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We discuss how quantum jumps affect localized regimes in driven-dissipative disordered many-
body systems featuring a localization transition. We introduce a deformation of the Lindblad master
equation that interpolates between the standard Lindblad and the no-jump non-Hermitian dynamics
of open quantum systems. As a platform, we use a disordered chain of hard-core bosons with nearest-
neighbor interactions and subject to incoherent drive and dissipation at alternate sites. We probe
both the statistics of complex eigenvalues of the deformed Liouvillian and dynamical observables
of physical relevance. We show that reducing the number of quantum jumps, achievable through
realistic postselection protocols, can promote the emergence of the localized phase. Our findings are
based on exact diagonalization and time-dependent matrix-product states techniques.

Introduction. Sufficiently strong disorder can
markedly hinder the dynamics of many-body systems.
Quantum many-body localized regimes [1–5], wherein
transport is completely arrested, have attracted consid-
erable attention because their inability to thermalize
evades the foundations of statistical mechanics [6–10].
The delocalized and localized regimes, at respectively
weak and strong disorder, are commonly probed by
means of spectral [11, 12] and dynamical proper-
ties [13, 14]. The eigenvalue statistics are generically
expected to transition from Hermitian random-matrix
to one-dimensional Poisson statistics as the strength of
the disorder increases. The transport and information-
spreading properties at strong disorder are expected
to display signs of non-ergodicity, such as dependence
on initial conditions or logarithmic growth of entan-
glement [15, 16]. Various experiments demonstrating
localization transitions have been successfully conducted
across different quantum many-body platforms [17–24].

The inevitable presence of an environment is expected
to destabilize localized regimes, confining their existence
to intermediate timescales before complete thermaliza-
tion with the environment [26–35]. However, it has
recently been demonstrated that non-equilibrium envi-
ronments could sustain localization [36–42], sparking
renewed interest in many-body localization in driven-
dissipative settings. These are often described by
non-Hermitian Hamiltonians, where the non-Hermiticity
mimics the hybridization with reservoirs and can be in-
terpreted in terms of postselection protocols [36–43]. A
natural approach that does not rely on postselection in-
terpretation and which can systematically incorporate
the effects of Markovian environments is the standard
Lindblad quantum master equation approach [44–46]. In
this approach, the environment contributes to two types
of processes: the ones that can be absorbed in a non-

FIG. 1. Sketch of the disordered gain-loss model, see the
Hamiltonian H in Eq. (3) and proposed protocol to imple-
ment the ζ-deformed Liouvillian Lζ in Eq. (2). Both gain
and loss events are monitored by means of realistic detectors
with efficiency 0 ≤ 1−ζ ≤ 1. Here, the postselection interpre-
tation consists in selecting those monitored trajectories with
no jump. See the Supplementary Material [25] for details and
an alternative protocol.

Hermitian Hamiltonian description, and others that can
be interpreted in terms of quantum jumps [45–51]. Re-
cently, frameworks bridging these two approaches have
been developed [52–54]. They rely on suitable deforma-
tions of the standard Lindblad equation and can be ex-
perimentally motivated [55–58].

In this Letter, we question the precise role of quantum
jumps on the fate of localized regimes by working with
a disordered one-dimensional many-body system coupled
to a gain-loss environment. See the schematic in Fig. 1.
To that end, we first introduce a specific deformation
of the standard Lindblad master equation that involves
a parameter ζ ∈ [0, 1] dialing the strength of quantum
jump terms all the way from the non-Hermitian Hamil-
tonian to the standard Lindblad description. Our anal-
ysis of the influence of quantum jumps on the complex
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spectrum as well as on the dynamics of the ζ-deformed
Liouvillian demonstrates that fewer quantum jumps can
result in the emergence of localization at lower disorder
strengths. To put it another way, postselection can pro-
mote localization. We emphasize that this is not only a
formal construction but it can also find an experimental
realization with realistic faulty detectors.
ζ-deformed theory. The Markovian evolution of open

quantum systems is generically described by the Lind-
blad equation ∂tρ(t) = Lρ(t), with the Liouvillian L⋆ :=
−i [H, ⋆]+

∑
α

[
Oα⋆O

†
α −

{
O†

αOα, ⋆
}
/2
]
, where H is the

Hermitian Hamiltonian of the system and the Oα’s with
α = 1, . . . ,M are the jump operators in the M dissi-
pative channels. This Lindblad evolution can be un-
raveled into a quantum-jump trajectory ensemble as
ρ(t) =

∑∞
n=0 ρn(t) where ρn(t) is the conditional density

matrix of the system subjected to precisely n quantum
jumps until time t [45–51]. Let us introduce a weight
ζ ∈ [0, 1] to each jump in a quantum trajectory. In anal-
ogy to the familiar terminology of the grand-canonical
ensemble, we coin it the “quantum-jump fugacity”. This
defines a ζ-deformed ensemble where the density matrix
ρζ(t) =

∑∞
n=0 ζ

nρn(t)/
∑∞

n=0 ζ
nTr [ρn(t)] evolves accord-

ing to the following ζ-deformed Lindblad master equa-
tion,

∂tρζ(t) =
(
Lζ − Tr [Lζρζ(t)]

)
ρζ(t) , (1)

where the ζ-deformed Liouvillian is given by

Lζ⋆ := −i [H, ⋆] +

M∑

α=1

[
ζOα ⋆ O

†
α − 1

2

{
O†

αOα, ⋆
}]
. (2)

The systematic and consistent construction of such a
theory is detailed in the Supplementary Material [25].
The standard Lindblad equation is recovered in the limit
ζ = 1 whereas the limit ζ = 0 corresponds to an
evolution generated by the non-Hermitian Hamiltonian
H̃ = H − i

2

∑M
α=1O

†
αOα. The subscript ζ in ρζ(t) is

to distinguish between the results of the deformed the-
ory and of the standard Lindblad evolution. The ini-
tial condition is given by ρζ(0) = ρ(0) and the evolu-
tion in Eq. (1) is completely positive, Hermiticity and
trace preserving. The latter is ensured by the non-linear
trace term. The observables predicted from Eq. (1) can
be experimentally measured by postselection protocols.
In Fig. 1, we depict a possible protocol where both the
quantum jumps due to gain and loss processes are moni-
tored by means of detectors characterized by an efficiency
1 − ζ, i.e. the error rate of returning a no-click result
when a jump occurred is ζ. Here, the postselection pro-
tocol consists of discarding those trajectories where one
or more jumps were monitored. Decreasing the efficiency
of the detectors increases the average number of quan-
tum jumps in the post-selected dynamics. We discuss an
alternative protocol in the Supplementary Material [25].
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FIG. 2. Complex spacing ratios of the spectrum of Lζ in
Eq. (2): (left) ⟨r⟩ and (right) −⟨cos θ⟩ computed by exact di-
agonalization of a system of L = 8 sites, in the zero charge
sector of the weak U(1) symmetry, and averaged over 160
disorder samples. The bottom strips are obtained using the
non-Hermitian Hamiltonian H̃ (half-filling sector) in Eq. (5)
for system size L = 16 averaged over 160 disorder samples.
The nine black crosses in each panel correspond to the pa-
rameters at which the densities of complex spacing ratios are
presented in Fig. 3.
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FIG. 3. Density of complex spacing ratio defined in Eq. (6)
for representative values of disorder strength h and quantum-
jump fugacity ζ for a system of L = 8 sites in the zero charge
sector of the weak U(1) symmetry, and averaged over 160
disorder samples. The isotropy associated with the localized
phase increases with decreasing ζ or increasing h.

