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Banach lattices of homogeneous polynomials not
containing c0

Geraldo Botelho∗, Vińıcius C. C. Miranda† and Pilar Rueda

Abstract

First we develop a technique to construct Banach lattices of homogeneous polynomi-
als. We obtain, in particular, conditions for the linear spans of all positive compact
and weakly compact n-homogeneous polynomials between the Banach lattices E and
F , denoted by Pr

K(
nE;F ) and Pr

W(nE;F ), to be Banach lattices with the polyno-
mial regular norm. Next we study when the following are equivalent for I = K or
I = W: (1) The space Pr(nE;F ) of regular polynomials contains no copy of c0. (2)
Pr
I(

nE;F ) contains no copy of c0. (3) P
r
I(

nE;F ) is a projection band in Pr(nE;F ).
(4) Every positive polynomial in Pr(nE;F ) belongs to Pr

I(
nE;F ). The result we

obtain in the compact case can be regarded as a lattice polynomial Kalton theorem.

1 Introduction

A classical problem in Functional Analysis consists in studying embeddability of c0 in
spaces of bounded linear operators between Banach spaces (see, e.g., [7, 24, 23, 27]). One
of the most known results in this direction is Kalton’s theorem [27, Theorem 6] which
states that for a Banach space X with an unconditional finite-dimensional expansion of
the identity and an infinite dimensional Banach space Y , the space L(X ; Y ) of all bounded
linear operators from X to Y contains no copy of c0 if and only if every bounded linear
operator from X to Y is compact. In [35], S. Pérez studied the embeddability of c0 in
the space P(nX ; Y ) of all continuous n-homogeneous polynomials. In the lattice setting,
this issue is specially important because the non embeddability of c0 in a Banach lattice
is equivalent to the lattice being a KB-space. In this direction, extending previous results
from [16, 15, 29], F. Xanthos [39] gave the following version of Kalton’s theorem for the
Banach lattice Lr(nE;F ) of all regular linear operators: for an atomic Banach lattice E
with order continuous norm and an arbitrary Banach lattice F , Lr(nE;F ) contains no
copy of c0 if and only if every positive linear operator from E to F is compact (see [39,
Theorem 2.9]).
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The interest in studying polynomial versions of well known results or properties in
Banach lattice theory have been considerably increased recently (see [8, 9, 12, 11, 13, 26,
28, 37]). It is then a natural question to seek for a “lattice polynomial version” of Kalton’s
theorem [27, Theorem 6]. The main purpose of this manuscript is to obtain conditions
on the Banach lattice E and F so that the Banach lattice Pr(nE;F ) of all regular n-
homogeneous polynomials from E to F contains no copy of c0 if and only if every positive
n-homogeneous polynomial from E to F is compact. In order to achieve this result, we
need to introduce a complete lattice norm on the space Pr

K(
nE;F ), which is the linear span

of all positive compact n-homogeneous polynomials from E to F . In general, Pr
K(

nE;F ) is
not a sublattice of Pr(nE;F ). Indeed, for n = 1, examples where Kr(E;F ) := Pr

K(
1E;F )

is not a sublattice of Lr(nE;F ) and Kr(E;F ) is not closed in Lr(nE;F ) with the regular
norm are well known (see [1, Corollary 3] and [18, Corollaries 2.9 and 2.10]. Fortunately,
there exists a norm (called k-norm) on Kr(E;F ) under which it is a Banach space (see [18,
Proposition 2.2]). In Section 2, we are going to give conditions such that Pr

K(
nE;F ) is a

Banach lattice with a certain norm which will coincide with the regular norm in this case
(Example 2.3). Actually, we will prove a more general result showing how to construct
Banach lattices of regular homogeneous polynomials (Theorem 2.1). The case of compact
polynomials, along with other interesting classes of polynomials, follow, in Sections 2 and
3, as particular instances of the general construction.

In Section 4, we will prove that for a Banach lattice E that fails the dual positive Schur
property and an infinite dimensional atomic Banach lattice F with order continuous norm,
Pr(nE;F ) contains no copy of c0 if and only if every positive n-homogeneous polynomial
from E to F is compact. In the weakly compact case we write Pr

W(nE;F ) for the linear
span of all positive weakly compact n-homogeneous polynomials from E to F . A result
similar to the compact case shall be obtained for E failing the positive Grothendieck
property, F atomic Dedekind complete and Pr(nE;F ) with order continuous norm.

We refer the reader to [2, 34] for background on Banach lattices, to [25] for Banach
space theory, and to [21] for polynomials on Banach spaces. Throughout this paper, E
and F denote Banach lattices, E+, BE and SE denote, respectively, the positive cone, the
closed unit ball and the unit sphere of E, and, whenever P is a continuous homogeneous
polynomial, ‖P‖ denotes its usual sup norm, that is, ‖P‖ = sup{‖P (x)‖ : x ∈ BE}. For a
subset A ⊂ E, we denote by co(A) its convex hull, by sol(A) its solid hull and by sco(A) its
solid convex hull. The symbol E ∼= F means that there exists an isometric isomorphism
from E to F that is also a lattice homomorphism.

2 Banach lattices of polynomials

We begin by recalling the terminology and a few properties concerning regular polynomials
and the positive projective symmetric tensor product. Details can be found in [14] and
[30].

A n-homogeneous polynomial between Riesz spaces P : E → F is positive if its associ-
ated symmetric multilinear operator TP : E

n → F is positive, meaning that TP (x1, . . . , xn) ≥
0 for all xj ∈ E+

j , j = 1, . . . , n. The difference of two positive n-homogeneous polynomials
is called a regular homogeneous polynomial, and the set of all these polynomials is denoted
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by Pr(nE, F ). When F is the scalar field we simply write Pr(nE). If E and F are Banach
lattices with F Dedekind complete, then Pr(nE, F ) is a Banach lattice with the regu-
lar norm ‖P‖r = ‖|P |‖, where |P | denotes the absolute value of the regular polynomial
P : E → F .

