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Vacuum Energy from Qubit Entropy
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We develop a non-conventional description of the vacuum energy in quantum field theory in terms
of qubit entropy. Precisely, we show that the vacuum energy of any non-interacting quantum field at
zero temperature is proportional to the quantum entropy of the qubit degrees of freedom associated
with virtual fluctuations. We prove this for fermions first and then extend the derivation to quanta
of any spin. We also argue that essentially the same results are valid in the interacting case in the
mean-field approximation and when the background is curved and static.

I. INTRODUCTION

The quantum vacuum is one of the building blocks
underpinning the whole quantum field theory construct
of Nature. Like its classical counterpart, the quantum
vacuum does not contain physical particles, but differ-
ently from it, is not empty, rather filled with virtual
“zero-point” fluctuations coming in and out of existence
in accordance with the Heisenberg uncertainty principle.
These virtual fluctuations are individually not observ-
able, but their collective effect can have macroscopic im-
plications, of which the Casimir effect in QED is, per-
haps, one of the most spectacular manifestations [1, 2]. A
variety of experiments have conclusively observed macro-
scopic materializations of the quantum vacuum, at least
in the incarnation of the Casimir effect down to the sub-
micron range and with good accuracy (i.e., measured the
quantum vacuum force induced by the electromagnetic
quantum fluctuations), providing a basis for an appre-
ciation, at an operational level, of what the quantum
vacuum is [3–5].
A more fundamental understanding remains elusive.

The most evident example of this is illustrated by the
cosmological constant problem [7], i.e., the enormity of
the contribution to the energy density of the Universe
from the zero-point quantum field fluctuations, resulting
in an energy density many orders of magnitude larger
than what is observed. A closely related question has to
do with the definition (and in practice also with the com-
putation) of a finite quantum vacuum energy for an in-
teracting and possibly non-renormalizable quantum field
theory, of which the canonically quantized formulation of
gravity is the prime example. An intelligent scanning of
the space of quantum field theories might be a way to
better understand quantum vacuum effects, although in
many cases the actual computation of vacuum energies is
a difficult task. Taking an altogether different perspec-
tive may be a more rewarding path towards gaining new

∗ goncalo.quinta@tecnico.ulisboa.pt
† flachi@phys-h.keio.ac.jp

insights on phenomena associated with the vacuum.
In this paper we propose an unconventional way to

quantify the vacuum energy in quantum field theory in
terms of quantum entropy of virtual fluctuations and il-
lustrate a new connection underlying the information-
theoretic structure of quantum field theory. More pre-
cisely, we make use of the qubit structure of spin-1/2
propagators (as 2 × 2 qubit systems described by a 4
dimensional matrix [6]) to prove an identity relating
the vacuum energy with the quantum entropy of those
qubits. We further our arguments that the latter identity
is valid for quantum fields of any spin, thereby hinting
at some deeper fundamental connection between quan-
tum fields and quantum information at the level of the
quantum vacuum.

II. VACUUM ENERGY OF A FERMIONIC
FIELD

As a starting point of our analysis, we shall con-
sider fermionic quantum fields ψ(x) of mass m, whose
dynamics is dictated by the Dirac Lagrangian L =
ψ̄(x)(i/∂ − m)ψ(x), where x is the spacetime point of a
Minkowsky spacetime and /v is the usual Feynman nota-
tion for /v = γµvµ, with γ

µ being the Dirac matrices. The
generalization to any spin will be addressed in turn. The
partition function Z for a fermionic field at temperature
T and zero chemical potential can be written as a path
integral [8, 9]

Z(T ) =
∏

n

∏

k

∏

α

∫

idψ̃†
α;n(k)dψ̃α;n(k) e

A[ψ̃] (1)

where

A[ψ̃] =
∑

n

∑

k

iψ̃†
α;n(k)(Dn(T ))ανψ̃ν;n(k) (2)

and

Dn(T ) = iβ
(

iωn + γ0γjkj +mγ0
)