We note that generalized Lindblad equations of the type
of Eq. (1) appear in the studies of full-counting statis-
tics, where they are referred to as tilted or twisted master
equations [59–61].
Disordered gain-loss model. To understand the role of

quantum jumps on the localized-delocalized transition in
non-Hermitian many-body systems, we consider a disor-
dered gain-loss model defined by the following Hamilto-
nian (see Fig. 1)

H =
L∑

i=1

hini − J
L−1∑

i=1

(
b†i bi+1+H.c.

)
+ U

L−1∑

i=1

nini+1, (3)
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with ni = b†i bi, and by the onsite jump operators

Oi =

{√
2γ b†i if i is odd√
2γ bi if i is even .

(4)

The b†i ’s and bi’s, i = 1, . . . , L, are onsite creation and
annihilation operators of hard-core bosons living on a
one-dimensional lattice with L sites and open bound-
ary conditions. The Hamiltonian in Eq. (3) is U(1)-
symmetric, i.e. it conserves the total number of particles
N =

∑L
i=1 ni. hi are independent random energy lev-

els uniformly distributed in the interval [−h, h]. J is the
inter-site hopping amplitude. U is the inter-site interac-
tion which we set to U = 2J for the Hamiltonian to be
equivalent to the disordered Heisenberg spin chain which
has been extensively studied in the context of Hermitian
many-body localization [11–14]. Its transition was found
around h⋆ ≈ 7J in our conventions. γ sets the rates of
both the incoherent gain and loss occurring at alternat-
ing sites, which we set as γ = 0.1J throughout this work.
We choose J as the unit of energy and, therefore, we
set J = 1. The corresponding ζ-deformed Liouvillian Lζ

in Eq. (2) has a weak U(1) symmetry that corresponds
to the conservation of the particle number difference be-
tween the bra and ket sides of the states upon acting with
Lζ , see details in the Supplementary Material [25].

In the limit of ζ = 0, there is an additional weak U(1)
symmetry of L0 that corresponds to conserving the par-
ticle number associated with the bra and ket indepen-
dently. Moreover, the ζ = 0 dynamics boils down to that
of the non-Hermitian gain-loss Hamiltonian

H̃ = H − iγ
L∑

i=1

(−1)ib†i bi , ζ = 0 , (5)

recently studied in Refs. [36, 42, 62]. H̃ also conserves the
total number of particles. It displays a non-Hermitian
many-body localization transition at h⋆ ≈ 4.2 mani-
festing itself as a crossover between AI† non-Hermitian
random-matrix (weak disorder) and two-dimensional
Poisson ensembles (strong disorder). Here, we explore
this physics both from spectral and dynamical points of
view in the general ζ-deformed Lindbladian framework
that captures the effect of quantum jumps in a control-
lable fashion.

Spectral signatures. The Liouvillian Lζ in Eq. (2) is a
non-Hermitian operator and we analyze its complex spec-
trum by means of exact diagonalization. We specifically
compute the statistics of the complex spacing ratio [62]
defined for each eigenvalue z as

ξ =
zNN − z

zNNN − z
= r eiθ , (6)

where zNN and zNNN are the nearest and the next-nearest
neighbor eigenvalues to z (in euclidean distance), respec-

tively. r and θ are respectively the norm and the argu-
ment of ξ. Note that the non-linear trace term in Lζ sim-
ply adds a constant shift to the spectrum and is therefore
inconsequential to level-spacing statistics. The statis-
tics of ξ are indicative of the chaotic or regular nature
of complex-valued spectra and have been studied in the
context of non-Hermitian interacting disordered Hamil-
tonians [41, 62, 63] and open quantum systems described
by standard Lindblad evolutions [62, 64–69]. For chaotic
systems, the eigenvalues experience level repulsion result-
ing in a vanishing complex spacing ratio distribution at
small r and an anisotropic angular pattern. The distri-
butions of r and θ are generically dictated by Ginibre
random matrix ensembles, and their averages take the
value ⟨r⟩ ≈ 0.738 and −⟨cos θ⟩ ≈ 0.244. On the other
hand, for uncorrelated energy levels, the complex spac-
ing ratio is uniformly distributed inside a unit circle [62]
with ⟨r⟩ = 2/3 and −⟨cos θ⟩ = 0.

In Fig. 2, we present ⟨r⟩ and −⟨cos θ⟩ as a function
of both the disorder strength h and the quantum-jump
fugacity ζ. The results are obtained from the zero charge
sector of the weak U(1) symmetry for a system of L = 8
sites and after averaging over 160 disorder samples. For
the standard Lindblad evolution at ζ = 1, we find a
clear transition between random matrix predictions at
weak disorder and two-dimensional Poisson predictions
at strong disorder. When ζ is reduced, the location of this
transition is shifted to lower disorder strengths: reduc-
ing the number of quantum jumps facilitates the emer-
gence of localization. In the ζ = 0 case, the additional
weak U(1) symmetry is responsible for spurious statistics
which are known to produce deceitful level attraction be-
tween eigenvalues of different symmetry sectors. We at-
tribute the apparent loss of a delocalized phase in the
vicinity of ζ = 0 to a remnant of this extra symmetry.
To circumvent this situation at ζ = 0, one should resort
to analyzing the spectrum of the non-Hermitian Hamil-
tonian [36, 42, 62] in Eq. (5). The corresponding results
are presented in the strips of Fig. 2. In Fig. 3, we illus-
trate further these effects of disorder and quantum-jump
fugacity by presenting representative plots of the density
of complex spacing ratios ξ in Eq. (6) for different values
of h and ζ. At strong disorder and weak fugacity, we
find that this distribution is isotropic and homogeneous
within the unit circle, which is a hallmark of integrable
systems. On the other hand, for weak disorder and large
fugacity, the distribution is found to be anisotropic and
inhomogeneous, which is expected for chaotic systems.