For a Banach lattice E, we denote the n-fold positive projective symmetric tensor
product of E by ⊗̂

n

s,|π|E, which is a Banach lattice endowed with the positive projective

symmetric tensor norm ‖ · ‖s,|π|. As usual, we write ⊗nx = x⊗
n
· · · ⊗x for every x ∈ E,

and for a subset A, we write ⊗n[A] = {⊗nx : x ∈ A}. For every P ∈ Pr(nE, F ) there
exists a unique regular linear operator P⊗ : ⊗̂

n

s,|π|E → F , called the linearization of P ,
such that P (x) = P⊗(⊗nx) for every x ∈ E. Moreover, the correspondence

P ∈ Pr(nE, F ) 7→ P⊗ ∈ Lr
(
⊗̂

n

s,|π|E;F
)

(1)

is an isometric isomorphism and a lattice homomorphism.
If E and F are two Banach lattices with F Dedekind complete, then Pr(nE;F ) is a

Banach lattice with the regular norm

‖P‖r = ‖|P |‖ = inf
{
‖Q‖ : Q ∈ P+(nE;F ), Q ≥ |P |

}
.

If A is a vector subspace of P(nE;F ), we denote by A+ the class of all positive n-
homogeneous polynomials belonging to A. We say that the ordered pair (E, F ) satisfies
the A-domination property if, for all positive n-homogeneous polynomials P,Q : E → F
with 0 ≤ P ≤ Q ∈ A, it holds P ∈ A.

Theorem 2.1. Let E and F be Banach lattices with F Dedekind complete and let A
be a subspace of P(nE;F ) endowed with a complete norm ‖ · ‖A satisfying the following
conditions:
(I) ‖P‖ ≤ ‖P‖A for every P ∈ A.
(II) ‖P‖A ≤ ‖Q‖A for all P ∈ A and Q ∈ A+ with |P (x)| ≤ Q(|x|) for every x ∈ E.
Then

‖P‖A,r := inf
{
‖Q‖A : Q ∈ A+, Q ≥ |P |

}

defines a complete norm on Ar := span{A+} such that ‖P‖A,r ≥ ‖P‖r for every P ∈ Ar.
If, in addition, (E, F ) satisfies the A-domination property, then (Ar, ‖ · ‖A,r) is a Banach
lattice. Moreover, in this case, Ar is an ideal in P(nE;F ).

Proof. Observe first that, since F is Dedekind complete, Pr(nE;F ) is a vector lattice,
so we can consider |P | for every P ∈ Pr(nE;F ). Besides, since A+ ⊂ P+(nE;F ) and
‖P‖ ≤ ‖P‖A for every P ∈ A, we have

‖P‖A,r = inf
{
‖Q‖A : Q ∈ A+, Q ≥ |P |

}

≥ inf
{
‖Q‖A : Q ∈ P+(nE;F ), Q ≥ |P |

}

≥ inf
{
‖Q‖ : Q ∈ P+(nE;F ), Q ≥ |P |

}
= ‖P‖r

for every P ∈ Ar. Let us prove that ‖ · ‖A,r is a norm in Ar:
(i) If ‖P‖A,r = 0, there exists a sequence (Qi)i ⊂ A+ with Qi ≥ |P | for any i ∈ N and
lim
i→∞

‖Qi‖A = 0. By condition (I) we get lim
i→∞

Qi(x) = 0 for every x ∈ E. Hence,

|P (x)| ≤ |P |(|x|) ≤ lim
i→∞

Qi(|x|) = 0
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for every x ∈ E, which implies that P = 0.
(ii) Let λ ∈ R and P ∈ Ar be given. For λ = 0, it is immediate that ‖λP‖A,r = 0 =
|λ| ·‖P‖A,r. Assume now that λ 6= 0. On the one hand, given Q ∈ A+ with Q ≥ |P |,
we have that |λ|Q : E → F is a positive n-homogeneous polynomial belonging to A and
satisfying |λ|Q ≥ |λP |, which implies that ‖λP‖A,r ≤ ‖|λ|Q‖A = |λ|·‖Q‖A. It follows that
‖λP‖A,r ≤ |λ|·‖P‖A,r.

On the other hand, given Q ∈ A+ with Q ≥ |λP |, we have that |P | ≤ 1

|λ|
Q ∈ A+.

Then, ‖P‖A,r ≤ ‖ 1

|λ|
Q‖A = 1

|λ|
·‖Q‖A, therefore |λ|·‖P‖A,r ≤ ‖λP‖A,r.

(iii) Let P1, P2 ∈ Ar be given. Letting Q1, Q2 : E → F be two positive n-homogeneous
polynomials belonging to A with Qi ≥ |Pi|, we have that Q1 + Q2 ∈ A+ is such that
Q1 +Q2 ≥ |P1|+ |P2| ≥ |P1 + P2|, which yields that

‖P1 + P2‖A,r ≤ ‖Q1 +Q2‖A ≤ ‖Q1‖A + ‖Q2‖A.

Fixing Q1, we get

‖P1 + P2‖A,r − ‖Q1‖A ≤ inf
{
‖Q‖A : Q ∈ A+, Q ≥ |P2|

}
= ‖P2‖A,r.

Hence,
‖P1 + P2‖A,r − ‖P2‖A,r ≤ ‖Q1‖A

for every positive n-homogeneous polynomial Q1 ∈ A satisfying Q1 ≥ |P1|, so

‖P1 + P2‖A,r ≤ ‖P1‖A,r + ‖P2‖A,r.

Suppose now that the pair (E, F ) satisfies theA-domination property. Since Pr(nE;F )
is a Riesz space, to prove that Ar is a vector sublattice of Pr(nE;F ), it suffices us to check
that P+ ∈ A for every P ∈ Ar. Let P = P1 − P2 ∈ Ar with P1, P2 ∈ A+. As P1 ≥ 0
and P1 ≥ P , we have P1 ≥ P+, and by assumption we get P+ ∈ A. This proves that Ar

is a vector lattice. We claim that ‖ · ‖A,r is a lattice norm on Ar. Indeed, let P,Q ∈ Ar

be such that |P | ≤ |Q|. If R ∈ A+ is such that R ≥ |Q|, then R ≥ |P |, which implies by
condition (II) of the assumptions that ‖|P |‖A ≤ ‖R‖A. Thus

‖|P |‖A ≤
{
‖R‖A : R ∈ A+, R ≥ |Q|

}
= ‖Q‖A,r.

Since ‖P‖A,r ≤ ‖|P |‖A, we have ‖P‖A,r ≤ ‖Q‖A,r, which proves that (Ar, ‖ · ‖A,r) is a
normed Riesz space.

