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DÉVISSAGE FOR GENERATION IN DERIVED CATEGORIES

SOUVIK DEY AND PAT LANK

ABSTRACT. This work exhibits that the essential image of the derived pushforward along a proper surjective

morphism of Noetherian schemes generates the targets derived category of bounded complexes with coherent

cohomology. There are two primary consequences to our work. First, we show that classical generators in

the bounded derived category are preserved by derived pushforward along a proper surjective morphism of

Noetherian schemes. Secondly, the bounded derived category coincides with the thick subcategory generated

by perfect complexes and structure sheaves of closed integral subschemes supported in the singular locus of the

ambient scheme.

1. INTRODUCTION

This note presents a technical lemma that asserts, on an open set of a Noetherian integral scheme, any

pair of objects with full support in the bounded derived category can locally finitely build each other in at

most one cone, cf. Lemma 3.1. An upshot to such a result is that it contributes a powerful understanding

towards the behavior of generation amongst functors on derived categories arising in algebraic geometry

and commutative algebra.

Recall a notion of generation for a triangulated category T , which was introduced in [BvdB03]. An object

G in T is called a classical generator if the smallest thick subcategory containing G coincides with T . In

other words, every object in T can be obtained from G using a finite combination of shifts, cones, finite

coproducts, and retracts. If the number of cones required to finitely build an object from G is uniform, then

G is referred to as a strong generator. The concept of strong generators has led to interesting invariants, as

introduced in [ABIM10, Rou08].

The primary focus is on the derived category of bounded complexes with coherent cohomology on a Noe-

therian scheme X, which is denoted by Db
coh(X). There has been considerable progress made in understand-

ing instances where Db
coh(X) admits the aforementioned objects. These cases have been studied for quasi-

excellent separated schemes of finite Krull dimension [Aok21, Nee21], Noetherian J-2 schemes [ELS20],

Noetherian schemes admitting a separator [Jat21], and affine Noetherian schemes [IT16,IT19,DLT23]. Fur-

thermore, in many concrete instances, there have been efforts to explicitly identify such objects [Rou08,

BIL+23, Ola23], including noncommutative techniques [BDL23].

An intermediate step in arguments for generic freeness à la dévissage asserts that for any finitely generated

module M over a commutative Noetherian ring R there exists a finite descending chain of submodules

· · · ⊆ M1 ⊆ M0 =: M whose corresponding quotients Mi/Mi+1 are isomorphic to objects of the form

R/p for some p is in Spec(R). This is observed in the proof of [Gro65, Lemme 6.9.2]. If interpreted in our

context, this tells us that any finitely generated R-module can be obtained from the collection of modules of

the form R/p where p is in Spec(R) using kernels, cokernels, and extensions.

The main result of this work is to demonstrate that the essential image of the derived pushforward along a

proper surjective morphism of Noetherian schemes generates bounded derived category of the target of the

morphism.

Theorem 1.1. If π : Y → S is a proper surjective morphism of Noetherian schemes, then the thick subcat-

egory generated by the essential image of Rπ∗ : D
b
coh(Y ) → Db

coh(X) coincides with Db
coh(X).
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Theorem 1.1 significantly extends prior work of the second author in [Lan24]. If one is working in char-

acteristic zero, then derived schemes are intimately related to what are called differential graded schemes,

and so many our of results have an interesting interpretation in such context, cf. [Gai13,GR17a,GR17b] for

details. In particular, we provide an alternative proof to related result in the literature in regards to proper

descent for derived algebraic geometry over a field of characteristic zero, cf. [Gai13, Corollary 8.1.3].

Along the way to proving Theorem 1.1, we establish a lemma which provides a triangulated analogue of

dévissage inspired arguments for generation in the bounded derived category, see Lemma 3.2. This lemma

tells us the smallest thick subcategory generated by the structure sheaves of closed integral subschemes

coincides with Db
coh(X).

In other words, objects in Db
coh(X) can be finitely built by structure sheaves of integral closed subschemes

of X using a finite combination of cones, shifts, finite coproducts, and retracts. Subsequently, we refine this

to show that a similar statement holds where the closed integral subschemes can be chosen to be those

supported in the singular locus of the ambient scheme, cf. Proposition 1.2.