Dynamical signatures. Strong disorder slows down
the dynamics by raising the energetic barriers that sup-
press the inter-site hopping. A hallmark of localized dy-
namics is the ever-lasting memory of their initial condi-
tions. We choose to work with the charge density wave
initial state ρ(0) = |1, 0, · · · , 1, 0⟩⟨1, 0, · · · , 1, 0| which is
a product state and a steady-state of the ζ-deformed
gain-loss dynamics in the absence of particle hopping,
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FIG. 4. (Left panel) Steady-state imbalance, I(t → ∞) de-
fined in Eq. (7), as a function of disorder strength h and
quantum-jump-fugacity ζ. The lower strip corresponds to
ζ = 0. (Right panel) Steady-state rate of dynamical activity,

Ȧ(t → ∞) defined in Eq. (8). The lower panels correspond to
the cuts at ζ = 0.2 and ζ = 1 indicated in the upper panels.
The dynamics are generated by Eq. (1). For imbalance (resp.
dynamical activity), we consider a system of L = 10 (resp.
L = 8) sites averaged over 100 (resp. 160) disorder sam-
ples. The four black dots in the upper left panel correspond
to the parameters at which the transient time-dynamics are
produced in Fig. 5.

J = 0. We numerically integrate the subsequent dy-
namics generated by Eq. (1) by employing a standard
fourth-order Runge-Kutta algorithm (RK45). We quan-
tify the fate of the staggered order present in the initial
state ρ(0) by computing the dynamics of the so-called
imbalance [17, 70]

I(t) =
∑L

i=1(−1)i+1Tr
[
b†i biρζ(t)

]

∑L
i=1 Tr

[
b†i biρζ(t)

] . (7)

This is a directly observable quantity, −1 ≤ I(t) ≤ 1,
with I(t = 0) = 1. Additionally, exploiting the formal
analogy between full-counting statistics (FCS) in grand-
canonical ensembles [60] and the quantum trajectories
ensemble interpretation of Lindblad dynamics [71, 72],
we monitor the rate of dynamical activity [72, 73]

Ȧ(t) =
1

ζ
∂t⟨n(t)⟩ζ , (8)

where ⟨n(t)⟩ζ is the number of quantum jumps occur-
ring between time t = 0 to t averaged over the quan-
tum trajectories generated by Lζ . For the standard
Lindblad evolution ζ = 1, the steady-state rate of dy-
namical activity is directly related to the imbalance as
Ȧ(t → ∞) = γ L [1− I(t→ ∞)]. For ζ < 1, Ȧ(t → ∞)
involves additional contributions from two-time jump
correlations. Details of this connection to FCS are pro-
vided in the Supplementary Material [25].
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FIG. 5. Time dynamics of the imbalance I(t) defined in
Eq. (7) for representative values of the quantum-jump fugac-
ity ζ and the disorder strength h given in the legend. The data
are produced by numerically-exact integration of Eq. (1) for
a system of L = 10 sites and averaged over 100 disorder sam-
ples.

In Fig. 4, we present both the steady-state imbalance
I(t → ∞) and the rate of dynamical activity Ȧ(t → ∞)
as a function of the disorder strength h and the quantum-
jump fugacity ζ. The results are consistent with those
obtained from spectral statistics. For the standard Lind-
blad evolution ζ = 1, we find a clear transition from a
steady state with vanishing imbalance and a finite rate
of dynamical activity at weak disorder to a steady state
with imbalance close to unity and a vanishing rate of
activity. When ζ is reduced, the location of this tran-
sition is shifted to lower disorder strengths, confirming
once again that quantum jumps tend to destabilize the
localized regime. Contrary to the results of the spectral
statistics above, these dynamical indicators are not prone
to subtleties involving symmetry sectors. At finite but
very small ζ, the time it takes to reach the steady state
diverges since the typical timescale between two jumps
can be roughly estimated to be τ ∼ 1/γζ. Indeed, the
limits t → ∞ and ζ → 0 are generically not expected to
commute. This results in significant numerical challenges
in capturing the steady state and we do not provide data
in the regime ζ ≪ 1. To better illustrate the influence of
the disorder strength h and the quantum-jump fugacity
ζ, the lower panels of Fig. 4 show the steady-state imbal-
ance and rate of dynamical activity as a function of h for
two representative values of ζ.

In Fig. 5, we show the transient dynamics of imbalance
from the initial state till the steady state for representa-
tive values of the disorder strength h and the quantum-
jump fugacity ζ. The steady-state values increase with
h and decrease with ζ. The timescale of the approach
to the steady state is dictated by the inverse of the min-
imum Liouvillian gap [74]. We have used this spectral
information to ensure the convergence of all steady-state
results presented in this Letter. While the system sizes
presented so far, up to L = 10, are state-of-the-art when
it comes to exactly computing the dynamics of open
quantum systems, they are still relatively small owing to
the challenges posed by numerical time integration. To
firmly assert the influence of quantum jumps on the local-
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FIG. 6. Time dynamics of the imbalance I(t) for a very large
system, L = 32, deep in the localized regime, h = 20, and for
representative values of the quantum-jump fugacity ζ given
in the legend. The data are produced by means of a time-
dependent matrix product state (MPS) technique and aver-
aged over 100 disorder samples. The dashed lines correspond
to the results obtained by numerically-exact integration of
Eq. (1) for a system of L = 10 sites.

ized regime, we resort to a time-dependent matrix prod-
uct state (MPS) technique that allows us to reach much
larger system sizes, up to L = 32. In practice, we im-
plemented a time-evolving block decimation (TEBD) of
a matrix product density operator (MPDO) representa-
tion of the ζ-deformed Lindblad evolution in Eq. (1). See
the Supplementary Material [25] for details. The results
are averaged over 100 disorder samples. This technique
produces reliable results deep in the localized regime and
we work at h = 20 where convergence is achieved with a
maximal bond dimension of χ = 27. In Fig. 6, we show
the transient dynamics of the imbalance from the initial
state till the steady state for representative values of the
quantum-jump fugacity ζ. The MPS results entirely val-
idate the previous results obtained by numerically-exact
integration of systems of smaller sizes.

Conclusion and discussion. We started from a disor-
dered many-body system that already exhibited a local-
ized regime and found that postselection protocols can
facilitate localization at lower disorder strengths. This
is different from the measurement-induced phase tran-
sitions (MIPT) [75–77] where repeated measurements
can localize featureless systems such as random unitary
circuits [78] or free fermions [79] but are facing a ma-
jor experimental challenge as they rely on generating
and recording a large number of measurement trajecto-
ries. In our case, the ζ-deformed Lindblad offers both
a spectral and a dynamical window into the localized
phase. This approach not only harnesses standard meth-
ods of full counting statistics to the study of Lindblad
dynamics, but it is also physically realizable by means
of realistic postselection protocols in quantum optical se-
tups. It can easily be adapted to other systems of in-
terest in condensed matter and quantum optics, such as
open quantum spin chains, and driven-dissipative Jaynes-
Cummings Hubbard systems, to name a few.
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3Department of Chemistry, University of California, Irvine, CA 92614, USA

4Department of Physics and Astronomy, University of California, Irvine, CA 92614, USA
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I. CONSTRUCTION OF THE ζ-DEFORMED THEORY

In this Section, we first briefly review the quantum jump trajectory interpretation of standard Lindblad master
equations. Later, we discuss the deformation of the Lindblad equation introduced in the main manuscript in the
language of quantum jump trajectories. Finally, we connect this deformation to physical post-selection protocols and
non-Hermitian Hamiltonians.