To prove that (Ar, ‖ · ‖A,r) is complete, let (Pi)i ⊂ Ar be a ‖ · ‖A,r-Cauchy sequence.
The proof is similar as in [34, Proposition 1.3.6]. By passing to a subsequence if necessary,
we may assume that

‖Pi − Pi+1‖A,r = inf
{
‖Q‖A : Q ∈ A+, Q ≥ |Pi − Pi+1|

}
< 2−i

for any i ∈ N. For every i ∈ N, let Qi ∈ A+ be such that Qi ≥ |Pi−Pi+1| and ‖Qi‖A < 2−i.

Since (A, ‖ · ‖A) is a Banach space, for each i ∈ N there exists Ri =
∞∑
j=i

Qj ∈ A with

‖Ri‖A ≤
∞∑
j=i

‖Qj‖A < 21−i. Moreover, Ri ≥ 0 for every i ∈ N. On the other hand,
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condition (II) and the fact that Ar is a vector lattice give ‖ · ‖A ≤ ‖ · ‖A,r, so (Pi) is a
Cauchy sequence in the Banach space (A, ‖ · ‖A). Let P ∈ A be the ‖ · ‖A-limit of the
sequence (Pi)i. For each i ∈ N and each x ∈ E, we have

|(P − Pi)(x)| = lim
j→∞

|(Pj − Pi)(x)| ≤ lim
j→∞

j−1∑

k=i

|(Pk+1 − Pk)(x)|

≤ lim
j→∞

j−1∑

k=i

|Pk+1 − Pk|(|x|) ≤ lim
j→∞

j−1∑

k=i

Qk(|x|) ≤ Ri(|x|),

which implies that P − Pi ≤ Ri for every i ∈ N. So, P = Ri − (Ri − (P − Pi)) ∈ Ar,
consequently P ∈ Ar. Moreover, we have that |P − Pi| ∈ Ar (because Ar is a vector
lattice), Ri ∈ A+ and |P − Pi| ≤ Ri for every i ∈ N, hence

‖P − Pi‖A,r ≤ ‖|P − Pi|‖A ≤ ‖Ri‖A ≤ 21−i → 0 as i → ∞.

The proof that (Ar, ‖ · ‖A,r) is complete. It remains to check that Ar is an ideal in
Pr(nE;F ). Taking P ∈ Ar and Q ∈ Pr(nE;F ) with 0 ≤ |Q| ≤ |P |, since |P | ∈ Ar

and the pair (E, F ) has the A-domination property, we get |Q| ∈ Ar. Moreover, from
0 ≤ Q+, Q− ≤ |Q| and from A-domination property of the pair (E, F ) it follows that
Q+, Q− ∈ Ar, therefore Q ∈ Ar.

Corollary 2.2. Let E and F be Banach lattices with F Dedekind complete. If A is a
closed subspace of P(nE;F ) such that (E, F ) satisfies the A-domination property, then

‖P‖A,r := inf
{
‖Q‖ : Q ∈ A+, Q ≥ |P |

}

defines a complete lattice norm on Ar = span{A+}, that is, (Ar, ‖ · ‖A,r) is a Banach
lattice. Moreover, ‖P‖A,r = ‖P‖r for every P ∈ Ar and Ar is an ideal in P(nE;F ).

Proof. Since the usual sup norm ‖ · ‖ enjoys conditions (I) and (II), from Theorem 2.1 it
follows that (Ar, ‖ · ‖A,r) is a Banach lattice and ‖P‖A,r ≥ ‖P‖r for every P ∈ Ar. To see
the converse inequality, note that ‖P‖r = ‖|P |‖ ≥ ‖P‖A,r holds for every P ∈ Ar.

The next two examples follow immediately from the results proved thus far.

Example 2.3. Given Banach lattices E and F with F Dedekind complete, let PK(
nE;F )

denote the closed subspace of P(nE;F ) of all compact n-homogeneous polynomials from
E to F . By taking A = PK(

nE;F ) in Theorem 2.1, we obtain that

‖P‖K,r = inf
{
‖Q‖ : Q ∈ P+

K (
nE;F ), Q ≥ |P |

}

defines a complete norm on Pr
K(

nE;F ). In addition, if F is atomic with order continuous
norm or an AL-space, then the pair (E, F ) satisfies the domination property for compact
homogeneous polynomials (see [28, Corollary 4.2 or Corollary 4.3]). By Theorem 2.1 we
obtain that (Pr

K(
nE;F ), ‖ · ‖K,r) is a Banach lattice such that ‖P‖K,r = ‖P‖r for every

P ∈ Pr
K(

nE;F ). Moreover, under the condition on F being atomic with order continuous
norm or an AL-space, writing Kr(⊗̂

n

s,|π|E;F ) := Pr
K(

1⊗̂
n

s,|π|E;F ), the correspondence

P ∈ Pr
K(

nE;F ) 7→ P⊗ ∈ Kr(⊗̂
n

s,|π|E;F )

5



is an isometric isomorphism and a lattice homomorphism. Indeed, since the correspon-
dence (1) is an isometric isomorphism and a lattice homomorphism, it is enough to check
that, for a given regular n-homogeneous polynomial P : E → F , P ∈ Pr

K(
nE;F ) if and

only if P⊗ ∈ Kr(nE;F ). This follows immediately from [28, Theorem 4.1 or Theorem 4.3]
and from the fact that both Pr

K(
nE;F ) and Kr(⊗̂

n

s,|π|E;F ) are Banach lattices.

Example 2.4. Given Banach lattices E and F with F Dedekind complete, let PW(nE;F )
denote the closed subspace of P(nE;F ) of all weakly compact n-homogeneous polynomials
from E to F . By taking A = PW(nE;F ) in Theorem 2.1, we obtain that

‖P‖W ,r = inf
{
‖Q‖ : Q ∈ P+

W(nE;F ), Q ≥ |P |
}

defines a complete norm on Pr
W(nE;F ). In addition, if F has order continuous norm,

then the pair (E, F ) satisfies the domination property for weakly compact homogeneous
polynomials (see [28, Corollary 3.3]). By Theorem 2.1 we obtain that (Pr

W(nE;F ), ‖·‖W ,r)
is a Banach lattice such that ‖P‖W ,r = ‖P‖r for every P ∈ Pr

W(nE;F ). Moreover, under
the condition of F having order continuous norm, reasoning as in Example 2.3 and applying
[28, Theorem 3.2], we have that the correspondence

P ∈ Pr
W(nE;F ) 7→ P⊗ ∈ Wr(⊗̂

n

s,|π|E;F ) := Pr
W(1⊗̂

n

s,|π|E;F )

is an isometric isomorphism and a lattice homomorphism.