, (3)

with α representing the spinor indices of the grassma-
nian variables ψ̃, β = 1/T , k is the spatial momentum
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and n is an integer associated to the anti-periodicity in
Euclidean time of the fermions yielding the Matsubara
frequencies ωn = (2n + 1)πT . The partition function Z
can be calculated analytically [8, 9], resulting in

lnZ(T ) = 2
∑

k

[

βωk + 2 ln
(

1 + e−βωk

)]

, (4)

where ωk =
√

|k|2 +m2. Recall that the average energy
of the system can be obtained via the partition function
using 〈E〉 = − ∂

∂β lnZ(T ) [9], which results in

〈E(T )〉 =
∑

k

2ωk

(

e−βωk − 1

e−βωk + 1

)

. (5)

The thermodynamic entropy S(T ), defined through
S(T ) = ∂

∂T (T lnZ(T )) [9], gives

S(T ) =
∑

k

4ωkβ

eβωk + 1
+ 4 ln(1 + e−βωk) . (6)

Combining Eqs. (5) and (6), it is possible to calculate the
free energy F as

F (T ) = 〈E(T )〉 − TS(T ) (7)

or more simply, F = −T lnZ(T ). In the zero tempera-
ture limit T → 0, the thermodynamic entropy in Eq. (6)
goes to 0, and the free energy is all the energy available to
the system, i.e. it becomes the vacuum energy E0. More
precisely, we have E0 ≡ 〈E(0)〉 = F (0) = −2

∑

k
ωk,

i.e. the usual expression as sum over the zero-point
energies. This term is sometimes discarded by nor-
mal ordering, but in general (e.g., in the presence of
boundaries or interactions) it cannot be naively elimi-
nated, even in the non-relativistic limit [8, 11]. When
boundary conditions are imposed, the momenta and, in
turn, the frequencies are quantized, and the regularized
summation gives, in the case of a renormalizable the-
ory, a finite Casimir or quantum vacuum energy. Ir-
respectively of the setup (e.g., of the boundary con-
ditions), taking the limit of zero temperature T → 0
of Eq. (4) leads to E0 = − limT→0 T lnZ(T ). On the
other hand, Eq. (1) can be used to derive the relation
lnZ(T ) =

∑

k

∑∞
n=−∞ ln detDn(T ), which leads to

E0 = − lim
T→0

∑

k

∞
∑

n=−∞

T ln detDn(T ) . (8)

The summations above are understood within an other-
wise arbitrary regularization scheme. We also stress that
finite temperature contributions do not add any addi-
tional divergence to the energy. The above formula will
be our starting point to express the vacuum energy in
terms of quantum entropy. Note that, despite the imagi-
nary units present in the definition of Dn(T ), the explicit
summations in Eq. (8) give a real value.

III. PSEUDO-QUBIT STATE OF A VIRTUAL
FERMION

The matrixDn(T ) is very closely related to the fermion
propagator SF (k) = (/k + m)/(k2 − m2), typically as-
sociated to the concept of virtual particles. We define
the 4-momentum vector kn = (iωn,k), by virtue of the
implicit Wick rotation present in the definition of the
partition function Z(T ) in Eq. (1). In particular, we
have k0 = iωn, i.e. the energy is quantized accord-
ing to the Matsubara frequencies. One thus obtains
Dn(T ) = iβ(k2n −m2)SF (kn)γ

0, or Dn(T ) = 4ik0βρ̌(kn)
where we define the matrix

ρ̌(k) =
(/k +m)γ0

4k0
. (9)

The 4×4 matrix ρ̌(k) has trace equal to unity and, for 4-
momentum k with real components, obeys ρ̌†(k) = ρ̌(k).
Its eigenvalues are (1 ± rk)/4 (each with multiplicity 2),
where we define the parameter

rk =
ωk

k0
, (10)

thus ρ̌(k) is semi-positive definite whenever |rk| ≤ 1. The
quantity |rk| is the ratio between the on-shell and off-shell
energies ωk and k0, respectively, so it basically defines the
“amount of virtuality” of the fluctuations related to the
fermionic propagator. Consequently, in the regime |rk| ≤
1 with k real, in which case Tr[ρ̌2(k)] = (1 + r2

k
)/4 < 1,

one can associate ρ̌(k) to a physically valid mixed den-
sity matrix in momentum space. This is expected since
it would be contradictory to have a physically valid den-
sity matrix for a virtual particle in the entire phase space
domain, a property which is characteristic of on-shell par-
ticles only. Outside of the range |rk| ≤ 1, the matrix ρ̌(k)
loses its positive semi-definiteness and for complex mo-
menta it will no longer be hermitian. As a consequence,
we call ρ̌(k) a pseudo-density matrix of a virtual fermion
as it generalizes the definition of density matrix to off-
shell virtual quantum fluctuations related to the Dirac
propagator.

