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Biomolecules composed of a limited set of chemical building blocks can co-localize into distinct,
spatially segregated compartments known as biomolecular condensates. While many condensates are
known to form spontaneously via phase separation, it has been unclear how immiscible condensates
with precisely controlled molecular compositions assemble from a small number of chemical building
blocks. We address this question by establishing a connection between the specificity of biomolecular
interactions and the thermodynamic stability of coexisting condensates. By computing the minimum
interaction specificity required to assemble condensates with target molecular compositions, we show
how to design heteropolymer mixtures that produce compositionally complex condensates using only
a small number of monomer types. Our results provide insight into how compositional specificity
arises in naturally occurring multicomponent condensates and demonstrate a rational algorithm for
engineering complex artificial condensates from simple chemical building blocks.

I. INTRODUCTION

Biomolecules such as proteins and nucleic acids can
spontaneously co-localize to form multicomponent con-
densates via the thermodynamically driven process of
phase separation [1–4]. A wide variety of different con-
densates have been observed in living cells, each of which
is associated with a distinct macromolecular composi-
tion [5, 6]. This compositional specificity is central to
the ability of condensates to selectively recruit client
molecules [7, 8], including enzymes and metabolites, and
to respond dynamically to changes in macromolecular
concentrations and the chemical state of the intracellular
environment [9–14]. Compositional specificity is thus a
key requirement for condensation to serve as a functional
mechanism of self-organization in cellular biology.

Nonetheless, it has remained unclear how composi-
tional specificity arises from conformationally disordered
macromolecules [15–17] and non-stoichiometric interac-
tions in heterogeneous intracellular environments [18–
20]. On the one hand, established principles of poly-
mer physics predict that subtle differences in the chem-
ical compositions of heteropolymers can drive demix-
ing into coexisting phases [21]. For example, ran-
dom copolymers—i.e., heteropolymers composed of two
monomer types—can demix into a large number of im-
miscible phases in accordance with their chemical com-
positions [22]. Yet on the other hand, the molecular com-
positions of naturally occurring condensates appear to be
considerably more complex [6, 12], and the relationships
between biomolecules and the condensates into which
they partition is not always one-to-one [12, 23, 24]. These
observations also raise the question of how well-studied
driving forces for phase separation in model systems,
such as arginine/tyrosine compositions of FUS conden-
sates [25], the aromatic composition of prion-like domain
condensates [26], and many other sequence motifs [27–
33], coordinate condensate formation in heterogeneous
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mixtures, where a wide variety of biomolecules exhibit
similar chemical features. Addressing these questions is
essential to understanding how biomolecular condensa-
tion can give rise to complex, tunable, and biologically
functional spatial organization [34].

In this article, we focus on determining the mini-
mum biomolecular interaction specificity that is required
to achieve phase separation into non-trivial condensed
phases in a multicomponent system. In particular,
we devise a theory to quantify and design “minimal-
complexity” biomolecular mixtures—i.e., mixtures of
heteropolymers built from the smallest number of dis-
tinct chemical building blocks and/or sequence motifs—
that phase-separate into coexisting condensates with pre-
scribed molecular compositions. This approach builds on
recent theoretical progress in modeling multicomponent
phase separation [34–45], which aims to predict and engi-
neer multiphase coexistence using simplified descriptions
of biomolecular interactions. The present work goes fur-
ther by showing how compositional specificity in multi-
component mixtures can be achieved using a limited set
of chemical building blocks.

To this end, we first show how a description of
biomolecular interaction specificity relates to the ther-
modynamic stability of coexisting multicomponent con-
densates. We then introduce an “inverse design” ap-
proach [36, 37] for computing the minimum interaction
specificity required to form immiscible condensates with
prescribed molecular compositions. We demonstrate how
this design algorithm can be used to optimize mixtures of
heteropolymers, subject to system-specific physicochemi-
cal constraints, that phase-separate into non-trivial coex-
isting phases while utilizing a surprisingly small number
of distinct monomer types. Finally, we perform molecu-
lar dynamics simulations of phase coexistence using these
optimized heteropolymer mixtures to validate our theo-
retical predictions and inverse design approach. Our re-
sults suggest an extensible and generalizable framework
for exploring molecular “grammars” in multicomponent
biomolecular systems [25–33], as well as a practical strat-
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FIG. 1. Biomolecular interaction interdependencies and inverse design approach. (A) The interactions between
biomolecules in a multicomponent mixture can be described by a pairwise interaction matrix. In a system with few molecular
features, such as polymers with a small number of distinct monomer types, the elements of the interaction matrix tend to be
interdependent (top). By contrast, in a mixture with many distinct molecular features, the interaction-matrix elements can be
independently tuned (bottom). (B) An example multiphase design problem. Here, four molecular species (red, green, gold, and

