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We study the nonunitary relation between quantum gravitational models defined using different
internal times. We show that, despite the nonunitarity, it is possible to provide a prescription for
making unambiguous, though restricted, physical predictions independent of specific clocks. To
illustrate this result, we employ a model of quantum gravitational waves in a quantum Friedmann
universe.

I. INTRODUCTION

Quantum gravity models suffer from the infamous time
problem [1–4] as the external and absolute time on which
nonrelativistic physics is based, is absent in Einstein’s
theory of gravity. Therefore, one has to rely on largely
arbitrary physical variables, known as internal time vari-
ables or internal clocks, to follow changes occurring in
gravitational systems. By virtue of the principle of gen-
eral relativity (time-reparametrization invariance), the
free choice of internal time variable has no physical conse-
quence in the classical theory. Upon passing to quantum
theory, however, different choices of internal time vari-
ables are known to produce unitarily inequivalent quan-
tum models [5–12]. The problem of finding the correct
interpretation of these nonequivalent models is commonly
referred to as the time problem.

In this article, we look for the most plausible interpre-
tation of such nonequivalent clocks. Our analysis is based
on the model of primordial gravitational waves propa-
gating across the Friedmann universe. It is important to
note that similar models were previously used for mak-
ing predictions for the primordial amplitude spectrum of
density perturbation, which are greatly constrained by
observations (see, e.g., Refs. [13–15]). Remarkably, to
the best of our knowledge, the time problem has never
been studied for such models, so it is important to clarify
the role and the interpretation of internal time variables
in their dynamics. We expect that the ensuing conclu-
sions should equally apply to all cosmological models.

The fact that the dynamics are unitarily inequivalent
in different clocks is widely known and well documented
with plenty of examples; see, e.g., Refs. [16–18]. In this
context, it is sometimes emphasized that the only mea-
surable quantities in quantum gravity are gauge-invariant
variables that do not depend on the employed clock
[19, 20]. They are constants of motion. However, they
are said to encode all the relational dynamics in spite
of being nondynamical themselves. From this point of
view, dynamical quantities are not fundamental and are
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ambiguously given by one-parameter families of gauge-
invariant quantities, with each family representing the
motion with respect to a specific internal time. The dif-
ferences are seen as natural rather than inconsistencies
that should be worried about. From our viewpoint, on
the other hand, the dynamical variables can serve as fun-
damental variables, and the differences in their dynamics
call for a careful interpretation, before allowing for phys-
ical predictions.

The cosmological system examined in this article ex-
hibits, as expected, dynamical discrepancies when based
on different clocks. The discrepancies concern both the
background and perturbation variables. This leads us
to ask a fundamental question: what are the dynamical
predictions of quantum cosmological models, that do not
depend on the employed time variable?

We address the above question within the reduced
phase space quantization. Namely, we solve the Hamil-
tonian constraint and choose the internal time variable
prior to quantization. An alternative approach would be
to first quantize and then solve the constraint quantum
mechanically while promoting one of the variables as in-
ternal time. Both approaches lead to the same time prob-
lem and, therefore, using the technically less involved
reduced phase approach is well justified (see, however,
Ref. [21] for recent developments in the alternative ap-
proach). Most significantly, within the reduced phase
space approach, there exists a theory of clock transforma-
tions, which is completely crucial for the purpose of this
work [22]. Thanks to these precisely defined transforma-
tions, we are able to explore all possible clocks and quan-
tize them with an assumption of fixed operator ordering.
Hence, any quantum ambiguities found arise from the
differences between clocks rather than the differences be-
tween quantization prescriptions.

The outline of this article is as follows. In Sec. II, we
make a brief introduction to the theory of clock trans-
formations in the reduced phase space of gravitational
models. We explain how this theory allows one to re-
move irrelevant quantization ambiguities when passing
to quantum theory based on different clocks and with
different basic dynamical variables. In Sec. III, we for-
mulate the reduced phase space description of the Fried-
mann universe with gravitational waves with respect to
a fluid time and obtain the general clock transformation.
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In Sec. IV, we quantize our model and establish a conve-
nient semiclassical approximation. Section V deals with
concrete clock transformations applied to our model and
makes comparisons between the resulting dynamics. We
summarize our findings, discuss their plausible interpre-
tation, and suggest some directions to move forward in
Sec. VI.

II. CLOCK TRANSFORMATIONS IN TOTALLY
CONSTRAINED SYSTEMS

One crucial characteristic feature of canonical relativ-
ity is the appearance of the Hamiltonian constraint; it
is a consequence of the fact that the dynamics of three
surfaces is generated by infinitesimal timelike diffeomor-
phisms, and the latter leave the full four-dimensional
spacetime invariant. It by no means makes the dy-
namics of three surfaces spurious or redundant. Indeed,
the Hamiltonian constraint dynamics is a feature of any
canonical relativistic theory of gravity, be it Einstein’s
or any modified gravity theory, though their dynamics
are different. The correct interpretation of canonical rel-
ativity assumes the lack of an absolute, external time in
which three surfaces evolve, and replaces it with internal
variables that serve as clocks in which the dynamics of
three surfaces takes place. None of the internal clocks can
play a privileged role as the principle of relativity states.
This picture is certainly self-consistent in the classical
theory. At the quantum level, no spacetime exists and,
as we will see later, the principle of relativity takes a
somewhat altered form. In order to study it, we need to
extend the canonical formalism by including clock trans-
formations that transform a canonical description from
one internal clock to another; only then can we move to
the quantum level where these new transformations be-
come a key to unlock the principle of quantum relativity.

