arXiv:2401.00097v3 [stat.ME] 13 May 2024

Recursive identification with regularization
and on-line hyperparameters estimation

Bernard Vau* Tudor-Bogdan Airimitoaie **

* BExail, 12 avenue des Coquelicots, 94385 Bonneuil sur Marne, France
(e-mail: bernard.vau@ezail.com).
** Univ. Bordeauz, CNRS, Bordeaux INP, IMS, 33405 Talence, France
(e-mail: tudor-bogdan. airimitoaie @u-bordeaus. fr)

Abstract: This paper presents a regularized recursive identification algorithm with simultane-
ous on-line estimation of both the model parameters and the algorithms hyperparameters. A
new kernel is proposed to facilitate the algorithm development. The performance of this novel
scheme is compared with that of the recursive least squares algorithm in simulation.
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1. INTRODUCTION

Recursive identification is unavoidable whenever one needs
a model estimation performed on-line (real-time). The
principle dates back to (Whitacker (1959)) and is almost
as old as the concept of identification itself. Recursive
identification algorithms have been designed for the three
classes of classical identification schemes: Prediction Er-
ror Methods (PEM) (Ljung and Séderstrom (1983)), In-
strumental Variable (Young (2011)), and Pseudo-Linear
Regression (PLR) (Landau et al. (2011)) (for which some
improvements have been made recently (Vau and Bourles
(2021))). For several decades since the famous paper of
(Astrém and Bohlin (1965)), identification has been dom-
inated, directly or indirectly, by the Maximum Likelihood
(ML) approach, and this is also the case for recursive
schemes. On the contrary, Bayesian concepts consisting
in introducing a prior knowledge in estimation, did not
received a significant attention, in spite of earlier attempts
to estimate dynamical systems (Leamer (1972)), (Akaike
(1979)).

It is only since the beginning of the 2010s, that the
Bayesian approach has attracted a considerable interest in
the identification field with the emergence of kernel-based
identification schemes, coming from Machine Learning
(Pillonetto and de Nicolau (2010)). By applying some reg-
ularization techniques, namely modifying a least squares
criterion, the bias-variance trade-off can be significantly
improved, especially if the initial problem is ill conditioned
(Pillonetto et al. (2014)). The most significant kernels
embedding a prior knowledge of intrinsic systems prop-
erties (such as stability and smoothness of the impulse
response) are the Stable-Spline (SS) Kernel (Pillonetto and
de Nicolau (2010)), the Diagonal Correlated (DC) and the
Tuned-Correlated (TC) kernels (Chen et al. (2012)). These
kernels are tuned with a number of hyperparameters whose
values can be determined beforehand from data, using a
Hierarchical Bayes approach (see (Pillonetto et al., 2022,
p. 107)). So far, to the authors knowledge, this kernel
approach has been employed in a recursive context in
(Prando et al. (2016)), (Romeres et al. (2016)) and (Illg
et al. (2022)).

In the sequel one presents a novel recursive and regularized
identification scheme for the estimation of the impulse
response of a discrete Linear Time Invariant (LTT) system,
and where the model is a Finite Impulse Response (FIR)
filter. The proposed scheme is more easily implementable
online than the one disclosed in (Romeres et al. (2016)).
Like in this last reference, it is assumed that the prior
is not known at initialization, which requires to estimate
online the prior hyperparameters at the same time as
the parameters. In general, in regularized schemes, the
number of Kernel hyperparameters is reduced (see Pil-
lonetto et al. (2022)). Here, in order to make the algorithm
implementable on line, one proposes unusually a prior
with a number of hyperparameters equal to the number of
parameters, the prior structure (smoothness of the impulse
response and stability) being imposed by putting some
constraints to those hyperparameters. This prior is finally
very close to the TC prior (Chen et al. (2012)). The online
estimation of the hyperparameters aims at minimizing the
cost of the marginal likelihood criterion (Empirical Bayes
approach) (Pillonetto et al., 2022, chap.4), by using a
recursive gradient with projection, while the parameters
are estimated with an algorithm quite similar to recursive
least squares (RLS).

The paper is structured as follows: Section 2 shows how
the recursive least-squares can be implemented in case
of regularized criterion, following a Bayesian approach,
Section 3 proposes a prior structure inspired from the TC
prior, Section 4 details the algorithm mixing on-line pa-
rameters and hyperparameters estimation. At last, Section
5 displays some simulations showing the performances of
this novel algorithm.

