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Abstract –Synthetic turbulence is a relevant tool to study complex astrophysical and space
plasma environments inaccessible by direct simulation. However, conventional models lack in-
termittent coherent structures, which are essential in realistic turbulence. We present a novel
method featuring coherent structures, conditional structure function scaling and fieldline curva-
ture statistics comparable to magnetohydrodynamic turbulence. Enhanced transport of charged
particles is investigated as well. This method presents significant progress towards physically
faithful synthetic turbulence.

Introduction. – Turbulence plays a key role in astro-
physical and space plasma environments [1–6]. However,
due to the high computational cost of direct approaches,
the effect of turbulence in such environments is difficult
to study. This obstacle is often mitigated by splitting the
magnetic field in a large-scale coherent component with
an analytic description and a small-scale turbulent com-
ponent, modelled as a Gaussian random field [e.g., 7, 8].
Such Gaussian random fields can be easily synthesized as
a superposition of plane waves with random phases and
a prescribed energy spectrum. The transport of energetic
charged particles through such fields has been extensively
studied [e.g., 9–13].

However, Gaussian random fields can only provide a
low-order approximation of magnetic turbulence, neglect-
ing any structure beyond two-point correlations captured
by the energy spectrum. They do not exhibit intermit-
tency as observed in first-principles turbulence [e.g., 14–
17]. Intermittency was studied in the context of hydro-
dynamic synthetic turbulence models already by Juneja
et al. [18], and its impact on charged particle transport
more recently by Pucci et al. [19] and Shukurov et al. [20],
finding faster diffusion in structured magnetic fields.

Up until today, there have been several models
for synthetic hydrodynamical and magnetohydrodynam-
ical (MHD) turbulence published, such as the p-model on
a discrete three-dimensional wavelet space by Malara et
al. [21], the minimal multiscale Lagrangian map by Ros-
ales and Meneveau [22], which was applied to MHD turbu-
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lence by Subedi et al. [23], a stochastic integral based on
the lognormal-model including asymmetric velocity incre-
ment statistics by Pereira et al. [24], and its application
to MHD turbulence by Durrive et al. [25]. All of these
models produce three-dimensional, divergence-free vector
fields with intermittent statistics, but without coherent
geometric features. Recently, Durrive et al. [26] presented
a model which embeds Archimedean spirals into a random
lognormal vector field. The continuous wavelet cascade by
Muzy [27] addresses broken stationarity of discrete wavelet
cascades. Related works were recently published by Li et
al. [28] and Robitaille et al. [29].

Standard tools of validating synthetic models are the
energy spectrum and statistics of field increments. Taken
without further decomposition, these quantities provide a
global picture of the vector field, hiding the intricate lo-
cal geometry of magnetic turbulence [see also 30, 31]. A
useful quantity in this regard is the fieldline curvature,
which has recently been shown by Kempski et al. [32] and
Lemoine [33] to play a key role in the transport of charged
particles in magnetic turbulence. Fieldline curvature has
previously been discussed in the context of turbulent dy-
namos [34], as well as hydrodynamic [35–37] and magne-
tohydrodynamic turbulence [38, 39].

In this letter we present progress towards a model for
synthetic magnetic turbulence featuring intermittent co-
herent structures. We implement the model as a fast
algorithm, which produces a random three-dimensional
divergence-free vector field, resembling a turbulent mag-
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netic field b(x) 1. The model is a combination of a contin-
uous cascade [27] and the minimal multiscale Lagrangian
map [22, 23]. Additionally, we propose a set of quantities
to assess the physical fidelity of synthetic turbulence mod-
els, consisting of the energy spectrum, conditional struc-
ture function scaling, the fieldline curvature distribution
and running diffusion coefficients of charged test parti-
cles. Based on these quantities, we compare the proposed
synthetic turbulence model with an incompressible resis-
tive MHD turbulence simulation and an intermittent syn-
thetic turbulence model without coherent structures. We
also consider the phase-randomized counterparts of the
three turbulence models to account for differences in the
energy spectra. We conclude by explaining the shape of
the MHD fieldline curvature distribution by means of a
weighted sum of Gaussian components.