A. Quantum jump trajectory interpretation of standard Lindblad dynamics

Let us consider a generic open quantum many-body system described by the following standard Lindblad master
equation [1–3]

∂tρ(t) = Lρ(t) , (S1)

with the Liouvillian

L ⋆ = −i [H, ⋆] +
M∑

α=1

D[Oα] ⋆ , (S2)
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where H is the (Hermitian) Hamiltonian, D[O] ⋆ := O⋆O†− 1
2

{
O†O, ⋆

}
is the standard Lindblad dissipator, and the

Oα’s are the jump operators where α = 1, 2, . . .M labels the dissipation channels. Let us start from a generic initial
state, described by a statistical mixture of pure states,

ρ(0) =
∑

m

pm|ψm(0)⟩⟨ψm(0)| , with ⟨ψm(0)|ψm(0)⟩ = 1 , pm > 0 , and
∑

m

pm = 1 . (S3)

At time t, the state of the system is given by

ρ(t) = eLtρ(0) . (S4)

The standard quantum-trajectory interpretation of the Lindblad dynamics [2–8] involves separating the term respon-
sible for the quantum jumps as

L = L0 + LJ , (S5)

with the quantum-jump contribution reading

LJ ⋆ :=
M∑

α=1

Oα ⋆ O
†
α , (S6)

and L0 containing both the unitary dynamics generated byH and the non-Hermitian contribution from the dissipators,

L0 ⋆ := −iH̃ ⋆+ ⋆ iH̃† . (S7)

Here, the effective non-Hermitian Hamiltonian H̃ is defined as

H̃ := H − i

2

M∑

α=1

O†
αOα . (S8)

The time evolution of the density matrix given in Eq. (S4) can now be formally re-expressed as a

ρ(t) =
∞∑

n=0

∫ t

0

dτn · · ·
∫ τ2

0

dτ1e
L0(t−τn)LJe

L0(τn−τn−1) · · · eL0(τ2−τ1)LJe
L0τ1ρ(0) , (S9)

where we recall that

eL0λ ⋆ = e−iH̃λ ⋆ eiH̃
†λ (S10)

for any parameter λ. The expression in Eq. (S9) can be interpreted as a Dyson series that sums over all the possible
quantum jumps interrupting the dynamics generated by L0. The n = 0 term corresponds to the non-Hermitian
(no-jump) evolution. Equation (S9), along with Eq. (S3), can be further rewritten as

ρ(t) =
∞∑

n=0

ρn(t) , (S11)

where the operator ρn(t) is the contribution to the density matrix corresponding to evolution with a fixed number n
of quantum jumps occurring between time t = 0 and t and that reads

ρ0(t) = eL0tρ(0) , (S12)

ρn(t) =
∑

m

pm

M∑

α1=1

· · ·
M∑

αn=1

∫ t

0

dτn · · ·
∫ τ2

0

dτ1

︸ ︷︷ ︸
sum over all trajectories with n jumps

P αn, τn
m (t)

∣∣ψαn, τn
m (t)

〉〈
ψαn, τn
m (t)

∣∣ , n ≥ 1 . (S13)

The symbols αn and τn stand for the sequence of jump channels (α1, α2, . . . , αn) and jump times (τ1, τ2, . . . , τn),
respectively, and we have used Eq. (S10) in writing Eq. (S13). Along with the initial state index m, these two
sequences define a single quantum trajectory between time t = 0 and t with a total of n quantum jumps.

∣∣ψαn, τn
m (t)

〉
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is the normalized conditional wave function of the system at time t which started in state |ψm(0)⟩ and underwent an
evolution with the precise sequence of jump channels αn and jump times τn. It reads

∣∣ψαn, τn
m (t)

〉
=

∣∣ψ̃αn, τn
m (t)

〉
√
P αn, τn
m (t)

, (S14)

where

∣∣ψ̃αn, τn
m (t)

〉
:= e−iH̃(t−τn)Oαn

e−iH̃(τn−τn−1)Oαn−1
· · · e−iH̃(τ2−τ1)Oα1

e−iH̃τ1 |ψm(0)⟩ , (S15)

and P αn, τn
m (t) is the probability of a quantum trajectory introduced above, given by

P αn, τn
m (t) =

〈
ψ̃αn, τn
m (t)

∣∣ψ̃αn, τn
m (t)

〉
. (S16)

Importantly, the fact that ρn(t) can be written in the form of
∑

µ Pµ|ψµ⟩⟨ψµ| with Pµ ≥ 0 ensures its positive semi-

definiteness. Tr ρn(t) is precisely the probability of having experienced n quantum jumps from time t = 0 to t. This
gives a probabilistic meaning to the quantum trajectories. The special case of trajectories with no jump (n = 0)

corresponds to the evolution generated by the non-hermitian Hamiltonian H̃ in Eq. (S8) [9–12]:

|ψ(t)⟩ = e−iH̃t|ψ(0)⟩√
⟨ψ(t)|ψ(t)⟩

. (S17)

Notably, taking the time-derivative of Eq. (S13), one may check that the dynamics of the operators ρn(t) follow

∂tρn(t) = L0ρn(t) + LJρn−1(t) for n ≥ 1 , (S18)

∂tρ0(t) = L0ρ0(t) . (S19)

This expresses the fact that a quantum state at time t that is the result of n− 1 jumps may either evolve linearly to
time t+ dt under the action of H̃ or be subject to a nth jump.

B. ζ-deformed Lindblad dynamics

Starting from Eq. (S11), and its quantum trajectory interpretation, we now generalize the trajectory ensemble to a
grand canonical ensemble by introducing a quantum jump fugacity ζ, with 0 ≤ ζ ≤ 1, which weights the trajectories
with different numbers of jumps n. From this perspective, the number of quantum jumps n is analogous to the number
of particles in the standard construction of statistical mechanics. The corresponding grand-canonical density matrix
is constructed as

ρζ(t) :=
1

Zζ(t)

∞∑

n=0

ζnρn(t) , where Zζ(t) :=

∞∑

n=0

ζnTr[ρn(t)] (S20)

is the grand-canonical partition function, ensuring Tr[ρζ(t)] = 1 at all times and where ρn(t) is given in Eq. (S13).
The original density matrix ρ(t) in Eq. (S11) is recovered by setting ζ = 1 in Eq. (S20). The no-jump case is recovered
by setting ζ = 0.

