig = ∇ig0 = 0, and
∇ivol = 0, therefore it should have come under the scope of affine connections dis-
cussed by Staruszkiewicz in Refs. [16, 17]. However, as we show in the paragraph below,
it is not ‘semi-symmetric’ – an extra condition imposed on the class of connections
analyzed by Staruszkiewicz.

3.3.3 The connection Γk
ij given by Eq. (114) is not semi-symmetric.

Let M be an n-dimensional manifold with a coordinate system xi. A linear connection
∇ with connection coefficients Γk

ij is said to be semi-symmetric if its torsion tensor

T k
ij = Γk

ij − Γk
ji is of the form

T k
ij = δki τj − δkj τi, (115)

τ being a 1-form. If that is the case, contracting the indices i, k we get τj = 1
n−1T

i
ij .

In our case n = 3, therefore

τj =
1

2
T i
ij . (116)

For the connection given by Eq. (114) we get, for instance, τ2 = −y/(1+x2+y2). But
for a semi-symmetric connection we should have, for instance, T 1

12 = δ11τ2 − δ12τ1 = τ2,
while from Eq. (114) we have T 1

12 = Γ1
12 − Γ1

21 = 0 − 0 = 0. Thus our connection is
not semi-symmetric.

4 Photon position operator with commuting
components and axial symmetry

To discuss the photon localization it is more convenient to work in representation in
which the scalar product in the Hilbert space of sections of the tangent bundle TV +

0

is given by the formula (c.f. Remark 2.)

(f, f ′) =

∫
R3

f(p)†f ′(p)d3p. (117)

Since the measure d3p is not Lorentz-invariant the formula for the boost operator gets
now an extra term (comparing to Eq. (57), and takes the form

N = K+
i

2
π + n. (118)

As a consequence the sections p 7→ eα(p) do not any longer satisfy Eq. (92) - but
p 7→ |p|−1/2eα(p) do.
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In what follows we will be using the scalar product (117). We will denote
H the corresponding Hilbert space: H = L2(R3, d3p)⊗ C3.
The map f 7→ |p|1/2f is an isometry between the two Hilbert spaces, the space H
with the scalar product defined with the measure d3p, and H0, with the scalar product
d3p/p0.

4.1 Position operators as covariant derivatives

There is a straightforward relation between the position operator and a covariant
derivative concept in vector bundles. Indeed, the main property required from any
position operator Qi is the property of satisfying the canonical commutation relations
with the momentum operators Pi:

[Qj , P
k] = iδkj I. (119)

In our case, it implies that for any section f(p) of T (V +
0 ) and any scalar function

ϕ(p) we have

−iQj(ϕf)(p) =
∂ϕ(p)

∂pj
f(p) + ϕ(p)(Qjf)(p). (120)

Thus the operators −iQi have the Leibniz rule property, the main property defining
a covariant derivative ∇i in a vector bundle (cf. e.g. [28, p. 89, Eq. (1.1)]). For Qi

to be Hermitian, ∇i must be anti-Hermitian, and for this to be the case, the (linear)
connection determined by ∇i should preserve the fiber scalar product (f(p), f ′(p))p =
f(p)†f ′(p). Then

Q = i∇, (121)

or, explicitly

(Qjf)
k(p) = i∂jf

k(p) + iΓk
il(p)f

l(p). (122)

4.2 The Pryce connection and operator - geometric
construction

There is a standard construction in the differential geometry of vector bundles that
results in a canonical connection adapted to a split of a trivial vector bundle into a
direct sum of its two vector sub-bundles (cf. e.g. [29, p. 319, 4.], [30, Exercise 10]).
We adapt this standard construction to our purpose as follows. First, using the global
coordinates pi, we realize the tangent bundle TV +

0 as a trivial product bundle V +
0 ×R3.