3 Almost limited and p-compact polynomials

In this section we give two more applications of the results proved in the previous section.
The difference from the compact and weakly compact cases is that the results we need for
these further classes of polynomials are not available in the literature.

We start by considering the class of almost limited polynomials. Extending the lin-
ear notion from [22] to the polynomial case, we say that an n-homogeneous polynomial
P : E → F is said to be almost limited if P (BE) is an almost limited subset of F , that is,
for every disjoint weak* null sequence (y∗n)n ⊂ F ∗, ‖y∗n ◦P‖ = sup

x∈BE

y∗n(P (x)) → 0. We give

a brief proof that the class Pal(
nE;F ) of all almost limited n-homogeneous polynomials

P : E → F is a closed subspace of P(nE;F ). Let (Pi)i ⊂ Pal(
nE;F ) be a sequence such

that ‖Pi − P‖ → 0, let (y∗j )j be a disjoint weak* null sequence and let ε > 0 be given.
Since ‖Pi − P‖ → 0, there exists i0 ∈ N such that ‖Pi0 − P‖ < ε

2 supj∈N ‖y∗j ‖
. Moreover,

since Pi0 is an almost limited polynomial, there exists j0 ∈ N such that ‖y∗j (Pi0)‖ < ε/2
for every j > j0. Hence

sup
x∈BE

|y∗j (P (x))| = ‖y∗j ◦ P‖ ≤ ‖y∗j ◦ P − y∗j ◦ Pi0‖+ ‖y∗j ◦ Pi0‖

≤ ‖y∗j‖·‖P − Pi0‖+ ‖y∗j (Pi0)‖ < ε

for every j > j0, which proves that P is almost limited.
The following lemma will be needed in the study of the domination problem for almost

limited polynomials.
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Lemma 3.1. If A is an almost limited subset of E, then its convex hull co(A) is also an
almost limited set.

Proof. We recall from [26, Proposition 2.3] that a subset B of a Banach lattice E is almost
limited if and only if T (A) is a relatively compact subset of c0 for every disjoint operator
T : E → c0 (i.e. the weak* null sequence (x∗

n)n ⊂ E∗ that defines T is disjoint). If T : E →
c0 is a disjoint operator, then T (A) is a relatively compact subset of c0, thus co(T (A)) is
also a relatively compact subset of c0 [2, Theorem 3.4]. Since T (co(A)) ⊂ co(T (A)), we
conclude that T (co(A)) is relatively compact, hence co(A) is almost limited.

In order to solve the linearization problem and the domination problem for almost
limited polynomials, we recall that a Banach lattice E is said to have property (d) if

|x∗
n|

ω∗

→ 0 in E∗ for every disjoint weak* null sequence (x∗
n)n (see, e.g., [22, Definition 1]).

Theorem 3.2. Let E and F be two Banach lattices with F having property (d). Then,
a positive n-homogeneous polynomial P : E → F is almost limited if and only if its lin-
earization P⊗ is an almost limited operator. Besides, if P : E → F is an almost limited
positive n-homogeneous polynomial, then [0, P ] is contained in the class of the almost lim-
ited polynomials.

Proof. If P : E → F is an almost limited positive n-homogeneous polynomial, then
P (B+

E ) is an almost limited subset of F , so co(P (B+
E )) is also an almost limited sub-

set of F by Lemma 3.1. Since F has property (d), we obtain from [31, Proposition 2.2]
that sco(P (B+

E )) = sol(co(P (B+
E))) is also an almost limited set. Since P⊗(B⊗̂

n
s,|π|E

) ⊂

sco(P (B+
E )) (see [28, Lemma 3.1]), we get that P⊗(B⊗̂

n
s,|π|E

) is an almost limited set, which

implies that P⊗ is an almost limited operator. Conversely, assume that P⊗ : ⊗̂
n
s,|π|E → F

is an almost limited operator. To prove that P (BE) is an almost limited subset of F , let
(y∗n)n be a disjoint weak* null sequence in F ∗. As P⊗(B⊗̂

n
s,|π|E

) is an almost limited subset

of F and ⊗n[BE ] ⊂ B⊗̂
n
s,|π|E

, we have that

sup
x∈BE

|y∗n(P (x))| = sup
x∈BE

|y∗n(P
⊗(⊗n(x)))| ≤ sup

z∈B⊗̂n
s,|π|E

|y∗n(P
⊗(z))| → 0,

which yields that P (BE) is almost limited set, proving that P is an almost limited poly-
nomial.

Assume now that P : E → F is an almost limited positive n-homogeneous polynomial.
If Q : E → F is a positive n-homogeneous polynomial with Q ≤ P , then 0 ≤ Q⊗ ≤ P⊗.
Since F has property (d) and P⊗ is an almost limited operator, we get from [22, Corollary
3] that Q⊗ is an almost limited operator, hence Q is an almost limited polynomial.

Now we can apply Corollary 2.2 to the class of almost limited polynomials.

Example 3.3. Let E and F be two Banach lattices with F Dedekind complete. Since
Dedekind complete Banach lattices have property (d), we get from Theorem 3.2 that the
pair (E, F ) satisfies the domination property for almost limited homogeneous polynomials.
By taking A = Pal(

nE;F ) in Corollary 2.1 we obtain that Pr
al(

nE;F ) is a Banach lattice
with the norm

‖P‖al,r = inf
{
‖Q‖ : Q ∈ P+

al (
nE;F ), Q ≥ |P |

}
.

7



Moreover, ‖P‖al,r = ‖P‖r for every P ∈ Pr
al(

nE;F ). Following the same argument from
Example 2.3, we obtain from Theorem 3.2 that the correspondence

P ∈ Pr
al(

nE;F ) 7→ P⊗ ∈ Lr
al(⊗̂

n
s,|π|E;F )

is an isomorphism between Banach lattices, where Lr
al(E;F ) := Pr

al(
1E;F ).