Let us consider a system consisting of a set of N + 1
canonical variables {qα, pα}α=0,··· ,N and assume a Hamil-
tonian constraint taking the form

C(qα, p
α) ≈ 0,

where “≈” is the weak equality in the Dirac sense [23].
Suppose that one of the positions, say q0, varies mono-
tonically with the evolution generated by the constraint,
i.e., ∀ q0, {q0, C}pb ̸= 0. It is then possible to assign to
q0 the role of an internal clock in which the evolution of
the remaining variables occurs. This evolution is then
governed by a Hamiltonian that is not a constraint. At
this stage, it may seem that the time variable is fixed
once and for all, which would contradict the principle of
relativity; we discuss below in what sense this is not the
case.

The reduced Hamiltonian formalism is obtained from
the initial symplectic form Σ = dqα ∧ dpα (Einstein con-
vention assumed), evaluated on the constraining surface,

namely,

Σ
∣∣
C=0

=
(
dqI ∧ dpI + dq0 ∧ dp0

) ∣∣
C=0

= dqI ∧ dpI − dt ∧ dH,
(1)

where I = 1, · · · , N , and H = H
(
q0, qI , p

I
)

is the nonva-
nishing reduced Hamiltonian such that p0+H ≈ 0. Note
that both q0 (denoted by t from now on to emphasize
its role as a time variable) and p0 are removed from the
phase space and the remaining dynamical variables are
no longer constrained. Indeed, their dynamics reads

dqI
dt

=
∂H

∂pI
and

dpI

dt
= −∂H

∂qI
,

which is entirely solved once an arbitrary initial condition
(qini

I , pIini, q
ini
0 ) is provided.

In order to restore the principle of relativity, we need
to allow for any clock, denoted by t̃, which monotonically
varies with the evolution generated by the constraint
{t̃, C}pb ̸= 0. This new clock must be a function of the
old clock and the old canonical variables, t̃ = t̃(qI , p

I , t).
Thus, it must satisfy

dt̃

dt
=

∂t̃

∂t
+

∂t̃

∂qI

∂H

∂pI
− ∂t̃

∂pI
∂H

∂qI︸ ︷︷ ︸
{t̃,H}pb

̸= 0. (2)

The original symplectic form induced on the constraint
surface C = 0 must read in some new canonical variables:

Σ
∣∣
C=0

= dq̃I ∧ dp̃I − dt̃ ∧ dH̃,

so that the new reduced formalism is still canonical. This
implies that there must exist an invertible map between
the old and the new variables:

t̃ = t̃(qI , p
I , t), q̃I = q̃I(qJ , p

J , t), p̃I = p̃I(qJ , p
J , t), (3)

and the natural question to ask is whether these trans-
formations are canonical. In principle, and in all the
relevant cases, they most certainly are not. It can be
shown that clock transformations form a group of gener-
ally noncanonical transformations with canonical trans-
formations as its normal subgroup [16]; finding them is,
in general, a difficult task. However, for an integrable
dynamical system, the problem can be reduced to that
of solving a set of algebraic equations.

If a dynamical system is integrable, then we may find
a complete set of canonical constants of motion, denoted
by DI . Let them be functions of the old internal time
and old canonical variables, DI = DI(qJ , p

J , t). Note
that substituting back t → q0, they must commute with
the original constraint, {DI , C (qα, p

α)}pb = 0. They are
therefore genuine Dirac observables in the constrained
system. The new internal time t̃ = t̃(qI , p

I , t) and new
canonical variables can then be found according to the
algebraic relations

t̃ = t̃(qI , p
I , t), DI(qJ , p

J , t) = DI(q̃J , p̃
J , t̃), (4)
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where we formally substitute the canonical variables in
the expressions for Dirac observables DI , i.e., we assume
the same functional dependence of DI in both sets of
variables. The number of DI is equal to the number of
the new canonical variables q̃J and p̃J , and thus, leav-
ing aside singular cases, the above relations determine
q̃J and p̃J completely. The result is a new canonical
formalism based on a new internal clock. Let us note
that, by virtue of Eq. (4), if a solution to the dynamics
is known in one clock, i.e., t →

[
qI (DJ , t) , p

I (DJ , t)
]
,

then it is readily known for all other clocks and reads
t̃ →

[
q̃I = qI

(
DJ , t̃

)
, p̃I = pI

(
DJ , t̃

)]
. This makes the

choice of the new canonical variables q̃I and p̃I via Eq. (4)
very convenient: the formal description of the system is
the same in all clocks, only the physical meaning of the
clock and basic variables changes, which is emphasized
by the use of a tilde (˜) over the variable names.

The use of Dirac observables in the derivation of clock
transformations gives an invaluable advantage when
passing to quantum theory. Our goal is to make a com-
parison between quantum theories based on different in-
ternal clocks of a single physical system. Therefore, it
is of uttermost importance to make sure that the theo-
ries are different only insofar as their clocks differ, and
not due to other quantization ambiguities such as the
well-known factor ordering. This state of affairs can be
achieved by fixing a quantum representation of the Dirac
observables and then defining basic and compound ob-
servables as functions of the quantum Dirac observables,
both in the original

q̂I = qI(D̂J , t), p̂I = pI(D̂J , t),

and the new variableŝ̃qI = qI(D̂J , t̃), ̂̃pI = pI(D̂J , t̃).

These definitions imply that qI and pI are promoted to
the same operators as q̃I and p̃I , respectively. We invert
this reasoning and start by assuming the same opera-
tors for qI and q̃I as well as pI and p̃I . This implies
that the Dirac observables being the same functions in
both sets of basic variables are promoted to the same
operators irrespective of the choice of clock. Hence, the
quantum descriptions in different clocks are formally the
same; only the physical meaning of the basic operators
changes from one clock to another, which is emphasized
by the use of tilde. Obviously, a unique ordering pre-
scription has to be used in all the above formulas. In
principle, after this step, any physically interesting as-
pect of the quantum theories can be compared. In the
following section, we introduce the model on which we
discuss such comparisons.

