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Abstract

The restricted mean survival time (RMST) model has been garnering attention as a way to pro-
vide a clinically intuitive measure: the mean survival time. RMST models, which use methods
based on pseudo time-to-event values and inverse probability censoring weighting, can adjust
covariates. However, no approach has yet been introduced that considers random effects for clus-
ters. In this paper, we propose a new random-effect RMST. We present two methods of analysis
that consider variable effects by i) using a generalized mixed model with pseudo-values and ii)
integrating the estimated results from the inverse probability censoring weighting estimating
equations for each cluster. We evaluate our proposed methods through computer simulations.
In addition, we analyze the effect of a mother’s age at birth on under-five deaths in India using
states as clusters.

Keywords: restricted mean survival time, random effect, cluster effect, pseudo-value, inverse
probability censoring weight.

1 Introduction

A restricted mean survival time (RMST) is statistically robust and independent under the
assumption of the proportional hazards property, and it gives clinically interpretable results
in terms of mean survival time [1]. When comparing mean survival times between groups,
covariates must be adjusted to account for bias in the baseline information. To analyze time-
to-event data, how to handle right-censored data should be considered. Unlike Cox regression,
RMST cannot handle a partial likelihood over uncensored data. Andersen et al. [2] proposed a
covariate adjustment method that imputes the pseudo-value (PV) derived from the leave-one-
out method for censored data and uses the generalized linear model to analyze completed data.
A feature of the PV method is that it can also use censored data. Tian et al. [3] proposed
a method using inverse probability censoring weighting (IPCW) to account for censored data.
There is no approach that considers random effects for clusters.
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Considering a random effect in the model allows for different effect sizes among the clusters,
while enabling a common overall effect size. In practice, treatment effects may differ across
clusters, for example, by country or populations classified by certain biomarker values. Analysis
can be performed to account for heterogeneity across clusters. By estimating the parameters
of the distribution that the variant effect follows, we can also check how much heterogeneity
there may be. In addition, the amount of effect within each cluster can be accurately estimated
according to the degree of heterogeneity using reduced empirical Bayesian estimation.

In this paper, we propose the random-effect RMST model. We present two methods of
analysis that take into account variable effects by i) using a generalized mixed model with PVs
and ii) integrating the estimated results from the IPCW estimating equations for each cluster.
We evaluate our proposed methods through computer simulations. In addition, using states as
clusters, we analyze the effect of a mother’s age at birth on under-five deaths in India.

This paper is organized as follows. Section 2 introduces two already proposed RMST models,
proposes the new random-effect RMST model, and introduces the method used to estimate the
model parameter and variance parameter of the random effect. Section 3 describes the setting
and results of the computer simulations. Section 4 presents the results of an analysis of data
from the eight Empowered Action Group (EAG) states in India. Finally, Section 5 discusses
the results.

2 Method

We assume that the survival time is T , the right-censoring variable is C, and the p covariates
are X = (X1, X2, . . . , Xp)

T . There are I clusters, the number of subjects in the i-th cluster is

Ni, and the total sample size is N(=
∑I

i=1Ni). The restricted time for calculating the RMST
is a time point τ of clinical interest. The observable data of the nij-th subject in cluster i are
Yij = min(Tij , Cij , τ), ∆ij = I(Tij ≤ min(Cij , τ)), and Xij .

We propose two types of RMST model with random effects. The first one is based on a
method using PVs proposed by Andersen et al. [4], and we call it the PV method. The other
is based on the IPCW estimating equation proposed by Tian et al [3] and two-stage estimation
method, and we call this method the IPCW method. We present the first method using PVs.
For censored data, PVs are generated by the leave-one-out method. The RMST estimator for all
subjects is m̂(τ) =

