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The rate and security of quantum communications between users placed at arbitrary points of a
quantum communication network depend on the structure of the network, on its extension and on
the nature of the communication channels. In this work we propose a strategy for the optimization
of trusted-relays based networks that intertwines classical network approaches and quantum infor-
mation theory. Specifically, by suitably defining a quantum communication efficiency functional, we
identify the optimal quantum communication connections through the network by balancing security
and the quantum communication rate. The optimized network is then constructed as the network
of the maximal quantum communication efficiency connections and its performance is evaluated by
studying the scaling of average properties as functions of the number of nodes and of the network
spatial extension.

I. INTRODUCTION

Quantum communication networks [1] enable the re-
alization of tasks beyond the reach of classical commu-
nication systems. Examples are unconditionally secure
quantum key distribution [2, 3] (QKD), quantum telepor-
tation [4], clock-synchronization [5], distributed quantum
computing [6], to mention just a few. Characterizing and
optimizing quantum communication networks have a cru-
cial relevance for the development of quantum cryptog-
raphy applications [7] and hold the potential to advance
our understanding of fundamental quantum phenomena
[8], such as entanglement percolation [9] or the emergence
of non-local quantum correlations[10–12].
The performance of quantum networks is determined

by the nature of the quantum communication channels
and protocols [13, 14] and by the overall network topol-
ogy. The optimization of quantum communication net-
works involves therefore the closing of security loopholes
and the mitigation of the effect of losses through the de-
velopment of quantum communication protocols, such as
for example the measurement device independent QKD
[15–17] and the twin-field QKD [18] protocols. But it
is also pursued by optimizing the allocation of quantum
resources for quantum sensing [19] and for distributed
quantum computing [20] or by engineering optimal rout-
ing strategies [21–25], taking into account the peculiar
features of the network elements and the network archi-
tecture.
In the ideal case the ultimate properties of network el-

ements, such as the quantum communication links, are
dictated by the laws of quantum mechanics, enforcing
their security but also imposing intrinsic bounds [26, 27]
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on the rate of quantum information transmission. Specif-
ically, the fundamental limit of repeaterless quantum
communication found by Pirandola, Laurenza, Ottaviani
and Banchi [28], known as PLOB bound, prevents to
achieve simultaneously high rates and long distances in
transferring quantum states and distributing entangle-
ment or secret quantum keys through a quantum link.

The global features of quantum communication net-
works are strongly dependent on the spatial distribution
of the users. Recent theoretical works developed a ran-
dom network approach to large-scale quantum commu-
nication networks based on optical fibers [29] or satellite
links [30] and analyzed their connectivity, nodes distance
and the presence of small world features [29, 30].

In this work we employ the tools of classical network
science to devise a strategy of optimization of quan-
tum communication networks. PLOB bound can be in-
deed circumvented by means of intermediate repeaters
[13], either of quantum [31] or classical nature (trusted
nodes [32, 33]), that help the communication between
distant parties. With few notable exceptions [34], most
field tests of metropolitan-scale quantum networks to
date are based on point-to-point architecture and they
involve trusted nodes, see Refs. [35–39]. Trusted nodes
in general lower the security of the network [32, 40, 41].
Consequently, in designing a QKD network the follow-
ing question arises naturally: given a set of QKD users,
what is the optimal way to connect them to fulfill a given
rate/security target, assuming that all trusted nodes have
a certain probability p of being leaky? Here we ad-
dress this optimization problem by introducing a quan-

tum communication efficiency functional, that balances
the quantum security and the quantum communication
rate for each pair of users in the network. Note that in
a classical network leakage can occur not only at nodes
where the signal is amplified, but also along the con-
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nections between nodes: adding amplifiers therefore im-
proves the capacitance without necessarily reducing the
security level. For this reason in classical networks there
is no tradeoff between capacitance and security, which
is instead inherent in QKD networks. We develop an
algorithm that maximizes the quantum communication
efficiency and constructs the optimal network, that we
refer to as maximal quantum communication efficiency
network. We then investigate, for a random distribution
of users in the plane, the average properties of these opti-
mal networks. Their performance is evaluated by study-
ing the scaling of average properties as a function of the
number of nodes and of the network extension. While
the quantum communication rate is linked to geometrical
properties, such as the average distance between users,
the security depends on the topology. The optimization
algorithm therefore goes beyond standard dynamic pro-
gramming methods, such as the Dijkstra algorithm [42],
that were previously employed in the context of quantum
repeater network optimization [21].