An interesting fact is that ρ̌(k) is a 2-qubit density ma-
trix, where one of the qubits is related to spin projection
and another one to energy sign [12]. More precisely, one
has that

ρ̌(k) =

1
∑

i,j,k,l=0

ρijkl(k) |i, j〉 〈k, l| (11)

where the first qubit index in |i, j〉 selects positive or
negative energy spinors and the second one selects spin
up or down spinors. This can be intuitively understood
from the fact that, in the computational basis, |00〉 =
(1, 0, 0, 0)T , . . . , |11〉 = (0, 0, 0, 1)T , which correspond to
spinors with distinct energy and spin projections in the
rest frame. More precisely, from the energy and spin
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projectors

Λ(λE) =
1 + (−1)λEγ0

2
(12)

Σ(λs) =
1− (−1)λsγ5γ3γ0

2
(13)

with λE ∈ {0, 1}, λs ∈ {0, 1} and γ5 = iγ0γ1γ2γ3 [10],
one can write the 2-qubit projection operator in the com-
putational basis as

|λE λs〉 〈λE λs| = Λ(λE)Σ(λs) , (14)

hence the association of λE and λs to qubits related to
particle type and spin projection. The eigenstates of
ρ̌(k), which we denote as |ψ̌λE ,λs

〉, are straightforwardly
expressed in terms of the matrix

W =
(ωk +m)I − kiγ

iγ0
√

2m(ωk +m)
(15)

which represents the Lorentz boost taking spinors from
the rest frame to the frame with 4-momenta k. It is well
known [10] that W can be written in the exponential
form

W = eαB, B = −
ki
|k|
γiγ0 , (16)

where α is a hyperbolic angle defined via

coshα =
√

ωk+m
2m . In terms of Eq. (16), the eigen-

states |ψ̌λE ,λs
〉 can be written as

|ψ̌λE ,λs
〉 =

√

m

ωk

eαBγ
0

|λE λs〉 (17)

with eigenvalues

pλE ,λs
=

1 + (−1)λErk
4

. (18)

The eigenvalues obey
∑

λE ,λs
pλE ,λs

= 1 in general, al-

though pλE ,λs
≤ 1 only in the regime |rk| ≤ 1. As ex-

pected, the eigenvalues only correspond to probabilities
in the regime where ρ̌(k) is well defined as a density ma-
trix. One can also perform a Positive Partial Transpose
test [13] on ρ̌(k) to check its entanglement properties.
Partial transposing it with respect to one of the qubits
and calculating the respective eigenvalues, one finds the
same eigenvalues pλE ,λs

, which are larger or equal to 0
whenever |rk| ≤ 1. One thus concludes that ρ̌(k) is sep-
arable whenever it is well-defined as a density matrix.
The form of the eigenstates in Eq. (17), together with

the fact that ρ̌(k) is a mixed density matrix, suggests
that ρ̌(k) might have a thermal form. This is indeed the
case, where it is possible to show that [12]

ρ̌(k) =
e−βDH

Tr[e−βDH ]
, (19)

where

βD =
1

2k0
ln

(

1 + rk
1− rk

)

(20)

is a scalar quantity with inverse temperature units and
H = −

(

mγ0 − kiγ
iγ0
)

/rk is the associated Hamilto-
nian. Eqs. (9)-(10) are valid for any general complex
4-momentum vector k.