Proposition 1.2. Let X be a Noetherian scheme. For any classical generator P of perfX, one has that

Db
coh(X) coincides with the thick subcategory generated by P and objects of the form i∗Li

∗P where i : Z →
X is a closed immersion from an integral scheme Z supported in the singular locus of X.

This refinement is a globalization of [Tak14, Corollary 4.3.1], which asserts a similar statement for the

case of affine schemes, see Remark 3.3. It is worthwhile to note that our arguments are very different in

flavor than that of [Tak14].

Our main result yields valuable consequences towards studying the behavior of classical generators under

the derived pushforward. Specifically, we demonstrate that classical generators in the bounded derived

category are preserved by derived pushforward along a proper surjective morphism of Noetherian schemes,

cf. Corollary 3.5. This allows for one to explicitly identify strong generators in the bounded derived category

of a variety over a field through the use of alterations, cf. Example 3.7.

Notation 1.3. Let X be a Noetherian scheme.

(1) D(X) is the derived category of OX -modules

(2) DQcoh(X) is the strictly full subcategory of objects in D(X) whose cohomology sheaves are quasi-

coherent OX -modules

(3) Db
coh(X) is the strictly full subcategory of D(X) whose objects are bounded with coherent coho-

mology sheaves

(4) perfX is the strictly full subcategory of D(X) consisting of perfect complexes

(5) Db
coh(R) denotes, by abuse of notation, Db

coh(Spec(R)) for a commutative Noetherian ring R.

Acknowledgements. The first author was partially supported by the Charles University Research Center

program No. UNCE/24/SCI/022, and Grant No. GA CR 23-05148S from the Czech Science Foundation.

The second author was partially supported by the National Science Foundation under Grant No. DMS-

1928930 while in residence at the Simons Laufer Mathematical Sciences Institute (formerly MSRI). The

second author would like to thank Adeel A. Khan for discussions regarding [Gai13].

2. BACKGROUND

First, we will briefly cover basic notions on generation in triangulated categories. For a further treatment

on necessary background, the reader is referred to [BvdB03, Rou08]. Let T be a triangulated category with

shift functor [1] : T → T .

Definition 2.1. If S is a subcategory of T , then we have the following constructions:

(1) add(S) is the smallest strictly full subcategory of T containing S that is closed under shifts, finite

coproducts, and retracts

(2) S is said to be thick if it is closed under retracts and is a strictly full triangulated subcategory of T
(3) 〈S〉 is the smallest thick subcategory in T containing S
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(4) 〈S〉0 is the full subcategory consisting of all objects isomorphic to the zero object

(5) 〈S〉1 := add(S)
(6) 〈S〉n := add

(
{cone(ϕ) : ϕ ∈ HomT (〈S〉n−1, 〈S〉1)}

)
.

If S consists of a single object G, then we write 〈G〉 for 〈S〉.

Remark 2.2. In the notation of Definition 2.1, we have an exhaustive filtration for the smallest thick sub-

category containing S in T :

〈S〉0 ⊆ 〈S〉1 ⊆ · · · ⊆
∞⋃

n=0

〈S〉n = 〈S〉.

Definition 2.3. Given objects E,G of T , we have the following terminology:

(1) E is said to be finitely built by G if E is in 〈G〉
(2) G is said to be a classical generator if 〈G〉 = T
(3) G is said to be a strong generator if there exists n ≥ 0 such that 〈G〉n = T .

Example 2.4. The following list, though far from comprehensive, are familiar instances in both geometric

and algebraic contexts where strong generators can be explicitly identified:

(1) R ⊕ k is a strong generator for Db
coh(R) if (R,m, k) is a local Noetherian ring with an isolated

singularity, cf. [KMVdB11, Proposition A.2]

(2) OX is a strong generator for Db
coh(X) if X is a quasi-affine Noetherian regular scheme of finite

Krull dimension, cf. [Ola23, Corollary 5]

(3) perfX admits a classical generator for X a Noetherian scheme, cf. [BvdB03, Theorem 3.1.1]

(4)
⊕dimX

i=0 L⊗i is a strong generator for Db
coh(X) if L is an ample line bundle on a smooth quasi-

projective variety X over a field, cf. [Rou08, Proposition 7.9]

(5) F e
∗ (
⊕dimX

i=0 L⊗i) is a strong generator for Db
coh(X) if L is an ample line bundle on a singular quasi-

projective variety X over a perfect field of positive characteristic where F : X → X is the Frobenius

morphism, cf. [BIL+23, Corollary 3.9].

