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Abstract. We prove that any number of general fat points of any multiplici-

ties impose the expected number of conditions on a linear system on a smooth
projective surface, in several cases including primitive linear systems on very

general K3 and abelian surfaces, ‘Du Val’ linear systems on blowups of P2 at

9 very general points, and certain linear systems on some ruled surfaces over
elliptic curves. This is done by answering a question of the author about the

case of only one fat point on a certain ruled surface, which follows from a circle

of results due to Treibich–Verdier, Segal–Wilson, and others.

1. Introduction

The Segre–Harbourne–Gimigliano–Hirschowitz (SHGH) Conjecture [19, 12, 11,
14] is a well-known open problem in algebraic geometry. Please see [2] for a survey
of the history and various approaches to the conjecture. Questions similar to the
SHGH Conjecture on projective surfaces other than P2 have been studied, for in-
stance, in [26, 27, 7, 15, 16, 17, 28]. Such questions also relate to Seshadri constants,
though in general they require even more specific (non-asymptotic) information.

This note is a follow-up to [28]. We will show that, over the complex numbers,
[28, Conjecture 2.5] can be deduced from certain facts (of a rather analytic nature),
thereby establishing the results proved conditionally on this claim in [28]. First, we
state these results clearly and extend slightly the range of situations covered.

Theorem 1.1. Let S be a smooth complex projective surface and L an invertible
OS-module, such that (S,L) is one of the following:

(1) a very general primitively polarized K3 surface of any degree;
(2) a very general primitively polarized abelian surface of any degree (i.e. a

very general (1, d)-polarized abelian surface);
(3) the blowup of P2 at 9 very general points, and a Du Val linear system, that

is, c1(L) = −kKS + E, where E ≃ P1 ⊂ S is a (−1)-curve and k is a
positive integer;

(4) S = PE, where E is a rank 2 locally free sheaf on a smooth projective curve
E of genus 1, such that either
(a) E = OE ⊕ J with J ∈ Pic0(E) very general; or
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2 A. ZAHARIUC

(b) E is the unique nontrivial extension of OE by OE,
and L is any ample line bundle with intersection number 1 with the section
of S corresponding to the natural surjection E ↠ OE (in either case).

Let p1, . . . , pn ∈ S be n general points, m1, . . . ,mn positive integers, and

(1) |L(m1, . . . ,mn)| = PH0(S,L ⊗ Im1

p1,S
⊗ · · · ⊗ Imn

pn,S
) ⊂ |L|

the linear system of divisors in |L| which have multiplicity at least mi at pi, for all
i = 1, 2 . . . , n. Then

dim |L(m1, . . . ,mn)| = max

{
−1,dim |L| −

n∑
i=1

mi(mi + 1)

2

}
,

with the convention that empty linear systems have dimension −1.

To clarify, in cases 1 and 2, |L| is the primitive linear system. For K3 surfaces,
we confirm the conjectures of De Volder and Laface (Conjectures 2.1 and 2.3 in
[27]) in the primitive case (d = 1 with the notation in [27]), please see Remark
3.4. Case 3 can equally well be stated in terms of P2, so we also obtain some
cases of the SHGH Conjecture. Cases 2 and 4a were not considered explicitly in
[28], but they can be dealt with using the same idea, and seem natural enough
to include. We have also removed the generality assumption on E in 4b. To the
author’s knowledge, Theorem 1.1 is currently the only SHGH-type result with no
restrictions on the number and weights of fat points.

Using the arguments in [28], Theorem 1.1 boils down to case 4b of Theorem 1.1
and n = 1, or specifically, the characteristic 0 part of [28, Conjecture 2.5]. The
reduction is discussed in §3.

The conjecture in [28] is stated as Proposition 2.4 (in the form which removes the
generality assumption on the j-invariant), and §2 is devoted to proving it. It turns
out that the claim can be deduced from facts about tangential covers of elliptic
curves, that were studied by Treibich, Verdier, and other authors [21, 22, 23, 24,
25, 20, 9]. From the point of view of SHGH-type problems, the situation is quite
unexpected, since the key fact comes from analytic work of Segal and Wilson [18],
and it seems that no algebraic proofs are currently available.