III. CANONICAL COSMOLOGICAL MODEL

We consider a flat Friedmann-Lemaître-Robertson-
Walker (FLRW) universe filled with radiation and per-
turbed by gravitational waves; the line element of the

model reads (in units such that c = 1)

ds2 = −N2(t)dt2 + a2(t) [δij + hij(x, t)] dx
idxj ,

where hij represent the gravitational waves (tensor per-
turbations); it satisfies hijδ

ij = 0 and ∂jhij = 0. Finally,
we assume a toroidal spatial topology with each comov-
ing coordinate xi ∈ [0, 1). Setting N → a means one
considers the conformal time; we shall henceforth denote
it by η to agree with most of the cosmology literature.

A. Perturbative Hamiltonian

Let us now build the canonical description of these
gravitational waves in an FLRW universe. The relevant
canonical variables are the scale factor a and its conju-
gate momentum pa to describe the background, while the
tensor perturbations are represented by the gravitational
wave amplitude µ(λ) = ah(λ) and its conjugate momen-
tum π(λ), with λ ∈ {+,×} and hij =

∑
λ h

(λ)εij(λ) (see,
e.g., Refs. [24, 25] for details on the helicity expansion).

The matter component is assumed to be a radiation
fluid with energy density p0 conjugate to a timelike vari-
able q0. The gravitational constraint is expanded to sec-
ond order through

Htot = H(b) +
∑
k

H
(p)
k

(recall the spatial sections are compact), with the back-
ground Hamiltonian given by

H(b) = −1

2
p2a − p0. (5)

At this stage, one can identify the internal time q0
with the conformal time η as it reduces the zeroth-order
Hamiltonian into

Σ
∣∣
H(0)=0

= (da ∧ dpa + dq0 ∧ dp0)
∣∣
H(b)=0

= da ∧ dpa − dη ∧ d

(
1

2
p2a

)
,

(6)

leading to the physical zeroth-order Hamiltonian

H(0) =
1

2
p2a, (7)

while preserving the form of the perturbation Hamilto-
nian H

(p)
k . The latter reads, at second order

H
(p)
k → H

(2)
k = −

∑
λ=+,×

H
(2)
k,λ (8)

with

H
(2)
k,λ =

1

2

∣∣∣π(λ)
k

∣∣∣2 + 1

2

(
k2 − a′′

a

) ∣∣∣µ(λ)
k

∣∣∣2 , (9)

where a prime stands for a derivative with respect to the
conformal time. Since the tensor perturbations are real,
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one has µ
(λ)∗
k = µ

(λ)
−k. Moreover, since the background is

isotropic, one can restrict attention to upward directed
wave vectors k by merely canceling the factor 1

2 in H
(2)
k,λ.

This permits one to write the final second-order Hamil-
tonian as

H
(2)
k,λ = π

(λ)
k π

(λ)
−k +

(
k2 − a′′

a

)
µ
(λ)
k µ

(λ)
−k. (10)

Note that, for the radiation fluid we are concerned with
here, the Hamiltonian (7) yields as equations of motion
pa = a′ and p′a = 0, thus leading to a′′ = 0: the poten-
tial for producing gravitational waves is indeed classically
vanishing if the universe is radiation dominated.

Determining the solution to the dynamics of gravi-
tational waves is straightforward in the radiation case.
While it is possible to consider a general fluid with an
arbitrary barotropic index w (this case can be solved an-
alytically in terms of Bessel functions, see, e.g., [26]), such
a consideration is not relevant to the objectives of this
work. We expect that the clock effects obtained below are
not specific to any matter content but must be present
whenever quantum uncertainties in the background ge-
ometry are taken into account. In fact, it can be argued
that, since gravitational waves are affected by the choice
of the equation of state only insofar as the background
time development depends on it through Eq. (10), our re-
sults should qualitatively hold, if not quantitatively, for
all physically relevant choices of w.

B. Dirac observables

Now we shall find the constants of motion that form
canonical pairs. To this end, we need to solve the partial
differential equations

dD

dη
=

∂D

∂η
+ {D,H(0) +H(2)}pb = 0. (11)

At zeroth order, this is

∂D

∂η
+ pa

∂D

∂a
= 0,

with solutions

D1 = a− paη and D2 = pa. (12)

At first order, Eq. (11) reads

∂δD

∂η
+ pa

∂δD

∂a
= π

(λ)
k

∂δD

∂µ
(λ)
k

− k2µ
(λ)
k

∂δD

∂π
(λ)
k

,

where we considered the classical solution a′′ = 0. Since
we are considering only first-order perturbations, we
demand that δD be linear in the perturbation vari-
ables µ

(λ)
k and π

(λ)
k . The lhs of the above equation is

greatly simplified if δD depends only on the variable

y = η + a/pa, so we look for a solution of the form
δD(λ) = µ

(λ)
k α(y) + π

(λ)
k β(y), leading to

2
dα

dy
µ
(λ)
k + 2

dβ

dy
π
(λ)
k = απ

(λ)
k − k2βµ

(λ)
k .

Assuming independent variations of µ
(λ)
k and π

(λ)
k , one

gets 2dα/dy = −k2β and 2dβ/dy = α, and finally
4d2α/dy2 = −k2α, so that, setting

Ωk =
k

2

(
η +

a

pa

)
,

one gets two independent solutions for each polarization,
or, in other words, four first-order constants, reading

δD
(λ)
1,k =

√
k sinΩk µ

(λ)
k − cosΩk√

k
π
(λ)
k ,

δD
(λ)
2,k =

√
k cosΩk µ

(λ)
k +

sinΩk√
k

π
(λ)
k .

(13)

In Eq. (13), the normalization has been chosen so as
to ensure that all these Dirac observables indeed form
canonical pairs, namely

{D1, D2}pb = 1 and
{
δD

(λ)
1,k, δD

(λ̄)
2,k

}
pb

= δλλ̄.

From now on, we drop the index λ and consider just a
single polarization mode (µk, πk).