The time evolution of the grand-canonical density matrix ρζ(t) introduced in Eq. (S20) can be computed by using
the conditional evolution Eq. (S18). One obtains the following ζ-deformed Lindblad master equation

∂tρζ(t) =
(
Lζ − Tr [Lζρζ(t)]

)
ρζ(t), (S21)

where we introduced the ζ-deformed Liouvillian

Lζ := L0 + ζLJ = −i [H, ⋆] +
∑

α

[
ζOα ⋆ O

†
α − 1

2

{
O†

αOα, ⋆
}]
. (S22)

The evolution in Eq. (S21) interpolates between the no-jump evolution at ζ = 0 and the original Lindblad master
equation in Eq. (S1) at ζ = 1. Note that the trace term in Eq. (S21) stems from the factor Zζ(t) in Eq. (S20) and we
used ∂tZζ(t) = Zζ(t) Tr[Lζρζ(t)]. This trace term ensures the trace-preserving property of the dynamics of ρζ(t) and
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makes the ζ-deformed Lindblad master equation non-linear. However, the density matrix in the ζ-deformed theory
can be linearly related to the initial density matrix of the non-deformed theory via

ρζ(t) =
1

Zζ(t)
eLζtρ(0) . (S23)

Equation (S23) may be checked by direct substitution into Eq. (S21) and implies a re-expression of the ζ-deformed
partition function as

Zζ(t) = Tr[eLζtρ(0)] . (S24)

Moreover, Eq. (S23) shows that the operator ρζ(t) inherits its Hermiticity property from ρ(0). The positive semi-
definite property of ρζ(t) is ensured by the probabilistic interpretation of ρn(t) in terms of quantum trajectories
discussed in Eq. (S13). Alternatively, this can be seen by recasting the infinitesimal evolution operator 1 − Lδt in a
Krauss form and using the Krauss theorem. Therefore, ρζ(t) has all the expected properties of a well-defined density
matrix. Importantly, when evolving with the ζ-deformed Liouvillian, the non-negative quantity ζn Tr ρn(t) is precisely
the probability of having experienced n quantum jumps from time t = 0 to t. This interpretation is equivalent to the
imperfect detection scheme that was discussed in Ref. [13, 14].

C. Post-selection interpretation at ζ < 1

Having argued the mathematical consistency of the ζ-deformed theory in the above subsection, we now discuss
how it can also be physically motivated. We have already presented one possible post-selection protocol to effectively
realize the dynamics in the ζ-deformed theory based on imperfect detectors. See Fig. 1 of the main manuscript. Here,
we provide another possible implementation that was recently proposed in Ref. [13].

Let us consider the original system, evolving with the original Liouvillian L. Each dissipation channel can always
be thought of as coupling the system to baths. We consider each channel coupled to two identical baths with coupling
strength

√
ζ and

√
1− ζ, respectively. This amounts in formally re-writing the original Liouvillian as

L ⋆ = −i[H, ⋆] + ζ
M∑

α=1

D[Oα] ⋆

︸ ︷︷ ︸
non-monitored

+ (1− ζ)
M∑

α=1

D[Oα] ⋆

︸ ︷︷ ︸
monitored

. (S25)

Instead of system-bath couplings, such a decomposition can also be seen as coupling each of the dissipation channels
to a beam splitter which sends the particle into two detectors with probability ζ and 1 − ζ, respectively. The post-
selection protocol consists in constantly monitoring the later bath/detector only. The results of this monitoring are
used to post-select the quantum trajectories with no-jump with respect to the monitored bath/detector. The resulting
dynamics is equivalent to erasing the jump term from the second Lindblad term in Eq. (S25). It is now described by

Lζ = −i [H, ⋆] +
∑

α

[
ζOα ⋆ O

†
α − 1

2

{
O†

αOα, ⋆
}]
. (S26)

After normalizing observables with respect to the number of post-selected trajectories, in the limit of a large number
of these, the results will match the ones computed from the dynamics governed by the trace-preserving Eq. (S21).

II. CONNECTION TO FULL COUNTING STATISTICS

In this Section, we exploit the connection of the ζ-deformed theory to full counting statistics in order to relate the
imbalance to an analog of a thermodynamic quantity, namely the activity.

In the limit ζ = 1, the partition function introduced in Eq. (S20) can be seen as a moment generating function
for the number of quantum jumps, or the activity in the language of full counting statistics, with ζ serving as the
counting field. The time-dependent free energy, or the cumulant generating function, is defined as

Fζ(t) := lnZζ(t) = ln

( ∞∑

n=0

ζn Tr[ρn(t)]

)
. (S27)
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Consequently, we get

∂

∂ ln ζ
Fζ(t) = ⟨n(t)⟩ζ =: ζ A(t) , (S28)

where ⟨n(t)⟩ζ is the average number of quantum jumps in the ζ-deformed theory,

⟨n(t)⟩ζ =

∞∑

n=0

n ζn Tr[ρn(t)] ≥ 0 (S29)

and A(t) is the so-called dynamical activity. Taking another derivative with respect to ln ζ yields

∂

∂ ln ζ
⟨n(t)⟩ζ = ⟨n(t)2⟩ζ − ⟨n(t)⟩2ζ ≥ 0 , (S30)

implying that the average number of quantum jumps between time t = 0 and t is a non-decreasing function of ζ.
Naturally, the number of quantum jumps is also a non-decreasing function of t. The associated rate of quantum jumps
is directly related to the rate of dynamical activity, given by

Ȧ(t) =
1

ζ
∂t⟨n(t)⟩ζ ≥ 0 . (S31)

Ȧ(t) can be computed by first taking the derivative of Fζ(t) with respect to ζ and subsequently taking another
derivative with respect to t

Ȧ(t) =
∂2

∂t ∂ζ
Fζ(t) . (S32)

The former yields

∂

∂ζ
Fζ(t) =

1

Zζ(t)

t∫

0

dτ Tr
[
eLζ(t−τ)LJe

Lζτρ(0)
]
, (S33)

and the latter yields

Ȧ(t) = Tr [LJρζ(t)]−
1− ζ

Zζ(t)




t∫

0

dτ Tr
[
LJe

Lζ(t−τ)LJe
Lζτρ(0)

]
− Tr [LJρζ(t)]

t∫

0

dτ Tr
[
eLζ(t−τ)LJe

Lζτρ(0)
]



= Tr [LJρζ(t)]−
1− ζ

Zζ(t)

t∫

0

dτ Tr
[
(LJ − Tr [LJρζ(t)]) e

Lζ(t−τ) (LJ − Tr [LJρζ(τ)]) e
Lζτρ(0)

]
. (S34)

This equation can finally be rewritten as,

Ȧ(t) =
〈
LJ(t)

〉
− (1− ζ)

t∫

0

dτ
〈
[LJ(t)− ⟨LJ(t)⟩] [LJ(τ)− ⟨LJ(τ)⟩]

〉
, (S35)

where in Eq. (S35) we introduced the notation

⟨· · · ⟩ := 1

Zζ(t)
Tr
[
T e

∫ t
0
dτ Lζ · · · ρ(0)