IV. VACUUM ENERGY FROM QUBIT
ENTROPY

Equations (8) and (19) converge into a relation be-
tween the quantum vacuum energy and the qubit entropy
of the virtual quanta. Indeed, the matrix ρ̌(k) is both in-
timately connected to the fermionic propagator and has
a natural description in terms of qubits, so it serves as
a bridge between quantum fields and quantum informa-
tion. In fact, it is possible to show that the vacuum
energy in Eq. (8) can be written in terms of ρ̌(k) as (c.f.
the Supplemental Materials for a proof)

E0 = − lim
T→0

∑

k

∞
∑

n=−∞

T ln det ρ̌(k) . (21)

In other words, the vacuum energy has a direct connec-
tion with the qubits of virtual particles. Given the pillar
importance of the concept of entropy in Quantum In-
formation and Thermodynamics, it is therefore strongly
expected that some connection between vacuum energy
and qubit entropy exists. Indeed, defining the von Neu-

mann entropy functional

S[M ] = −Tr[M lnM ] , (22)

where M is a general matrix, and using the rela-
tion ln

(

Tr[e−βDH ]
)

= S[ρ̌(k)] + βDωk, one obtains (c.f.
Eq. (A47) of the Supplemental Material for a rigorous
proof)

∑

k

∞
∑

n=−∞

S[ρ̌(kn)] = −
lnZ(T )

4
(23)

where the summations are understood within some reg-
ularization scheme. From Eqs. (5)-(7) and Eq. (23), one
obtains

F (T ) = T Š(T ) (24)

and

〈E(T )〉 = T (S(T ) + Š(T )) (25)

where we define

Š(T ) = 4
∑

k

∞
∑

n=−∞

S[ρ̌(kn)] . (26)
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The quantity Š can be interpreted as the total entropy
originated from the qubit degrees of freedom of virtual
particles. The overall factor of +4 is associated to the
spin-1/2 degrees of freedom in 3 + 1 dimensions (the +
sign originates from the anticommutation properties of
the fields, one factor of 2 comes from summation over
spin indexes and another factor of 2 comes from summing
over particles and anti-particles). For bosons, the overall
sign would become negative and the multiplicative fac-
tor would change according to the dimension of the scalar
multiplet in question [8, 9]. In addition, Eqs. (4) and (23)
would have their signs reversed as well as the sign mul-
tiplying by the exponential in Eq. (4). Eq. (25) can be
interpreted as the internal energy of the fermionic Fock
space at finite temperature, with two entropic contribu-
tions: one related to thermodynamics and another one
originated from the entropy of qubits degrees of freedom
associated to virtual particles.
Taking the limit T → 0 in Eq. (25), one obtains the

identity for the vacuum energy

E0 = lim
T→0

T Š , (27)

which succinctly expresses the fact that the vacuum en-
ergy at zero temperature is the sum over phase-space of
energetic contributions related to the entropy of qubit
states ρ̌(kn) of all possible spin-1/2 virtual particles.
Finally, although the summations in n and k can be

regularized in Eq. (26), the expression is infinite in the
limit T → 0. This is consistent with Eq. (27), where the
combination T Š gives a finite result. For finite temper-
ature, Eq. (26) is not divergent, provided regularization
schemes are applied to make sense of the summations.

V. GENERALIZATIONS

The results of the previous section can be generalized
to non-interacting quantum fields of any spin, using the
higher spin equivalent of Eq. (4) for a general quantum
field χ with zero chemical potential [9]

lnZχ(T ) =
Nχ
2

∑

k

[

βωk + 2 ln
(

1 + e−βωk

)]

, (28)

where Nχ is a real constant proportional to the degrees
of freedom of χ (Nχ = 4 for spin 1/2). From Eq. (5), we
also know that E0 = −(Nχ/2)

∑

k
ωk. Using directly the

result (c.f. Eq. (A42) the Supplemental Material)

lim
T→0

∞
∑

n=−∞

TS[ρ̌(kn)] = −
ωk

2
(29)

follows that Eqs. (25) and (27) still hold, provided that
the entropy in Eq. (26) is generalized to include the extra
degeneracies derived from the spin degrees of freedom, i.e.
that the entropy from virtual qubits is generalized to

Š(T ) = Nχ
∑

k

∞
∑

n=−∞

S[ρ̌(kn)] . (30)