C. Clock transformations

Having set the full model, and before moving on to its
quantum counterpart, let us first consider a general clock
transformation

η → η̃ = η +∆(a, pa, η), (14)

where ∆ is a delay function that, in general, varies be-
tween the trajectories as well as along them. At the back-
ground level, implementing the recipe given by Eq. (3),
i.e., D1,2(a, pa, η) = D1,2(ã, p̃a, η̃), to the transforma-
tion (14) yields

a− paη = ã− p̃aη̃ and pa = p̃a,

leading to

ã = a+ pa∆ and pa = p̃a. (15)

In order that the clock transformation (14) actually de-
fines a new and physically acceptable clock, the delay
function ∆ must be subject to two conditions. First, the
new clock must run forward, that is

dη̃

dη
= 1 +

d∆

dη
= 1 +

∂∆

∂η
+ pa

∂∆

∂a
> 0, (16)
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where in the second equality we used the zeroth-order
Hamiltonian H(0) given by Eq. (7) and the associated
equations of motion.

The second condition that a clock transformation must
satisfy is that the ranges of the basic variables a and pa
must be preserved, thereby preventing the appearance
of nontrivial ranges that may induce new and potentially
unsolvable quantization issues. This second condition im-
plies

lim
pa→±∞

p̃a(a, pa, η) = ±∞, (17a)

ã(a, pa, η)
∣∣
a=0

= 0. (17b)

The first equality (17a) is trivially satisfied in the present
case because of (15). For ∆ = ∆(a, pa), to which we shall
restrict attention in what follows, the second equality
(17b) is identical to demanding that the delay function
at vanishing scale factor should also vanish, ∆(0, pa) = 0.
This condition also ensures that the slow-gauge clock is
transformed into another slow-gauge clock, that is, the
boundary is reached within a finite amount of time (see
Ref. [17]). Such a condition (17b), although irrelevant
in the classical theory, is crucial for the existence of
a bounce at the quantum level where the clock must
smoothly connect contracting and expanding trajecto-
ries. Were (17) violated, the clock transformations would
break the bouncing trajectories.

It turns out that the condition (16) is equivalent to the
existence of a one-to-one map between the reduced phase
spaces (a, pa) and (ã, p̃a), i.e., the determinant

∂ (ã, p̃a)

∂ (a, pa)
=

∣∣∣∣∣∣∣∣∣
∂ã

∂a

∂ã

∂pa

∂p̃a
∂a

∂p̃a
∂pa

∣∣∣∣∣∣∣∣∣ > 0, (18)

which is indeed Eq. (16) when ∂∆/∂η = 0.
At first order, one must solve

δD1(a, pa, µk, πk) = δD1(ã, p̃a, µ̃k, π̃k)

and

δD2(a, pa, µk, πk) = δD2(ã, p̃a, µ̃k, π̃k)

in order to determine the clock-transformed perturbation
variables. Explicitly, using (13), one gets

√
k sinΩk µk − cosΩk√

k
πk =

√
k sin Ω̃k µ̃k − cos Ω̃k√

k
π̃k,

√
k cosΩk µk +

sinΩk√
k

πk =
√
k cos Ω̃k µ̃k +

sin Ω̃k√
k

π̃k,

(19)
where Ω̃k = 1

2k(η̃+ã/p̃a) = Ωk+k∆. The above algebraic
equations (19) can easily be inverted to yield the new
canonical perturbation variables, namely µ̃k

π̃k

k

 =

 cos k∆ − sin k∆

sin k∆ cos k∆


 µk

πk

k

 . (20)

It is important to note that the above are classical re-
lations between canonical variables belonging to distinct
canonical frameworks based on distinct internal clocks.
Although they are canonically inequivalent, these two
frameworks generate the same physical dynamics of the
system, which is required by the principle of relativity.

In general, clock transformations involve modifying
temporal relationships between events belonging also to
different spacetimes. This aspect of clock transforma-
tions is not reflected in the lapse function Ñ of the new
clock, which expresses the temporal relationship between
points within a single spacetime. The clock transfor-
mations described in our framework however, do pre-
serve the foliation of cosmological spacetimes consisting
of homogeneous spatial leaves with small perturbations.
Given that the initial clock η corresponds to the con-
formal time, the new lapse function of the background
foliation implied by the new clock η̃ reads

Ñ =
a

1 + pa
∂∆
∂a

> 0,

where ∂∆/∂η = 0 was assumed. Note that considering a
delay function satisfying 1 + pa∂∆/∂a = a, one recovers
the cosmic time with Ñ = 1.

IV. QUANTIZATION

Having completed the classical treatment of our sys-
tem, we now move to the investigation of the possible
differences between the respective quantum dynamics ob-
tained from the quantization of these two different frame-
works.

A. Semiclassical background

Since, by definition, the scale factor is positive definite
(a > 0), one needs to quantize our previous system on
the half line. Although the position operator Q̂ = a is
self-adjoint on the half line, this is not the case for the
momentum operator P̂ = iℏ∂a, so we use instead the
symmetric dilation operator,

D̂ = {P̂ , Q̂} =
1

2

(
P̂ Q̂+ Q̂P̂

)
=

1

2
iℏ (a∂a + ∂aa) .

Classically the dilation variable is d = apa, so that the
Hamiltonian, expressed in terms of d, is H(0) = 1

2p
2
a =

1
2d

2/a2, and one can define its quantum counterpart as a
symmetric ordering of 1

2 Q̂
−2D̂2. Expanding on the basis

(Q̂, P̂ ), this yields

Ĥ(0) = −1

2

∂2

∂a2
+

ℏ2K
a2

,

where the value of K > 0 depends on the ordering; fixing
one ordering such that K > 3

4 ensures Ĥ(0) is self-adjoint
on the half line [27].
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We can find some approximate solutions to the
Schrödinger equation with a family of coherent states
(see, e.g., Refs. [28–30] for the specific case under study
here). We choose the coherent states to read

|a(η), pa(η)⟩ = eipa(η)Q̂/ℏe−i ln[a(η)]D̂/ℏ|ξ⟩, (21)

where |ξ⟩ is such that the expectation values of Q̂ and
P̂ in |a(η), pa(η)⟩ are, respectively, a(η) and pa(η), and
otherwise arbitrary (see, however, Ref. [31]).