]
, (S36)

with the time-ordering operator T and Zζ(t) is given in Eq. (S24). The Eq. (S35) shows that for the standard Lindblad
evolutions (ζ = 1), the rate of dynamical activity can be simply expressed in terms of a single-time observable. In the
generic case ζ < 1, the rate of dynamical activity is reduced by additional contributions which can be expressed as a
two-time connected correlation function of the jump operators.
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In our specific model, the term ⟨LJ(t)⟩ is related to imbalance via

⟨LJ(t)⟩ =
L∑

i=1

⟨O†
i (t)Oi(t)⟩ = 2γ

[
L

2
−

L∑

i=1

(−1)i+1 ⟨b†i (t)bi(t)⟩
]
= 2γ

(
L

2
− ⟨I(t)⟩

)
, (S37)

where we used the hard-core boson anti-commutation relations {bn, b†n} = 1 and ⟨I(t)⟩ is the numerator of the
imbalance introduced in the main manuscript,

I(t) := ⟨I(t)⟩
⟨N(t)⟩ , (S38)

with

⟨I(t)⟩ :=
L∑

i=1

(−1)i+1Tr
[
b†i biρζ(t)

]
and the total number ⟨N(t)⟩ :=

L∑

i=1

Tr
[
b†i biρζ(t)

]
. (S39)

At ζ = 1, the two-time quantum jump correlator does not participate and we simply obtain Ȧ(t) = 2γ (L/2− ⟨I(t)⟩).
In the limit t→ ∞, we have ⟨N(t→ ∞)⟩ = L/2 (see Sect. IV), and the rate of dynamical activity is directly related
to the imbalance as

Ȧ(t→ ∞) = γ L (1− I(t→ ∞)) , ζ = 1 . (S40)

If we further assume that the disorder is strong enough to be in the localized regime, I(t → ∞) → 1 (see Sect. IV)

and Ȧ(t→ ∞) → 0. The numerical results presented in Fig. 4 of the main manuscript are in perfect agreement with
the identity in Eq. (S40).

III. SYMMETRIES OF Lζ IN THE GAIN-LOSS MODEL

In this Secion, we discuss the symmetries of the ζ-deformed Liouvillian Lζ defined in Eq. (S22) with the Hamiltonian
introduced in the main manuscript that reads

H =
L∑

i=1

hib
†
i bi − J

L−1∑

i=1

[
b†i bi+1 + b†i+1bi

]
+ U

L−1∑

i=1

b†i bib
†
i+1bi+1 , (S41)

where the bi’s are hard-core bosons and the jump operators

Oi =

{√
2γ b†i if i is odd√
2γ bi if i is even .

(S42)

The isolated Hamiltonian given in Eq. (S41) is U(1)-symmetric, corresponding to a conservation of the total particle

number N =
L∑

i=1

b†i bi, that is [H, N ] = 0. On the other hand, the ζ-deformed Liouvillian in Eq. (S22) has a weak-U(1)

symmetry,

[Lζ , N−] = 0 , where N− ⋆ := [N, ⋆] . (S43)

The operator N−, when acting on a state |n, α⟩⟨m,β| where n, m are the quantum numbers associated to the U(1)
symmetry and α, β account for all other quantum numbers defining the state, counts the number difference on the
ket and bra side of the state, i.e. n−m. The weak symmetry translates into conserving this number difference upon
acting with Lζ , and therefore along the dynamics generated by Lζ .

Let us now explicitly show the weak symmetry in Eq. (S43) using a generic state ρ. For the sake of simplicity, we
only consider a single dissipative channel with jump operator O =

√
2γ b†, and the general case follows immediately.

We expand the commutators

[Lζ , N−]ρ = Lζ(Nρ− ρN)− [NLζ(ρ)− Lζ(ρ)N ] (S44)

= L0(Nρ− ρN)− [NL0(ρ)− L0(ρ)N ] + ζ {LJ(Nρ− ρN)− [NLJ(ρ)− LJ(ρ)N ]}

= −1

2

{
O†O(Nρ− ρN) +O†O(Nρ− ρN)

}
+ ζ {LJ(Nρ− ρN)− [NLJ(ρ)− LJ(ρ)N ]}

= ζ {LJ(Nρ− ρN)− [NLJ(ρ)− LJ(ρ)N ]}
= ζ

{
O(Nρ− ρN)O† −

[
NOρO† −OρO†N

]}

= 0 ,
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where we used [H,N ] = 0 in the third line, and in the fourth line we used the fact that our choice of jump operators
obeys [O†O,N ]. In the sixth line, we used the commutation relations [O,N ] = −O and [O†, N ] = O†.

For the special case ζ = 0, Lζ=0 = L0 has an additional weak U(1) symmetry

[L0, N+] = 0 , where N+ ⋆ := {N, ⋆} . (S45)

Indeed,

[L0, N+]ρ = L0(Nρ+ ρN)− [NL0(ρ) + L0(ρ)N ] (S46)

= L0(Nρ+ ρN)− [NL0(ρ) + L0(ρ)N ]

= −1

2

{
O†O(Nρ+ ρN) + (Nρ+ ρN)O†O

}
+

1

2

{
N(O†Oρ+ ρO†O) + (O†Oρ+ ρO†O)N

}

= 0 ,

where we also used [H,N ] = [O†O,N ] = 0. For this ζ = 0 case, one can form linear combinations of the two weak

U(1) symmetry generators as Nket/bra = N+±N−
2 , which count particle number on the ket and bra sides, respectively.

IV. EQUATION OF MOTION FOR POPULATION AND IMBALANCE

In this Section, we present the equations of motion under the evolution generated by Eq. (S21) for the average total
number of particles

⟨N(t)⟩ := Tr

[
N∑

i=1

b†i bi ρ(t)

]
, (S47)

and

⟨I(t)⟩ := Tr

[
N∑

i=1

(−1)i+1b†i bi ρ(t)

]
, (S48)

that are, respectively, the numerator and the denominator of the imbalance I(t) introduced in Eq. (S38). Defining
the average bond current between sites i and i+ 1 as

Ji(t) := −iJ Tr
[
(b†i bi+1 − b†i+1bi)ρ(t)

]
, (S49)

we obtain the set of equations

⟨İ⟩
2γ

= (1− ζ)
(
⟨I2⟩ − ⟨I⟩2

)
+ ζ

(
L

2
− ⟨I⟩

)
− 1

γ

L−1∑

i=1

(−1)i+1Ji , (S50)

⟨Ṅ⟩
2γ

= (1− ζ) (⟨NI⟩ − ⟨N⟩⟨I⟩) + ζ

(
L

2
− ⟨N⟩

)
. (S51)

Once the steady state is reached, the left-hand sides of these equations vanish. This implies, notably, that in the
standard Lindblad evolution (ζ = 1), the steady state is half-filled, i.e. ⟨N(t → ∞)⟩ = L/2 and its imbalance
I(t → ∞) → 1 deep in the localized regime where one expects the staggered current in the right-hand side of
Eq. (S50) to vanish. Since our initial state |1, 0, . . . , 1, 0⟩ is maximally imbalanced (with charge L/2) we have I(t) = 1
for all t ≥ 0 deep in the localized regime. On the other hand, in the non-Hermitian limit (ζ = 0), Eq. (S51) implies
that the steady state is a pure Fock state of the form, e.g., |1, 1, . . . , 0, 1⟩. Deep in the localized regime where the

staggered current is expected to vanish, the dynamics of ⟨I⟩ is completely arrested, i.e. ⟨İ⟩ = 0 for all t ≥ 0, since
the initial state |1, 0, . . . , 1, 0⟩ is an eigenstate of imbalance and of the non-Hermitian Hamiltonian. This implies that
the imbalance I(t) = 1 for all t ≥ 0 deep in the localized regime in both the ζ = 1 and ζ = 1 regimes.