Acknowledgements. I would like to thank Xi Chen, Brian Osserman, Edoardo
Sernesi, and Armando Treibich for useful discussions. I am especially grateful to
Sernesi and Treibich for invaluable help with navigating the literature.

2. Proof of the conjecture from [28]

2.1. Finiteness of θ vanishing in the KP direction. Let C be an integral
(possibly singular) complex projective curve of arithmetic genus g ≥ 1, and p ∈ C
a smooth point. There is a canonical identification of the tangent line TpC to C at
p with OC(p)⊗Op. The exact sequence

0 −→ OC −→ OC(p) −→ OC(p)⊗Op −→ 0

gives a natural embedding TpC ↪→ H1(OC) as the first coboundary map in the
associated long exact sequence, whose image thus coincides with the kernel of the
map H1(OC) → H1(OC(p)). Since TPic(C)

∼= H1(C,OC) ⊗ OPic(C), the point p
induces a natural direction at any point in Pic(C), which is sometimes called the
Kadomtsev-Petviashvili (KP) direction.

The essential ingredient in our arguments is the following.



INTERPOLATION ON K3 AND ABELIAN SURFACES 3

Theorem 2.1. Let ∆ ↪→ Picg−1(C) be a holomorphic map from an open disk,
such that the tangent line to any point of ∆ coincides with the KP direction TpC ⊂
H1(OC). Then there exists L ∈ ∆ such that H0(C,L) = 0.

Proof. Follows from [18, Proposition 8.6] and the ‘Krichever dictionary’, as stated
and explained in [22, §3.4]. Indeed, after compactifying the Jacobian in order to
have the same setup, the first two lines on page 45 of [22] imply our claim, since
we are claiming precisely that ∆ is not contained in the theta divisor. Note also
that Proposition 3.7 on the same page provides the Segal–Wilson formula for the
vanishing/contact order. □

Remark 2.2. We will only require the case when C has at worst planar singularities,
in which the theory is somewhat simpler [18, p. 38]. In fact, one can even make a
certain plausible conjecture later, which would ensure that we only invoke Theorem
2.1 for C smooth. When C is smooth, Theorem 2.1 also follows from results of Fay
[10]. However, it is stated in [1, footnote to p. 326] that a direct geometric proof is
not known even this case.

2.2. Conjecture 2.5 in [28] in characteristic 0. Let E be a smooth complex
projective curve of genus 1, ρ : S = PV → E the ruled surface over E, where V is
the unique rank 2 vector bundle that fits in a non-split short exact sequence

0 −→ OE −→ V −→ OE −→ 0,

E∞ ⊂ S the section corresponding to V → OE → 0, q ∈ E, and Fs = ρ−1(s), for
any s ∈ E. There is a simple way to characterize curves which occur in |Fq + kE∞|
due to Treibich and Verdier [25]: the projection map from the curve to E must be
so-called tangential. We state the result in a form closer to [29, Lemma 3.3] (the
author was unfortunately unaware of the literature when [29] was written).

Lemma 2.3 (essentially [25, Corollaire 3.10]). Let C a projective integral curve,
and f : C → S a morphism such that f−1(E∞) = {q} scheme-theoretically, and q
is a nonsingular point of C. Then the composition

H1(E,OE)
(ρf)∗−−−→ H1(C,OC) −→ H1(C,OC(q))

is equal to 0.