The second class of polynomials we consider in this section is a lattice counterpart of
the well studied class of p-compact polynomials, see, e.g. [4, 5, 6, 10]. Given 1 ≤ p < ∞,
let p∗ be given by 1

p
+ 1

p∗
= 1. According to [36], a subset K of a Banach space E is

relatively p-compact if there is an absolutely p-summable E-valued sequence (xj)j such

that K ⊆

{
∞∑
j=1

λjxj : (λj)j ∈ Bℓp∗

}
=: p-conv{(xj)j}. According to [5], a polynomial

P ∈ P(nE;F ) between Banach spaces is p-compact if P (BE) is a relatively p-compact
subset of F . We denote the p-norm of (xj)j by ‖(xj)j‖p. The set PKp

(nE;F ) of p-compact
n-homogeneous polynomials from E to F is a Banach space with the norm

‖P‖Kp
= inf {‖(xj)j‖p : P (BE) ⊆ p-conv{(xj)j}} .

The linear case n = 1 recovers the Banach ideal (Kp, ‖ ·‖Kp
) of p-compact linear operators.

In the lattice environment, we consider the following slightly larger class: An n-
homogeneous polynomial P : E → F between Banach lattices is said to be solid p-compact
if there exists an absolutely p-summable F -valued sequence (yj)j such that P (BE) ⊆
sol(p-conv{(yj)j}). It is easy to check that the collection P|Kp|(

nE;F ) of all solid p-compact
polynomials from E into F is a linear subspace of P(nE;F ) containing PKp

(nE;F ). For
P ∈ P|Kp|(

nE;F ), we define

‖P‖|Kp| = inf {‖(xj)j‖p : P (BE) ⊆ sol(p-conv{(xj)j})} .

Proposition 3.4. For all Banach lattices E and F , ‖ · ‖|Kp| is a complete norm on
P|Kp|(

nE;F ) satisfying conditions (I) and (II) of Theorem 2.1. The following inclusions
are continuous:

PKp
(nE;F ) ⊆ P|Kp|(

nE;F ) ⊆ P(nE;F ).

Proof. We start by checking condition (I) of Theorem 2.1. Given P ∈ P|Kp|(
nE;F ), let

(xj)j be an absolutely p-summable F -valued sequence such that P (BE) ⊆ sol(p-conv{(xj)j}).

For every x ∈ BE , there exists (aj)j ∈ ℓp∗ such that |P (x)| ≤

∣∣∣∣∣
∞∑
j=1

ajxj

∣∣∣∣∣. Using that the

norm of F is a lattice norm and applying Hölder’s inequality, we obtain that ‖P (x)‖ ≤
‖(xj)j‖p. Taking the supremum over all x ∈ BE we get ‖P‖ ≤ ‖(xj)j‖p; and taking the
infimum over all such sequences (xj)j it follows that ‖P‖ ≤ ‖P‖|Kp|. This proves condition
(I) and gives the implication ‖P‖|Kp| = 0 =⇒ P = 0.

As to the other norm axioms, let P,Q ∈ P|Kp|(
nE;F ) and 0 6= λ ∈ R be given. If

(yj)j is an absolutely p-summable sequence such that P (BE) ⊆ sol(p-conv){(yj)j}, then
(λyj)j ∈ ℓp(F ) is absolutely p-summable as well and λP (BE) ⊆ sol(p-conv){(λyj)j}. So,

‖λP‖|Kp| ≤ ‖(λyj)j‖p = |λ|·‖(yj)j‖p,

8



which gives ‖P‖|Kp| ≤ |λ| · ‖P‖|Kp|. The reverse inequality follows analogously. For all
absolutely p-summable sequences (yj)j, (zj)j such that

P (BE) ⊆ sol(p-conv){(yj)j} and Q(BE) ⊆ sol(p-conv){(zj)j},

we get that, for every x ∈ BE, there exist (aj)j, (bj)j ∈ ℓp∗ with

|(P +Q)(x)| ≤ |P (x)|+ |Q(x)| ≤

∞∑

j=1

|aj ||yj|+

∞∑

j=1

|bj ||zj| ≤

∞∑

j=1

(|aj| ∨ |bj |)(|yj|+ |zj |).

Hence, (P +Q)(BE) ⊆ sol(p-conv){(|yj|+ |zj|)j}, which implies that

‖P +Q‖|Kp| ≤ ‖(|yj|)j + (|zj|)j‖p ≤ ‖(|yj|)j‖p + ‖(|zj|)j‖p = ‖(yj)j‖p + ‖(zj)j‖p.

A straightforward argument allows us to conclude that ‖P +Q‖|Kp| ≤ ‖P‖|Kp| + ‖Q‖|Kp|.

To prove completeness, let (Pi)i ⊆ P|Kp|(
nE;F ) be such that

∞∑
i=1

‖Pi‖|Kp| < ∞. We

have already proved that ‖Pi‖ ≤ ‖Pi‖|Kp| holds for every i ∈ N, so the completeness of

P(nE;F ) gives a polynomial P ∈ P(nE;F ) such that P =
∞∑
i=1

Pi in the usual norm ‖ · ‖.

Given ε > 0, for each i ∈ N there is an absolutely p-summable sequence (yij)j such that

Pi(BE) ⊆ sol(p-conv){(yij)j} and ‖(yij)j‖p ≤ (‖Pi‖|Kp| − ε/2i)1/p. Therefore,

∞∑

i=1

∞∑

j=1

‖yij‖
p =

∞∑

i=1

‖(yij)j‖
p
p ≤

∞∑

i=1

‖Pi‖|Kp| −
∞∑

i=1

ε/2i < ∞,

which proves that the sequence (yij)
∞
j,i=1 is absolutely p-summable. Since P (x) =

∞∑
i=1

Pi(x)

for every x ∈ E and Pi(BE) ⊆ sol(p-conv){(yij)j} for every i ∈ N, we obtain that
P (BE) ⊆ sol(p-conv{(yij)j,i}), proving that P is a solid p-compact polynomial. From∥∥∥∥P −

k∑
i=1

Pi

∥∥∥∥
|Kp|

≤
∞∑

i=k+1

‖Pi‖|Kp| → 0 as k → ∞ we get that the convergence P =
∞∑
i=1

Pi

holds in (P|Kp|(
nE;F ), ‖ · ‖|Kp|).