II. RESULTS

A. Communication efficiency of quantum networks

In its simplest realization a QKD network consists of a
set ofN users (nodes) that can send and receive quantum
bits along a set of physical links. Here we assume that
users are points located in a square of side L, as shown in
Fig. 1. As physical connections we consider lossy bosonic
links. In this case, following Ref. [28], the QKD rate of
a link, e, connecting two users located at the points xa

and xb can be quantified by its quantum capacitance q(e)
fulfilling the PLOB relation

q(e) = − log2[(1 − e−dab/λ0)]. (1)

where dab = |xa − xb| is the Euclidean distance between
the users and λ0 is a characteristic decay length. For
optical fibers the attenuation in the C telecom band is
of the order of 0.2 db/Km yielding λ0 ∼ 22 Km. Note
that, since the link capacitance provides an estimate of
the number of qubits sent per use of the channel, Eq. (1)
sets to 15 Km the distance at which a single qubit per
use can be sent using a standard optical fiber connection.
The quantum capacitance of a channel can be increased
by means of repeaters. In particular, connecting the users
a and b through a path featuring m trusted nodes, the
capacitance of the channel [13] is given by

q({a → b}) = min
e∈{a→b}

q(e). (2)

As an example let us consider users a and b shown in
Fig. 1(a) and let us assume that all other users can act
as trusted nodes. We show two possible ways to connect
a and b: a direct link or a path passing through three
trusted nodes. In the first case the quantum capacitance

is given by q(eab) while in the second case the capacitance
is q(ecd) > q(eab).
Such an increased capacitance is however associated to

a potential vulnerability to attacks, since in most practi-
cal situations, an intermediate node can only be partially
trusted, as discussed e.g in Ref. [41]. All links are instead
assumed to be unconditionally secure. To quantify this
aspect we assume that every trusted node has a certain
probability p of being malicious and we define the secu-
rity of a path, s({a → b}) as the probability of finding
only non-malicious trusted nodes along the path, i.e.

s({a → b}) ≡ (1− p)ℓ{a→b}−1 (3)

where ℓ{a→b} is the topological length of the path. This
definition yields s = 1 for a path having topological
length ℓ = 1, i.e., no intermediate trusted nodes. Fur-
thermore, it correctly gives s = 0 when p = 1 and s = 1
for p = 0.
Within the model defined by Eqs. (2) and (3), capaci-

tance and security in general compete, i.e., longer paths
may have larger capacitance but at the price of lower
security. To describe this trade-off we define the commu-
nication efficiency ǫα({a → b}) of a path

ǫα({a → b}) = (1− α)q({a → b}) + α log s({a → b})
(4)

where α ∈ [0, 1] is a user-tunable control parameter which
gives more importance either to capacitance (α = 0) or
to security (α = 1). For simplicity the communication
efficiency is defined using the logarithm of the security
that is proportional to the path length.
Given the positions of users in space and assuming that

a direct link can be placed between any two of them, so
that the network of all possible links G0 is a fully con-
nected (FC) graph, there is an exponentially large num-
ber of possible paths between two nodes, a and b. For a
given α, an optimal path {a → b}∗ is defined as a path
having maximal communication efficiency among all pos-
sible paths

{a → b}∗ = argmax{ǫα({a → b})}. (5)

Clearly, in the limit α → 0, the optimal path maximizes
the capacitance, by going through many, physically close,
intermediate nodes. In the limit α → 1 the optimal path
maximizes security and is thus the direct link between
the two nodes. The global communication efficiency of a
network G is defined as the average, over all node pairs, of
the communication efficiency of the optimal paths defined
over the network

Eα[G] =
1

N(N − 1)

∑

a,b

ǫα({a → b}∗). (6)

It is important to remark that in general there can be
more than a single optimal path between two nodes. As
an example in Fig. 1(a) we show two optimal paths be-
tween the nodes a and b passing through the node k and
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FIG. 1. The optimal path between two nodes. (a) Distribution of N = 20 points in a square of size L representing the
users of a QKD network. The colored lines represent possible paths between users a and b. (b) Maximum spanning tree for
N = 40 nodes. Here and in the following panels the red edges represent the optimal path between user a and user b. Nodes
are colored according to their degree. (c-f) Maximal Quantum Communication Efficiency networks G

∗

α, obtained using our
optimization algorithm, for N = 40, L = λ0 and α = 0, 0.2, 0.3, 1.

k′, respectively. The two paths have the same commu-
nication efficiency since they have the same topological
length, ℓ = 4, and the same capacitance Q = q(ecd),
being ecd the longest edge in both paths.