Methods. – We start by extending the continu-
ous cascade in wavelet space [27] to three-dimensional
divergence-free vector fields. The continuous cascade at
scale l and position x is represented by a log-infinitely di-
visible process eωl(x), which gives the scale- and position-
dependent intensity of a vector field v(x). This field is
obtained by a vector-valued wavelet transform of lHeωl

over the inertial range scales lmin < l < l0 as

v(x) = ∇×A

∫ l0

lmin

lH−d−1
(
eωlRl ∗ lψlẑ

)
(x) dl. (1)

The slope of the energy spectrum is given by −2H − 1,
torodial wavelets ∇ ×

(
lψl(x)ẑ

)
with ψ(k) = −k2e−k2

and ψl(x) = ψ(x/l) ensure the zero-divergence condi-
tion ∇ · v = 0, a random rotation field Rl(x) with cor-
relation length l ensures proper isotropization of these
wavelets, and the numerically determined constant A
normalizes the field to ⟨v2⟩ = 1. Further, the curl
can be moved in front of the spatial convolution opera-
tor

(
f ∗∇×g

)
(x) = ∇×

∫
R3 f(y)g(x−y) dy and the scale

integral
∫
· · · dl, thus allowing us to express the field in

terms of a vector potential v = ∇× a.
The infinitely divisible process ωl(x) is defined on cone-

like subsets of the position-scale half-space Rd × R>0

equipped with the measure l−d−1 dx dl and has a cumulant
generating function ϕ(q). Thus, the moments of the inten-
sity process can be computed as ⟨eqωl⟩ = (l0/l)

cdϕ(q) ∀q ∈
N, where cd = 2−dπd/2/Γ(d/2 + 1) comes from the scale-
space cone volume. We consider a Gaussian distribution
with ϕ(q) = µ/2(p2 − p) with intermittency parameter µ,
in which case eωl corresponds to the Gaussian multiplica-
tive chaos employed in [24] and related works.

As shown below, the vector field given by Equation (1)
exhibits (isotropic) anomalous scaling, but lacks coherent
features, so we introduce advective structures by adapt-
ing the minimal multiscale Lagrangian map (MMLM) for

1The code is publicly available at https://

github.com/jerluebke/synth-mag-turb and archived at
doi:10.5281/zenodo.10515965. A pseudocode listing is provided as
supplementary material.

MHD [23] to our framework. In short, the MMLM pro-
cedure considers only the advective part of the magnetic
field evolution equation, i.e. (∂t + u · ∇)b = 0, which can
be solved at time τ with the Lagrangian ansatz b(xτ , τ) =
b(x0, 0) and the linearized solution xτ = x0 + τu(x0, 0).
Usually, two initially Gaussian random vector fields repre-
senting u(x) and b(x) are deformed on successively finer
scales li by applying the linearized Lagrangian solution
with τ ∝ li to the underlying regular grid, as described in
the references.

In our framework, we generate two independent random
fields according to Equation (1), which are represented as
vector potentials and represent the velocity field u(x) =
∇ × au(x) and the magnetic field b(x) = ∇ × ab(x).
When generating u(x) scale-by-scale, we make use of the
discretization of the scale integral in Equation (1) as a

sum
∫ l0
lmin

· · · dl ≈ ∑lmin

li=l0
· · ·∆l, which goes from large to

small scales. Specifically, we accumulate the deformations
of the grid x by the intermediate results uli = ∇ × auli
over all scales li. We then interpolate the random mag-
netic vector potential ab(x) at the final deformed grid.
Note that this interpolation is not done intertwined with
the scale-by-scale generation of ab(x), but only once at the
end of the procedure. Thus, we are solving the advection
equation for the magnetic vector potential

(∂t + u · ∇)ablmin
= 0, (2)

which is exact in two dimensions making this approach
especially suitable for strong guide field situations [40].
Herein lies the key difference with the previous MMLM
procedure, which applied the interpolation directly to the
field b(x) in a scale-by-scale fashion. It should further
be noted, that the curl of the intermediate results uli =
∇×auli is computed on a uniform grid, so while uli serves
as an indicator for the grid deformation, it is not affected
by it.