As to condition (II), let P,Q : E → F be solid p-compact n-homogeneous polynomials
with Q ≥ 0 and |P (x)| ≤ Q(|x|) for every x ∈ E. Let (yj)j be an absolutely p-summable
F -valued sequence such that Q(BE) ⊆ sol(p-conv{(yj)j}). For every x ∈ BE there exists
a sequence (aj)j ∈ ℓp∗ such that

|P (x)| ≤ Q(|x|) ≤

∣∣∣∣∣

∞∑

j=1

ajyj

∣∣∣∣∣ .

This proves that P (x) ∈ sol(p-conv{(yj)j}) for every x ∈ BE , in other words, P (BE) ⊆
sol(p-conv{(yj)j}). Hence, ‖P‖|Kp|

≤ ‖(yj)j‖p; and taking the infimum over all such

sequence (yj) we get ‖P‖|Kp|
≤ ‖Q‖|Kp|

.

The second statement follows from the inequalites ‖ · ‖ ≤ ‖ · ‖|Kp|
≤ ‖ · ‖Kp

(the first

was proved above and the second is obvious).
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Proposition 3.5. Let P,Q : E → F be positive n-homogeneous polynomials such that
P ≤ Q. If Q is solid p-compact, then P is solid p-compact.

Proof. Let (yj)j be an absolutely p-summable F -valued sequence such that Q(BE) ⊆
sol(p-conv{(yj)j}). In particular, sol(Q(BE)) ⊆ sol(p-conv{(yj)j}). Since |P (x)| ≤ P (|x|) ≤
Q(|x|) for every x ∈ E, we have P (x) ∈ sol(Q(BE)) ⊆ sol(p-conv{(yj)j}) for every x ∈ BE .
This proves that P (BE) ⊆ sol(p-conv{(yj)j}), therefore P is solid p-compact.

Now we are in the position to apply Theorem 2.1 to the solid p-compact case.

Example 3.6. Let E and F be two Banach lattices with F Dedekind complete. By taking
A = P|Kp|(

nE;F ) and ‖ · ‖A = ‖ · ‖|Kp| in Theorem 2.1 we obtain, from Proposition 3.4,
that Pr

|Kp|
(nE;F ) is a Banach space with the norm

‖P‖|Kp|r = inf
{
‖Q‖|Kp| : Q ∈ P+

|Kp|
(nE;F ), Q ≥ |P |

}
.

Proposition 3.5 provides the domination property for solid p-compact polynomials, so
(Pr

|Kp|
(nE;F ), ‖ · ‖||Kp|r) is a Banach lattice by Theorem 2.1.

4 Non-embeddability of c0 in Pr(nE;F )

Our first task in this section is to give sufficient conditions on a pair of Banach lattices
(E, F ) in order to obtain that Ar is a projection band in Pr(nE;F ) for some closed
subspace A of P(nE;F ). To establish this result, we will need the following lemma whose
proof is contained in the proof of [39, Theorem 2.9 (iv)⇒(v)].

Lemma 4.1. If F is an atomic Banach lattice with order continuous norm, then there ex-
ists an increasing net of finite rank positive operators (Tλ)λ in L(F ;F ) such that lim

λ
Tλ(x) =

sup
λ

Tλ(x) = x for every x ∈ F+.

A vector-valued map has finite rank if the subspace generated by its range is finite-
dimensional.

Theorem 4.2. Let E and F be two Banach lattices with F Dedekind complete and let A
be a closed subspace of P(nE;F ). Suppose that (E, F ) satisfies the A-domination property
and consider the following conditions:
(1) (Pr(nE;F ), ‖ · ‖r) contains no copy of c0.
(2) (Ar, ‖ · ‖A) contains no copy of c0.
(3) Ar is a projection band in Pr(nE;F ).
(4) Every positive n-homogeneous polynomial P : E → F belongs to A.
Then (1)⇒(2)⇒(3). In addition, if F is atomic with order continuous norm and every
finite rank positive n-homogeneous polynomial from E to F belongs to A, then (3)⇒(4).

Proof. We begin noting that it follows from Theorem 2.1 that (Ar, ‖ · ‖A) is a Banach
lattice with ‖P‖A = ‖P‖r for every P ∈ Ar. Moreover, Ar is an ideal in Pr(nE;F ).

(1)⇒(2) This follows immediately from the fact that Pr(nE;F ) contains Ar as a sub-
space.
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(2)⇒(3) Assuming that Ar contains no copy of c0, we get that Ar is a KB-space. To
prove thatAr is a band in Pr(nE;F ), take a net (Pα)α ⊂ Ar with 0 ≤ Pα ↑ P in Pr(nE;F ).
Since ‖Pα‖A = ‖Pα‖r ≤ ‖P‖r holds for every α, we obtain that (Pα) is a norm bounded
monotone net in the KB-space Ar, hence there exists Q = limα Pα ∈ Ar. In particular,
‖Pα −Q‖r = ‖Pα −Q‖A → 0, which implies by [33, Lemma 2] that Q = sup

α
Pα = P . As

Ar is an ideal in Pr(nE;F ) (Theorem 2.1), this proves that Ar is a band in Pr(nE;F )
(see the comment after [2, Lemma 1.37]). Since Pr(nE;F ) Dedekind complete, we obtain
from the comment at the beginning of [2, p. 36] that Ar is a projection band.

Now we assume that F is atomic with order continuous norm and that every finite rank
positive n-homogeneous polynomial from E to F belongs to A. To prove that (3)⇒(4),
let P : E → F be a positive n-homogeneous polynomial. Since F is atomic with order
continuous norm, there exists by Lemma 4.1 an increasing net of finite rank positive
operators (Tλ)λ ⊂ L+(F ;F ) with lim

λ
Tλ(x) = sup

λ
Tλ(x) = x for every y ∈ F+. So,

Pλ := Tλ ◦ P : E → F defines a net of n-homogeneous polynomials such that:
(i) For each λ, P⊗

λ = Tλ ◦ P
⊗ is a positive finite rank operator, which yields that Pλ ∈ A.