black) phase-separate into three immiscible condensates with prescribed molecular volume fractions {ϕ⃗(α)}. (C) A multiphase
design problem corresponds to a high-dimensional free-energy landscape, where each target phase (such as the two shown here)
specifies a local minimum. (D) To solve the design problem, we first use convex optimization to find the minimum-complexity
interaction matrix, requiring the smallest number of distinct molecular features, that produces the desired free-energy landscape.
We then factorize the minimum-complexity interaction matrix to construct a multicomponent mixture of designed molecules.

egy for engineering complex artificial condensates using
experimentally realizable molecules [46–55].

II. RESULTS

A. Describing interdependencies among
biomolecular interactions

To describe biomolecular interaction specificity, we
adopt a coarse-grained representation of biomolecules in
a multicomponent fluid. Specifically, we assume that
pairwise interactions can be used to describe the net at-
traction or repulsion between molecular species [34]. This
approach implies that the chemical potential µi of each
macromolecular species i = 1, . . . , N depends linearly on
the symmetric pairwise interaction matrix ϵ,

µi(ϕ⃗) = µid,i(ϕ⃗) + µv,i(ϕ⃗) +
N∑

j=1

ϵijϕj , (1)

where ϕi represents the molecular volume fraction (i.e.,
the concentration times the molecular volume, vi) of each
molecular species i. The first two terms of Eq. (1) ac-
count for the ideal, µid,i = v−1

i kBT log ϕi, and steric, µv,i,
contributions to the chemical potential, which are both
independent of ϵ (see SI). We make the key approxima-

tion that ϵ is independent of ϕ⃗, meaning that the net in-
teraction ϵij between molecules of types i and j does not
depend on the presence of other components. This ap-
proximation is consistent with field-theoretic treatments
of heteropolymer interactions [56, 57], sticker–spacer and

patchy-particle models [18, 34], and perturbative treat-
ments of fluids [58] in the limit of weak monomer/sticker
interactions. Later on, we will use simulations to confirm
that this approximation can make accurate predictions
for multicomponent heteropolymer solutions.
The pairwise interaction matrix provides a systematic

way of describing the interdependencies among biomolec-
ular interactions in a multicomponent mixture. In a full-
rank interaction matrix, there are N(N + 1)/2 indepen-
dent pair interactions. However, because biomolecular
interactions are typically governed by a limited set of
physicochemical features, it is conceivable that not all
pair interactions are independent of one another. For
example, in a mixture of molecules that interact via hy-
drophobic forces alone, there might be only N indepen-
dent parameters—namely, the hydrophobicity of each
molecular species—that determine the interaction ma-
trix. In general, we expect that various modes of in-
teraction, including electrostatic, cation-π, and hydrogen
bonding, among others [15], contribute to the net interac-
tions among biomolecules in a multicomponent mixture.
Within the pairwise approximation, accounting for in-

teraction interdependency (Fig. 1A) implies factorizing ϵ
in terms of a molecular feature matrix, W ∈ RN×r, and
a feature interaction matrix, u ∈ Rr×r [43],

ϵ = WuW⊤. (2)

Here, a “feature” refers to a linearly independent molec-
ular property, which could represent a literal molecular
building block such as a nucleotide or an amino acid, or
alternatively an emergent property such as a sequence
motif or pattern involving adjacent monomers. Each row
vector of W describes the appearance of these features
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in a particular molecular species, while the matrix u de-
scribes the interactions among all pairs of features. In
other words, interactions between molecules arise due to
the interactions, u, among the molecular features, which
form a basis set. Molecular features are then combined
into molecules via the W matrix, which embeds each
molecule into the r-dimensional space of molecular fea-
tures. Importantly, the rank r indicates the number of
distinct features that are available, and thus controls the
number of elements of ϵ that can be independently tuned.