∫ τ
0 Ŝ(t)dt, where Ŝ(t) is the Kaplan-Meier estimator. The RMST estimator

excluding subject nij is m̂−ij(τ), and the PV of subject nij is Nm̂(τ) − (N − 1)m̂−ij(τ). In
this paper, we compute the PVs within each cluster to account for the heterogeneity among
clusters. The RMST estimator in the i-th cluster is

m̂(i)(τ) =

∫ τ

0
Ŝ(i)(t)dt, (1)

and the PVs are calculated from

Nim̂
(i)(τ)− (Ni − 1)m̂

(i)
−ij(τ). (2)

Because all censored data are complemented by PVs, the RMST can be calculated by a model
analysis without considering the censoring. We consider an analysis that accounts for a random
effect using a generalized linear mixed model with the link function as g(µij) = βTxij + vi,
where µij = E[Yij |vi] and vi is a random effect distributed as a normal distribution of N (0, σ2

v).
The parameters of β and σ2

v can be estimated by a generalized estimating equation, such as
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Laplace approximation, adaptive Gaussian-Hermite quadrature, or penalized quasi-likelihood.
Note that we introduce the generalized estimating equation method by referring to Jiang and
Nguyen [5]. We denote the observed time-to-event values and the generated PVs as Y without
distinction. We assume the expectation of Y is

E[Yij ] =

∫
h(xT

ijβ + σvui)f(ui)dui ≡ Mi(θ), (3)

where h(·) = g−1(·), ui is a standard normal variable, f(ui) is a standard normal density
function, and θ = (βT , σv)

T . The first derivatives are

∂Mi(θ)

∂θ
=

(
∂Mi(θ)

∂β
∂Mi(θ)
∂σv

)
=

(
xij

∫
h′(xT

ijβ + σvui)f(ui)dui∫
h′(xT

ijβ + σvui)uif(ui)dui

)
. (4)

We assume V [Yij ] ≡ V0. The generalized estimating equation is

I∑
i=1

∂M i(θ)
T

∂θ
V̂ −1
i (yi −M i(θ)) = 0, (5)

where V i is a working covariance matrix for the i-th cluster. The initial value of V i is an
Ni×Ni identity matrix V i. Parameters θ are estimated from Equation (4). Next, we calculate
V i using the estimated values again and iterate through Equations (4) and (5). If there is
no difference between the current estimation values and the previous estimation values, the
iterations are stopped, and the last estimation values are output as the generalized estimating
equation estimators.
From here, we introduce the shrinkage estimator and adjusted confidence interval for each
cluster using the empirical Bayes estimator when Y is distributed as a normal distribution [6].
Specifically, we are interested in the difference between groups. We assume the indicator variable
for the group is x1ij and the parameter of the group is β1. The empirical Bayes estimator of β1i
for the i-th cluster is

β̂EB
1i = β̂1i +

σ̂2
i

σ̂2
1i + σ̂2

v

(β̂1 − β̂1i), (6)

(7)

where σ̂2 is the square of the standard error of β̂1, x1i =
1
Ni

∑Ni
j=1 x1ij , and y1i =

1
Ni

∑Ni
j=1 y1ij .

The adjusted 100(1 − α)% confidence interval is
[
β̂EB
1i − zα/2

√
σ̂2σ̂2

v
σ̂2+σ̂2

v
, β̂EB

1i + zα/2

√
σ̂2σ̂2

v
σ̂2+σ̂2

v

]
. If

Y is distributed as a log-normal distribution, then we refer the reader to Berg and Chandra [7].
For the log-normal distribution, the formula for the error in the confidence interval is very
complicated.