B. Network optimization

Given a set of N users, N , distributed in a square of
size L, and a tradeoff parameter α, our goal is to find
a network connecting the N users having maximal com-
munication efficiency and minimal number of links. To
reach this goal we start by determining an optimal path
for each pair of users. This is achieved by means of a
novel algorithm described in detail in the Methods sec-
tion. Once an optimal path is identified for each pair, we
define the optimal network, G∗

α ≡ (N , E∗
α), as the graph

union of the optimal paths, that is the network with node
set N and edge set E∗

α given by

E∗
α =

⋃

ab

{a → b}∗. (7)

This network has the maximum quantum communica-

tion efficiency, i.e. no other network G′ ≡ (N , E ′) can
have larger communication efficiency, i.e.,

E[G′] ≤ E[G∗
α] (8)

under the assumption of single-path [13, 41] routing. For
α = 0 optimal networks maximize the capacitance. In
this case, an efficient optimization algorithm was pro-
posed by Pollack [43]. As discussed in Ref. [44], be-
side maximizing network capacitance, Pollack’s algo-
rithm minimizes the number of links yielding as optimal
network the maximum spanning tree (MST) connecting
the N users (Fig. 1(b)).
The method developed in this work builds on Pollack’s

algorithm to construct the optimal network G∗
α as pre-

scribed by Eq.(7). Figure 1(c-f) shows instances of G∗
α

for different values of α. As one can see, it interpolates
between the fully connected network, realized for α = 1,
and a much sparser network for α → 0. We note that for
α → 0, G∗

α does not necessarily reduce to the MST. This
is related to the fact that, as we explained above, the
optimal paths are non-unique. In principle, for generic
α one could complement our algorithm with further op-
timization techniques to reduce the number of links of
G∗
α while preserving maximum communication efficiency.
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This further development is deferred to future work.

C. Maximal quantum communication efficiency

networks

For concreteness, in this subsection we assume a com-
pletely random distribution of users in the square of
size L. As highlighted above, optimal networks maxi-
mize the quantum communication efficiency functional
defined by Eq. (6). Their structure and performance de-
pend sensitively on the user-defined parameter α and on
the distance-loss ratio, L/λ0, that set the optimization
regime. To show how these maximal quantum commu-

nication efficiency (MQCE) networks change across the
different regimes, in Fig. 2 we plot their average capaci-
tance,

Q∗ =
1

N(N − 1)

∑

ab

q({a → b}∗), (9)

and average topological length,

L∗ =
1

N(N − 1)

∑

ab

ℓ{a→b}∗ (10)

as a function of α for different values of L/λ0 ranging
from the case of weak losses (L/λ0 = 0.1) to the case of
strong losses (L/λ0 = 10).
Let us consider first the case of weak losses, L/λ0 ≪

1, where the distance between any pair of users is, by
construction, much smaller than the decay length λ0; in
this case we distinguish three regimes.
(i) For values of α larger than a threshold value αc we

observe L∗ = 1, corresponding to all optimal paths hav-
ing ℓ{a→b}∗ = 1. In this regime G∗

α coincides with the
fully connected network. Moreover, since the structure
of G∗

α does not change with α, the average capacitance
is constant, Q∗ = QFC (see Methods for its evaluation).
The critical value αc is the lowest value of α such that, for
every pair of users a, b in the system, it is more efficient
to connect them through the direct link rather than us-
ing a trusted node c. This happens as long as the gain in
communication efficiency due to increased capacitance,
is smaller than the loss of communication efficiency asso-
ciated to the introduction of an intermediate node, equal
to α log(1− p), yielding (see Methods for details)

αc = [1− log(1 − p)]−1. (11)

(ii) On the left of this threshold value we observe the
existence of a “step”, i.e., an interval of α values over
which L∗ is practically constant and equal to 2. In this
interval all optimal paths have 1 intermediate node. As
α decreases other steps appear, corresponding to MQCE
networks featuring all optimal paths having topological
length L∗ = 3 (second step) and L∗ = 4 (third step).
The steps become sharper in the large N limit where a
simple calculation (see Methods) shows that paths having

m intermediate nodes become more efficient than those
with m− 1 intermediate ones for

αm−1→m
c = [1−∆(m) log(1− p)]−1, (12)

where

∆(m) =
log(2)

log(m+ 1)− log(m)
. (13)