B. Relating interaction interdependencies and
biomolecular condensate thermodynamics

Next, to relate the number of available molecular fea-
tures to the formation of coexisting biomolecular con-
densates, we consider a set of K target condensed phases
(i.e., condensates) with defined molecular compositions
(Fig. 1B). Each target condensate α = 1, . . . ,K is de-

scribed by a vector of molecular volume fractions ϕ⃗(α).
These condensed phases are in coexistence with a dilute
phase, referred to as phase 0, with molecular volume
fraction ϕ(0). For the condensed phases to be thermo-

dynamically stable, each ϕ⃗(α) must correspond to a lo-

cal minimum on a free-energy landscape f(ϕ⃗) − µ⃗(0) · ϕ⃗,
where µ

(0)
i is the chemical potential of molecular species

i in the dilute phase [58]. From the relationship be-
tween the free-energy density f and the chemical po-
tentials, µi = ∂f/∂ϕi, this stability condition implies

that µ
(α)
i = µ

(0)
i for all condensed phases and molecular

species. The stability condition also implies that the Hes-
sian of the free-energy density must be positive definite
in each condensed phase α, ∂2f/∂ϕi∂ϕj |ϕ⃗(α) ≻ 0.

According to the free-energy landscape (Fig. 1C),
any mixture with overall macromolecular concentrations
within the convex hull of the dilute-phase and target-

phase concentrations {ϕ⃗(0), ϕ⃗(1), . . . , ϕ⃗(K)} can phase-
separate to form the prescribed condensed phases [37].
(Whether some or all of these phases form in practice
depends on kinetic considerations, such as nucleation dy-
namics [34, 36], that are not the focus of the present
work.) However, the pairwise interaction matrix that re-
sults in the prescribed condensed-phase molecular com-
positions is typically not unique. In particular, there
may be low-rank interaction matrices, for which r < N ,
that result in—or at least closely approximate—the tar-
get condensates. We are interested in these low-rank
interaction matrices, since they reduce the number of
molecular features that are required to achieve the pre-
scribed set of coexisting condensates within the pairwise
approximation.

We start by considering a full-rank interaction ma-
trix, ϵ, that results in the target set of condensed phases

{ϕ⃗(1), ϕ⃗(2), . . . , ϕ⃗(K)}. Perturbing ϵ by a matrix ∆ϵ re-
sults, to lowest order, in a shift of the condensed-phase

compositions (see SI),

∆ϕ⃗(α) = −1

2

(
∂2f

∂ϕi∂ϕj

∣∣∣∣
ϕ⃗(α)

)−1

∆ϵ ϕ⃗(α). (3)

Eq. (3) says that the concentrations in the α phase
are most sensitive to perturbations in the direction of

the eigenvector, ν̂
(α)
1 , that corresponds to the minimum

eigenvalue, λ
(α)
1 , of ∂2f/∂ϕi∂ϕj |ϕ⃗(α) . We can therefore

relate the Frobenius norm of a random matrix ∆ϵ to the
relative change in the molecular compositions of the α

phase in this least stable direction, η ≡ 2∆ϕ⃗ · ν̂(α)1 /∥ϕ⃗(α)∥
(see SI),

∥∆ϵ∥F ≈ ηλ
(α)
1 . (4)

Eq. (4) is useful because it relates the interaction-matrix
perturbation to its effect on the phase behavior in the
worst-case scenario. Thus, to maintain the target molec-
ular compositions to within a tolerance of η, we must
limit deviations of the interaction matrix such that
∥∆ϵ∥F ≲ minα ηλ

(α)
1 .