The dynamics confined to the coherent states can be
deduced from the quantum action

Sq =

∫
{a′(η)pa(η)−Hsem [a(η), pa(η)]} dη, (22)

with the semiclassical Hamiltonian given by

Hsem = ⟨a, pa|Ĥ(0)|a, pa⟩, (23)

from which one derives the ordinary Hamilton equations,

a′ =
∂Hsem

∂pa
and p′a = −∂Hsem

∂a
. (24)

We find that the semiclassical background Hamiltonian
reads [30]

Hsem =
1

2

(
p2a +

ℏ2K
a2

)
, (25)

where the new constant K is positive (K > 0). Its specific
value is related with both K and the fiducial state |ξ⟩. We
find the solution to (24) to read a2(η) = a0+ a1η+ a2η

2,
with a0a2−a21/4 = ℏ2K > 0, so that the equation a(η) =
0 has no longer any real solution; the singularity is indeed
quantum mechanically avoided. Choosing the origin of
time such that a′ = 0 for η = 0 permits us to rewrite this
solution in full generality as

a(η) = ab
√

1 + (ωη)2, (26a)

pa(η) =
abω

2η√
1 + (ωη)2

, (26b)

where a4bω
2 = ℏ2K, which in turn implies Hsem =

1
2a

2
bω

2 = 1
2ℏ

√
Kω = ℏ2K/(2a2b); it is clear that the model

contains one and only one free parameter, namely K.
From now on, we assume that the background evolution
is given by Eqs. (26): this means the semiclassical poten-
tial

Vsem =
a′′

a
=

ℏ2K
a4

=

[
ω

1 + (ωη)
2

]2

, (27)

shown in Fig. 1, never vanishes except in the large scale
factor limit (a ≫ 1 =⇒ η ≫ ω−1). This is appropri-
ate as this is also the classical limit for which a′′ → 0.
A classical radiation-dominated universe begins or ends
with a singularity and produces no gravitational waves,
whereas our quantum radiation-dominated universe nat-
urally connects the contracting and expanding phases
through a bounce, which is subsequently responsible for
a nonvacuum spectrum of tensor perturbations, to which
we now turn.
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10-2

-100-50 0 50 100
1
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Figure 1. The semiclassical potential Vsem given by Eq. (27)
as a function of the conformal time η for various values of the
inverse bounce duration ω. The potential has to be compared
with the relevant value of k2 (k = 0.01), indicated as a straight
line. The corresponding scale factor time evolution is shown
in the inset.

B. Quantum perturbations

For a given mode k, the Hamiltonian H
(2)
k , given by

Eq. (10), is easily quantized using the usual prescriptions.
We assume that the background follows the semiclassical
approximation described above, so that the potential for
the perturbation is given by Vsem [Eq. (27)]. The basic
variables are replaced by a set of operators

µk 7→ µ̂k =

√
ℏ
2

[
âkµ

∗
k(η) + â†−kµk(η)

]
,

πk 7→ π̂k =

√
ℏ
2

[
âkµ

∗′
k (η) + â†−kµ

′
k(η)

]
,

(28)

where we assume the Wronskian normalization condi-
tion µ′

kµ
∗
k − µkµ

∗′
k = 2i for the complex mode func-

tions µk. The creation â†k and annihilation âk operators
satisfy the commutation relations

[
âk, â

†
p

]
= δk,p stem-

ming from the canonical ones between the field operators
[µ̂k, π̂−p] = iℏδk,p.

In the Heisenberg picture, the equations of motion take
the form

iℏ
dµ̂k

dη
=

[
H

(2)
k , µ̂k

]
and iℏ

dπ̂k

dη
=

[
H

(2)
k , π̂k

]
,

which imply that the mode function µk(η) satisfies

d2µk

dη2
+

(
k2 − ℏ2K

a4

)
µk = 0, (29)

where a(η) is given by the semiclassical solution (26a).
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Figure 2. The new time η̃ as a function of the original one η
for three different shapes of delay functions ∆1, ∆2, and ∆3

defined through Eq. (31) along the original fixed bouncing
trajectory (26). The parameters are chosen as A = B = D =
1, C = 4, and E = 2 for ∆1, while we set A = 2, B = 0.2,
C = 0.5, D = 3, and E = 4 for ∆2, and finally the set A = −1,
B = C = 1, D = 0.5, and E = 3 defines ∆3.

Using (27), this transforms into

d2µk

dη2
+

k2 −

[
ω

1 + (ωη)
2

]2
µk = 0, (30)

which can be integrated numerically if initial condi-
tions are provided: we assume that far in the contract-
ing branch, with ηini < 0 and Vsem(ηini) ≪ k2, there
was no gravitational wave, so the field was in a vac-
uum state. This implies the mode function satisfies
µk(ηini) = e−ikηini/

√
2k and µ′

k(ηini) = −i
√
k/2 e−ikηini .

V. QUANTUM “CLOCKS”

In what follows, we study the effect of clocks on the
quantum and semiclassical dynamics of selected dynam-
ical variables. First, we obtain the dynamical trajecto-
ries in the reduced phase space (a, p, µk, πk) that is as-
sociated with the initial clock η; note that, from that
point on, since there is no risk of confusion, we shall re-
place what was previously denoted as pa simply by p.
Next, we choose a set of delay functions ∆(a, p) to define
new clocks η̃ and obtain the new reduced phase spaces
(ã, p̃, µ̃k, π̃k) associated with the new clocks. Then, we
make use of Eqs. (14), (15), and (20) to transport the
dynamical trajectories to these new phase spaces. We
assume that the latter admit a unique physical interpre-

0 1 2 3 4

-1.0

-0.5

0.0

0.5

1.0

Figure 3. Semiclassical trajectories obtained in different
clocks and mapped into the initial reduced phase space (ã, p̃)
to compare with the original trajectory represented by the
full black line.

tation, and so the trajectories can be meaningfully com-
pared in these new variables. In other words, there are
many clocks denoted by η and only one denoted by η̃.
Note that for ∆ = 0 the clocks η and η̃ coincide. For this
case, we assume that η and (a, p, µk, πk) are the variables
of Sec. II, which sets the physical meaning of the phase
space (ã, p̃, µ̃k, π̃k) and the clock η̃.