In the trivial bundle we have a canonical covariant derivative ∂i = ∂
∂pi . Our trivial

bundle is naturally split into a direct sum of the helicity zero sub-bundle and the
helicity ±1 sub-bundle of photon states. Let P (p) denote the orthogonal projection
on the helicity zero states

(P (p)f)i(p) = πiπjf
j(p). (123)

Then I − P is the orthogonal projection on the complementary sub-bundle of photon
states. The natural covariant derivative adapted to this splitting is then defined by the
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formula17

∇PR
i = PdiP + (I − P )∂i(I − P ). (124)

Using the idempotent property P 2 = P, we find a simpler form:

∇PR
i = ∂i + [P, ∂i(P )], (125)

while substituting the explicit form (123) of P leads to

(∇PR
i f)j = ∂if

j +
1

|p|

(
πjδik − πkδ

j
i

)
fk, (126)

thus the corresponding connection coefficients are given by

ΓPR
j

ik = [P, ∂i(P )]
j
k =

1

|p|

(
πjδik − πkδ

j
i

)
. (127)

4.2.1 The Pryce connection is metric semi-symmetric

A metric connection is semi-symmetric - cf. e.g. [32, 33] and references therein - if its
connection coefficients Γk

ij are of the form

Γj
ik = Γ

j

ik + δji τk − gikτ
j , (128)

where Γ
j

ik are the coefficients os the Levi-Civita connection of the metric, and where
τi and τ i = gijτj are covariant and contravariant components of a vector field,
respectively. In that case the curvatures of the two connections are related by18

Rij
k
l = Rij

k

l + δkj τil − δki τjl + δilτj
k − δjlτi

k, (129)

where

τij = ∇iτj − τiτj +
1

2
gijτ

2, (130)

and τ2 = gijτiτj .

In our case gij = δij and the connection coefficients Γ
j

ik are all zero. Comparing

Eqs. (128) and (127) we can see that the connection ∇PR is metric semi-symmetric,
with

τi = −πi/|p|, . (131)

We then get

πij = πji =
1

|p|2

(
(Σ2)ij +

1

2
δij

)
, (132)

where
Σij = −ϵijkπ

k, (133)

17Cf. [31, Eq. 2]. We use the label PR to mean either “Projection” or “Pryce”.
18For the curvature tensor components of a connection ∇ we use the convention Rij

k
lξ

l =

((∇i∇j − ∇j∇i)ξ)
k .
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and the curvature tensor simplifies to

RPR
ijkl =

1

|p|2
ΣijΣkl. (134)

From Eq. (128) we get for the torsion

TPR
k

ij = δki τj − δkj τi, (135)

where τi is given by (131).

4.2.2 The difference between the teleparallel and the Pryce
connection

The difference of two connections is a tensor. In our case it is a matter of a straight-
forward calculations to find this tensor for the teleparallel connection Γ defined by Eq.
(114) and the Pryce connection given by Eq. (126). We obtain

Γk
ij − ΓPR

k

ij = biΣ
k
j , (136)

where

b =
π ×w

|p| − p ·w
, w = (0, 0, 1). (137)

4.2.3 The Pryce operator

We now use Eqs. (121) and (124). Denoting

X = i
∂

∂p
, (138)

the position operator corresponding to ∇PR is

QPR .
= i∇PR = PXP + (I − P )X(I − P ), (139)

or, explicitly,

(QPR
j f)k = i∂jf

k +
i

|p|
(
πkδjl − πlδ

k
j

)
f l. (140)

Using Eqs. (59),(53) it can be also written as

QPR = X+
(p× s)

|p|2
, (141)

and, in this form, it is known as the Pryce position operator. The following alternative
formula for this operator, expressing it in terms of the Poincaré group generators, is
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easily verified and is well known

QPR =
1

2

(
1

P 0
N+N

1

P 0

)
, (142)

where N i are the boost generators (118). It should be mentioned that even though
the bundle TV +

0 is trivial, the non-triviality of its splitting defined by the helicity-
related projection P is reflected in the fact that the adapted connection has a non-
zero curvature, and, as a consequence, the components of the Pryce operator do not
commute.
Remark 6. The flat covariant derivative d does not mix the two photon ±1 helicities.
As a consequence the Pryce operator commutes with the helicity operator Λ, and not
only with its square Λ2 = I − P.