(ii) As (Tλ)λ is an increasing net and P ≥ 0, we obtain that (Pλ)λ is an increasing net.

Indeed, P⊗
µ (z) = Tµ(P

⊗(z)) ≤ Tλ(P
⊗(z)) = P⊗

λ (z) holds for all z ∈
(
⊗̂

n

s,|π|E
)+

and µ ≤ λ.

(iii) For each z ∈
(
⊗̂

n

s,|π|E
)+

, sup
λ

P⊗
λ (z) = sup

λ
Tλ(P

⊗(z)) = P⊗(z), which implies that

sup
λ

P⊗
λ = P⊗, so sup

λ
Pλ = P .

From the items above, we obtain that (Pλ)λ is an increasing net contained in A such
that sup

λ
Pλ = P . Since Ar is a a projection band in Pr(nE;F ) by assumption, we conclude

that P ∈ Ar.

From now on, we shall establish when the conditions in Theorem 4.2 are equivalent
whenever A = PK(

nE;F ) or A = PW(nE;F ). Recall that the compact linear case was
studied by Kalton, the compact polynomial case was considered by Pérez and the lattice
linear case was settled by Xanthos. Our application of Theorem 4.2 in the compact case
will provide the lattice polynomial case. To do so, we need to recall that a Banach lattice
E has the dual positive Schur property if every positive weak* null sequence in E∗ is norm
null (see, e.g., [38, p. 760]).

Theorem 4.3. If E is a Banach lattice that fails the dual positive Schur property and
F is an infinite dimensional atomic Banach lattice with order continuous norm, then the
following are equivalent for every n ∈ N:
(1) (Pr(nE;F ), ‖ · ‖r) contains no copy of c0.
(2) (Pr

K(
nE;F ), ‖ · ‖k) contains no copy of c0.

(3) Pr
K(

nE;F ) is a projection band in Pr(nE;F ).
(4) Every positive n-homogeneous polynomial from E to F is compact.

Proof. Since F is atomic with order continuous norm, we have from Example 2.3 that
(Pr

K(
nE;F ), ‖ · ‖k) is a Banach lattice such that ‖P‖k = ‖P‖r for every P ∈ Pr

K(
nE;F ).

As finite rank polynomials are compact, the implications (1)⇒(2)⇒(3)⇒(4) follow from
Theorem 4.2.
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(4)⇒(1) We prove first that
(
⊗̂

n

s,|π|E
)∗

has order continuous norm. If
(
⊗̂

n

s,|π|E
)∗

fails

to have order continuous, then ⊗̂
n

s,|π|E contains a sublattice isomorphic to ℓ1 (see [34,
Theorem 2.4.14]) which is the range of a positive projection (see [34, Proposition 2.3.11]),
i.e. there exist a sequence (zk)k ⊂ ⊗̂

n

s,|π|E which is equivalent to the canonical basis (ek)k
of ℓ1 and a positive operator π : ⊗̂

n

s,|π|E → ℓ1 such that π(zk) = ek for every k ∈ N. On
the other hand, since F is infinite dimensional, there exists a positive bounded sequence
(yk)k in F with no convergent subsequence. Defining S : ℓ1 → F by S((aj)j) =

∑∞
i=1 aiyi,

we have that S ≥ 0, consequently T = S ◦ π : ⊗̂
n

s,|π|E → F is also a positive operator
which is not compact, because T (zk) = S(ek) = yk for every k ∈ N and (yk)k has no
convergent subsequence in F . Since F is atomic with order continuous norm, we get
from [28, Theorem 4.1] that the positive n-homogeneous polynomial P : E → F whose
linearization is T is not compact, which yields a contradiction. Thus

(
⊗̂

n

s,|π|E
)∗

has order
continuous norm. Moreover, as F also has order continuous norm, we obtain from [19,
Theorem 2.8] that (Kr(⊗̂

n

s,|π|E;F ), ‖ · ‖k) has order continuous norm. Now, considering
the identification obtained in Example 2.3, the identification from [14, Proposition 3.4]
and the assumption, we have that

Kr(⊗̂
n

s,|π|E;F ) ∼= Pr
K(

nE;F ) = Pr(nE;F ) ∼= Lr(⊗̂
n

s,|π|E;F ),

consequently (Lr(⊗̂
n

s,|π|E;F ), ‖ · ‖r) has order continuous norm.
Assume, for sake of contradiction, that F is not a KB-space. So, there exists (yk)k ⊂

F+ equivalent to the canonical basis of c0. On the other hand, since E fails the dual
positive Schur property, there exists a weak* null sequence (z∗k)k ⊂ (E∗)+ that is not norm
null. By passing to a subsequence if necessary, we may assume that ‖z∗k‖ ≥ ε for every

k ∈ N. Letting x∗
k =

z∗
k

‖z∗
k
‖
, k ∈ N, we obtain that (x∗

k)k ⊂ S+
E∗ is a weak* null sequence.

As ((x∗
k(x))

n)k ∈ c0 for every x ∈ E and (yk)k is equivalent to the canonical basis of c0,

the series
∞∑
k=1

(x∗
k(x))

nyk converges in F for every x ∈ E, so we can define P : E → F by

P (x) =
∞∑
k=1

(x∗
k(x))

nyk which is a positive n-homogeneous polynomial. Next we prove that

(P⊗)∗ is not a compact operator, which will give a contradiction. Indeed, if (y∗k)k is the
sequence of biorthogonal functionals associated to (yk)k, then (y∗k)k is a bounded sequence
such that

(P⊗)∗(y∗k)(⊗
nx) = y∗k(P (x)) =

∞∑

i=1

(x∗
i (x))

ny∗k(yi) = (x∗
k(x))

n = (x∗
k)

n(⊗nx)

for every x ∈ E, which yields that (P⊗)∗(y∗k) = (x∗
k)

n in
(
⊗̂

n

s,|π|E
)∗ ∼= Pr(nE). Since

x∗
k ∈ S+

E∗ for every k ∈ N, we have that (P⊗)∗(y∗k) is a positive polynomial, consequently

‖(P⊗)∗(y∗k)‖r = ‖(P⊗)∗(y∗k)‖ = ‖(x∗
k)

n‖ = sup
x∈BE

|x∗
k(x)|

n =

(
sup
x∈BE

|x∗
k(x)|

)n

= 1.