The second proposed method is based on the IPCW estimating equation by Tian et al. [3].
Because the IPCW estimating equation is unable to account for a random effect, we consider a
two-stage estimation, first estimating the coefficient parameters by cluster and then accounting
for heterogeneity across clusters in the estimated results. For the i-th cluster, the parameters
are estimated by the following IPCW estimating equation:

1

Ni

Ni∑
j=1

∆̂ij

KM(yij)
xij(yij − h(xT

ijβ)) = 0, (8)
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where ∆̂ij = I(Yij ≤ Cij) and KM(yij) is the Kaplan-Meier estimator of the censoring time

Cij . We assume that the estimator of the parameters in the i-th cluster is β̂i. We assume that
the variable of our particular interest is the 1-th parameter of the group, and the standard error
of β̂1i is σ̂1i. There is a random effect v ∼ N (0, σ2

v). The estimator of σ2
v is

σ̂2
v =

Q− (I − 1)

c
, (9)

where Q =
∑I

i=1 σ̂
−2
1i (β̂1i − β̂1)

2,

β̂1 =

∑I
i=1 σ̂

−2
1i β̂1i∑I

i=1 σ̂
−2
1i

, and c =
I∑

i=1

σ̂−2
1i −

∑I
i=1 σ̂

−4
1i∑I

i=1 σ̂
−2
1i

. (10)

Here, β̂1 is the pooled mean estimator without a random effect. If Q < I − 1, then σ̂2
v = 0. The

pooled mean estimator β̂1 with a random effect is
∑I

i=1(σ̂
2
1i+ σ̂2

v)
−1β̂1i/

∑I
i=1(σ̂

2
1i+ σ̂2

v)
−1. Each

shrinkage estimator is β̃EB
1i = β̂1i +

σ̂2
i

σ̂2
1i+σ̂2

v
(β̂1 − β̂1i) [8]. The adjusted 100(1− α)% confidence

interval is

[
β̃EB
1i − zα/2

√
σ̂2
vσ̂

2
1i

σ̂2
v+σ̂2

1i
, β̃EB

1i + zα/2

√
σ̂2
vσ̂

2
1i

σ̂2
v+σ̂2

1i

]
[9]. For the log-normal distribution, we

refer the reader to Slud and Maiti (2006) [10].

3 Simulation

We evaluated the performance of our proposal method using Monte Carlo simulation. Data-
generating model 1 is

Yij = exp(β0 + β1x1ij + vi)εij , (11)

where β0 = 1, β1 = 0.5, vi ∼ N (0, σ2
v), σ

2
v = 0.32, and εij ∼ Exp(1). Moreover, x1ij is 1 for the

treatment group and 0 for the control group. The groups are assigned randomly and uniformly.
In addition, we consider a model with covariates. Data-generating model 2 is

Yij = exp(β0 + β1x1ij + β2x2ij + β3x3ij + vi)εij , (12)

where β0 = 1, β1 = 0.5, β2 = 0.1, β3 = −0.5, vi ∼ N (0, σ2
v), σ

2
v = 0.32, and εij ∼ Exp(1).

Furthermore, x1ij is 1 for the treatment group and 0 for the control group, x2ij is N (1, 0.52),
and x3ij is set to 1 or 0 randomly. The groups are assigned randomly and uniformly. The
censoring probability is set to 0.1, 0.5, and 0.9. We consider the three numbers of clusters: 5,
8, and 10. The number of simulations is 10,000, and the total sample size is 400 or 1,000. The
restricted time τ is 5 months. The evaluation points are

1. Average bias (the estimated result - true value) of β1;

2. Mean squared error (MSE) of β1;

3. Coverage probability of the confidence interval of β1;

4. Length of the confidence interval of β1;

5. Average bias of σ2
v ;
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6. MSE of σ2
v .

The reference model for comparing performance is a model that excludes the variable effect
vi from Equations (11) and (12). The estimator of parameter β̂1 from the generating model
may not converge to the true value of β1. Therefore, we assume that the true parameter value
for the treatment group of the RMST model is β̂1. Moreover, we calculate the approximate
true value of parameter β̄1 using the 100,000 data points for each group. The true value β̄1 is
given in Appendix A.2. To evaluate the coverage probability of the confidence interval of β1,

we calculate the 95% confidence interval as [β̂1 − z97.5
∑I

i=1 σ̂
−2
i , β̂1 + z97.5

∑I
i=1 σ̂

−2
i ].