2. PROBLEM STATEMENT
2.1 Classical propagation equations for recursive estimation

Let us consider the “true” discrete-time system Gg(q),
which is assumed to be stable and proper, (¢ being the
forward shift operator). The sequences {u(t)}, {y(t)},
{e(t)} correspond respectively to the input, output and
a centred gaussian white noise. This noise has a variance

o2 assumed to be known. One has



y(t) = Go(q)u(t) + e(t) (1)
The model is a finite impulse filter G with

Glg) =Y beg " (2)
k=1

Our purpose is to estimate the vector 6, where
07 = [by by -- - by]
The regularized least-squares criterion with data up to

time ¢ denoted as Jy(t) is
¢

0 =3 (w0) — 67— 10D+ 87 (0015 000,

i=1

0(t) being the estimation of 6 at time ¢, and
o(t) = [u(t — 1), u(t —2),...u(t —n)]"
The positive definite matrix Ily is the regularization ma-

trix (corresponding to the kernel functions in a Machine
Learning approach). By cancelling out the criterion gradi-

ent with respect to the vector 8, one finds immediately

t—1 -1y
0(t) = (Z ¢(i)o(i)" + U2H01> Yol —yli) 3)
1=0 i=1
Let us introduce the positive definite matrix F' as
t—1
F7H ) =) ¢(i)o(i)" + oM (4)
i=0

Its propagation equations are
F7Ht+1) = F7Ht) + o(t)p (t), F7H0) = oIy (5)

By using the matrix inversion lemma, one has classically
(Landau et al. (2011), p.64)

FOo0s mre o
1+ ¢TF(t)o(t)

On the other hand, it is well known (see Landau et al.

(2011), p.63) that the propagation of 6 is given by

F(t+1)=F(t) -

O(t+1) = 0(t) + F(t)p(t) 1T (Z;((i)?g)qb(t)

€t+1) =yt +1) — o7 (1)8(t) (7b)

In a Bayesian perspective, the prior knowldege is incorpo-
rated in IIy (which corresponds to the covariance matrix
of this prior). Therefore, in a recursive estimation algo-
rithm, incorporating this prior is equivalent to specify
F(0). However, when one performs an identification in
real-time, in general one cannot use some available data
so as to specify this prior (by applying for example the
Hierarchical Bayes approach) allowing to determine the
optimal prior hyperparameters, by maximizing a marginal
likelihood function. It is the reason why, we consider in
this paper the issue of computing on-line the regularisation

matrix II() in parallel with the computation of 0(t).

(7a)

2.2 Case where the regularization matriz is no longer
mvariant

Let us assume that by a specific estimation algorithm
(which will be detailed below), the regularization matrix IT

is updated at each sample time, yielding II(¢). We assume
that II is expressed from a vector of hyperparameters n
which is no longer constant. From (4) and (5), one can
write now

F7H0,1(0)) = oI 1(0) (8)
FM (1) = ¢(i)s@)" + 0T H)  (9)
i=0
FYt+1,n(t+1) = Z o(i)p(i)T + oIt + 1)
~ (10)
The propagation equation of F~! becomes
F7Ht+1,m(t) = F~H(t () + ¢(t)e" (1) (11)
On the other hand, from (7), one has
0t + 1n(0) = Bt (o)) + IOV EL

14 @7 (t)F (¢, n(t)o(t)

An update of F and  in function of n(t+ 1) is detailed in
Section 4.1.

2.3 Marginal Likelihood in a recursive context

Set
YO+ 1) = [y(1) y(2) - y(t + 1)

In the hierarchical Bayes approach, the vector of hyper-
parameters 7 is estimated from data at first, by maxi-
mizing the Marginal Likelihood function L(n]Y). After-
wards the mazimum a posteriori (MAP) estimate 0 =
argmax p(0Y) is computed, p being the probability
density function (pdf). In a recursive context, where data
are obtained on-line, and available up to time ¢ + 1, the
maximization of the Marginal Likelihood function L(n(t+
1)|Y(t 4 1)) and the computation of the MAP A(t + 1) =
argmazx p(@(t + 1)|Y(t +1),n(t + 1)) must be computed
alternatively, so as to take into account only available data
at time ¢t + 1. For this purpose set

o(t) = [6(0) ¢(1) -+ ¢(t)]"
N(t+1) =St + 1)OT(t) + 0%

assuming that the prior expectation of 8 is null, and that
0, n are normally distributed, the marginal LogLikelihood
function log L(n(t+1),Y (t+1) is (Pillonetto et al. (2022),
p.108)

log L(n(t + 1)|Y (¢ + 1)) = —% log(27 |S(t + 1))
— %YT(t + D2+ )Y (E+1)

One has the following result:

Lemma 1. The derivative of log L(n(t + 1)|Y (¢ + 1)) with
respect to the k entry of n(t 4+ 1) (denoted as ng(t + 1)) is

dlog(L(t+ 1))
one(t+1)

A ) -1
Ot +1)07 (¢ + 1)) — o' F(t+ 1)} M) (4

(13)

1
= STr (It + 1)—

Proof: See Appendix A.