Remark 2.5. ( [ELS20, §4.2]) If K is a thick subcategory of T and T /K denotes the Verdier quotient of T
by K, then the sequence of natural functors

K
i
−→ T

q
−→ T /K

is called a Verdier localization. Note that q ◦ i = 0, i is the natural inclusion, and q is the natural quotient

functor.

Lemma 2.6. Suppose K is a thick subcategory of T . If S is a subcategory of T such that 〈S〉 = T /K, then

〈K ∪ S〉 = T .

Proof sketch. If E is an object of T /K, then there exists an n ≥ 0 such that E is in 〈S〉n in T /K. Recall

maps in T /K corresponds to a roof of a pair of maps in T whose cones belong K. An induction argument

on n will tell us E belongs to 〈K ∪ S〉 in T . �

Definition 2.7. Let X be a Noetherian scheme, E an object of Db
coh(X), and i : Z → X a closed immersion.

(1) Supp(E) :=
⋃∞

j=−∞ Supp(Hj(E)) is called the support of E

(2) E is supported on Z whenever Supp(E) is contained in Z
(3) Db

coh,Z(X) is the strictly full subcategory of Db
coh(X) consisting of objects whose support is con-

tained in Z

Remark 2.8. Let X be a Noetherian scheme, i : U → X an open immersion, and Z := X \U the associated

closed subscheme with reduced induced structure. There exists a Verdier localization i∗ : Db
coh(X) →

Db
coh(U) with kernel Db

coh,Z(X), cf. [ELS20, Theorem 4.4].
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Remark 2.9. Let X be a Noetherian scheme. The Verdier quotient of Db
coh(X) by perfX is called the

singularity category of X, which we denote by Dsg(X). This was introduced by [Buc21] in the case of

Gorenstein local rings, and [Orl04] for the case of varieties over a field.

3. RESULTS

Next up, we prove our main results and to start, we need a establish our technical lemma that is akin to

generic freeness of coherent OX -modules on a Noetherian integral scheme.

Lemma 3.1. Let X be a Noetherian integral scheme. If E and G are objects of Db
coh(X) with full support,

then there exists an open immersion i : U → X such that in the category Db
coh(U) one has i∗E is in 〈i∗G〉1

and i∗G is in 〈i∗E〉1.

Proof. Consider a nonempty open affine U in X. The set S of points p in U such that Ep is in 〈Gp〉1 is

Zariski open, cf. [Let21, Proposition 3.5]. It is evident that S contains the generic point of X, and so S is

nonempty. By the same reasoning, the set T of points p in X such that Gp is in 〈Ep〉1 is Zariski open and

nonempty. If both S and T contain the generic point η of X, then there exists a nonempty open affine W in

S ∩ T , i.e. consider a component in an open affine covering of S ∩ T . Let j : W → X be the associated

open immersion. For each p in W , one has Ep is in 〈Gp〉1 and Gp is in 〈Ep〉1. Therefore, it follows from

a local-to-global principle on generation for affine schemes that j∗E is in 〈j∗G〉1 and j∗G is in 〈j∗E〉1,

cf. [Let21, Corollary 3.4]. �

Lemma 3.2. (Derived dévissage) Let X be a Noetherian scheme. For any perfect complex P on X with

full support, one has that Db
coh(X) coincides with the thick subcategory generated by P and objects of the

form i∗Li
∗P where i : Z → X is a closed immersion from an integral scheme Z .

Proof. If X = ∅, there is nothing to check, so without loss of generality, X is nonempty. We argue by

Noetherian induction, and so, assume the claim holds for any properly contained closed subscheme Z of X.