The simulation results with censoring probabilities of 0.1 and 0.5 are presented in Tables 1
and 2. The result with a censoring probability of 0.9 is given in Appendix A.1.

Average bias of β1: The bias of the PV method is generally small in all situations, but
the bias increases with the number of clusters when the censoring probability is large (0.9)
regardless of the model. The bias of the IPCW method is also small for model 1 and when the
censoring probability is small (0.1). However, under conditions with moderate to large censoring
probabilities, the bias of the IPCW method increases significantly more than the bias of the PV
method when the number of clusters is increased and the number of subjects is small.

MSE of β1: The MSE of the PV method decreases as the number of subjects is increased
for any model and censoring probability. The MSE decreases under a large censoring probability
of 0.9, but the correction due to PVs may have an impact on it. The MSE of the IPCW method
also decreases as the number of subjects is increased, but the MSE of the IPCW method is
higher than that of the PV method because of the larger censoring probability.

Coverage probability of the confidence interval of β1: The coverage probability of
the PV method approaches a nominal level as the number of subjects increases. Increasing the
number of clusters improves coverage probability if the number of subjects is sufficiently large,
but decreases it if the number of subjects is not large enough. The IPCW method shows a
similar trend to the PV method, but the effect of the censoring probability is more significant.
In particular, the coverage probability falls below 0.5 when the number of clusters is increased
with a small number of subjects under a large censoring probability of 0.9.

Length of the confidence interval of β1: The length of the confidence interval tends
to be the same for both methods. That is, an increase in the number of subjects shortens the
length, but an increase in the number of clusters does not change the length much. Under
moderate to large censoring probabilities, the confidence interval of model 2 tends to be longer
than that of model 1.

Average bias of σ2
v: The bias of the PV method decreases slightly as the number of clusters

increases, but increases as the number of subjects increases. The result for the IPCW method
is similar to that of the PV method, with bias decreasing with an increase in the number of
clusters and increasing with an increase in the number of subjects. However, the PV method
has a positive bias, in contrast to the IPCW method, which has a negative bias. For medium
to large censoring probabilities and a small number of subjects, the bias of the IPCW method
increases even if the number of clusters increases.

MSE of σ2
v: The MSE of the PV method decreases as the number of subjects or clusters

are increased. The MSE of the IPCW method remains smaller than that of the PV method in
situations where the number of subjects is large and the censoring probability is small. However,
when the censoring probability is moderate to large, the MSE of the IPCW method increases
as the number of clusters increases.
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4 Actual data analysis

We re-analyzed the survival data of children up to age 5 years in India during the years 2019–
2021. In India, eight EAG states were established to facilitate regional programs in areas that
have lagged behind in controlling population growth to manageable levels. We focused on the
survival data of the EAG states. The total sample size is 101,437, which consists of 37,033
individuals born to mothers 12–19 years old (12–19 group), 63,380 individuals born to mothers
20–30 years old (20–30 group), and 1,024 individuals born to mothers 31 years and older (31+
group). The total number of deaths is 4,883, comprising 1,920, 2,889, and 74 deaths for those
born to mothers in the 12–19, 20–30, and 31+ groups, respectively. Moreover, the censoring
probabilities are 94.8%, 95.4%, and 92.8%, respectively. The baseline information consists of
the sex, place of birth, and order of birth. The number of deaths and censors for each state
are shown on the left side in Figures 1, 2, 3, and 4. We also re-analyzed data of 2019–2021 of
an Indian national family health survey that included data for children up to age 5 years. The
restricted time, which is the time at which we can identify more than 80% of the deaths (i.e.,
4,094 out of 4,883 total deaths), is 50 months.

The estimated random effects σ̂2
v of the PV method are 0.026 for 12–19 group vs 20–30 group

and 0.036 for 12–19 group vs 31+ group. The estimated random effects σ̂2
v of IPCW method

are 0.056 for 12–19 group vs 20–30 group and 0.414 for 12–19 group vs 31+ group. The RMST
differences are shown in Figures 1, 2, 3, and 4.