3. PRIOR STRUCTURE AND HYPERPARAMETERS
ESTIMATION

8.1 Prior structure

One proposes a matrix regularization structure inspired
from the TC Kernel (Chen et al. (2012)) but where 7
has n entries so as to facilitate the on-line estimation.
This is contrary to the usual method where the amount of
hyperparameters is generally very reduced (see for example
Pillonetto et al. (2022)). Afterwards some constraints on
the hyperparameters are introduced so as to incorporate
the prior knowledge associated to the system impulse
response (stability, exponential decay). The regularization
matrix is defined as

(t,n) = UW(t,n)U" (15)
where U is upper triangular with every nonzero element
equal to one and W (t,n) = diag(exp(n(t))), with n7(¢) =
[71(8) m2(t) -~ nn ()]

Now, some constraints are imposed to 7.
e Constraint C1: no(t) < ni(t) Vit

e Constraint C2: n(t) — 2nk41(t) + Mr42(t) =0
Note that the vector subspace of R™ subject to constraints
Cl and C2 is convex, moreover these constraints are
equivalent to imposing n () = n1(t) — (k — 1)a(t), where
a(t) > 0. One has also
Wii(t,m) = exp(—a(t))Wi-1,i-1(¢,m)

with 0 < «(¢). This prior structure differs from the TC
kernel only because of the term W, ,, (see (Carli et al.,
2017, egs. (20)—(22))). As the TC kernel, the proposed one
is Well suited to damped systems. One can now perform

a change of ba51s where the parameters estimate is 6" and
the regressor ¢ (t) such that

0'(t)=Ut0(t), o (t)=U"¢(t),

UF 4+ 1t + 1)U T =

(16)
FYt+1 77( +1)) =
Z¢

and in this basis from (3), one can write

0(t+1,nt+1)) =

<Z¢ 40w ((t+1)>> > (i)

(18)

i)+ W+ 1,9t + 1)) (17)

Thus, in the basis where 6 is the estimated parameters
vector and ¢ the regressor, the associated prior W is

nothing but a kernel matrix K / corresponding to the DI
Kernel (see Chen et al. (2012)), with

K; ;= pX'5(i— j) (19)
where (i) =1 if ¢ = 0 and §(¢) = 0 otherwise, and 8 > 0.

Property 1. The prior II(¢,n) as defined in (15) under the
constraints C1 and C2 is stable.

Wa 552

Proof: One verifies immediately that H,lc/ ,3 (t n) < e

w
k:/k:(t n) /11 1— )\1/2a

hence lim, o0 Y g II

thus limy, oo Do pey H,lg/,f (t,m) < oo, which is the condition
for the prior to be stable (see Lemma 5.1 of Pillonetto
et al. (2022)). a
Property 2. The prior II(¢,n) as defined in (15) has the
property of maximum entropy.

The proof follows (Carli, 2014, Section IV) and is omitted.
8.2 On-line hyperparameters estimation

The estimation procedure of the vector n consists in
finding n that minimizes Jp,(t) = —log(L(n(¢)[Y (t))). By
combining (14), (16)—(17), one can write (the dependence
with respect to t being omitted for sake of simplicity)

8Jh 1 A At 2 TrreT BW—l _1
— = =T —-00"' —oc°F —_—
o =3 r(U(W o )UU o U

(20)
oJy 1 " 3W 1
— ==-T 06T — 21
o 2 <<W o O, 21)
and finally

~ / 2
O 2 e’k

Set W(t) such that

\I/(t) _ enz(t)
2(t)+ 2Fy, (1)
1- 71:(t)

1_ 0 (t)-‘rLT Fll(t)
en ()

11— 2(t)+‘7 F22(t)

)

One defines ¥, (t) as the projection of ¥(¢) onto the vector
subspace subject to constraints C1 and C2 with

Up(t) = Proj(¥(t)),
where the function ¥ — Proj(¥(t)) is such that
(1 — o7 (coT) ) U () (24a)
if ‘I’p(1)( ) < Wpio)(t) Wp(t) = Wy (t) (24b)
else W) =Wrq) — (kK —1)e, (24c)
€ > 0 is close to 0, and
1-2100---0 0 O
01 -210---0 00
C =
00 000--1-21

the size of C being (n — 2 x n). The estimation on-line
of 7 is therefore performed using a gradient descent with
projection (v > 0 being the corresponding adaptation
gain)
n(t+1) = n(t) —7p(t).
4. OVERALL ALGORITHM