Let E be an object of Db
coh(X). If E has support properly contained in X, then the induction hypothesis tells

us that E belongs to S , and so we may reduce to the case where E has full support. Moreover, as objects

in Db
coh(X) are finitely built by their cohomology sheaves, we can further impose that E is a coherent

OX -module.

Suppose the closed subset Supp(E) has irreducible components Z1, . . . , Zn. There exists a short exact

sequence of coherent OX -modules:

0 → E1 → E → E′
1 → 0

where Supp(E1) ⊆ Z1 and Supp(E′
1) ⊆ ∪n

i=2Zi, cf. [Sta23, Tag 01YD]. By applying this observation to

E′
1, then an induction argument on the minimal number of irreducible components allows us reduce to the

case where X is an integral scheme. This means E is a coherent OX-module with full support on the integral

scheme. There exists a dense open immersion j : U → X such that j∗E and j∗P finitely build one another

in at most one cone in Db
coh(U), see Lemma 3.1. If U = X, then we are done, so assume U is a properly

contained subset of X. Note that j∗E is a direct summand of an object of the form ⊕n∈Zj
∗P⊕rn [n], so we

have an object j∗E and isomorphism φ : j∗A⊕ j∗E → ⊕n∈Zj
∗P⊕rn [n] in Db

coh(U). There exists a roof in

Db
coh(X):

B

⊕
n∈Z P

⊕rn [n] A⊕ E.

f g

Observe that the cones of f, g are supported on the properly contained closed subset Z of X (see Re-

mark 2.8), and so the objects cone(f), cone(g) are in S by our inductive hypothesis. Therefore, B belongs

to S , and hence, so does A⊕E. �

Lemma 3.2 tells us that the smallest thick subcategory generated by objects of the form i∗ : Z → X
with i a closed immersion from an integral scheme coincides with that of Db

coh(Z). However, the following

https://stacks.math.columbia.edu/tag/01YD
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result refines this to the class of closed subschemes supported in the singular locus of the ambient scheme.

Moreover, this is a globalization of [Tak14, Corollary 4.3.1].

Proof of Proposition 1.2. By Lemma 3.2, we know that Db
coh(X) coincides with the thick subcategory gen-

erated by P and objects of the form i∗Li
∗P where i : Z → X is a closed immersion from an integral

scheme Z . Denote this collection of objects by S . As Dsg(X) is a Verdier quotient of Db
coh(X), the thick

subcategory generated by the images of the objects in S coincides with Dsg(X). However, we can refine

the collection of images of objects in S to those which have nonzero image in Dsg(X).
From this collection of objects, let us check which objects of S have zero image in Dsg(X). Clearly, P

being a perfect complex on X has a zero image in Dsg(X).
We look at those closed immersions i : Z → X with Z integral and i∗Li

∗P has zero image in Dsg(X).
This is equivalent to i∗Li

∗P being an object of perfX. Since P is a classical generator for perfX and i
is a finite morphism, we know that Li∗P is a classical generator for perf Z , and so OZ is finitely build by

Li∗P , cf. [Sta23, Tag 0BQT]. Hence, i∗OZ belongs to perfX. If η is the generic point of Z , then OX,η

finitely builds κ(η), and so η is in the regular locus of X.

Our work tells us i∗Li
∗P being a perfect complex ensures Z is not supported in the singular locus.

Consequently, Dsg(X) coincides with the thick subcategory generated by the objects of the form i∗Li
∗P

where i : Z → X is a closed immersion from an integral scheme whose generic point does not belong to

the regular locus of X. Since the singular locus of X is specialization closed, we see that any such closed

subscheme in the collection is supported in the singular locus of X. Thus, the desired claim follows from

Lemma 2.6. �

Remark 3.3. Let X be a Noetherian scheme. Recall that Lemma 3.2 tells us Db
coh(X) coincides with the

thick subcategory generated by OX and objects of the form i∗OZ where i : Z → X is a closed immersion

from an integral scheme Z . Suppose P is a classical generator for perfX. The proof of Proposition 1.2 can

be adapted to show Db
coh(X) coincides with the thick subcategory generated by P and objects of the form

i∗OZ where i : Z → X is a closed immersion from an integral scheme Z supported in the singular locus of

X.