For the PV method, when random effects are accounted for, the results comparing the 20–30
group with the 12–19 group are reduced with respect to the overall results because of the small
variance among the states. In particular, in Chhattisgarh, where the RMST difference deviates
significantly from the overall result, the reduction was larger because the small sample size was
found to bias the results by chance. For the 31+ group versus the 12–19 group, because of the
small variance among states and the much smaller sample size for the 12–19 group, the results
for each state obtained by the random-effect RMST are substantially reduced. This means that
in all states, the prognosis is better if the child is born to a mother who is 12–19 years.

For the IPCW method, the results comparing the 20–30 group with the 12–19 group reveal
that, as for the PV method, the variance among states is small; hence, results that deviate from
the overall results, such as the result for Chhattisgarh, are reduced with respect to the overall
results. In addition, when the 95% confidence intervals are too long because of the small sample
size, as in the result for Uttarakhand, the 95% confidence intervals are shorter. For the 12–19
group vs 31+ group, because the IPCW method found a greater variance among the states than
the PV method, the 95% confidence interval was not shortened as much as it was by the PV
method, but the 95% confidence interval could be shortened for results from states with long
confidence intervals.

5 Discussion

We proposed two novel random-effect RMST models. One imputes PVs for censored data to
create a complete dataset and use a generalized linear mixed model. The other estimates the
variance parameter of the random effect among clusters using the estimation results obtained
by the IPCW estimating equation for each cluster. The real data analysis revealed that the
shrinkage effect using the PV method is stronger than that obtained using the IPCW method
because the number of interest events increases when the PVs of censored data are imputed.
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The random-effect RMST model using the PV method analyzes all data by imputing the
PVs for censored data. Given a large sample size, the individual PVs are approximately inde-
pendent [4], and the estimators obtained from the generalized linear mixed model are consis-
tent [11, 12]. However, a limitation is that the PVs are not imputed while taking into account
the random effects. For the IPCW method, because an estimated equation cannot be con-
structed that considers the random effects, we analyzed within each cluster and estimated the
random effects of the clusters. The estimator is consistent with respect to the true parameter
value [9, 10]. The limitation of this approach is that it is not possible to perform an analysis
that adjusts for random effects and covariates using data from all clusters.

The simulation study showed that as the sample size increased, the MSE decreased and the
estimation accuracy improved. For the PV method, as the censoring probability increased, the
accuracy of the estimated coefficient parameters did not change, but the results of the estimated
parameters of the variance of the random effects decreased. The accuracy of the estimated
random effect increased because of the smaller observation error for the PVs for censored data.
Moreover, the results remained stable despite the increased censoring probability because the
PVs were working effectively. For the IPCW method, the accuracy of the coefficient parameter
estimates decreased as the censoring probability increased because the number of observed events
was reduced. In addition, the estimated results for the parameter of variance of the random
effect grew worse as the number of clusters increased. However, increasing the sample size
increased the accuracy of estimation. With both methods, the coverage probability approached
the true value of 0.95 as the accuracy of the coefficient parameter estimation increased.

From the actual study, for the 12–19 group vs 31+ group comparison, when the number of
cases was small, the variance between states differed in two ways. We believe that this result
reflects the results of the simulated study, since the IPCW method is less accurate in estimation
when the number of clusters is large and the sample size is small. The PV method, which
stores the censoring as a PV, analyzes a larger number of data as time-to-event, and hence the
confidence intervals were shorter than those of the IPCW method, regardless of the presence of
random effects.