A. Clock choices and background

In order to illustrate the clock choice issue, we consider
a family of delay functions, namely

∆(a, p) = A
aB

(a+ C)D
sin(Ep)

p
, (31)

where A, B, C, D, and E are arbitrary coefficients, whose
values are limited to ensure that the conditions presented
in Sec. III C hold. In the Appendix, we consider another
set of acceptable delay functions to show that our con-
clusions are not restricted to the choice (31).

A few clocks corresponding to the delay function
∆(a, p) are represented along a semiclassical dynamical
trajectory for different choices of the free parameters in
Fig. 2. It shows that, contrary to the classical case where
the condition (16) holds, the new clocks, in general, are
no longer monotonic due to quantum corrections.

Applying the clock transformation of Fig. 2 to the
background solution (26) yields Fig. 3 once mapped into
the reduced phase space, with the original trajectory su-
perimposed for comparison. All the trajectories originate
in the same classical regime at large ã and negative p̃, i.e.,
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Figure 4. Evolution of the primordial gravity wave Re(µ̃) for
two different wave numbers, k = 0.1 (top) and k = 0.5 (bot-
tom), and for different clocks based on the first class of delay
function, ∆1, ∆2, and ∆3, represented by the dotted blue
line, dashed red line, and dash-dotted green line, respectively.
The original trajectory is represented by the full black line. In
Fig. A3, the same plot for the second class of delay function
is depicted to show how the choice of delay function affects
the time of convergence.

at a time at which the universe is large and contracting.
Close to the ã = 0 boundary, where the quantum behav-
ior dominates, they all somehow bounce in the variables
ã and p̃, diverging from one another and providing dif-
ferent accounts of the bounce. Finally, they reach the re-
gion of large ã and positive p̃ where they converge again
to the unique classical behavior representing a large and
expanding universe.

-4 -2 0 2 4

0

10

20

30

Figure 5. Evolution of the primordial gravity wave Re(µ̃k)
plotted for four different wave number k values. For each
fixed k we changed the clock considering the family of delay
functions ∆, whose value is the same as in Fig. 3.

Possible differences between the trajectories include
the values of ã and p̃ at which the bounce occurs, the
level of asymmetry between contracting and expanding
branches, or even the number of bounces. These semi-
classical trajectories illustrate the nonunitary relation
between different clocks. Nevertheless, they all origi-
nate from a unique contracting classical universe and
end toward a similarly unique expanding classical uni-
verse. Therefore, the semiclassical trajectories in differ-
ent clocks yield the same outcome for large and classical
universes. Notice that the trajectories’ convergence be-
fore and after the bounce can be delayed as much as one
wants by making use of appropriate delay functions, such
as that discussed in the Appendix, i.e., Eq. (A.1), whose
effects on both background and perturbation trajectories
can be seen in the Appendix.

Let us now move to the perturbation of these homoge-
neous solutions and compare the different evolution that
can result from using different clocks.

B. Clocks and perturbations

In Fig. 4, we plot the dynamics of the real part of
the perturbation variable µ̃k against the delayed time η̃
for the three different functions of Eq. (31) displayed in
Fig. 2 and for two values of the comoving wave num-
ber k. The figure illustrates our general finding that the
absolute clock effect is more or less equally strong and
lasting roughly equally long for all wavelength pertur-
bations. This is shown more convincingly in Fig. 5, in
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which the evolution of four different modes is shown as
a close-up in the quantum-dominated bouncing region.
This means that the larger the wavelength of the per-
turbation, the larger the relative clock effect, and the
longer it lasts in units of its oscillation period. Thus, the
clock effect is more important for phenomena occurring
at small timescales and over short distances. Moreover,
the evolving amplitude µ̃k, in general, is not a function
of the clock η̃ due to quantum effects that disrupt the
monotonicity relation between quantized clocks.

Given that both the background and the perturbation
modes evolve in such a way as to reach a unique con-
figuration, the primordial gravity-wave amplitude µ̃k/ã,
which is the quantity one expects to measure in prac-
tice [25], also converges to a unique solution, making the
model predictive.

All the plots above illustrate the nonunitary relation
between different clocks, as well as the spoiling of the
clock monotonicity at the quantum level, which is il-
lustrated in Fig. 2. Nevertheless, similar to the semi-
classical background trajectories, the perturbation vari-
able Re(µ̃) visibly converges to a unique classical solu-
tion from a well-defined asymptotic past initial condi-
tion to the asymptotic future. Therefore, one can safely
extend the background conclusion to the perturbations:
the time development of the mode Re(µ̃) using different
clocks yields the same predictions in the large and classi-
cal universe regime. The delay of the convergence due to
different choices of delay functions can be seen in Fig. 5.

As a final illustration of the perturbation behav-
ior through the quantum bounce, we find it useful
to inspect the phase space trajectories in the plane
[Re(µ̃k), Im(µ̃k)] as is displayed in Fig. 6. The initial
vacuum state is represented by a circle that is squeezed
into an ellipse during the contraction and bounce, squeez-
ing that represents the amplification of the amplitude of
the perturbation. From the point of view of the time
problem, the initial circle and the final ellipse, respec-
tively, represent the asymptotic past and future of the
amplitude: from the point of view of physical prediction,
the indeterminacy occurring near the bounce, as may de-
velop through various different times disappears in the
asymptotic regimes, so that the existence of a classical
approximation in our trajectory approach ensures the
standard procedure of treating the perturbations leads
to physically meaningfull predictions.