A further extension concerns the case of interacting
quantum fields propagating on a curved background. We
consider for simplicity the case of interacting fermions
in the chiral limit (i.e., with vanishing bare mass and

an interaction of the form G
(

ψ̄ψ
)2

where G is the cou-
pling constant) and on a curved, homogeneous maximally
symmetric spacetime. At mean field level, fermions ac-
quire an effective mass proportional to the chiral conden-
sate, Meff = G〈ψ̄ψ〉 and the one-loop thermodynamic
potential takes the form Z = −ν ln det

(

i /∇−Meff

)

=

− ν
2 ln det

(

2+M2
eff + R

4

)

, where the second equality
originates from the iteration of the Dirac operator, apply-
ing the Schrödinger-Lichnerowicz-Peres formula [14, 15];
the curved space D’Alembertian 2 acts on spinors and
ν is a constant proportional to the number of degrees of
freedom [16]. Thus the effect of interactions (in the mean
field approximation) and of curvature can be assimilated
by a shift in the effective mass. This shift maintains
the main results of Eqs. (25) and (30) unaltered. The
shift in the effective mass due to the curvature translates
into a shift in rk, thus changing the region in which vir-
tual fluctuations behave as physical real fluctuation (i.e.,
where the density matrix is hermitian, has unit trace and
is semi-positive definite), becoming larger as a positive
curvature increases. The opposite is expected to happen
when the background is negatively curved.

VI. CONCLUSIONS

We have presented a novel interpretation of the vac-
uum energy in quantum field theory in terms of the quan-
tum entropy of qubits associated to virtual particles. We
have explicitly shown this by taking fermions as starting
point and observed that the same relation holds true for
any spin. We have argued that both curvature and inter-
actions do not change the essence of these results, at least
in the mean-field approximation. In deriving these re-
sults, a crucial step was the definition of a pseudo-density
matrix ρ̌(k), directly linked to the propagator of virtual
fluctuations.
It is counter-intuitive that quantum information not

only exists in the vacuum, but can also be interpreted
as the source of its zero-point energy. This connection
may have various implications and, in particular, it may
suggest a quantum vacuum origin of entropic forces.
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Supplemental Material for “Vacuum Energy from Qubit Entropy”

VIII. PROOF OF EQS. (21) AND (27)

We begin by proving Eq. (21). Using Dn(T ) = −4iβωnρ̌(k) and Eq. (8), one obtains

E0 = − lim
T→0

∑

k

∞
∑

n=−∞

T ln det ρ̌(k) + B (A1)

where

B = − lim
T→0

∑

k

∞
∑

n=−∞

T ln det(−4iβ(2n+ 1)πTI) . (A2)

where I is the 4× 4 identity matrix. Simplifying B, we get

B = − lim
T→0

∑

k

∞
∑

n=−∞

T ln det(−4i(2n+ 1)πI)

= lim
T→0

∑

k

∞
∑

n=−∞

−4T ln(4(2n+ 1)π) . (A3)

We need to explicitly make the summation in n before we take the limit T → 0 since the total series may diverge. To
make sense of the infinite summations, we will use zeta function regularization. Recall the Dirichlet series property

∞
∑

n=1

(2n− 1)−s = (1− 2−s)ζ(s) (A4)

where we have the Riemann zeta function defined in the usual way as

ζ(s) =

∞
∑

n=1

n−s . (A5)

Using the derivative

d

ds

(

∞
∑

n=1

(2n− 1)−s

)

= −
∞
∑

n=1

(2n− 1)−s ln(2n− 1) (A6)

together with Eq. (A4), we obtain

∞
∑

n=1

(2n− 1)−s ln(2n− 1) = −2−s ln(2)ζ(s) + (1− 2−s)ζ′(s) . (A7)

Since

∞
∑

n=1

(2n− 1)−s =

∞
∑

n=1

(2n+ 1)−s + 1 (A8)

we also have that, from Eq. (A6),

d

ds

(

∞
∑

n=1

(2n− 1)−s

)

=
d

ds

(

∞
∑

n=1

(2n+ 1)−s

)