We can now determine the minimum required interac-
tion specificity by attempting to reduce the number of
molecular features, r ≤ N , used to represent the interac-
tion matrix ϵ. Doing so yields a rank-r approximation,
ϵr, for the N ×N interaction matrix. Here we apply the
Eckart–Young–Mirsky (EYM) theorem [59], which says
that ∥∆ϵ∥F ≡ ∥ϵr−ϵ∥F is minimized by eliminating the
N − r smallest singular values of ϵ. We therefore find
that the number of molecular features, r, must satisfy

[∑N−r
k=1 σ2

k

]1/2
≲ min

α
ηλ

(α)
1 , (5)

where σ1 ≤ σ2 ≤ . . . ≤ σN are the singular values of ϵ, in
order to maintain the target molecular compositions. In
essence, the smallest N − r singular values correspond to
dimensions of the molecular feature space that are unnec-
essary for maintaining the target molecular compositions.

Eq. (5), which relates the singular values of the interac-
tion matrix ϵ to thermodynamic properties of coexisting
condensates with prescribed molecular compositions, is
the central result of our theoretical approach. Impor-
tantly, a minimal complexity mixture is one with the
smallest number of molecular features, r, that satisfies
Eq. (5). Eq. (5) therefore establishes a direct connection
between the interdependencies of pairwise biomolecular
interactions and the complexity of the phase-separated
condensates that they can form, irrespective of specific
details of the molecular features in a particular biomolec-
ular system.

C. Designing phase-separating heteropolymers
using a minimal number of monomer types

Eq. (5) implies that the target condensate composi-
tions can be achieved—using the smallest possible num-
ber of distinct molecular features, r—by optimizing ϵ to
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FIG. 2. Validation of minimal-complexity heteropolymer designs via molecular simulation. (A) A heteropolymer
mixture designed to form coexisting condensates with the molecular compositions shown in Fig. 1B. According to Eq. (5), at
most r = 3 monomer types (a, b, and c) are required. (B) Direct-coexistence simulations of all pairs of condensed phases
in Fig. 1B using the 3-monomer-type heteropolymer design shown in A. Top: Equilibrium configurations, color-coded by
monomer type. Middle: Trajectory-averaged chain composition profiles along the direction of the simulation box perpendicular
to the condensate interfaces. Bottom: Corresponding trajectory-averaged order parameter profiles, Eq. (6). Shaded regions
indicate the statistical uncertainty associated with the mean profiles. (C) The relative reconstruction error (see text) for the
heteropolymer mixture shown in A–B (blue star) and two alternative designs: (I) a successful (filled circle) 4-monomer-type
design chosen to maximize the condensed-phase stabilities and (II) an unsuccessful (open circle) two-monomer-type design.
(See SI for complete details of these alternative designs.)

simultaneously minimize its N − r smallest singular val-
ues and maximize the stabilities of the target condensed
phases. We can therefore use Eq. (5) to solve an inverse
design problem to find minimal-complexity biomolecular
mixtures that phase-separate into condensates with non-
trivial molecular composition (Fig. 1D). In practice, we
first optimize a low-rank interaction matrix using con-
vex optimization [36, 37] and then design a biomolecular
mixture by factorizing ϵ, subject to appropriate physic-
ochemical constraints. (See SI for complete details.)

To demonstrate the predictive ability of our theory and
its utility for designing complex phase-separated conden-
sates, we apply this inverse design algorithm to a com-
mon simulation model of heteropolymers [60]. In this
model, polymer species i = 1, . . . , N are linear chains
of Li monomers, which are chosen from a library of r
monomer types (see SI for model details). Nonbonded
monomers of types a, b = 1, . . . , r interact via a cut-
and-shifted Lennard-Jones (LJ) pair potential [61] with
monomer diameter d. Bonded monomers interact via
finite-extensible nonlinear elastic (FENE) bonds [60]. In
this context, minimal complexity designs are heteropoly-
mer mixtures that require the fewest distinct monomer
types. Our aim is therefore to design mixtures of poly-
mer sequences using the smallest number of monomer
types, along with a nonpositive monomer interaction ma-
trix uLJ representing the attractive portion of the LJ pair
potentials, in order to form the K target condensates.