VI. DISCUSSION AND PERSPECTIVES

In this work, we explored the time problem in the
framework of quantum fields on quantum spacetimes.
We considered the specific example of primordial gravi-
tational waves propagating through a bouncing quantum
Friedmann universe. We pointed to several features that
we believe to be universal for such models.

First, we showed that the dynamical variables, such
as the scale factor or the amplitude of a gravitational
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Figure 6. Evolution of the real versus imaginary part of µ̃k

for a wave number k = 0.5 and a bounce parameter ω = 1.
The initial circle represents the initial vacuum state of the
perturbation, while the ellipse shows the final squeezed state,
which happens, in the case at hand, to have a slight phase shift
with respect to the real axis. The transition between these
two asymptotic cases differs for the different delay functions
∆1, ∆2, and ∆3, whose trajectories are represented by the
dotted blue line, dashed red line, and dash-dotted green line,
respectively, the original trajectory being represented by the
full black line.

wave, obtained from different internal clocks, evolve dif-
ferently when compared in a clock-independent manner.
Second, these expectation values (background evolution)
and mode functions of operators (perturbations), irre-
spective of the clock chosen, converge to a unique evolu-
tion for large classically behaving universes. This is the
phase space domain in which unambiguous predictions
can be made. Third, for different clocks, the dynam-
ics converges to the classical behavior at different times.
In principle, there is no restriction on how far from the
bounce the system must be in order to display the clas-
sical behavior. In practice, however, all the clocks con-
sidered were found to converge very quickly, allowing for
unambiguous predictions shortly after the bounce.

Based on the above findings, we postulate that the
physical predictions are only those predictions provided
by any clock, which are not altered upon the clock’s
transformation. The fact that for large universes the
semiclassical background dynamics and the quantum per-
turbation dynamics do not depend on the clock implies
the following: Despite the fact that the dynamical vari-
ables are not Dirac observables, they provide physical pre-
dictions for large universes, which is precisely the regime
in which we observe the actual Universe.

Note, however, that the word “large” is never precisely
defined. One could expect that, at least in principle,
some clocks require times larger than the present age of
the Universe to converge to the classical behavior. This,
however, poses no problem to our interpretation, as we
simply exclude such clocks and retain only those that
behave classically in the domain for which we make pre-
dictions. This may seem arbitrary and unjustified. We
must, however, remember that, as a matter of fact, any
semiclassical description of ordinary quantum mechan-
ics is necessarily restricted to a limited set of observ-
ables, usually the simple ones, while more compound ob-
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servables often display classically incompatible behavior
(e.g., ⟨x⟩2 ̸= ⟨x2⟩). For similar reasons, we are allowed
to choose only those clocks in which the dynamics of the
relevant observables is classically consistent.

On the one hand, we proved that the evolution of the
expectation values of some observables constitute physi-
cal predictions of quantum cosmological models. On the
other hand, the expectation values are not all that is
measured in the large Universe. In other words, not all
objects are classical in the large Universe. For instance,
the position of an electron is a dynamical variable that
can be measured in a laboratory. So, could the outcomes
of such a measurement also be unambiguously predicted
by a quantum cosmological model? The answer is affir-
mative. Note that the mode function µk, whose dynam-
ics becomes unambiguous in a large universe, determines
the evolution of the operator µ̂k via Eq. (28). This im-
plies that the Heisenberg equation of motion encoded in
Eq. (30) becomes unambiguous too. Obviously, the evo-
lution of perturbation in the Schrödinger picture must
consequently become unique as well. Hence, ordinary
quantum mechanics of perturbation modes is recovered
in a large universe. These conclusions must also apply to
electrons and, in general, to all nongravitational degrees
of freedom.

To better understand the origin of the emergence of or-
dinary quantum mechanics, notice that any clock trans-
formation (14) involves, by definition, only background
variables. If the latter behave classically, the clock
transformation is completely classical and amounts to a
mere (in general, nonlinear) change of units of time. In
Ref. [11], it was demonstrated that the relational dynam-
ics of a quantum variable in a classical clock is unambigu-
ous in the sense that switching to another classical clock
does not induce any clock effect.

Let us put to test our approach and our result by ad-
dressing a set of questions that were proposed in Ref. [2]
for assessing the completeness of any potential solution
to the time problem.

(1) How should the notion of time be re-introduced into
the quantum theory of gravity?

Our approach relies on evolving internal variables
called clocks. We express the dynamics of the dy-
namical variables in terms of these clocks.

(2) In particular, should attempts to identify time be
made at the classical level, i.e., before quantization,
or should the theory be quantized first?

In our approach, we first reduce the Hamiltonian
formalism based on a selected clock, then we quan-
tize the reduced formalism as if the clock was an ex-
ternal and absolute time. However, it is neither ex-
ternal nor absolute. The instantaneous value of the
clock determines the instantaneous physical state
of the system. Switching to another clock entails
a change in the physical interpretation of the clock
and the entire state of the system.

(3) Can “time” still be regarded as a fundamental con-
cept in a quantum theory of gravity, or is its status
purely phenomenological? [...]

In our approach, there is no fundamental time.
The fundamental concept is “change” or “evolu-
tion,” meaning we merely need to assume that the
3 + 1 split of the underlying geometry imposes an
ordered set of hypersurfaces. As we showed in this
paper, extracting dynamical predictions from such
a formalism is a subtle issue. The clocks serve as
tools for deriving the predictions. Once a class of
clocks converges to a unique dynamics, any one of
them can be treated analogously and deserve the
qualification of time, and any quantum dynamical
variable becomes described in them by a unique
Schrödinger equation. This is how ordinary quan-
tum mechanics emerges.