(25)

4.1 Update of the adaptation gain an estimated parameters
vector

By combining (10) an
F7't+1,n(t+1))
o2 (11

d (11) one obtains

(t+177())

(I '+ 1)) =T (n(1))).  (26)



Introducing (25), one gets
F A t+1,n(t+1)) = F =t +1,n(t) =
= (Wi n(t+1) =W (). (27)

For a square matrix X one has X = —X0X'X, and
one can write

Fl(t+1n(t+1)) = F (t+1,n(t) — o F (t + 1,9(t))-

(Wt + 1)) = W () F (t+1,n(t)  (28)
Note that (28) results from a first order approximation
which can be made more accurate by using a truncated
Neumann series expansion of higher order. On the other
hand, from (18)
t

=F(t+1Lnt+1)> ¢ y(i+1)

=0

Z ¢ (t
and by combining with (28), one gets
0t + 1t + 1) = (I — *F (¢ + 1,n(1))-

(W (e + 1) = W (1)) 0(¢ + 1,m(8))  (29)
4.2 Summary

0'(t+1,n(t+1)

y(i +1)

0'(t+1,n(t) = F (t +1,n(t

The algorithm computing alternatively the estimation of
parameters and hyperparameters is given by !

0t +1,n(t)) =& (t,n(t)+
e’(t+1)

+ F'(t,n(t)¢'(t) TR ) (30a)
F(t+1,n(t) = F (t.n(t)-
F'(t,n(t)¢'(t)¢ T (¢)F'(t,n(t))
Lo TR a0em o)

n(t+1) =mn(t) - p(g (30c)
F(t+1,n(t4+1) = F (t+1,n(t)) — o*F (t+ 1,n(t))-
(Wt + 1) = W (1)) F'(t+ 1,m(t)) - (30d)
0 (t+ 1t + 1) = (In — 2F (t+1,n(t)):
(Wt +1) =W (n(t)))) 0t + 1,m(t))  (30e)
5. SIMULATION RESULTS

In this section, the proposed regularization based recursive
identification algorithm is compared with the classic recus-
rive least squares (RLS) method (see (Landau et al., 2011,
Chapter 5)). The identification data is generated using the
nominal model:

Go(2) = 0.020082~1 + 0.040172~2 + 0.02008z 3
o 1—1.561z"1 4 0.64142~2
—0.7334z71 +1.516272 — 0.7591273 4+ 0.6941z %

1—-1.2822-1 4 1.2982-2 — 0475723 + 0.17752—4
The impulse response of the transfer function G, is shown
in Fig. 1. The input is 250 samples from a zero mean

1 Remark: since there is no explicit matrix inversion in the update
of F, the algorithm’s computational complexity is O(n?) at each
sampling instant. Note also that the matrix inversion in (13) has
complexity O(t3).
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Fig. 1. Impulse response of G,.

random gaussian signal with 0.5 standard deviation. Mea-
surement noise is added to the output of the model in the
form of zero mean gaussian signal with standard deviation
0.05. The number of parameters is n = 50. The initial gain
matrix F' of the RLS algorithm is chosen diagonal, with
identical diagonal values. Four RLS identifications have
been done, with diagonal element given by 0.1, 1, 10, or
100. Figure 2 shows the comparison with the regularized
RLS algorithm proposed in this paper. For each algorithm,
the curves are obtained by averaging over 10 simulations.
The average signal-to-noise ratio for these 10 simulations
is 12.3 dB (computed using the standard deviation). The
identification results depend on the initialization of the
hyperparameters. The following initialization of n(t) is
used here:

(o) {los(0.000), k=1,
M) = log(0.9) + nx—1(0), for k> 1.

The estimation gain ~ is equal to 1. At each time-step
when a new input-output data pair is available, the iden-
tified model of each algorithm is updated and the im-
pulse response is computed. The mean square error (MSE)
between the impulse response of the identified and the
nominal models are shown in the upper plot of Figure 2.
Similarly, after each new iteration of the recursive algo-
rithms, the fit of the model to the identification data is
computed and the result for the various algorithms are
shown in the lower plot of Figure 2.

(31)
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Fig. 2. Comparison with recursive least squares with and
without regularization (11 (0) = log(0.001)).



Evolution of 5 parameters
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Fig. 3. Evolution of the hyperparameters (n:(0) =
log(0.001)).