Using now Eq. (134) we get

([Qi, Qj ]f)
k = − 1

|p|2
ΣijΣ

k
lf

l, (143)

which is usually written as (see e.g. [34, Eq. (5,9), p. 40])19

[Qi, Qj ] = iϵijk
pk
|p|3

Λ, (144)

where Λ = iΣ is the helicity operator.

4.3 The Hawton-Baylis operator

The teleparallel connection described in Sec. 3.3 leads to the Hawton-Baylis photon

position operator QHB
i with commuting components

QHB
i = i∇i, (145)

with the defining relations

∇ieα = 0, (i = 1, 2, 3), (α = 1, 2, 3), (146)

where eα are given by Eqs. (89)-(90). It follows from Eqs. (145) and (146) that the
states eα(p) are localized at x = 0. To obtain states localized at any point x = a we
multiply these states by exp(−ip · a).

From Eqs. (136),(137) we then get20

QHB
i f = QPR

i f + biΛf . (147)

19In Ref. [34] helicity is defined with the opposite sign.
20C.f. [18, Eq. 53] and [19, Eq. 2.49]).
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In particular

QHB
3 = QPR

3 . (148)

Using this last equality, together with Eqs. (142) and (118) we recover the fact, men-
tioned after Eq. (118), that the states ẽα = |p|−1/2eα are invariant under boosts in
the direction of the third axis. Indeed, from the Leibniz property (120) and from (146)
we get

QHB
i ẽα = − iπi

2|p|
ẽα. (149)

Thus also

QPR
3 ẽα = − iπ3

2|p|
ẽα. (150)

On the other hand, using (142) and the Lie algebra commutation relation [N3, P 0] =

iP 3, QPR
3 can be written as

QPR
3 =

1

|p|
N3 − iπ3

2|p|
, (151)

which, together with (150), leads to (1/|p|)N3ẽα = 0, and thus N3ẽα = 0. But this
reasoning does not give us the clue as how the basis eα can be obtained by taking the
speed of light limit of the simple polarization basis (81).21

It is straightforward to verify that the operators Qi = QHB
i have the axial

symmetry:

[M3, Q1] = iQ2, [M
3, Q2] = −iQ1, [M

3, Q3] = 0. (152)

4.3.1 Photon states localized on circles

Since the three components of QHB commute, they can be simultaneously diagonal-

ized, and the simultaneous eigenvalue equation QHB
i f = qif has three independent

solutions

fα,q(p) = exp(−iq · p)eα(p), (q ∈ R3, α = 1, 2, 3). (153)

The states f1,q ± if2,q describe photons localized at q ∈ R3, of helicity ±1, and f3,q is
of helicity 0. However, since the states eα(p) have a rather complicated p-dependence,

and owing to the axial symmetry of QHB, it is natural to look for simple axially

symmetric simultaneous eigenvalue equations for Q = QHB:

M3 f = 0, (154)

Q3 f = 0, (155)

(Q2
1 +Q2

2) f = R2 f , R > 0. (156)

These would give us states localized on the circle x2+y2 = R2, z = 0, in the Cartesian
coordinates (x, y, z) in the photon’s position space. To this end it is convenient to

21A brief discussion of an application of the Hawton-Baylis photon position operator to optical beams
(derived via Wigner’s little group method) can be found in Ref. [35], c.f. also references therein.
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introduce cylindrical coordinates (ρ, ϕ, p3), ρ =
√

(p21 + p22). One can then verify that
states of the form

f(ρ, ϕ, pz) = F (ρ)

− sin(ϕ)
cos(ϕ)

0

 (157)

are simple solutions of Eqs. (154) and (155), while Eq. (156) imposes a second order
ordinary differential equation on F (ρ):

ρ2F ′′(ρ) + ρF ′(ρ) + (R2ρ2 − 1)F (ρ) = 0. (158)

with the following solution finite at the origin [36]:

F (ρ) = cJ1(Rρ), (159)

where J1 is the Bessel function of the first kind, and c is a constant - see Fig. 2. For

20 40 60 80 100
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0.4

0.6

Fig. 2 Bessel function J1(ρ).

reasons that will be clear from the next paragraph we choose for the constant c the
value:

c = −iR. (160)

Loop states

Let ℓ be a closed loop in R3
x defined by a function r(t), 0 ≤ t ≤ 2π. Following Ref.