(4) If time is only an approximate concept, how reliable
is the rest of the quantum-mechanical formalism in
those regimes where the normal notion of time is
not applicable? In particular, how closely tied to
the concept of time is the idea of probability? [...]

The quantum-mechanical description in the
regime where different clocks exhibit different dy-
namics is an essential part of our theory. It de-
scribes the deterministic evolution of the system.
However, this regime does not seem to allow for
any meaningful dynamical interpretation in terms
of relational change. Although we have not explic-
itly addressed this question in the present work, our
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Figure A1. Changes in the time variable η for the second
family of delay functions ∆′

1, ∆′
2, and ∆′

3 given by Eq. (A.1)
along a fixed bouncing trajectory, with parameters chosen
such that ∆1 = aepa , ∆2 = ae3pa/2, and ∆3 = ae2pa .
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Figure A2. Semiclassical trajectories mapped into the initial
reduced phase space (a, p) for the second class of delay func-
tion (A.1), with the same parameters as in Fig. A1.

approach permits one to do it.

To conclude, one can mention that the chosen clock de-
grees of freedom, although perfectly acceptable as such in
the classical framework of general relativity, are arguably
not in the quantum regime. They do not qualify as actual
clocks since, along the quantum trajectory, they yield a
nonmonotonic change of time variable; in other words,
they provide different hypersurface orderings. This might
be cured by adding to the classical clock transformation
(14) a quantum term that needs be identified. One may
also argue that we are insisting upon using a trajectory to
define the background evolution, while some might insist
upon the fact that there is no such thing as a trajectory
in quantum mechanics.

In any case, it is interesting to note that, whichever
of the possibilities above happens to be valid, the crit-
ical point that is made here is that, even though the
quantum-dominated phase is indeed ill-defined both at
the background and perturbation levels from the point
of view of time development, the asymptotic regimes end
up being unique. As a result, setting well-motivated ini-
tial conditions in the classical past, one gets unambiguous
physical predictions for the classical future in which we
happen to perform the ensuing measurements. In other
words, we have shown that the lack of predictability in
the quantum regime does not exclude the fact that the
theory permits meaningful physical predictions that can
be tested with observations.

Finally, it is worth noting that there are alternative ap-
proaches that do not involve promoting internal variables
to clock status, effectively avoiding the time problem. For
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Figure A3. Evolution of the real part of the primordial grav-
ity wave Re(µ̃) for two different wave numbers, k = 0.1 and
k = 0.5, and for different clocks for the second class of delay
functions, ∆′

1, ∆′
2, and ∆′

3, respectively, represented by the
dotted blue line, dashed red line, and dash-dotted green line.
The original trajectory is represented by the full black line.

instance, in Ref. [32], the Wentzel-Kramers-Brillouin ap-
proximation to the background wave function is made,
and the resultant trajectory provides a well-defined cos-
mological background on which perturbations propagate,
without ever introducing the physical inner product at
the background level. An approach similar in spirit can
be found in Ref. [33], which is based on coarse graining
of the background wave function, thereby removing short
timescale oscillations in the scale factor. The end result
is similar to the previous case and allows for an unam-
biguous effective trajectory in the background variables
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along which the evolution of the perturbations occur. Al-
though the time problem discussed in the present work is
absent in these approaches, the cost is that of a limited
physical interpretation of the background wave function,
for which no notion of unitary dynamics is ever intro-
duced. Consequently, the quantum uncertainties in the
physical background variables are not well defined and
thus their influence on the dynamics of the perturba-
tions is assumed negligible. Choosing an internal time
entails a prescription for calculating such uncertainties
and permits one to incorporate them in the dynamics of
perturbations. The resulting clock dependence of such a
prescription leads to the questions addressed here.

A unitary approach to quantum cosmology that aims
at a gauge-independent formulation was described in
Ref. [34]. This interesting proposal offers important in-
sights into the relation between the reduced phase space
quantization and the Dirac-Wheeler-DeWitt superspace
formalism. The author shows that at least for some
choices of internal clocks, both approaches are equivalent
in a very well-defined sense. Specifically, the author dis-
cusses in detail the relation between physical and super-
space propagators and inner products. However, the step
of constructing real observables in a gauge-independent
way is left out. It is not clear whether such a program
can actually be achieved, which is the reason for the time
problem studied here; a simple and general argument in
favor of this position was given in Ref. [35]. Finally, an-
other alternative approach would involve arguing in favor
of a preferred clock. We are not aware of any widely rec-
ognized proposal of this type.
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Appendix

In this appendix, we consider the alternative choice of
a family of two-parameter delay functions, namely

∆′(a, p) = aAeBp, (A.1)

which define a new set of clocks plotted in Fig. A1 for
a few relevant values of the parameters A and B. Fig-

ure A2 depicts the trajectories with different clocks ob-
tained from ∆′(a, p) for which the convergence happens
much later than in the case discussed in the core of this
paper, as can be seen by comparing with Fig. 3. The
extent to which this delay can be increased, and how the
matter content of the Universe can affect this limit, is not
dealt with in the present article and will be the subject
of a future work.

One can note that the delay functions (A1) tend to
diverge in time from one another, all of them growing
exponentially with the momentum; the phase space tra-
jectories, however, do converge to the undelayed one, but
at scales that are increasingly larger with the amplitude
of the exponential behavior of the relevant delay function.

Moving to the perturbations, we performed the same
analysis as in the core of this paper and show the time
development of the real part of the mode function for
different values of the wave number in Fig. A3, with a
special emphasis at the near-bounce regime in Fig. 4.
As for the other family of delay functions, we find that
whenever the classical approximation for the background
holds, one recovers a unique prediction.
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Figure 4. Evolution of the primordial gravitational amplitude
for different clocks obtained from the second class of delay
function (A.1). Convergence happens at a later time with
respect to the first class of delay functions (31), as can be
seen by comparison with Fig. 5.
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