Proof. As in the proof of [29, Lemma 3.3], the map H1(S,OS) → H1(S,OS(E∞))
induced by the inclusion OS ⊂ OS(E∞) is equal to 0. The commutativity of

H1(E,OE)

H1(S,OS(E∞))

H1(S,OS)

H1(C,OC(q))

H1(C,OC)
ρ∗ f∗

0

completes the proof. □

Proposition 2.4 ([28, Conjecture 2.5]). Let x ∈ S be a general (closed) point and
m a positive integer. Let k be the minimum positive integer for which the linear
system |Fq + kE∞| contains a curve of multiplicity at least m at x. Then

k =
m(m+ 1)

2
.
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Here is a casual summary of the proof. Instead of having q fixed and x variable,
we may equally well consider x fixed and q variable, thanks to the automorphisms
of S. Imagine a hypothetical family of high multiplicity curves at x intersecting
E∞ at the variable point q, which we partially normalize by blowing up at x. The
family of effective divisors cut by this family of curves on one of the curves in the
family has certain features that contradict properties of tangential covers obtained
by combining Lemma 2.3 and Theorem 2.1.

Proof. It is obvious that k ≤
(
m+1
2

)
, since h0(OS(Fq + kE∞)) = k + 1 by e.g. [28,

Proposition 2.3]. Indeed, the map

H0(S,OS(Fq + kE∞)) −→ H0(S,OS(Fq + kE∞)⊗OS/Im
x,S)

connot be injective as soon as k ≥
(
m+1
2

)
for obvious dimension reasons.

Assume by way of contradiction that the inequality was strict, and let

r =

(
m+ 1

2

)
− k − 1 ≥ 0.

Let Y ∈ |Fq +kE∞| of multiplicity at least m at x. Since all divisors in |Fq +kE∞|
are sums of an integral curve with a multiple of E∞ (in characteristic 0, e.g. [28,
§2.2]), Y must be integral by the minimality assumption on k. Moreover, by the
genus-degree formula,

(2) k = pa(Y ) ≥ pg(Y ) +

(
multxY

2

)
≥ 1 +

(
multxY

2

)
,

so the multiplicity of Y at x must be precisely m.
Let β : S′ → S be the blowup of S at x with exceptional curve W ⊂ S′, C ⊂ S′

the proper transform of Y , and f : C → S the restriction of β to C. Let g = pa(C).
We have C ∼ β∗Y −mW on S′, so

(3) C2 = (β∗Fq + kβ∗E∞ −mW )2 = −m2 + 2k

and
C ·KS′ = (β∗Fq + kβ∗E∞ −mW ) · (−2β∗E∞ +W ) = m− 2.

Hence, by the genus-degree formula,

(4) g = 1 +
C2 + C ·KS′

2
= k −

(
m

2

)
= m− 1− r.

It is also clear that g ≥ 1 since C maps non-constantly to E.
We claim that for any s ∈ E, the linear system |Fs + kE∞| contains a divisor

Y (s, x) of multiplicity m at x. Let y ∈ S\E∞ such that

(5) ρ(y) = ρ(x) + s− q ∈ A0(E).

Recall that the subgroup of Aut(S) consisting of automorphisms which lie above
translation automorphisms of E acts transitively on S\E∞, e.g. [28, §2.1], and
choose such an automorphism ψ such that ψ(y) = x. For y general, and therefore
for y arbitrary by semi-continuity, there exists a divisor Y (q, y) ∈ |Fq + kE∞| with
multiplicity at least m at y by assumption. Then we define

Y (s, x) = ψ(Y (q, y)) ⊂ S,

and note that (5) implies that Y (s, x) ∈ |Fs + kE∞|. Moreover, the multiplicity
of Y (q, y) at y, and therefore of Y (s, x) at x, must be precisely m by arguments
similar to the ones above, cf. (2). (For special s, it could happen in principle that
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Y (q, y) contains E∞, but it doesn’t really matter; we may consider the analogue of
(2) for the irreducible component different from E∞.) Then, if Y ′(s, x) ⊂ S′ is the
proper transform of Y (s, x), we have

(6) Y ′(s, x) ∼ β∗Y (s, x)−mW ∼ β∗Fs + kβ∗E∞ −mW.