[31] let us define the state fℓ by

fℓ(p) =
1

2π

∫ 2π

0

e−ip·r(t) dr(t). (161)
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Then fl(p) is a superposition of simultaneous eigenstates of Xi - see Eq. (138) - X-
localized in R3

x at the points of the loop ℓ. Therefore it is X-localized on ℓ. The fact
that the loop is closed, i.e. r(2π) = r(0), implies that the state fℓ(p) is an (improper)
element of Hph, i.e that

p · fℓ(p) = 0. (162)

Taking the Fourier transform fℓ(x) of fℓ(p) we get

fℓ(x) =
1

(2π)3

∫ 3

R
eipxfℓ(p)d

3p =
1

2π

∫ 2π

0

δ (x− r(t)) dr(t), (163)

and it is clear fℓ(x) has its support on the loop in the position coordinates space - it
vanishes at all points x outside the loop. It is also clear that for two non-intersecting
loops ℓ, ℓ′ the states fℓ and fℓ′ are orthogonal to each other.22

As an example let us take for ℓ the circle in (x, y) plane of radius R given by the
parametric equations

x = R cos t, y = R sin t, z = 0. (164)

A straightforward calculation in cylindrical coordinates (ρ, ϕ, p4) (in the momentum
space) leads then to

fx2+y2=R2(p) = −i
R

ρ
J1(Rρ)

−p2
p1
0

 . (165)

where J1 is the Bessel function and ρ =
√

(p1)2 + (p2)2, which coincides with the state
f given by the formula (157).

Amrein’s washer photon states

We use Eq. (163) for a circle of radius R at z = z0, thus

x(t) = R cos t,

y(t) = R sin t,

z = z0.

(166)

Thus

fR,z0 =
1

2π

∫ 2π

0

δ(x−R cos t, y −R sin t, z − z0)

− sin t
cos t
0

 dt. (167)

We will use cylindrical coordinates (r, ϕ, z) in the position space. In these coordinates

δ(x− x′, y − y′, z − z′) =
1

r
δ(r − r′)δ(ϕ− ϕ′)δ(z − z′), (168)

22Loops may form topologically inequivalent knots. In this respect the loop states discussed above are
similar to knotted solutions of Maxwell equations discussed in Ref. [26, Sec. 7].

26



while
d3x = rdr dϕ dz. (169)

Thus

fR,z0(r, ϕ, z) =
1

2π

∫ 2π

0

δ(r −R)

r
δ(z − z0)δ(ϕ− t)

− sin t
cos t
0

 dt. (170)

After integrating over dt we get

fR,z0(r, ϕ, z) =
1

2π

δ(r −R)

r
δ(z − z0)

− sinϕ
cosϕ
0

 . (171)

We now take a continuous superposition of these states for R varying between R1 and
R2 > R1 end z0 varying between z1 and z2 > z1. As a superposition of photon states,
it will be still a photon state. Let χR1,R2

(r) be the function equal 1 for R1 ≤ r ≤ R2

and zero otherwise, and, similarly, let χz1,z2 be the function equal 1 for z1 ≤ z ≤ z2
and zero otherwise. Taking the integral∫ ∞

−∞
dz

∫ ∞

0

χR1,R2
(R)χz1,z2(z)fR,z0(r, ϕ, z) dRdz (172)

we obtain

fR1,R2,z1,z2(r, ϕ, z) =
1

2πr
χR1,R2(r)χz1,z2(z))

− sinϕ
cosϕ
0

 . (173)

The function is evidently square integrable with respect to d3x = rdr dϕ dz and its
probability density is zero everywhere except for the bolt washer-like region R1 ≤ r ≤
R2, z1 ≤ z ≤ z2 - see Fig. 3.
We call it Amrein’s state, as the existence of such states was first proved in 1968 by

Fig. 3 Amrein’s washer state (171) is strictly (weakly) localized in the region 1 nm ≤ R ≤√
2 nm, 1 nm ≤ z ≤ 1.4 nm.