Comparison of impulse mean square error
. T T T

« 0.6 - — b
o MSE with regularization
a—J ---------- MSE without regularization (F=0.1)
- MSE without regularization (F=1)

0.4 7\ ; iati q
oY = = = MSE without regularization (F=10)
g MSE without regularization (F=100)
b
c02r "R Vg, 1
I I e S

LT P T
s e
I

o

Il Il
50 100 150 200 250

Comparison of fit
100 T T

Fit with regularization

---------- Fit without regularization (F=0.1

Fit without regularization (F=1)

= = = Fit without regularization (F=10)

Fit without regularization (F=100)
Il

Fit (%)

-50 !

L L
50 100 150 200 250
Sampling time

Fig. 4. Comparison with recursive least squares with and
without regularization (11 (0) = log(0.1)).
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Fig. 5. Evolution of the hyperparameters (m(0) =
log(0.1)).

For the computation of the fit, the full input-output data
is used, even though the algorithms only use this data
only one sample at a iteration time. Clearly, for both
MSE and Fit, the regularized least squares algorithm
yields better results. Figure 3 shows the evolution of
the hyperparameters in one simulation. Figure 4 shows

the comparison based on an average over 10 simulations
for a different initialization of the hyperparameters using
71(0) = log(0.1). The evolution of the hyperparameters in
one of the simulations is displayed in Figure 5. Despite
a degradation of the results during the first 15 s, the
regularized least squares solution reaches the optimal
solution more rapidly than the other algorithms. This is
related also to the reach of the optimal hyperparameter
values.

6. CONCLUDING REMARKS

A novel recursive identification algorithm with online es-
timation of model parameters and regularization matrix
hyperparameters has been presented. A simulation com-
parison with classical recursive least squares shows the
superiority of the proposed method during the initial in-
stants of the recursive algorithm, and the faster reduction
of the prediction error squares. Future work will focus on
the initialization and the convergence properties of the
hyperparameters estimation.
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Appendix A. PROOF OF LEMMA 1
By using the inversion lemma, one has
1
SNt +1) = Ly —
o

+oT (1) (1))

%(D(t) (I (t+ 1)+

o7 (t) (A1)
Since |71 = 1/|%|, and by using the Sylvester theorem
about determinants, one gets (the dependence with respect
to t is omitted for sake of clarity)

n1 = \(HH* + <1>T<1>)‘1\ |2 % (A.2)

N being the data number (This number doesn’t play any
role in the sequel), thus

log ’271| = —Nlog(c?)—log |02H + CI)T<I>|+log |02H 1}

(A.3)
Note that 29X — 7y (X125 yielding (ny is the
kth entry of n) - ?
Olog |21 - Qi
og | | — T [(021—[—1 + 9T d) 1 0o }
Oni, O,
2H—1
+Tr {0—2116" ] (A.4)
Mk

but ®7(1)® = S°'_ ¢(i)¢T (i), and therefore (o211
1)+ @7 (1)®(t))~t = F(t + 1), therefore one gets

(t+

Olog ‘Z (t+ 1)|
onk(t+1)
= Tr (o7 ?MI(t + 1) — F(t + 1)) ‘m (A.5)

Now let us consider the expression I(t + 1) = YT (t +
DY Yt +1)Y(t +1). One obtains

= %YT(t—H)Y(H—l)—%YT(Hl)‘I’(t) (eIt +1)
+oT (1) (t)) (A.6)

Consequently we get

T ()Y (t+1)

oIt + 1)

— = o YT(t+1)
amt+1) ~ ° (t+1)
0 (T (t + 1) + T (H)D(t))
o dT()Y(t+1
I+ 1) Y (t+1)
(A7)
Since M{;il(z) = X! ﬁX—l’ one has
6l(t + 1 i
ole+1 16 N
aam : F(t+1) qu (i+1) (A8)
COnp(t+1) :
now from (Landau et al., 2011, Eq. (3.36)) , F(t +
1) 25:1 d()y(i + 1) = 6(t + 1), therefore
8l(t+1) _o AT o111 .
o — 0 (t+1)—0(t+1 A9
om(t+1) 7 t+ )aﬁk(t-f—l) (t+1)  (A9)

By combining (A.5) and (A.9), one obtains the gradient
of logL(n(t +1)[Y (t + 1))

Olog(L(t +1)) 1

i) 32 (Tr [(c7?1(t + 1) — F(t + 1))
I’ It + 1) 1 .p Ao It +1) 4
One(t +1) } — ot D Onk(t +1) e(Hl))
(A-10)
and therefore
dlog(L(t+1)) 1 (o2 -~
RS 2T [[c72 (It +1)
- - I It + 1)
—(t+ )07 (¢ + 1)) —F(t+ 1)} W]
(A11)