As an example, we first consider the 4-component, 3-
condensed-phase mixture depicted in Fig. 1B, which is
non-trivial due to the “enrichment” (i.e., high target vol-
ume fractions) of chains A and B in two distinct, immisci-
ble condensed phases. Following the algorithm in Fig. 1D
(see SI), we apply convex optimization to find that at
most r = 3 distinct monomer types are required to stabi-
lize condensates with these particular molecular composi-
tions. We then factorize an optimized rank-3 interaction
matrix to find the r× r monomer interaction matrix uLJ

and theN×r feature matrixW , which represents a count
encoding of the number of occurrences of each monomer
type within each heteropolymer sequence. All elements
of W are nonnegative integers, while the row sums of
W are bounded by a maximum degree of polymerization
Lmax = 20. Finally, we use the monomer interaction ma-
trix to obtain the LJ pair potentials (with all attractive
interactions weaker than the thermal energy), and we
compose the polymer sequences from the count encoding
matrix by interleaving the different monomer types to
minimize the blockiness of each sequence. An example
outcome of this algorithm is shown in Fig. 2A.

D. Validating multicomponent, multiphase
heteropolymer designs via molecular simulation

We test our heteropolymer mixture designs by per-
forming direct-coexistence molecular dynamics simula-
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tions to examine the molecular compositions and immis-
cibility of the target condensates. In these simulations,
all chain types are present in a constant-temperature
(kBT = 1), constant-volume simulation with periodic
boundary conditions (see SI). However, the initial condi-
tion is chosen such that two different condensed phases,
α ̸= β, are in contact with one another and also with a
dilute phase. The condensed phases are thermodynam-
ically stable if they remain phase-separated and immis-
cible once the simulation has relaxed to equilibrium. In
practice, we ensure convergence by calculating simulation
trajectories that are many times longer than the time re-
quired for all the chains in an α = β control simulation
to mix completely (see SI). We carry out simulations for
all pairs of condensed phases α ̸= β to confirm that they
are mutually immiscible. All calculations are performed
using the LAMMPS simulation package [62], the Nose–
Hoover thermostat, and a timestep of 5 × 10−3 in LJ
units.

In Fig. 2B, we show equilibrium configurations of sim-
ulations and polymer composition profiles for the LJ het-
eropolymer design shown in Fig. 2A. We define an order
parameter for each phase α based on the cosine similarity

of the local polymer composition ϕ⃗ and the target ϕ⃗(α),

q(α)(ϕ⃗) ≡ ϕ⃗ · ϕ⃗(α)

||ϕ⃗|| ||ϕ⃗(α)||
, (6)

to distinguish the coexisting condensed phases. This or-
der parameter is equal to one if the polymer composi-
tion of an equilibrated condensed phase matches that of
target phase α. When coexisting condensed phases have
“shared” components, meaning that one or more polymer
species are enriched in multiple phases, the order param-

eters are not orthogonal, such that q(α)(ϕ⃗(β)) > 0. The
equilibrium order parameter profiles shown in Fig. 2B
confirm that this simulation model represents a solution
to the design problem proposed in Fig. 1B.

Importantly, our simulations indicate that the de-
signed heteropolymer mixture shown in Fig. 2A is not
only a valid solution but also a minimal-complexity de-
sign. Adding a fourth monomer type eliminates the re-
construction error, ∥∆ϵ∥F, that is introduced when elim-
inating one of the singular values in Eq. (5) and factor-
izing the low-rank interaction matrix into polymer se-
quences with a discrete number of monomers of each
type (Fig. 2C). Doing so provides additional control over
the condensate interfaces, reducing the accumulation of
chain type 2 at the condensate/dilute interfaces that oc-
curs with the 3-monomer-type design (Fig. 2B) and is
not addressed by our theory, which focuses only on bulk
phases. However, this comes at the cost of increased
heteropolymer complexity. By contrast, using only two
monomer types results in a large reconstruction error
that violates Eq. (5), and, as predicted, the simulated
condensed phases are observed to mix. This observation
suggests that r = 3 is indeed the minimal-complexity re-
quirement for realizing the coexisting condensates shown

FIG. 3. Validation of the pairwise-additive approxi-
mation for polymer–polymer interactions. (A) Corre-
lation between the excess chemical potential differences mea-
sured in direct-coexistence simulations (sim) and predicted by
the pairwise approximation (pw). Points are shown for chain
types in coexisting condensed phase pairs (α, β) along with
the Pearson correlation coefficient, ρ. (B) Radial distribution
functions between the centers of mass of chains for all chain
types that are enriched in each of the condensed phases.

in Fig. 1B. (See SI for detailed descriptions of these al-
ternative designs and accompanying simulation data.)