Example 3.4. If X is a Noetherian scheme which has finitely many singular points, then Db
coh(X) admits

a classical generator via Proposition 1.2. For example, suppose X is a normal quasi-projective surface over

a field with an ample line bundle L and singular points p1, . . . , pn. By [Orl09, Theorem 4], the object

OX ⊕L⊕L⊗2 is a classical generator for perfX. Let πj : Spec(κ(pj)) → X denote the associated closed

immersion for each singular point with the reduced induced closed subscheme structure. By Proposition 1.2,

the object

OX ⊕ L⊕ L⊗2 ⊕ π1,∗OSpec(κ(p1)) ⊕ · · · ⊕ πn,∗OSpec(κ(pn))

is a strong generator for Db
coh(X).

Proof of Theorem 1.1. If S = ∅, there is nothing to check, so without loss of generality, S is nonempty.

Similar to Lemma 3.2, we argue via Noetherian induction, so assume the claim holds for any properly

contained closed subscheme Z of S. Let T be the thick subcategory generated by the essential image of

Rπ∗ : D
b
coh(Y ) → Db

coh(S). By Lemma 3.2, it suffices to show both OX and i∗OZ belong to T where

i : Z → S ranges over all closed immersion with Z integral.

The induction hypothesis ensures i∗OZ belongs to T for each closed immersion i : Z → S with Z
integral and properly contained in S. Indeed, let i denote such a morphism. There exists a fibered square:

Y ×S Z Z

Y S

π2

i

π

π1

y

Note that π2 is a proper surjective morphism and π1 is a closed immersion as these properties are stable under

base change. Since the claim holds on all properly contained closed subschemes of S, the thick subcategory

https://stacks.math.columbia.edu/tag/0BQT
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generated by the essential image of Rπ2,∗ : D
b
coh(Y ×S Z) → Db

coh(Z) coincides with Db
coh(Z). Conse-

quently, it follows that i∗OZ belongs to T as any object in the essential image of i∗◦Rπ2,∗ : D
b
coh(Y×SZ) →

Db
coh(S) belongs to T via the commutativity of the diagram above.

We are left to verify that OX is in T . First, consider the case X is integral. However, one can argue in a

similar fashion for the proof of Lemma 3.2 to show the desired claim. There is an open immersion i : U → S
with U dense such that i∗Rπ∗OY and OU finitely build one another in at most one cone in Db

coh(U), see

Lemma 3.1. Note that j∗OX = OU . If U = S, then we would be done, so consider the case where U is a

properly contained subset of S. Since OU is a direct summand of an object of the form ⊕n∈Zj
∗
Rπ∗O

⊕rn
Y [n],

there is an object j∗E and isomorphism φ : j∗A ⊕ OU → ⊕n∈Zj
∗
Rπ∗O

⊕rn
Y [n] in Db

coh(U). This gives us

a roof in Db
coh(S):

B

⊕
n∈Z Rπ∗O

⊕rn
Y [n] A⊕OX .

f g

The cones of f, g are supported on the properly contained closed subsets of S. Hence, the objects cone(f)
and cone(g) are in T by our inductive hypothesis. This tells us B belongs to T , and thus, so does A⊕OX .

Lastly, we need to check that OX is in T when X is not integral. Let Z1, . . . , Zn be the irreducible

components of X. There exists a short exact sequence of coherent OX -modules:

0 → E1 → OX → E′
1 → 0

where Supp(E1) ⊆ Z1 and Supp(E′
1) ⊆ ∪n

i=2Zi, cf. [Sta23, Tag 01YD]. Since E1 and E′
1 are supported

on properly contained closed subsets of X, our induction hypothesis tells us that E1 and E′
1 belongs to T .

Thus, OX is in T as desired. �

Corollary 3.5. Suppose π : Y → X is a proper surjective morphism of Noetherian schemes. If G is a

classical generator for Db
coh(Y ), then Rπ∗G is a classical generator for Db

coh(X).