Let p1, . . . , pr ∈ C be r arbitrary nonsingular points on C, and let

(7) Ls = ϕ∗OE(s)⊗OC(kq + p1 + · · ·+ pr)⊗ (OS′(−mW )|C),
where ϕ = ρ◦f . This definition makes clear that {Ls : s ∈ E} is a curve in Pic(C),
though we prefer to think of it as

(8) Ls = OC(p1 + · · ·+ pr)⊗ f∗OS′(Y ′(s, x)),

which is equivalent by (6). Then h0(Ls) > 0 by (8) (for s ̸= q, but in particular
also for s = q by semi-continuity), and

degLs = C · Y ′(s, x) + r = C2 + r = 2k −m2 + r = m− 2− r = g − 1

by (8), (3) and (4).
To summarize, the curve Z := {Ls : s ∈ E} ⊂ Picg−1(C) is a family of effective

degree g − 1 Cartier divisors on C, and at the same time a coset of ϕ∗(Pic0(E)) in
Pic(C) by (7). It follows that

T[Ls]Z ⊂ T[Ls]Pic
g−1(C) = H1(C,OC)

is the image of H1(E,OE) → H1(C,OC), which is in fact the KP direction

TqC = H0(C,OC(q)⊗Oq) ↪→ H1(C,OC)

by Lemma 2.3. This contradicts Theorem 2.1, since h0(Ls) > 0 for all s ∈ E. □

Note that Proposition 2.4 not only proves [28, Conjecture 2.5] in characteristic
0, but strengthens it by removing the generality assumption on the j-invariant.

3. Proof of the main result

With [28, Conjecture 2.5] proven, cases 1 and 4b of Theorem 1.1 follow directly
from [28, Theorem 3.3], and in essence so does case 3, since the formulation in
terms of P2 given in [28, Theorem 3.3] is equivalent to the formulation in terms of
blowups of P2 at 9 points in Theorem 1.1. Indeed,

L = OS(3kH − kE1 − · · · − kE8 − (k − 1)E9),

where H is the pullback of the class of a line in P2, and E1, . . . , E9 ⊂ S are the 9
exceptional curves, since we may assume E = E9 by Cremona transformations.

This leaves cases 2 and 4a. If we construct suitable specializations of (S,L)
in situations 2 and 4a satisfying the conditions in [28, Proposition 3.1], then we
are done. Such specializations exist, with the ultimately minor caveat that, in the
abelian surface case, the base of the elliptic fibration as in loc. cit. is not P1, but
an elliptic curve instead. Thus, we need a minor extension of [28, Proposition 3.1].

Proposition 3.1. Let π : X → B be a smooth projective family of surfaces over
a smooth quasi-projective curve B, and let LX ∈ Pic(X) relatively ample over B.
Let Xt = π−1(t) and Lt = LX |Xt for any t ∈ B. Fix b ∈ B closed. Assume that

(9) H1(Xb,Lb) = H2(Xb,Lb) = 0,

and that the central fibre Xb has an elliptic fibration f : Xb → Y , where Y is a
smooth projective curve, with the following properties:
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(1) For general s ∈ Y , the natural short exact sequence

0 −→ Nf−1(s)/Xb
−→ Nf−1(s)/X −→ TbB ⊗Of−1(s) −→ 0

on f−1(s) is not split;
(2) There exists a fixed section G ⊂ Xb of f , such that any divisor D ∈ |Lb| is

the sum of G and dim |Lb|+ pg(Y ) (mobile) fibres of f .

Let t ∈ B general and (S,L) = (Xt,Lt). If m1,m2, ...,mn ≥ 1, then

(10) dim |L(m1, . . . ,mn)| = max

{
−1,dim |L| −

n∑
i=1

mi(mi + 1)

2

}
,

with notation as in (1) for |L(m1, . . . ,mn)|.

Proof. The fact that the left hand side is at least the right hand side in (10) (the
dimension is at least the expected dimension) is well-known and trivial, so we only
need to prove the reverse inequality. When Y ≃ P1, this is precisely the combination
of [28, Proposition 3.1] and Proposition 2.4. In general, most of the argument in [28]
applies verbatim, though the conclusion requires an additional ingredient, which is
precisely the 1-dimensional interpolation (‘SHGH’) problem.