(A9)

and so

∞
∑

n=1

(2n+ 1)−s ln(2n+ 1) =

∞
∑

n=1

(2n− 1)−s ln(2n− 1) . (A10)
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One final useful identity is

∞
∑

n=−∞

(2n+ 1)−s = (1− 2−s)ζ(s)(1 + (−1)−s) , (A11)

which can be derived directly from Eqs. (A4) and (A8). In particular, for s ∈ N, we have

∞
∑

n=−∞

(2n+ 1)−s =

{

2(1− 2−s)ζ(s) , for s even

0 for s odd
(A12)

where the identity for odd s can be checked directly by explicit expansion of the series. We thus have

∞
∑

n=−∞

ln (4(2n+ 1)π) = ln (4π) + 2 ln (4π)

∞
∑

n=1

1 +

∞
∑

n=1

ln (2n+ 1) +

∞
∑

n=1

ln (−2n+ 1) (A13)

= ln (4π) + (2 ln (4π) + iπ)ζ(0) + 2

∞
∑

n=1

(2n− 1)−s ln(2n− 1)

∣

∣

∣

∣

s=0

(A14)

= ln(2)−
iπ

2
(A15)

were we used ζ(0) = −1/2. We can now safely take the limit T → 0 in Eq. (A2), obtaining

B = − lim
T→0

∞
∑

n=−∞

4T ln (4(2n+ 1)π) = − lim
T→0

4T

(

ln(2)−
iπ

2

)

= 0 . (A16)

This concludes the proof of Eq. (21).
Moving on to the proof of Eq. (27), we start by proving the important intermediate relation

ln
(

Tr[e−βDH ]
)

= S[ρ̌] + βDωk . (A17)

Using Eq. (19) and the fact that ln(AB) = ln(A) + ln(B) is A and B are commuting matrices, we obtain

S[ρ̌] = −Tr[ρ̌ ln(ρ̌)]

= −Tr[ρ̌ ln(e−βDH)] + Tr[ρ̌ ln(Tr[e−βDH ])]

= βDTr[ρ̌H ] + ln(Tr[e−βDH ]) (A18)

where we used Tr[ρ̌] = 1. All that remains is to find Tr[ρ̌H ], where we recall H = −
(

mγ0 − kiγ
iγ0
)

/rk. We start
by noting that [ρ̌, H ] = 0, so they share an eigenbasis. Expressing H in its eigenbasis, one may check it will have the

diagonal form H̃ = (k0, k0,−k0,−k0), from which one obtains

Tr[ρ̌H ] = Tr

[

e−βDH̃

Tr[e−βDH̃ ]
H̃

]

=
k0(e−k

0βD − ek
0βD)

e−k0βD + ek0βD

. (A19)

Finally, using Eqs. (20) and (10) in the above result, one readily obtains

Tr[ρ̌H ] = −ωk , (A20)

from which Eq. (A17) follows. Using now Eq. (A17) and inserting Eq. (19) in Eq. (8), one can write the vacuum
energy E0 as

E0 = − lim
T→0

∑

k

T

∞
∑

n=−∞

(4 ln (4(2n+ 1)π)− 4S[ρ̌(k)]− 4βDωk) (A21)

=
∑

k

(A+B + C) (A22)
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with

A = lim
T→0

∞
∑

n=−∞

−4T ln (4(2n+ 1)π) , (A23)

B = lim
T→0

∞
∑

n=−∞

4TS[ρ̌(kn)] , (A24)

C = lim
T→0

∞
∑

n=−∞

4TβDωk . (A25)

Note that the factor of e−βDH in the numerator of Eq. (19) does not contribute to the vacuum energy since
det(e−βDH) = 1. We also have A = B, so we know that A = 0. Focusing on the quantity C, the summation of
interest is

∞
∑

n=−∞

βDωk =
1

2

∞
∑

n=−∞

rkn
ln

(

1 + rkn

1− rkn

)

=

∞
∑

n=−∞

1

2iαn
ln

(

iαn + 1

iαn − 1

)

(A26)

where we defined

rkn
=

1

iαn
, αn =

(2n+ 1)πT

ωk

. (A27)