V. TIME-DEPENDENT MATRIX PRODUCT STATE SOLVER

In this Section, we provide a pedagogical introduction to the matrix product density operators (MPDO) represen-
tation of states. Later, we detail our implementation of the time-evolving block decimation (TEBD) solver which
we use to solve the dynamics of large systems, up to L = 32. Lastly, we demonstrate the convergence of the results
presented in Fig. 6 of the main manuscript.
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FIG. S1. Two equivalent ways to represent the matrix elements of the density operator in the computational basis: (Left)
ket and bra indices for all the sites are separately clubbed together, and (Right) ket and bra indices for each site are clubbed
together.

FIG. S2. (Top) Matrix product density operator (MPDO) representation of the density matrix, and (Bottom) MPDO is
conveniently normalized as Tr[ρ†ρ] = 1, rather than Tr[ρ] = 1.

A. Matrix product density operators (MPDO) representation of states

The Hilbert space of a system of hard-core bosons on a one-dimensional lattice of L sites is of dimension 2L.
Consequently, the matrix representation of the density matrix is of at most 4L real parameters. In the Fock state
basis, this can be generically represented as

ρ =
1∑

nl
1,n

r
1=0

· · ·
1∑

nl
L,nr

L=0

ρn
l
1,n

r
1;··· ;nl

L,nr
L |nl1, · · · , nlL⟩⟨nr1, · · · , nrL| , (S52)

where |nl1, · · · , nlL⟩ are the Fock states spanning the Hilbert space. The superscripts l and r indicate ket and bra,

respectively. ρn
l
1,n

r
1;··· ;nl

L,nr
L is a tensor with 2L indices n

l/r
i , i = 1, . . . , L taking values in {0, 1}. ρnl

1,n
r
1;··· ;nl

L,nr
L is

represented on the right side of Fig. S1.
The Matrix Product Density Operator (MPDO) representation of such a density matrix is given by by [15–17]

ρn
l
1,n

r
1;··· ;nl

L,nr
L =

D1∑

χ1=1

· · ·
DL−1∑

χL−1=1

σ1
nl
1,n

r
1

χ0χ1 σ2
nl
2,n

r
2

χ1χ2 · · ·σL−1
nl
L−1,n

r
L−1

χL−2χL−1 σL
nl
L,nr

L
χL−1χL . (S53)

This is depicted schematically in Fig. S2. Here, at a given site i, the so-called site tensor σi
nl
i,n

r
i

χi−1χi is four-dimensional
(three-dimensional at the boundaries. The subscript indices indicate the bond/auxiliary dimensions χi ∈ {1, · · · , Di}



9

FIG. S3. (Left) Site tensor is left normalized, and (Right) Site tensor is right normalized.

with Di ≤ min{22i, 22(L−i)} for i = 1, 2, . . . , L− 1 and χ0 = χL = 1, and quantify the maximal amount of operator
entanglement entropy of the density operator [18]. The denomination “matrix product density operator” comes from

noting that, for a given value of the physical indices, nli, n
r
i , each site tensor is a matrix and hence ρn

l
1,n

r
1;··· ;nl

L,nr
L is

given by a product of matrices, where the contraction is performed along the bond dimensions.
It is important to note that the matrix product density operator representation is not unique [15]. Indeed, let us

consider L− 1 invertible matrices Xi of dimension Di ×Di with i = 1, 2, . . . , L− 1. If we transform the site tensors
with fixed physical dimension as,





σ
nl
1,n

r
1

1 → σ
nl
1,n

r
1

1 X1,

σ
nl
i,n

r
i

i → X−1
i−1σ

nl
i,n

r
i

i Xi for i = 2, 3 . . . , L− 1 ,

σ
nl
L,nr

L

L → X−1
L−1σ

nl
L,nr

L

L ,

(S54)

the new site tensors give the same density matrix upon contraction. For various matrix product state algorithms,
there are three typical representations which simplify the computations:

(i) Left canonical form is such that all site tensors satisfy the orthonormality condition,

∑

χi−1,nl
i,n

r
i

σ∗
i
nl
i,n

r
i

χi−1χi
σi

nl
i,n

r
i

χi−1χ′
i
= δχiχ′

i
, (S55)

depicted on the left side of Fig. S3.

(ii) Right canonical form is such that all site tensors satisfy the orthonormality condition,

∑

χi,nl
i,n

r
i

σ∗
i
nl
i,n

r
i

χi−1χi
σi

nl
i,n

r
i

χ′
i−1χi

= δχi−1χ′
i−1

, (S56)

depicted on the right side of Fig. S3.

(iii) Mixed canonical form is such that for a specific site, say i, called the orthonormality center, all the preceding
site tensors are in the left canonical form and all the following site tensors are in the right canonical form.

Any MPDO can be brought into any of these canonical forms using QR decomposition [15]. Notice that in the left
and right canonical forms, the matrix product density operator representation of a density matrix is normalized to
Tr
[
ρ†ρ
]
= 1. Once the steady-state or the time-dependent density matrix is obtained from the matrix product state

algorithm, one divides the expectation value of observables by Tr [ρ].
The approximation methods for computing steady-state density matrices as well as time-propagating density matri-

ces under generic Markovian evolutions using matrix product density operator representation involve approximating
MPDOs by truncating them to a maximal bond dimension χ, max{D1, · · · , DL−1} ≤ χ. With such an approximation,
the density matrix is parameterized by at most 4×χ2 ×L (linear in system size) parameters as opposed to the exact
representation which needs 4L (exponential in system size) parameters.

B. Dynamics of MPDO with time-evolving block decimation

The time evolution of matrix product density operator representation of the density matrix, namely the site tensors
σi’s, is performed using the generalization of the time-evolution by block decimation algorithm [15, 19–21] proposed in
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FIG. S4. Second-order approximation of the short-time propagator eLζδτ . Here, L is assumed to be an even number.