A.O. Amrein [6]. These states are also strictly localized with respect to the commuting

position operators QHB
i .
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4.4 POV measure photon’s localization

Every self-adjoint operator admits a spectral decomposition. Usually we write it as:

A =

∫
λdE(λ). (174)

More generally, given a family of commuting observables, we have a spectral measure
on the common spectrum of these observables. Here we have operators Xi = i∂/∂pi

defined onH, with commuting components [Xi, Xj ] = 0, and we have a unique spectral
measure on R3 such that

Xi =

∫
R3

xidE(x). (175)

Then for every Borel set ∆ ⊂ R3 the operator

E(∆) =

∫
∆

dE(x) (176)

is a projection operator on the subspace of states localized in ∆, for any two sets ∆ i
∆′ the operators E(∆) i E(∆′ commute.

However the operators Xi do not leave the subspace Hph invariant, therefore we

have introduced QPR
i

QPR
i = PXiP + (I − P )Xi(I − P ), (177)

where (I − P ) is the orthogonal projection operator on Hph. Thus we have

QPR
i =

∫
R3

xidF (x), (178)

where

F (∆) = PE(∆)P + (I − P )E(∆)(I − P ). (179)

Now F (∆) are not any longer projection operators, and for different ∆ they do not
commute. Nevertheless they are non-negative operators 0 ≤ F (∆) ≤ 1 and∫

R3

dF (x) = I, (180)

Therefore we have a POV - positive operator valued measure. Jauch and Piron [5]
called a photon state f weakly localized in ∆ if F (∆)f = f , and conjectured existence
of such states. Amrein [6] provided a rigorous proof of their existence and has shown
how to construct them. Our formula (171) provides a rich explicit family of such states.
Notice however that the circle states fx2+y2=R2(p) while satisfying

(QHB
1 )2 + (QHB

2 )2) fx2+y2=R2 = R2fx2+y2=R2 , (181)
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they are not eigenstates of (QPR
1 )2+(QPR

2 )2. Instead, for any real measurable function
ϕ on R+, they are eigenstates to the eigenvalue ϕ(R2) of the operator Qϕ(x2+y2) defined
as

Qϕ(x2+y2)
.
= Pϕ((X1)

2 + (X2)
2)P + (I − P )ϕ((X1)

2 + (X2)
2)(I − P )

=

∫
ϕ(x2 + y2) dF (x),

(182)

where dF (x) is the POV measure defined by Eq. (179).23

The circle localized states fx2+y2=R2 are superpositions of helicity +1 and helicity
−1 states, in agreement with Theorem 2 of Ref. [6]. Their projections on definite
helicity subspaces, +1 or −1, are still circle-localized with respect to the Hawton-
Baylis operator, but they are not weakly localized in the sense of the POV measure
F (∆) - in agreement with Theorem 1 of Ref. [6]

5 Conclusions

In conclusion, using differential geometric structures on the mass hyperboloid and
on the light cone in momentum space we derived the explicit form of the unitary
representation of the Poincaré group for helicity zero and helicity ±1 massless par-
ticles. Using this explicit form for the boost in the direction of the third axis we
have found that simple photon polarization states based on Hertz-type potentials sur-
vive the light speed limit and generate a polarization basis used in the construction
of photon position operators with commuting components. We have compared these
operators, as well as the underlying affine connections, to the classical Pryce operator
and connection, and have found that the Pryce connection, Eq. (125), non-flat, but
with rotational symmetry, is metric semi-symmetric, while the Hawton-Baylis flat, but
only axially symmetric, connection, Eq. (114), does not have this property. We have
constructed finite-norm photon states localized in bolt washer-like regions and proved
that they are strictly localized in these regions with respect to Hawton-Baylis position
operators and also with respect to the Jauch–Piron–Amrein POV measures. They are
also z-localized (but not radius-localized) with respect to the Pryce photon position
operator.
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