Note that α0→1
c coincides with the αc defined above. The

predictions α0→1
c = 0.5, α1→2

c ≈ 0.369 and α2→3
c ≈ 0.293

are in very good agreement with the positions of the steps
for p = 1− 1/e, appearing in Fig. 2(a).
(iii) As α tends to 0, MQCE networks increasingly re-

semble the maximum spanning tree. In this limit the
average topological length of optimal paths tends to in-
crease as a power-law with N (see Methods). Let us now
consider the opposite case of strong losses, L ≫ λ0. In
this limit the phenomenology is different and more diffi-
cult to interpret because, while most distances are much
larger than λ0, still some pairs of users are at a distance
smaller than the decay length. These pairs are respon-
sible for the observation that L∗ > 1 as soon as α gets
smaller than the threshold value still given by Eq. (11)
(see Fig. 2(c-d)). At variance with the previous case,
for α < αc the average topological length of the optimal
paths L∗ grows rapidly as α is reduced, showing no steps
at integer values. Moreover, there exist a value α such
that for α < α, L∗ and Q∗ vary much less and assume
values close to those of the MST network (see Methods).
A partially quantitative understanding of the nature

of the different regimes can be achieved by considering
how the properties of the optimal path linking a generic
pair of users, a and b, change, as a function of their dis-
tance dab and of α, in the limit N → ∞. In Fig. 3(a)
we highlight with different colors the regions correspond-
ing to different topological lengths of the optimal path
between a and b. Boundaries shown in Fig. 3(a) are
calculated analytically (see Methods). For large values
of α security dominates and the optimal path is, for any
dab/λ0, the direct connection. When α is reduced the op-
timal path has a different behavior depending on the ratio
dab/λ0. For small dab/λ0 , when α is reduced it becomes
more efficient to go through indirect paths going through
m = 1, 2, 3, . . ., intermediate trusted nodes and so on,
which are equally spaced along the line connecting a and
b. For larger dab/λ0, the gain in capacitance provided
by a single intermediate trusted node is not sufficient to
compensate the loss in security and, as α is reduced, the
first transition occurs between the direct link and a path
going through m > 1 trusted nodes. This first transition
is followed, as in the previous case, by a one by one in-
crease in the number of intermediate nodes as smaller α
values are considered. For dab/λ0 ≫ 1, m grows linearly
with d and the position of the first transition scales as
1/d.
The phenomenology for the whole network shown in

Fig. 2 results from the superposition of the behavior just
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FIG. 2. Average properties of optimal networks. Average capacitance and path length, Q∗ and L
∗, on the MQCE

networks as a function of α for p = 1 − 1/e ≃ 0.63. N = 256 (circles), N = 512 (triangles), N = 1024 (diamonds), N = 2048
(squares). a) L/λ0 = 0.1, b) L/λ0 = 1, c) L/λ0 = 3, d) L/λ0 = 10. Averages over 100 realizations for N = 256 and N = 512,
and over 10 realizations for N = 1024 and N = 2048. Dashed lines correspond to the values of α0→1
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c (green) and
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c (purple) evaluated using Eq. (12).
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FIG. 3. The phase diagram and the behavior of the average capacitance. (a) Transitions between the different
regimes for p = 1− 1/e and N → ∞, representing the number of intermediate nodes in the optimal path for a pair of nodes at
distance dab as a function of dab and α. Note that the curve separating the “direct link region” from the other regions has slope
discontinuities corresponding to the dashed vertical lines. (b) Behavior of the average capacitance Q∗, and of the minimum
capacitance Qmin as a function of L/λ0 with α = 0.1, p = 0.1, N = 100 for the MQCE network , the FC network (computed
analytically, see Methods). (c) Plot of the average capacitance of the MQCE network as a function of the average topological
length for p = 1− 1/e, N = 512 (dotted lines), N = 1024 (solid lines) and various values of L/λ0.

depicted for all user pairs whose distances are distributed
according to Eq. (18) (see Methods). Specifically, if
L ≪ λ0 all pairs belong to the small distances regime
of Fig. 3(a). As a consequence they all undergo the same
transitions for the same values of α, thus generating the
steps observed in Fig. 2 (a). For L ≫ λ0 instead, most
pairs are at distances larger than the decay length, but
a few are still at distances much smaller than λ0. There-
fore, depending on the exact value of dab/λ0, each user
pair undergoes different transitions for different values of
α. All these transitions get “mixed”, thus explaining the
lack of steps in this case and a smooth growth of the
observables between αc and α (see Fig. 2 (d)).

1. Performance of MQCE networks

By balancing security and quantum capacitance,
MQCE networks yield the optimal strategy to connect
N users for quantum communications and, at the same

time, they represent a customizable benchmarking tool
for quantum communication networks. To illustrate the
performance of MQCE networks we start by comparing
their quantum capacitance to that of FC networks. As
one can see in Fig. 3(b), the outcome depends sensitively
on the ratio L/λ0. For L/λ0 ≪ 1 a limited increase of
the average capacitance with respect to the FC network
is observed. For values of L of the order of λ0 the im-
proved performance of the MQCE network becomes more
significant. In this range of L/λ0 values, the most impor-
tant improvement concerns the minimum capacitance.
While for FC networks some links have a strongly de-
graded capacitance, several orders of magnitude smaller
than the average Q∗, in the optimized network minQ
is only slightly smaller than the average, thus guaran-
teeing that communication is possible among any pairs
of users. For very large values of L/λ0 the MQCE net-
work tends to coincide with the FC one, as the weight
of capacitance in the quantum communication efficiency
functional becomes extremely small. In this regime the
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average capacitance Q∗ is essentially the same in the
two networks and decays as (L/λ0)