Proof. By Theorem 1.1, the thick subcategory generated by the essential image of the functor

Rπ∗ : D
b
coh(Y ) → Db

coh(X)

coincides with Db
coh(X). Since G is a classical generator for Db

coh(Y ), Rπ∗G finitely builds any object in

the essential image of the functor above. Hence, any object of Db
coh(X) is finitely built by Rπ∗G. �

The following is a slight alternative to the proof of [LO24, Lemma 3.14].

Corollary 3.6. Suppose π : Y → X is a proper surjective morphism of Noetherian schemes. If G is a strong

generator for Db
coh(Y ), then Rπ∗G is a strong generator for Db

coh(X).

Proof. By Corollary 3.5, Rπ∗G is a classical generator for Db
coh(X). There exists an n ≥ 0 such that OX

is in 〈Rπ∗G〉n. Given P in perfX, one has from the projection formula that P is in 〈Rπ∗(G
L

⊗ Lπ∗P )〉n.

If 〈G〉k = Db
coh(Y ), then P is in 〈Rπ∗G〉nk. The desired claim follows from [LO24, Theorem 1.1]. �

Example 3.7. Let X be a variety over a field. There exists a proper surjective morphism π : X̃ → X of va-

rieties over k such that dim X̃ = dimX and X̃ is a regular quasi-projective variety, cf. [dJ96, Theorem 4.1].

Let L be an ample line bundle on X̃. By [Rou08, Proposition 7.31], we know that G :=
⊕dimX

i=−dimX L⊗i is

a strong generator for Db
coh(X̃), and so Rπ∗G is a strong generator for Db

coh(X) via Corollary 3.6.

REFERENCES

[ABIM10] Luchezar L. Avramov, Ragnar-Olaf Buchweitz, Srikanth B. Iyengar, and Claudia Miller. Homology of perfect com-

plexes. Adv. Math., 223(5):1731–1781, 2010.

[Aok21] Ko Aoki. Quasiexcellence implies strong generation. J. Reine Angew. Math., 780:133–138, 2021.

https://stacks.math.columbia.edu/tag/01YD
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(Séconde partie). Publ. Math., Inst. Hautes Étud. Sci., 24:1–231, 1965.

[IT16] Srikanth B. Iyengar and Ryo Takahashi. Annihilation of cohomology and strong generation of module categories.

Int. Math. Res. Not., 2016(2):499–535, 2016.

[IT19] Srikanth B. Iyengar and Ryo Takahashi. Openness of the regular locus and generators for module categories. Acta

Math. Vietnam., 44(1):207–212, 2019.

[Jat21] V. B. Jatoba. Strong generators in Dperf(X) for schemes with a separator. Proc. Am. Math. Soc., 149(5):1957–1971,

2021.

[KMVdB11] Bernhard Keller, Daniel Murfet, and Michel Van den Bergh. On two examples by Iyama and Yoshino. Compos.

Math., 147(2):591–612, 2011.

[Lan24] Pat Lank. Descent conditions for generation in derived categories. Journal of Pure and Applied Algebra,

228(9):107671, September 2024.

[Let21] Janina C. Letz. Local to global principles for generation time over commutative Noetherian rings. Homology Homo-

topy Appl., 23(2):165–182, 2021.

[LO24] Pat Lank and Noah Olander. Approximation by perfect complexes detects rouquier dimension. arXiv preprint

arXiv:2401.10146, 2024.

[Nee21] Amnon Neeman. Strong generators in D
perf(X) and D

b

coh(X). Ann. Math. (2), 193(3):689–732, 2021.

[Ola23] Noah Olander. Ample line bundles and generation time. J. Reine Angew. Math., 800:299–304, 2023.

[Orl04] D. O. Orlov. Triangulated categories of singularities and D-branes in Landau-Ginzburg models. In Algebraic geome-

try. Methods, relations, and applications. Collected papers. Dedicated to the memory of Andrei Nikolaevich Tyurin.,

pages 227–248. Moscow: Maik Nauka/Interperiodica, 2004.

[Orl09] Dmitri Orlov. Remarks on generators and dimensions of triangulated categories. Mosc. Math. J., 9(1):143–149, 2009.
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