We recommend the random-effect RMSTmodel based on the PVmethod because it exhibited
less bias in the simulation results. This is because the 95% confidence interval was closer to the
95% probability of containing the true value.
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Figure 1: (PV method) Forest plot of the difference between the restricted mean survival times
(12–19 group vs 20–30 group)

Figure 2: (PV method) Forest plot of the difference between the restricted mean survival times
(12–19 group vs 31+ group)
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Figure 3: (IPCW method) Forest plot of the difference between the restricted mean survival times
(12–19 group vs 20–30 group)

Figure 4: (IPCW method) Forest plot of the difference between the restricted mean survival times
(12–19 group vs 31+ group)
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Table 1: Simulation results of model 1.
Censoring PV method IPCW method

Cluster probability Total N=400 Total N=1000 Total N=400 Total N=1000

Bias (β1)

5 0.1 -0.010 -0.009 -0.008 -0.008
8 0.1 -0.002 -0.008 0.004 -0.005
10 0.1 0.010 -0.008 0.019 -0.005
5 0.5 -0.014 -0.020 -0.003 -0.028
8 0.5 -0.012 -0.020 0.019 -0.024
10 0.5 -0.012 -0.016 0.038 -0.015

MSE (β1)

5 0.1 0.034 0.013 0.036 0.014
8 0.1 0.034 0.013 0.036 0.014
10 0.1 0.037 0.013 0.040 0.014
5 0.5 0.039 0.016 0.060 0.025
8 0.5 0.039 0.016 0.064 0.024
10 0.5 0.041 0.015 0.073 0.023

Coverage probability of the confidence interval of β1
5 0.1 0.936 0.940 0.936 0.940
8 0.1 0.936 0.939 0.928 0.938
10 0.1 0.920 0.940 0.912 0.936
5 0.5 0.932 0.931 0.885 0.879
8 0.5 0.929 0.934 0.871 0.891
10 0.5 0.924 0.934 0.838 0.890

Length of the confidence interval of β1
5 0.1 0.685 0.436 0.698 0.444
8 0.1 0.679 0.435 0.690 0.443
10 0.1 0.675 0.434 0.685 0.442
5 0.5 0.725 0.461 0.777 0.498
8 0.5 0.718 0.459 0.759 0.494
10 0.5 0.712 0.459 0.745 0.492

Bias (σ2
v)

5 0.1 0.067 0.074 -0.040 -0.069
8 0.1 0.066 0.074 -0.018 -0.064
10 0.1 0.064 0.072 -0.002 -0.060
5 0.5 0.003 0.013 0.018 -0.039
8 0.5 0.001 0.012 0.085 -0.026
10 0.5 0.001 0.010 0.155 -0.017

MSE (σ2
v)

5 0.1 0.025 0.021 0.010 0.006
8 0.1 0.019 0.016 0.014 0.006
10 0.1 0.018 0.014 0.018 0.006
5 0.5 0.013 0.009 0.031 0.007
8 0.5 0.011 0.006 0.067 0.008
10 0.5 0.010 0.005 0.125 0.009
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Table 2: Simulation results of model 2.
Censoring PV method IPCW method

Cluster probability Total N=400 Total N=1000 Total N=400 Total N=1000

Bias (β1)

5 0.1 -0.015 -0.020 -0.012 -0.020
8 0.1 -0.009 -0.017 -0.003 -0.015
10 0.1 -0.003 -0.016 0.004 -0.013
5 0.5 0.005 0.005 0.031 0.006
8 0.5 0.010 0.004 0.062 0.011
10 0.5 0.018 0.006 0.097 0.021

MSE (β1)

5 0.1 0.033 0.013 0.035 0.014
8 0.1 0.034 0.013 0.036 0.014
10 0.1 0.035 0.013 0.038 0.014
5 0.5 0.042 0.017 0.069 0.027
8 0.5 0.042 0.016 0.079 0.026
10 0.5 0.044 0.016 0.095 0.026

Coverage probability of the confidence interval of β1
5 0.1 0.941 0.941 0.936 0.939
8 0.1 0.934 0.942 0.931 0.941
10 0.1 0.924 0.942 0.919 0.942
5 0.5 0.935 0.938 0.882 0.894
8 0.5 0.929 0.938 0.850 0.899
10 0.5 0.922 0.941 0.802 0.897