−2. In Fig. 3(b) we
also note that in MQCE networks the minimum capac-
ity reaches the threshold of one target bit per use of the
channel, Qmin = 1, for values of L/λ0 about one order
of magnitude larger than in standard FC networks. For
fixed values of λ0, this implies that MQCE networks can
provide the minimum quantum communication rate stan-
dard across much wider regions of space. Specifically, for
the parameters in Fig. 3(b), the maximum value of L to
have at least 1 target bit transferred between any user of
the network goes from ≈ 0.5λ0 (in the FC network) to
≈ 5λ0 in the MQCE network. A natural question arises
concerning how the the security requirement affects the
maximal achievable rate. To clarify this point in Fig. 3(c)
we plot the average capacitance of MQCE networks, Q∗

as a function of the average topological length L∗, for
different values of the ratio L/λ0. It turns out that it
is sufficient to allow L∗ to grow from 1 (FC network) to
3 or 4 to ensure a considerable increase in the average
capacitance, even one order of magnitude for large L/λ0.

2. Structure of MQCE networks

It is interesting also to analyze the structural features
of the networks that the optimization algorithm gener-
ates. In Fig. 4 we report the dependence on α of the link
density of the optimized network, ρ = 〈k〉/(N−1), which
is correlated with the cost to build the infrastructure. In
all cases the density interpolates between a maximally
dense network, the FC, (for α > αc) and a much sparser
network (for α → 0). As mentioned above, our algo-
rithm does not exactly reproduce, in the limit α → 0,
the MST (which has density 2/N). The scaling of ρ vs
N , which exhibits a decay N−ω, with an effective expo-
nent to ω ≈ 0.83 implies that the optimized network has
an average degree growing sublinearly with N . For large
values of α the densities tend to converge to a finite limit,
indicating that the networks are dense. For small but fi-
nite α values the initial decay with N appears analogous
to the α = 0 case, there is some evidence that for any
α > 0 the density tends to a constant.
Additional information on the optimized network is

provided by Fig. 5, where the average length of opti-
mal paths L∗ is plotted as a function of the number of
users. For small values of L/λ0 and relatively large val-
ues of α < αc it is clear that L∗ goes to a constant in the
large-N limit (see Fig. 5(a)). This mirrors the presence
of steps in Fig. 2. For smaller values of α and larger val-
ues of L/λ0 the average optimal path length exhibits an
initial power-law growth with N followed by a smooth
crossover to a constant value.
The optimal network can be also characterized by mea-

suring a quantity analogous to the betweenness usually
considered in network analysis. The betweenness [45] of
a node is the number of shortest paths among all pairs
of nodes in the network that go through that node. For

our purposes it is useful to define a modified between-
ness where, instead of topological shortest paths, optimal
paths are considered. Such a quantity provides a mea-
sure of the relevance of users, i.e., how crucial is their
presence (and how damaging their removal). Nodes with
high betweenness have, just because of their position in
the topology, a high impact on the security of the net-
work. In Fig. 6 we plot the histogram of the number of
nodes having a given modified betweenness for various
α. For α > αc the optimal network is fully connected
and the values of the betweenness are all zero. When
α becomes smaller than αc a homogeneous distribution
appears. As α is progressively reduced the distribution
gets more heterogeneous, becoming extremely broad for
α → 0. In such a case some nodes are particularly crucial
and the network is overall highly vulnerable to external
attacks.

III. METHODS

A. Optimization algorithm

The task of constructing MQCE networks cannot be
addressed using dynamic programming methods such as
Dijkstra’s [42], Prim’s [46] or Pollack’s [43] algorithms.
Specifically, because of the inherently nonlocal nature of
the problem arising from the interplay of topological and
geometric terms in the communication efficiency func-
tional, if the optimal path between a and b goes through
node c nothing guarantees that the subpath between a
and c, belonging to {a → b}∗, yields also the optimal
path between a and c. Consequently, we have to re-
sort to alternative approaches to tackle this problem. In
Ref. [43] Pollack presents, among others, a matrix-based
algorithm for solving the maximum capacity route prob-
lem, which is equivalent for us to finding the maximum
capacitance between any pair of users. Starting from a

matrix whose element Q
(0)
jk is the capacitance of the link

between node j and k given by Eq. (1) and Q
(0)
jj = ∞,

an iterative procedure is defined. The elements of Q(m)

at step m are defined by

Q
(m)
jk = max

ℓ

[

min(Q
(0)
jℓ , Q

(m−1)
ℓk )