E. Evaluating the pairwise approximation using
simulations of successful condensate designs

Given this successful simulation test of a minimal-
complexity heteropolymer mixture, we next assess accu-
racy of the pairwise-additive approximation in this sys-
tem. We first analyze the excess chemical potentials,
µex,i ≡ µi − µid,i, of the heteropolymers predicted by
Eq. (1). From our simulations, we extract the excess
chemical potential differences, ∆αβµ

sim
ex,i, from the equi-

librium compositions of simulated α and β bulk phases
and compare with the pairwise predictions, ∆αβµ

pw
ex,i (see

SI). The resulting Pearson correlation coefficient of 0.93
(Fig. 3A) indicates that the pairwise approximation is
highly accurate in the condensed phases and follows from
the interaction matrix, ϵ. This observation is consistent
with Flory’s screening hypothesis [63], which likely ap-
plies to our finite-chain-length heteropolymer mixtures
because the overlap parameter is reasonably large in the
condensed phases (P ≈ 13 ± 2) [21]. Thus, while the
attractive contributions to the monomer–monomer pair
potentials are much weaker than the thermal energy, each
chain makes a large number of monomer–monomer con-
tacts in the condensed phases.

We further find that the microstructures of the con-
densed phases agree with expectations based on the
Gaussian Core Model (GCM) of finite-length poly-
mers [64]. From simulations of homogeneous condensed
phases, we obtain the radial distribution function (RDF)
for the center of mass of the polymer chains (see SI). Con-
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FIG. 4. Design of complex multicomponent, multiphase condensates. (A) Inverse design and simulation validation of
a 6-component, 4-condensed-phase system with the indicated target-phase molecular volume fractions. Sequence designs use
the minimal required number of monomer types, r = 4. Equilibrium configurations of α–β direct-coexistence simulations are
shown as in Fig. 2A, where the agreement between the order parameter profile and the target composition is indicated by the
border color (see SI). (B) The relative reconstruction error for the heteropolymer mixture shown in A (blue star) and three
alternative designs: (I) a successful (filled circle) 4-monomer-type design chosen to maximize the condensed-phase stabilities
and unsuccessful (open circle) designs with (II) four or (III) three monomer types, which do not satisfy Eq. (5). (C) Inverse
design and simulation validation of a 6-component, 5-condensed-phase system with the indicated target-phase molecular volume
fractions. Here, the minimal required number of monomer types is also r = 4. (D) The relative reconstruction error for the
mixture shown in C (blue star) and alternative designs as in B. Complete data for all designs are provided in the SI.

sistent with the GCM, the RDFs for all polymer species
pairs exhibit a correlation hole, meaning that the cen-
ters of mass overlap with low probability, while a posi-
tive peak is found at a distance of approximately twice
the radius of gyration, implying effective attractions be-
tween chains in the condensed phases. The amplitudes
of these peaks anticorrelate with the predicted pairwise
interaction strengths given by ϵ (Fig. 3B), while the zero-
wavenumber structure factor, which can be directly re-
lated to the pairwise interactions [58], exhibits a Pearson
correlation coefficient of 0.996 with respect to the pre-
dictions of the pairwise approximation (see SI). Taken
together, our simulation results indicate that the mean-
field approximations underlying our theory and design
approach are sufficiently accurate to engineer chemically
realistic heteropolymer mixtures with complex phase be-
havior.