Ref. [22], also see the reviews in Refs. [16, 17]. The time evolution by block decimation technique for time propagation
involves Trotter approximating the short-time evolution operator. Here, we used second-order Trotterization [15, 21].
For nearest neighbor Liouvillians such as the ones considered in this work, the Trotterization involves making use of
the two-site structure of the Liouvillian,

Lζ =
L−1∑

i=1

Lii+1 := Lodd + Leven , (S57)

and approximating the short-time propagator as

eLζδτ = eLodd
δτ
2 eLevenδτeLodd

δτ
2 +O

(
(δτ)3

)
, (S58)

which is depicted in Fig. S4.
The Trotter decomposition error is controlled by choosing the size of the time step, here δτ ≤ 10−2. Each odd and

even site propagator are direct product of two-site propagators,

eLoddτ = ⊗i∈odde
Lii+1τ (S59)

eLevenτ = ⊗i∈evene
Lii+1τ . (S60)

This structure allows us the joint update of nearest-neighbor pairs of site tensors, say σi and σi+1, by means of
two-site gate evolution operators. In practice, we first construct the two-site tensor

Yi,i+1
nl
i,n

r
i ;n

l
i+1,n

r
i+1

χi−1χi+1
=
∑

nl′
i ,nr′

i

∑

nl′
i+1,n

r′
i+1

[eLii+1τ ]n
l
i,n

r
i ,n

l
i+1,n

r
i+1;n

l′
i ,nr′

i ,nl′
i+1,n

r′
i+1

∑

χi

σi
nl′
i nr′

i
χi−1χiσi+1

nl′
i+1n

r′
i+1

χiχi+1 . (S61)

This is followed by re-expressing this two-site tensor as a contraction of the two updated single-site tensors, denoted
by σi and σi+1, as

Yi,i+1
nl
i,n

r
i ;n

l
i+1,n

r
i+1

χi−1χi+1
=

Di∑

χi=1

σi
nl
in

r
i

χi−1χi
σi+1

nl
i+1n

r
i+1

χiχi+1
. (S62)

This can be performed using singular value decomposition [15, 21]. This procedure is depicted in Fig. S5. This
gives back the matrix product representation of the density operator. At this step, the updated bond dimensions of
the tensors, Di, generically increases up to 16Di [15, 21]. To keep these growing bond dimensions under control, a
truncation is performed to keep the growing bond dimensions bounded below by χ, by choosing only singular values
below a tolerance, here 10−16 not exceeding the total number of singular values retained to χ, here χ = 27. This
way, the odd or even propagators can be applied to the matrix product density operator representation of the state
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FIG. S5. (Top) Updating site tensor for a pair of neighboring sites, and (Bottom) Update is done such that the site tensor σ̄i

(σ̄i+1) is left (right)-normalized for left-to-right (right-to-left) sweep.

by applying the constituent two-site gates. If the truncation step is not performed, the two-site gates constituting
the even or odd propagators can be applied in parallel. However, as discussed above, to keep the growing bond
dimensions under control, one has to perform a truncation step, which can be performed optimally only if the single
site tensors left and right to the two sites under consideration are in the left and right canonical form, respectively.
This gives us a relatively simple procedure for propagating density matrix product states, often referred as the zip-up
method [15, 21]. In this method, the odd site propagators are first applied to the matrix product density operator
state one after the other, while keeping the state in the mixed canonical form after truncation and before proceeding
to the next pair of sites. This is performed for example from left to right of the chain. This is then followed by a
similar application of the even site propagators, from right to left. Finally, the odd site propagator is applied from left
to right. This sequence of steps is indicated by grey arrows in Fig. S4. At the end of these steps, time is incremented
by one time step. The observable values can be computed at regular intervals of time [16, 23, 24]. Expectation values
of such observables expressed in matrix product superoperator form can be computed as shown in Fig. S6.

It must be noted that this time evolution by block decimation algorithm applied to matrix product density operator
does not preserve the positive semi-definiteness of the density matrix. Therefore, one must choose δt and χ sufficiently
small and large, respectively, to make sure that the computed observable quantities are real. Here δt ≤ 10−2 and
χ ≥ 25 was sufficient to keep the magnitude of the imaginary parts of physical observables below 10−5.

C. Benchmark of time-evolving block decimation MPDO versus numerically-exact dynamics

We employed the matrix product density operator (MPDO) representation and the time-evolving block decimation
(TEBD) discussed in the previous subsections for computing the dynamics of imbalance in large-size systems (L = 32),
presented in Fig. 6 of the main manuscript. The disorder averaged imbalance dynamics presented in Fig. 6 are obtained
with a maximal bond dimension χ = 26 for ζ = 0.2, and χ = 27 for ζ = 1. The second-order Suzuki Trotter time step
is chosen as δt = ×10−2. These maximal bond dimension χ and the time step δt were carefully chosen by

(i) benchmarking the imbalance computed by TEBD against the numerically-exact integration of the dynamics
generated by Eq. (1) in the main manuscript for systems of L = 8 sites, see Fig. S7,

(ii) carefully checking the convergence of the TEBD-MPDO dynamics with respect to the bond dimension χ and δt
for larger systems of L = 32 sites, see Fig. S8.
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FIG. S6. Expectations values of a generic superoperator expressed in matrix product superoperator form (MPSO) are
computed by the above contraction.
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FIG. S7. Error in the imbalance as a function of time, Iχ(t) − I(t), computed using time-evolving block decimation (TEBD)
with second-order Trotter decomposition compared with exact imbalance for a single realization of the disorder with strength
h = 20 and for ζ = 0.2 (left) and ζ = 1 (right) for a system of L = 8 sites. The error is plotted for various values of the pair
(δt, χ) given in the legend, which controls the accuracy of TEBD results.

Figure (S7) shows that, for strong enough disorder strength h = 20 and for two representative values of the quantum
jump fugacity ζ, the error made with TEBD reduces by increasing the bond dimension χ and by reducing the Trotter
time step δt. Errors are kept below 10−5 with χ ≥ 26 and δt ≤ 10−2. Figure (S8) shows that for strong enough
disorder h = 20, the variations of the imbalance computed with TEBD when doubling the bond dimension are smaller
than 10−5 for χ ≥ 26 and δt ≤ 10−2 in the case ζ = 0.2. The ζ = 1.0 case requires χ ≥ 27 and δt ≤ 10−2. Altogether,
this demonstrates that the imbalance dynamics presented in Fig. 6 of the main manuscript are properly converged.

We also numerically observed that, for smaller disorder strengths, the convergence of the imbalance dynamics
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FIG. S8. Imbalance as a function of time, Iχ(t), computed using time-evolving block decimation (TEBD) with second-order
Trotter decomposition for a single realization of the disorder with strength h = 20 and for ζ = 0.2 (left) and ζ = 1 (right) for
system with L = 32 sites. The imbalance is plotted for various values of the pair (δt, χ) given in the legend.

requires larger bond dimensions, indicating that steady states of the Liouvillian closer to the delocalized regime have
a larger operator entanglement entropy [25]. This is analogous to the case of closed many-body localized systems,
where the entanglement growth is faster closer to the thermal phase and hence requires larger bond dimensions [26, 27].
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