]

(14)

where ℓ = 1, . . . , N . In this way the element Q
(m)
jk is

the maximum capacitance of paths between j and k
going through at most m intermediate nodes. Iterat-
ing, the process, convergence is reached at most when
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FIG. 4. The link density of the optimal networks. (a) Density ρ as a function of α, for p = 1−1/e and two values of L/λ0

Averages over 100 realizations for N = 128 (squares), N = 256 (circles), and over 10 realizations for N = 512 (triangles), N =
1024 (diamonds). Dashed lines correspond to the values of α0→1

c (red), α1→2

c (green) and α2→3

c (purple) evaluated using
Eq. (12). (b) Dependence of the density on N for L/λ0 = 0.1. (c) Dependence of the density on N for L/λ0 = 10.

FIG. 5. Size dependence of the average length of

optimal paths. Plot of L
∗ vs N for several values of α,

p = 1− 1/e, (a) L/λ0 = 0.1, (b) L/λ0 = 10.
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FIG. 6. The impact of individual nodes on security is

heterogeneous. Distribution of the number of nodes having
a given modified betweenness for N = 64, p = 1−1/e, L/λ0 =
0.1 (a), L/λ0 = 10 (b), and several values of α. The lower α,
the broader the distribution becomes. Black dashed lines are
guides to the eye.

m + 1 = N − 1. Individual elements of Q(m) provide at
convergence the maximum capacitance between all node
pairs. We modify Pollack’s original algorithm as follows.
Given α, at each iteration m we evaluate the quantity

ǫjk = (1− α)Q
(m)
jk + αm log(1− p). (15)

This is the maximal communication efficiency of paths
between j and k of length at most m + 1. As m is in-
creased, the first term in Eq. (15) grows and tends to a

constant, while the second is negative and is linear in m.
Hence, for each pair (j, k), ǫjk reaches a maximum as a
function of m for a value m∗

jk. Note that m
∗ needs not to

be the same for all pairs. The communication efficiency
of the optimal path between j and k is thus

ǫ({j → k}∗) = (1 − α)Q
(m∗

jk)

jk + α log(1− p)m∗
jk. (16)

This procedure gives the communication efficiency of
the optimal paths between any two users. In order to
construct one of these (in principle many) paths we pro-

ceed as follows. The capacitanceQ
(m∗

jk)

jk associated to the
optimal path between j and k necessarily appears in the

initial matrix Q(0), as element Q
(0)
ln . All entries of Q are

assumed to be different. This indicates that the optimal
path between j and k necessarily goes through the link
between l and n, which, indeed, determines the capaci-
tance of the optimal path. Starting from the matrix Q(0)

we construct the unweighted graph A containing an edge
between all node pairs such that the corresponding ele-

ment in Q(0) is larger than Q
(0)
ln . In this graph A we find

the optimal path as the topological shortest path going
from j to k with the constraint that it goes through the
link (l, n). Clearly, although the link between l and n
is uniquely determined there are often many alternative
shortest paths going through it; this gives rise to a large
number of degenerate optimal paths.

B. The efficiency of the fully connected network

To calculate the efficiency of a fully connected net-
work, which coincides with its capacitance, we need the
probability distribution for the distance between any pair
of points in a square of size L. This quantity coincides
with the distribution of distances between two points ran-
domly distributed in the square, which is a special case
of the distribution for a generic rectangular substrate de-
rived in Ref. [47]. Note that the quantity N does not
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play any role. Considering nodes distributed in a square of side L, the distance distribution is

g(d) =
1

L
f

(

d

L

)

(17)

where

f(z) = 2z

{

π − 4z + z2 0 ≤ z ≤ 1

4 arcsin (1/z)− (2 + π) + 4
√
z2 − 1− z2 1 ≤ z ≤

√
2.

(18)

Given this distribution, the value of the capacitance av-
eraged over all node pairs is then:

QFC = − 1

ln 2

∫ ∞

0

dz f(z) ln(1− e−z/λ̃), (19)

where λ̃ = λ0/L. In the limit L ≪ λ0 one can safely

approximate e−z/λ̃ ≈ 1− z/λ̃, hence

QFC = −〈ln(z/λ̃〉)
ln 2

. (20)

In the limit L ≫ λ0 instead, taking

ln(1− e−d/λ0) ≈ −e−z/λ̃, (21)

we can write

QFC ≈ 1

ln 2

∫ ∞

0

dzf(z)e−z/λ̃. (22)

Since for small z we have f(z) ≈ 2πz, then

QFC ≈ 2π

ln 2

(

λ0

L

)2

. (23)

In this regime, the value of QFC is determined by the
contribution of the few links shorter than λ0, which have
a large capacitance.