Length of the confidence interval of β1
5 0.1 0.683 0.434 0.697 0.444
8 0.1 0.677 0.433 0.690 0.443
10 0.1 0.672 0.432 0.684 0.442
5 0.5 0.759 0.482 0.825 0.530
8 0.5 0.753 0.481 0.804 0.526
10 0.5 0.748 0.480 0.787 0.523

Bias (σ2
v)

5 0.1 0.065 0.072 -0.038 -0.071
8 0.1 0.064 0.072 -0.019 -0.065
10 0.1 0.063 0.072 -0.002 -0.060
5 0.5 0.012 0.021 0.032 -0.040
8 0.5 0.008 0.019 0.111 -0.023
10 0.5 0.009 0.019 0.195 -0.011

MSE (σ2
v)

5 0.1 0.024 0.021 0.010 0.006
8 0.1 0.019 0.015 0.014 0.006
10 0.1 0.017 0.013 0.018 0.006
5 0.5 0.015 0.010 0.039 0.008
8 0.5 0.012 0.007 0.092 0.009
10 0.5 0.012 0.006 0.167 0.011
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A Appendix

A.1 Simulated results for a censoring probability of 0.9

Table 3: Simulation results for a censoring probability of 0.9.
PV method IPCW method

Cluster Model Total N=400 Total N=1000 Total N=400 Total N=1000
Bias (β1)

5 1 -0.018 -0.006 0.023 -0.008
8 1 -0.052 -0.013 0.056 -0.010
10 1 -0.082 -0.019 0.039 -0.008
5 2 -0.019 -0.005 0.049 -0.008
8 2 -0.050 -0.014 0.135 -0.001
10 2 -0.082 -0.018 0.152 0.013

MSE (β1)
5 1 0.015 0.006 0.098 0.016
8 1 0.016 0.006 0.322 0.022
10 1 0.018 0.006 0.431 0.029
5 2 0.018 0.008 0.151 0.022
8 2 0.019 0.007 0.463 0.036
10 2 0.022 0.008 0.779 0.056

Coverage probability of the confidence interval of β1

5 1 0.890 0.926 0.717 0.797
8 1 0.713 0.918 0.480 0.758
10 1 0.502 0.897 0.316 0.708
5 2 0.905 0.931 0.686 0.780
8 2 0.758 0.923 0.453 0.722
10 2 0.563 0.910 0.307 0.680

Length of the confidence interval of β1

5 1 0.423 0.288 0.437 0.304
8 1 0.330 0.278 0.330 0.290
10 1 0.230 0.270 0.241 0.280
5 2 0.474 0.319 0.495 0.342
8 2 0.385 0.309 0.383 0.327
10 2 0.283 0.301 0.291 0.316

Bias (σ2
v)

5 1 -0.087 -0.083 0.156 -0.032
8 1 -0.089 -0.084 0.462 0.015
10 1 -0.088 -0.084 0.595 0.063
5 2 -0.086 -0.082 0.291 -0.012
8 2 -0.088 -0.083 0.723 0.081
10 2 -0.086 -0.083 0.952 0.166

MSE (σ2
v)

5 1 0.008 0.007 0.483 0.026
8 1 0.009 0.007 1.798 0.079
10 1 0.009 0.007 2.726 0.144
5 2 0.009 0.007 0.907 0.043
8 2 0.009 0.007 2.557 0.173
10 2 0.010 0.007 4.680 0.327
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A.2 Simulated true value of parameter β1

Table 4: Simulated true value of parameter β̄1

Model Method
Censoring
probability

Number of
simulations

β̄1

Model 1 PV 0.1 100000 0.7156
0.5 100000 0.5681
0.9 100000 0.1531

IPCW 0.1 100000 0.7623
0.5 100000 0.8086
0.9 100000 0.3057

Model 2 PV 0.1 100000 0.7156
0.5 100000 0.5681
0.9 100000 0.1682

IPCW 0.1 100000 0.7623
0.5 100000 0.8086
0.9 100000 0.3566
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