Lemma 3.2. Let M ∈ Pic(Y ), and p1, . . . , pn ∈ Y general points. Then

dim |M(−D)| = max{−1,dim |M| − degD}
for any effective divisor D such that Supp(D) ⊆ {p1, . . . , pn}.

Proof. Generalizing to non-complete linear systems, the statement boils down to
the case n = 1, which is the well-known fact that, in characteristic 0, a linear system
on a curve has only finitely many inflection points, e.g. [8, Proposition 1.1]. □

Let us explain how 1D interpolation must be applied at the end of the argument
in [28] to generalize the proof. Condition 2 implies that there exists M ∈ Pic(Y )
such that |M| ≃ |Lb| by D 7→ G+ f−1(D) since π∗ : Pic(Y ) → Pic(Xb) is injective
by [13, III, Exercise 12.4] and the projection formula. We use the notation in the
proof of [28, Proposition 3.1]. The next-to-last centred formula states that

(11) Pb ⊆
{
[D] ∈ |Lb| : coeffEiD ≥ λ(mi) =

mi(mi + 1)

2

}
=: T,

that is, the limit in Xb of divisors with high multiplicities at the chosen points
must contain the elliptic fibre Ei with multiplicity at least λ(mi), for i = 1, . . . , n;
please see also Remark 3.3 below. Indeed, the argument in loc. cit. up to that
point requires no changes, and the formula for λ(mi) is our Proposition 2.4. Under
|M| ≃ |Lb|, T corresponds to TY = {D ∈ |M| : coeffpi

D ≥ λ(mi)}. Then

dimPb ≤ dimT = dimTY = max

{
−1,dim |M| −

n∑
i=1

mi(mi + 1)

2

}

= max

{
−1,dim |Lt| −

n∑
i=1

mi(mi + 1)

2

}
by Lemma 3.2 and dim |M| = dim |Lb| = dim |Lt|, and we may conclude as in [28].
(The situation is thus slightly different when Y ̸≃ P1, in that the limit divisors are
forced to contain some elliptic fibres other than E1, . . . , En, which plays a role in
obtaining the correct bound). □
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Remark 3.3. For the reader’s convenience, we review that the argument in [28]
entails blowing up the elliptic fibres which contain the (reduced) limits of the fat
points in the central fibre. This is reminiscent of the approach of Ciliberto and
Miranda to the SHGH Conjecture using degenerations [5, 6]. In our situation, the
exceptional divisors of such blowups are isomorphic to the ruled surface in §2.2.

It remains to construct specializations with the desired properties.

Ruled surfaces (4a). It is clear that the group of automorphisms of the surface
acts transitively on the set of linear systems we are considering, so all such linear
systems behave identically. Let B = Pic0(E). Let P be the universal (Poincaré)
line bundle over B × E = Pic0(E) × E. Then we define X = P(OB×E ⊕ P) and
o = [OE ] ∈ B. There are two distinguished sections Σ0,Σ∞ ⊂ X corresponding to
the projections to the two terms of OB×E ⊕ P. Let q ∈ E and k ≥ 1 integer, and

LX = OX(kΣ∞ + π−1(B × {q})).

Then Xo = E × P1, and condition 2 follows easily from the fact that any effective
divisor on E ×P1 with intersection number 1 with E ×{point} is the sum of fibres
of projections to the two factors, which is elementary.