C. Optimization regimes for a single pair

We consider N → ∞. In this limit we can always
assume that for any pair of users at distance dab, there
are m (∀m) equally spaced intermediate users along the
line joining a and b, so that the distance between nearest
neighbouring nodes is dab/(m+ 1). The efficiency of the
path going through m intermediate nodes (including the
direct link, which is the case m = 0) is therefore:

E(m) = −(1−α) log2(1−e−dab/[(m+1)λ0])+α log(1−p)m.
(24)

For sufficiently large α it is more efficient to use the direct
link, m = 0. As α is reduced it becomes more efficient to
use indirect paths, with m > 0.

For dab < λ0, if one plots E(m) vs α for m =
0, 1, 2, 3, . . . one observes that the intersections of the
lines for m > 0 with the line for the direct link (m = 0)
occur for decreasing α as m is increased. As a conse-
quence, starting from α = 1, at a given α0→1

c ≡ αc it
becomes more efficient to follow the path of length 2
(i.e., with m = 1 intermediate nodes) rather than the
direct link (with m = 0). Analogously, for a smaller
α1→2
c the path of length 3 becomes more efficient than

the path of length 2 and so on. Hence we observe a se-
ries of transitions, where it becomes more efficient to use
paths with m intermediate nodes with respect to paths
with m − 1 nodes, with increasing m = 1, 2, 3, . . . The
location αm−1→m

c of the m-th transition is given by the
condition

E(m) = E(m− 1), (25)

which, in the limit dab → 0, yields Eq. (12). These tran-
sitions are indicated by the solid lines in Fig. 3(a). For
dab ≫ λ0 instead, the intersection of E(m) with E(0)
(efficiency of the direct link) occurs at a value of α that
grows initially with m, up to a value m. After this value
the position of the intersection decreases with m. This
means that, instead of having a transition from the di-
rect link to a path with one trusted node, for α = α0→m

there is a transition from the direct link to a path going
through m > 1 intermediate nodes. This first transition
is followed by other transitions of the same kind as before,
in which the number of intermediate nodes is increased
by 1, αm−1→m

c for m > m + 1. The value of m is found
by determining α0→m

c using the condition

E(m) = E(0), (26)

and checking, for a given dab/λ0, which of the α0→m
c is

the largest. In the limit of large dab/λ0, m gets large as
well; in other words, starting from α = 1 one jumps from
the direct link to a path of larger and larger topological
length, but this happens for smaller and smaller values
of α0→m

c , vanishing as 1/dab. Fig. 3(a) represents the
scenario just described.
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D. Optimization regimes for the whole network

The previous discussion (and Fig. 3(a)) consider a sin-
gle pair, with given distance dab, and is exact in the
limit N → ∞. The phenomenology of the whole system
of size L is the superposition of what happens for each
pair in the system where distances, spanning the range
0 < dab <

√
2L are distributed according to Eq. (18). For

L/λ0 → 0 all distances dab are necessarily much smaller
than λ0. In the expression for E(m) one can expand the
exponential to first order and the values αm−1→m

c ob-
tained by solving the equation E(m) = E(m− 1) do not
depend on dab. Hence the transitions for all pairs occur
exactly for the same values of α, given by Eq. (12). Thus
the average optimal path length L exhibits, as a function
of α, steps which are, in the limit L/λ0 → 0, perfectly
sharp (Fig. 2(a)).
For generic L/λ0, distances dab are distributed over the

range between 0 and
√
2L. For the smallest of them the

scenario just depicted applies and transitions occur for
the values written in Eq. (12). But for any finite L ≪ λ0

there are corrections to the values of Eq. (12), shown by
the decreasing behavior of the curves in Fig. 3(a)). This
explains why, for 0 < L ≪ λ0, steps are not perfectly
sharp but broadened (even for N → ∞): the transitions
fromm−1 → m intermediate nodes occur, for the various
pairs, at slightly different values of α. As m grows the
transitions are closer (see the denser lines in Fig. 3(a));
the broadening becomes stronger so that steps of high
order m cannot be clearly identified.
For L/λ0 not infinitesimally small but still smaller

than 1, an estimate of the average position of the steps
is obtained by using the condition (25), after setting
dab = 〈dab〉 ≈ 0.52L [47]. The values obtained, which
are a decreasing function of L. explain why the positions
of the observable steps in Fig. 2(b-c), which for L/λ0 → 0
are given by Eq. (12), decrease as L grows. At the same
time the increase of L leads to an increased “mixing” of
the transitions. As a consequence, the steps get less sharp
and the concept of step progressively loses meaning.
For large L/λ0, the connection between the regimes