Now, for z ∈ C we have [A17]

1

2
ln

(

z + 1

z − 1

)

= arccoth(z) (A28)

and for z = ix, x ∈ R, we have

arccoth(ix) = −iarccot(x) . (A29)

We can now use the series expansion around x = 0 [A17]

arccot(x) =
π

2
−

∞
∑

p=0

(−1)px2p+1

2p+ 1
(A30)

to conclude that

1

2z
ln

(

z + 1

z − 1

)

= −
π

2x
+

∞
∑

p=0

(−1)px2p

2p+ 1
. (A31)

Considering x = αn, applying the above expansion to Eq. (A26) and taking into account Eq. (A12), we obtain

∞
∑

n=−∞

βDωk = −
ωk

2T

∞
∑

n=−∞

(2n+ 1)−1 +

∞
∑

p=0

(−1)p

2p+ 1

(

πT

ωk

)2p ∞
∑

n=−∞

(2n+ 1)2p

=

∞
∑

p=0

(−1)p

2p+ 1

(

πT

ωk

)2p

2(1− 2−2p)ζ(−2p)

= 0 (A32)

where we used the fact that ζ(−2p) = 0 for non-zero positive integer p. We thus conclude that the term
C = limT→0

∑∞

n=−∞ 4TβDωk of the vacuum energy identically vanishes, even if we take finite temperatures.
Finally, we calculate the quantity B. To begin with, note that

S[M ] = −Tr[M lnM ] = −
∑

j

λj ln(λj) (A33)



4

where λj are the eigenvalues of M . Since one can show that the eigenvalues of ρ̌(k) are given by

1± rk
4

(A34)

each with multiplicity 2, this implies that

S[ρ̌(k)] = −

(

1 + rk
2

)

ln

(

1 + rk
4

)

−

(

1− rk
2

)

ln

(

1− rk
4

)

. (A35)

Rearranging this, we obtain the relation

B = lim
T→0

∞
∑

n=−∞

4TS[ρ̌(kn)]

= −2 lim
T→0

∞
∑

n=−∞

T

{

ln

(

1 + rk
4

)

+ ln

(

1− rk
4

)

+ rk ln

(

1 + rk
1− rk

)}

= −2 lim
T→0

∞
∑

n=−∞

T

(

ln

(

1 + rkn

4

)

+ ln

(

1− rkn

4

))

− C

= −2 lim
T→0

∞
∑

n=−∞

T

(

ln

(

1 + rkn

4

)

+ ln

(

1− rkn

4

))

(A36)

where we used Eqs. (20) and (A25). Using Eq. (A16) and Eq. (A36), we obtain

A+B + C = −2 lim
T→0

∞
∑

n=−∞

T

(

ln

(

1 + rkn

4

)

+ ln

(

1− rkn

4

))

. (A37)

In other words, we obtain

E0 = 4 lim
T→0

∑

k

∞
∑

n=−∞

TS[ρ̌(kn)] (A38)

where the sum assumes only a regularization. Note that the final expression for E0 is divergence free in the n
summation, with no need for cancellation of infinite terms. Although we used zeta function techniques, the above
result is valid for any choice of regularization. This concludes the proof.
As a sanity check of our result, one may use the identities (shown here without proof)

∞
∑

n=−∞

(2n+ 1± a)−s = 2−sζ

(

s,
1± a

2

)

+ (−2)−sζ

(

s,−
1± a

2

)

− (1± a)−s (A39)

ζ(0, a) =
1

2
− a (A40)

∂

∂s
ζ(s, a)

∣

∣

∣

∣

s=0

= lnΓ(a)−
1

2
ln(2π) (A41)

to show that

lim
T→0

∞
∑

n=−∞

TS[ρ̌(kn)] = −
1

2
lim
T→0

∞
∑

n=−∞

T

(

ln

(

1 + rkn

4

)

+ ln

(

1− rkn

4

))

= −
ωk

2
(A42)

and so, from Eq. (A21) and Eq. (A37), we recover E0 = −2
∑

k
ωk, as expected. We can prove Eq. (A42) by using

Eqs. (A35), (A32) and (A17) and noting that

−2
∞
∑

n=−∞

S[ρ̌(kn)] =
∞
∑

n=−∞

(

ln

(

1 + rkn

4

)