The deformation timescale τ = c li/max(∥uli∥) is nor-
malized to the maximal value of the current velocity mag-
nitude and governed by the constant c. This constant is
a free parameter, which must be chosen carefully, as it
should be large enough for coherent structures to emerge,
but not too large to avoid decorrelation. For higher val-
ues of c, energy accumulates on smaller scales, which
is corrected by reweighting ablmin

(x) after interpolation

with kδ/2, where δ is the deviation of the energy spectrum
scaling from the expected −5/3rd scaling. Additionally,
we mimic the effect of dissipation by applying a low-pass
filter exp(−k2/2k20) controlled by the artificial dissipation
wavenumber k0.
For comparison, we perform a direct numerical sim-

ulation of incompressible resistive MHD turbulence in
a three-dimensional periodic box with resolution N3 =
10243, no background field and equal diffusivity and re-
sistivity ν = η = 1.2 × 10−3 [41]. We obtain Taylor-
scale Reynolds numbers Rλ = 439 for the velocity field
and Rλ,m = 94 for the magnetic field. The velocity is
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Fig. 1: Slice plots of magnetic field strength b/brms and logarithm of fieldline curvature κ/κpeak for three models of magnetic
turbulence — Magnetohydrodynamics (MHD), Continuous Cascade (CC) and Lagrangian Mapping (LM). Energy spectra of
the models are plotted in the right-most panel and compared with a −5/3rd scaling. The dissipation wavenumber of the MHD
simulation kη is indicated on the abscissa. The fieldline curvature is defined as κ = ∥b̂ · ∇b̂∥, with b̂ = b/∥b∥, and normalized
by the most frequent value κpeak.

driven on Fourier modes 1 ≤ k ≤ 3 with the random
forcing proposed in [42], which exhibits very low mean
cross-helicity and low noise in the time evolution of tur-
bulence bulk quantities. For this purpose we employed
the pseudo-spectral code SpecDyn, which was developed
in the context of magnetic dynamo action and is tailored
for use on modern HPC systems [43, 44].

Results. – We generate sample fields of the contin-
uous cascade process (CC) given by Equation (1) and its
minimal multiscale Lagrangian mapping extension (LM)
corresponding to Equation (2) on a three-dimensional pe-
riodic grid with resolution N3 = 10243. The parameters
of both processes are H = 1/3, l0 = 0.5 and lmin ≈ 1.5 dx.
The intermittency parameter of the CC process is µ = 0.4,
and the additional parameters of the LM process are µ =
0.1, c = 0.2, δ = −0.45, and k0 = 256.

For visual inspection, slices of field strength and field-
line curvature are plotted in Figure 1, together with a plot
of the radially averaged energy spectra. MHD turbulence
is characterized by elongated and intricately intertwined
coherent structures, while the CC field consists of inco-
herent intermittent “clouds” of large field strength values.
The LM field exhibits thin and intense coherent struc-
tures, which are more spatially isolated. The CC spectrum
matches the expected −5/3rd scaling well, the LM spec-
trum exhibits a bottleneck effect at high wavenumbers,
and the MHD spectrum is affected by strong resistivity.
The bottleneck effect of the LM spectrum is due to the
simple advective nature of the Lagrangian mapping, which
causes accumulation of energy on small scales. This is
counteracted by reweighting the vector potential with kδ/2

and applying artificial dissipation, however, when balanc-
ing the relevant parameters c, δ and k0, a residual bottle-
neck effect remains. In order to take potential influences
of these different spectra into account, the analysis of cur-
vature and particle transport is also performed with the
respective phase-randomized fields.
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Fig. 2: Scaling exponents of conditional structure functions
of the magnetic field

〈(
δb⊥

)p| d̂ 〉
∝ dζp for the MHD, CC

and LM case. The averages of the increments δb⊥ are condi-
tional on the displacement vector d being aligned with the local
mean field blocal (∥), the normal fluctuation direction δb̂⊥,N ⊥
b̂local (δb̂), or with the binormal direction δb̂⊥,N × b̂local (⊥).
The scaling exponents are normalized as ζp/ζ3 and the raw
values of ζ3 are shown in the top panels.

We employ conditional structure functions [45] to study
intermittency with respect to the local structure of the
field. See also [46] for a discussion of local anisotropy
statistics. Given a displacement vector d at a point X, we
consider increments δb⊥ = b⊥(X+d)−b⊥(X) perpendic-
ular to the local mean field blocal =

(
b(X+d)+b(X)

)
/2.