for a single pair and the overall behavior of the system is
more involved. Indeed, if L/λ0 ≫ 1 despite the fact that
for the overwhelming majority of pairs dab/λ0 ≫ 1 there
are always some pairs of users whose distance is dab ≪ λ0.
For them, the optimal path involves a number m of in-
termediate nodes growing one at a time for the values of
α given by Eq. (12). This explains why, for any L, one
observes L > 0 as soon as α < αc = [1 − log(1 − p)]−1

(see Fig. 2(d)). However, for L ≫ λ0 the overwhelming
majority of distances are much larger than λ0 and the
length of the optimal path is described by the right part
of Fig. 3(a). For a given α < αc the optimal path for
these pairs involves m intermediate nodes, with m as-
suming a range of values depending on the precise value
of dab/λ0. For this reason the average length of optimal
paths L does not assume integer values but instead it
changes continuously with α, thus explaining the lack of

steps in this case. This “mixing” involves all distances up
to the largest one in the system, dmax =

√
2L, for which

the transition to optimal paths longer than 1 occurs for
the smallest α value. We can therefore estimate that for
α < α0→m

c (dmax) all pairs are connected by topologically
long paths and the network is essentially a MST. This
leads to the identification of the threshold α observed in
Fig. 2(d) as

α ≈ α0→m
c (d =

√
2L) ∼ 1/L. (27)

E. Capacitance of the Maximum Spanning Tree

The length of the longest link (i.e. the link with lowest
capacitance) in an Euclidean MST is given by [48]

max de ≃ L

√

logN

πN
, N ≫ 1.

Assuming that the majority of the optimal paths pass
through the link with minimum capacitance, we can es-
timate QMST as the capacitance of such a link. Hence we
have

QMST ≃ − log2

[

1− exp

(

L

λ0

√

logN

πN

)]

, (28)

which is in good agreement with the results in Fig. 2 for
L ≪ λ0 and is increasingly accurate as N grows also in
the other cases.

IV. CONCLUSIONS

The realization of large-scale quantum communication
networks is a task of crucial relevance for quantum cryp-
tography and quantum computing applications. Existing
quantum network implementations employ intermediate
trusted nodes as a practical and efficient means to con-
nect remote users, thereby overcoming the limitations
imposed by rate/distance bounds. Relying on trusted
nodes, however, carries the inherent risk associated with
the probability of encountering malicious nodes. Given
these constraints, in this work we addressed the problem
of designing optimal quantum communication networks
connecting a set of users randomly distributed in a square
of size L. For each pair of users, we determined the op-
timal path connecting them by maximizing the quantum
communication efficiency of the path and we constructed
the optimal network, called maximal quantum communi-
cation efficiency network as the graph union of the opti-
mal paths. MQCE networks therefore provide the opti-
mal balance between security and quantum communica-
tion rate and they interpolate between Maximum Span-
ning Trees and Fully Connected networks, representing,
respectively, the topologies having maximum quantum
capacitance and maximum security. We carefully ana-
lyzed the performance of the MQCE networks showing



10

that the optimization can largely increase the average
capacitance while keeping high levels of security. We
also analyzed structural properties of MQCE networks
by means of numerical and analytical methods, showing
how the tradeoff between capacitance and security af-
fects their topological properties. Our work proposes a
systematic and scalable approach for quantum communi-
cation network optimization that relies on the construc-
tion of a network model and the corresponding quantum
communication efficiency functional. So far we consid-
ered simple networks featuring only trusted nodes and
lossy bosonic links but our work lays the basis for the
study of general quantum communication networks.
We expect the performance of MQCE networks to

be significantly affected by the spatial distribution of
points; for simplicity we assumed a uniform distribu-
tion but it would be interesting to consider other pos-
sibilities. A further crucial assumption underpinning our
work is that of single-path routing; more powerful rout-
ing strategies, where systems are transmitted in paral-
lel through different quantum communication channels
have been proposed to improve the capacitance [13, 49]
or the security [41]. In these situations, an extension of
our algorithm may provide a way to combine the two
approaches to fullfill simultaneously well-defined capac-
itance and security requirements. The degeneracy of
the optimal path could then acquire further practical
relevance. Eventually, our method could be extended
to different quantum key distribution schemes such as
entanglement-based quantum key distribution [50–52].
In conclusion, we stress that our freely available code [53]
can be straightforwardly used to design optimal quantum
communication networks for given location of users.
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