+ ln

(

1− rkn

4

))

=
∞
∑

n=−∞

(

− 4 ln(2)− 2 ln(2n+ 1) + ln (2n+ 1 + α) + ln (2n+ 1− α)

)

(A43)
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where we defined α = 1/(iα0). Using
∑∞

n=−∞ 1 = ζ(0) = −1/2 and
∑∞

n=−∞ ln(2n+1) = ln(2), along with Eqs. (A39)-
(A41), the above relation simplifies to

−2

∞
∑

n=−∞

S[ρ̌(kn)] =

1
∑

p=0

∞
∑

n=−∞

ln (2n+ 1 + (−1)pα)

= −
∂

∂s

[

1
∑

p=0

∞
∑

n=−∞

(2n+ 1 + (−1)pα)−s
]

s=0

= −

1
∑

p=0

∂

∂s

[

2−sζ

(

s,
1 + (−1)pα

2

)

+ (−2)−sζ

(

s,−
1 + (−1)pα

2

)

− (1 + (−1)pα)
−s

]

s=0

=

1
∑

p=0

{

ζ

(

0,
1 + (−1)pα

2

)

ln(2) + ζ

(

0,−
1 + (−1)pα

2

)

(iπ + ln(2))− ln(1 + (−1)pα)

−
∂

∂s
ζ

(

0,
1 + (−1)pα

2

)

−
∂

∂s
ζ

(

0,−
1 + (−1)pα

2

)}

=

1
∑

p=0

{

iπ + ln(2) + ln(2π) + (−1)pα
iπ

2
− ln(1 + (−1)pα)− ln Γ

(

1 + (−1)pα

2

)

− ln Γ

(

−
1 + (−1)pα

2

)}

= 2πi+ 2 ln(4) + 2 ln(π)− ln(1 − α2)− ln

{

Γ

(

1

2
+
α

2

)

Γ

(

1

2
−
α

2

)

Γ

(

−
1

2
+
α

2

)

Γ

(

−
1

2
−
α

2

)}

Now we may define b = ωk/(2πT ) = βωk/(2π), such that α = −2ib and use the relations

Γ

(

1

2
+ ia

)

Γ

(

1

2
− ia

)

=
π

cosh(πa)
(A44)

Γ

(

−
1

2
+ ia

)

Γ

(

−
1

2
− ia

)

=
π

cosh(πa)

(

1

4
+ a2

)−1

(A45)

to obtain

−2

∞
∑

n=−∞

S[ρ̌(kn)] = 2πi+ 2 ln(4) + 2 ln(π)− ln(1 + 4b2)− ln

{

Γ

(

1

2
+ ib

)

Γ

(

1

2
− ib

)

Γ

(

−
1

2
+ ib

)

Γ

(

−
1

2
− ib

)}

= 2πi+ 2 ln(4) + 2 ln(π)− ln(1 + 4b2)− ln

{(

π

cosh(πb)

)2(
1

4
+ b2

)−1}

= 2πi+ ln(4) + 2 ln

(

cosh

(

βωk

2

))

= 2πi+ ln(4) + 2 ln

(

eβωk/2 + e−βωk/2

2

)

= 2πi+ βωk + 2 ln
(

1 + e−βωk

)

. (A46)

We thus obtain the summand of Eq. (4) up to a phase of 2πi, which is of no physical consequence to the partition
function Z(T ) in Eq. (4) since the term appears exponentiated. From Eq. (A43) and Eq. (A46), we may take the
T → 0 limit to prove Eq. (A42), as intended.
Finally, using Eqs. (A46) and (4) we find the result

∑

k

∞
∑

n=−∞

S[ρ̌(kn)] = −
lnZ(T )

4
, (A47)

which is valid for any temperature. The phase of 2πi in Eq. (A46) obtained in the zeta function regularization
contributes to the partition function Z(T ) through a multiplication by e2πi = 1, thus it has no physical consequence
and can be safely removed from Eq. (A47).