Averages over these increments are taken conditionally on
the direction of d in an instantaneous local basis given
by b̂local, the normal direction of the fluctuations δb̂⊥,N

with δb⊥,N = δb⊥ −
(
δb⊥ · b̂local

)
b̂local and the binormal

direction b̂local × δb̂⊥,N . Based on this, the scaling expo-

nents of the conditional averages
〈
∥δb⊥∥p| d̂

〉
∝ dζp are

denoted as ζp,∥, ζp,δb̂ or ζp,⊥ depending on d being aligned
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Fig. 3: Compensated distributions of fieldline curva-
ture κ p(κ/κpeak) for the MHD, CC and LM case, as well as
their respective random-phase cases (dotted lines). The low-
curvature κ1 scaling, the MHD κ−2.5 scaling and the Gaus-
sian κ−4 scaling are indicated for comparison. The inset shows
the respective values of κpeak

with b̂local, δb̂⊥,N or b̂local × δb̂⊥,N .
Figure 2 shows the normalized scaling exponents ζp/ζ3

as well as the raw values of ζ3 for the three models and the
three directions. The further ζp/ζ3 deviates from the lin-
ear case, the more intermittent is the process, and smaller
values of ζ3 correspond to a rougher process. In the MHD
case, the field is the most smooth and non-intermittent
parallel to the local mean field direction b̂local, while it is
equally intermittent in the direction of fluctuations δb̂⊥,N

and the binormal direction b̂local × δb̂⊥,N , and being the
most rough in the binormal direction. In contrast to this,
the CC field shows no significant difference between the
three directions, which are all equally rough and intermit-
tent, which is expected from the lack of coherent struc-
tures. Lastly, the LM field exhibits again directional de-
pendency, with the parallel direction b̂local being the most
non-intermittent and the binormal direction b̂local×δb̂⊥,N

being the most intermittent. However, the field is in the
fluctuation direction δb̂⊥,N less intermittent compared to
the MHD case.

While the conditional structure functions provide an
extensive statistical picture of magnetic turbulence, ad-
ditional geometric insight can be gained from the fieldline
curvature

κ = ∥b̂ · ∇b̂∥ = ∥b̂× (b · ∇b)∥/∥b∥2. (3)

Figure 3 shows the distributions p(κ) for the three cases
and their random-phase counterparts. The MHD case,
in agreement with the literature [38, 39], behaves asymp-
totically as p(κ) ∼

κ→∞
κ−2.5. Note, as shown by [38],

the scaling becomes κ−2 in 2D turbulence, while simi-
lar values are expected for general collisionless plasmas.
The CC case agrees, apart from being slightly wider, with
the Gaussian random-phase fields, which scale distinctly
as p(κ) ∼

κ→∞
κ−4. Finally, the LM case appears as an
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Fig. 4: Modelling of the compensated MHD fieldline curva-
ture distribution κ p(κ) as a weighted sum of shifted Gaus-
sian fieldline curvature distributions. The Gaussian fields have
power-law spectra S(k) ∼ k−s, where the spectral slope s
determines the value of the most dominant curvature κpeak.
The weights (not shown) scale analogously to the compensated
high-curvature tail with κ−1.5.

intermediate case between the previous two cases; its dis-
tribution function p(κ) is slightly more narrow than the
MHD case and around the slightly right-shifted peak, p(κ)
faintly resembles the κ−2.5 scaling, before adjusting to the
Gaussian κ−4 scaling.
The extended flat tail for large κ in the MHD case is

caused by a significant amount of intermittent sharp field-
line bends scattered throughout the domain [see also 32,
33] and the low value of κpeak comes from coherent struc-
tures extended on scales comparable to the box size. In
contrast to this, fieldline bends in Gaussian fields are dis-
tributed in a self-similar way in the domain, thus leading
to a much stepper decay of the distribution.

Since the random-phase fields are Gaussian random
variables, we expect a universal normalized fieldline curva-
ture distribution p(κ/κpeak), which is independent of the
energy spectrum. This behaviour is observed in numerical
experiments and also indicated by [38]. However, κpeak
does depend on the energy spectrum, e.g. via the slope s
in case of a power-law spectrum ∼ k−s. Flatter spec-
tra implicate more energy on small scales, resulting in
more contributions from high curvatures and consequently
larger κpeak. This connection is illustrated in Figures 4,
where pMHD(κ) is modeled as a weighted sum of Gaussian
components, similar to the description of the turbulent ve-
locity increment distribution function as a Gaussian scale
mixture [47, 48].