Condition (9) follows from the Kodaira vanishing theorem.
To check the condition 1, let R ≃ Spec C[ϵ]/(ϵ2) be the first order thickening of

o = [OE ] in B. Let y ∈ P1 such that E × {y} ̸⊂ Σ0,Σ∞, and let’s assume by way
of contradiction that the sequence

(12) 0 −→ NE×{y},Xo
−→ NE×{y},X −→ NXo,X |E×{y} −→ 0

was split. Then H0(NE×{y},Xo
) ↪→ H0(NE×{y},X) is not surjective, and the global

sections of H0(NE×{y},X) not coming from global sections of H0(NE×{y},Xo
) give

a first order deformation of E×{y} ⊂ X flat over R. This deformation is a section
of X|R×E , so corresponds to a surjective map ν : OR×E ⊕ P|R×E → Q to a line
bundle Q on R×E. Clearly, degQo = 0. Since we are assuming E×{y} ̸⊂ Σ0,Σ∞,
the restrictions of ν to OR×E ⊕ 0 and 0⊕P|R×E are nonzero on {o} ×E, and are
therefore isomorphisms for degree reasons. Hence, Q ≃ OR×E and Q ≃ P|R×E .
However, P|R×E ̸≃ OR×E by definition, which is a contradiction.

Abelian surfaces. Let X → B be a one-parameter family of (1, d)-polarized abelian
surfaces specializing to a product E × F of two elliptic curves, as in [29] (or [3, §4]
implicitly). Let us be more specific. If E × F is polarized by J = JE ⊠ JF , with
degJE = 1 and degJF = d, then (E × F,J ) is a (1, d)-polarized abelian surface.
Let Ad be the Deligne-Mumford moduli stack of (1, d)-polarized abelian surfaces,
and (U, u) → Ad an affine (in particular, quasi-projective) étale neighbourhood of
(E × F,J ). By the usual Kodaira-Spencer theory, there is a natural injective map

TuU = T(E×F,J )Ad ↪→ H1(E × F, TE×F ) ≃ C4.

By [4, Lemma 2.2], the image is contained in the annihilator of c1(J ) ∈ H1,1(E×F )
relative to the natural pairing

H1(E × F, TE×F )×H1(E × F,ΩE×F ) −→ C,

and hence must coincide with it since dimTuU ≥ dimU = 3. (To apply [4, Lemma
2.2], we need to consider a curve through u in U .) Then we take (B, o) → (U, u)
to be a smooth curve through u corresponding to a general direction ToB ↪→ TuU ,
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this is possible since U is quasi-projective. (In [29], this first order generality was
not really used and thus not imposed, but here it is needed.)

Condition (9) again follows from the Kodaira vanishing theorem. Condition 2
follows from the fact that any divisor D ∈ |J | is of the form

D = E ×D′ + z × F, where |D′| ∈ |JF | and {z} = |JE |,
which is elementary (e.g. [3] or [29]). It remains to check condition 1, namely, that
the short exact sequence notationally identical to (12) is not split. Here, y ∈ F is
completely arbitrary. The proof is very similar to the proof of [4, Proposition 2.1],
so we will be brief. It suffices to check that H0(NXo,X |E×{y}) → H1(NE×{y},Xo

)
is nonzero. As in [4, (2.10)], this map factors as

(13)
H0(NXo,X |E×{y}) ≃ ToB

ks−→ H1(TE×F ) −→ H1(TE×F |E×{y})

−→ H1(NE×{y},Xo
),

where ks is the Kodaira-Spencer map. It is clear that the composition of the last two
maps in (13) is surjective, and its kernel is different from the annihilator of c1(J )
considered above – for instance, under the natural identification H1(TE×F ) ≃ C4,
the former is clearly a ‘coordinate hyperplane’, which the latter is not. Then the
generality of the Kodaira-Spencer map (i.e. of the tangent direction in U) implies
that (13) is nonzero, as desired.

This completes the proof of Theorem 1.1.

Remark 3.4. Theorem 1.1 rather vacuously implies the primitive case (d = 1) of [27,
Conjecture 2.1]. Then the primitive case of [27, Conjecture 2.3] follows from [27,
Theorem 3.7]. To be pedantic, the equivalence (since one implicitation is trivial)
of the two conjectures proved in loc. cit. does not logically imply their equivalence
for d = 1, though the proof clarifies that there is absolutely no issue.
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