On the other hand, since x∗
k

ω∗

→ 0 we obtain that (P⊗)∗(y∗k) is a normalized sequence which
is pointwise convergent to zero, hence it cannot have a convergent subsequence. So, (P⊗)∗
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cannot be a compact operator. Thus P⊗ is not a compact operator either, and by [28, The-
orem 4.1] we obtain that P is not a compact polynomial, which contradicts the hypothesis.
Therefore F is a KB-space, which implies by [17, Theorem 4] that (Lr(⊗̂

n

s,|π|E;F ), ‖ · ‖r)
is a KB-space, and we are done.

The following is an immediate consequence of Theorem 4.3.

Corollary 4.4. If F is an infinite dimensional atomic Banach lattice with order con-
tinuous norm and every positive n-homogeneous polynomial P : E → F is compact, then
Pr(nE;F ) has order continuous norm. In addition, if E fails the dual positive Schur
property, then Pr(nE;F ) is a KB-space.

Let us remark what happens for almost limited polynomials.

Remark 4.5. Let E and F be two Banach lattices with F being atomic with order con-
tinuous. It follows from [32, Theorem 4.2(3)] that every almost limited linear operator
from any Banach space to F is compact. So, by considering the identifications obtained in
Example 2.3 and Example 3.3, we get that Pr

K(
nE;F ) = Pr

al(
nE;F ). Consequently, when-

ever E fails the dual positive Schur property, the following conditions are all equivalent
by Theorem 4.3:
(1) (Pr(nE;F ), ‖ · ‖r) contains no copy of c0.
(2) (Pr

al(
nE;F ), ‖ · ‖al) contains no copy of c0.

(3) Pr
al(

nE;F ) is a projection band in Pr(nE;F ).
(4) Every positive n-homogeneous polynomial from E to F is almost limited.

To see when the conditions of Theorem 4.2 are all equivalent in the weakly compact
case, we need to recall that a Banach lattice E is said to have the positive Grothendieck
property if every positive weak* null sequence in E∗ is weakly null (see, e.g., [38, p. 760]).

Theorem 4.6. Let n ∈ N, let E be a Banach lattice that fails the positive Grothendieck
property and let F be an atomic Dedekind complete Banach lattice such that Pr(nE;F )
has order continuous norm. Then, the following are equivalent:
(1) (Pr(nE;F ), ‖ · ‖r) contains no copy of c0.
(2) (Pr

W(nE;F ), ‖ · ‖w) contains no copy of c0.
(3) Pr

W(nE;F ) is a projection band in Pr(nE;F ).
(4) Every positive n-homogeneous polynomial from E to F is weakly compact.

Proof. Note first that, since Pr(nE;F ) ∼= Lr(⊗̂
n

s,|π|E;F ) has order continuous norm, F also
has order continuous norm (see [17, Proposition 1]). Thus, it follows from Example 2.4 that
(Pr

W(nE;F ), ‖ · ‖w) is a Banach lattice such that ‖P‖w = ‖P‖r for every P ∈ Pr
W(nE;F ).

Using that finite rank polynomials are weakly compact, we notice that the implications
(1)⇒(2)⇒(3)⇒(4) follow from Theorem 4.2.

(4)⇒ (1) To conclude that Pr(nE;F ) ∼= Lr(⊗̂
n

s,|π|E;F ) is aKB-space, by [17, Theorem
4] it is enough to check that F is a KB-space. Assume, for sake of contradiction, that
F is not a KB-Space. So, there exists (yk)k ⊂ F+ equivalent to the canonical basis
of c0. On the other hand, since E fails the positive Grothendieck property, there exists
a positive weak* null sequence (x∗

k)k ⊂ E∗ which is not weakly null. So, there exists
x∗∗ ∈ E∗∗ such that lim

k
x∗∗(x∗

k) 6= 0. By passing to a subsequence if necessary, we may
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assume that |x∗∗(x∗
k)| > ε holds for every k ∈ N and some ε > 0. As in the proof of

Theorem 4.3, P (x) =
∞∑
k=1

(x∗
k(x))

nyk, x ∈ E, defines a positive n-homogeneous polynomial

from E to F such that (P⊗)∗(y∗k) = (x∗
k)

n in
(
⊗̂

n

s,|π|E
)∗ ∼= Pr(nE), where (y∗k)k is the

sequence of biorthogonal functionals associated to (yk)k. Since each Pk := (x∗
k)

n is weakly

continuous on bounded sets and |P̃k(x
∗∗)| = |x∗∗(x∗

k)|
n ≥ εn holds for every k ∈ N, where

P̃k : E
∗∗ → R is the Aron-Berner extension of Pk (see [3, 20]), we get from [13, Theorem

3.3] that (Pk)k has no weakly null subsequence in Pr(nE). Futhermore, since x∗
k

ω∗

→ 0 in
E∗, we have that (Pk)k is pointwise convergent to zero, hence it cannot have a weakly
convergent subsequence. This yields that (P⊗)∗ cannot be a weakly compact operator.
Thus P⊗ is not a weakly compact (see [2, Theorem 5.23]). By [28, Theorem 3.2] we obtain
that P is not weakly compact polynomial, a contradiction. Therefore F is a KB-space,
which implies that (Lr(⊗̂

n

s,|π|E;F ), ‖ · ‖r) is a KB-space, and we are done.

It is well known that KB-spaces have order continuous norms. The next results give
conditions for lattices of polynomials with order continuous norms to be KB-spaces. First
we give the result for vector-valued polynomials, which follows immediately from Theorem
4.6.

Corollary 4.7. Let n ∈ N and let E, F be two Banach lattices with F Dedekind complete
such that Pr(nE;F ) has order continuous norm. If E fails the positive Grothendieck
property, F is atomic and every positive n-homogeneous polynomial P : E → F is weakly
compact, then Pr(nE;F ) is a KB-space.

The case of scalar-valued polynomials reads as following:

Corollary 4.8. Let n ∈ N and let E be a Banach lattice such that Pr(nE) has order
continuous norm. If E fails the positive Grothendieck property, then Pr(nE) is a KB-
space.

Proof. Just take F = R in the corollary above, use that R is atomic and that every
n-homogeneous polynomial P : E → R is weakly compact.
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