In addition to the insight into the structure of the fields
gained by the previous steps, we also study the transport
of charged particles by numerically solving test particle
trajectories X(t) according to the Newton-Lorentz equa-
tion

Ẍ(t) = l0/rg Ẋ(t)× b
(
X(t)

)
(4)

with a Boris integrator [49] and trilinear interpolation [50].
The magnetic field is normalized to ⟨b2⟩ = 1 and the
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Fig. 5: (a) Diffusion coefficients for gyro radii rg/l0 =
0.001, · · · , 0.25 for the MHD, CC and LM case, as well as their
respective random-phase cases (dotted lines). High- and low-
energy predictions from quasilinear theory are given for com-
parison. The dissipative length scale lη and the gyro radius of
the example in the lower panel are indicated on the abscissa.
(b) Running diffusion coefficients of particles with gyro ra-
dius rg/l0 = 0.0039 as an example to illustrate the temporal
evolution of the transport.

particles are parameterized by their normalized gyro ra-
dius rg/l0 = γmcv0/qb0l0, where l0 denotes the outer
scale, b0 denotes the root mean square strength of the mag-
netic field, and v0, γ = 1/

√
1− v2/c2, m and q denotes

the particle’s velocity magnitude, Lorentz factor, mass and
charge.

We record mean squared displacements ⟨∆X2(t)⟩ =
⟨∥X(t) − X(0)∥2⟩ and diffusion coefficients D(rg) =
limt→∞ ⟨∆X2(t)⟩/t, once the trajectories have reached
diffusive behaviour. The diffusion coefficients obtained
from the three models are plotted in Figure 5a, and com-
pared with their random-phase counterparts and quasi-
linear predictions [10]. Figure 5b shows the exemplary
time evolution of ⟨∆X2(t)⟩ at rg/l0 = 0.0039, consisting
of an initial super-diffusive phase and short sub-diffusive
phase, before arriving at stable diffusive behaviour. Par-
ticles have the largest diffusion coefficients in MHD tur-
bulence on all scales, which stands in striking difference
to the random-phase MHD field, where we find the small-
est diffusion coefficients. This behaviour can be explained
by the strong deviation of the MHD energy spectrum at
high wavenumbers from the −5/3rd spectral slope, and
highlights impressively the effectiveness of coherent struc-
tures in regard to charged particle transport. The CC
case achieves only a very minor increase compared to the
random-phase case, and while the LM case performs bet-

ter, it is still outperformed by MHD.

Conclusion. – We have presented a novel algorithm
for synthetic magnetic turbulence based on a combina-
tion of the continuous cascade model, generalized to three-
dimensional divergence-free vector fields, and the minimal
multiscale Lagrangian map. The most important differ-
ences to previous works on the MMLM procedure are the
explicit cascade structure of the underlying noise, primar-
ily working with the vector potential, and interpolating
from deformed to uniform grid once at the end of the
procedure instead of interpolating at each scale. These
changes considerably strengthen the emergent advective
structures. We compare this algorithm with an incom-
pressible resistive MHD turbulence simulation and the
pure three-dimensional continuous cascade model, which
is intermittent but lacks coherent structures. This com-
parison is done by means of visual inspection, the energy
spectrum, conditional structure function scaling, the field-
line curvature distribution and running diffusion coeffi-
cients of charged test particles.

We observe that our algorithm produces turbulence ex-
hibiting pronounced coherent structures, albeit not as
densely and intricately organized as MHD coherent struc-
tures. This is accompanied by non-trivial conditional
structure function scaling, revealing local anisotropy,
i.e. relatively low roughness (ζLM3,∥ > ζLM3,⊥) and weak in-
termittency parallel to the local mean magnetic field,
and strong intermittency in the perpendicular direction in
agreement with MHD turbulence. However, when directly
compared to the MHD case, the field in the parallel direc-
tion is clearly rougher (ζLM3,∥ < ζMHD

3,∥ ), and the fluctuation
direction is not as intermittent as required. Further, the
fieldline curvature distribution resembles the MHD case at
small and intermediate curvatures, but exhibits Gaussian
scaling at large curvatures. Finally, while charged particle
transport is enhanced, it remains outpaced by the MHD
case, as expected due to the simpler geometry and smaller
length scales of the synthetic coherent structures.

In conclusion, our algorithm presents significant
progress towards simulating realistic turbulence. Remain-
ing issues are clearly identified and will guide further
improvements in designing synthetic turbulence models.
For instance, a feedback mechanism during the algorithm
would be highly relevant, which acts on the velocity field u
and takes the current state of the deformed grid and the
advected magnetic field b into account. An approach
based on the Elsässer formulation of the MHD equations
appears promising as well. Alternatively, one could aim to
design a synthetic scalar curvature field, instead of a full
vector field, and make use of recent results linking fieldline
curvature and charged particle transport [32, 33]. Such an
approach could build on the description of the non-trivial
MHD fieldline curvature distribution as a weighted sum of
Gaussian components, as presented in this letter.
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