F. Designing minimal-complexity biomolecular
mixtures with complex phase behavior

To further demonstrate the capabilities of our ap-
proach, we apply our inverse design algorithm to two ad-
ditional interesting scenarios and verify our predictions
using simulations of LJ heteropolymers (see SI for com-
plete details). First, we consider a 6-component mix-
ture in which components are shared among four conden-
sates with a nonuniform number of enriched components
per phase (Fig. 4A). Following the approach described in
Sec. II C, we predict that at most r = 4 monomer types
are required to construct LJ heteropolymers that phase
separate into the prescribed phases. We then confirm this
prediction by performing simulations of all pairs of con-
densed phases as described in Sec. IID. We also consider
alternative designs with a variable number of monomer
types in Fig. 4B, including an alternative 4-monomer-
type design whose factorized interaction matrix does not
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satisfy Eq. (5). These results are consistent with the
prediction that at most four monomer types are required
and highlight the importance of following our design algo-
rithm to obtain a successful minimal-complexity design.

Second, we examine a scenario in which a 6-component
mixture forms five condensed phases with shared compo-
nents (Fig. 4C). Here we predict that the required num-
ber of molecular features, r = 4, is not only smaller than
the number of components, but is also smaller than the
number of condensed phases. However, to find a fac-
torized interaction matrix that satisfies Eq. (5), we find
that it is necessary to increase the maximum degree of
polymerization to Lmax = 30. Again our simulations
of designed LJ heteropolymers (Fig. 4C) and compar-
isons to alternative designs (Fig. 4D) support our pre-
diction that at most four monomer types are required to
achieve the desired phase behavior. These additional ex-
amples indicate that rationally designed low-complexity
heteropolymer mixtures can indeed achieve highly non-
trivial compositional specificity via phase separation.

III. DISCUSSION

The central result of this work is a relationship be-
tween the compositional specificity of phase-separated
condensates and the complexity of the pairwise inter-
actions in a biomolecular mixture. Achieving complex
self-organization via phase separation requires a minimal
number of distinct molecular features, which represent
linearly independent modes of interaction in a biomolec-
ular mixture. We have shown that for systems in which
the pairwise approximation is sufficiently accurate, this
required number of molecular features can be determined
directly from the target phase behavior. We have also
developed a practical inverse design algorithm for calcu-
lating an upper bound on the required number of molec-
ular features and then constructing minimal-complexity
biomolecular mixtures that phase-separate into conden-
sates with the target molecular compositions. Extensive
simulations of sequence-dependent heteropolymers sup-
port the predictions of our theory and demonstrate the
effectiveness of our inverse design approach.

We emphasize that this approach is useful because it
can be applied to understand and rationally design co-
existing condensates with non-trivial molecular compo-
sitions, including scenarios in which a single molecular
component is enriched in multiple phases. This feature
is crucial in the context of intracellular biomolecular con-
densates, whose intricate molecular compositions [5–8] do
not appear to resemble the phase behavior of simpler het-
eropolymer mixtures, such as random copolymers [22].
Nonetheless, similarly to random copolymers, we find
that a relatively small number of monomer types is typ-
ically required to generate many coexisting phases even
when non-trivial molecular compositions are prescribed.
Consequently, constructing a minimal-complexity het-
eropolymer mixture, which utilizes the predicted mini-

mum number of distinct monomer types while maintain-
ing compositional specificity of the coexisting conden-
sates, can substantially reduce the effective dimension of
the pairwise interaction matrix.

We anticipate that extensions of our approach will
provide a unifying conceptual framework for unravelling
the “molecular grammars” governing phase separation in
naturally occurring biomolecular mixtures [15, 25–33]. It
is important to note that the minimal number of molec-
ular features predicted by our theory provides an up-
per bound on the required number of monomer types,
since motifs composed of adjacent monomers can po-
tentially give rise to additional independent molecular
features within the pairwise approximation. Moreover,
significant contributions from non-pairwise interactions,
particularly in nucleic acid [65] and multi-domain pro-
tein [66] mixtures, may allow for compositional speci-
ficity with even fewer distinct molecular features. For
example, it is well known that sequence-dependent prop-
erties, such as sequence “blockiness” [26, 67] and charge-
patterning effects [68–71], tune the phase behavior of het-
eropolymer solutions in ways that cannot be predicted by
the monomer compositions of the heteropolymers alone.
Non-pairwise interactions also arise due to secondary-
structure formation [72, 73] and strong one-to-one asso-
ciative binding interactions [74]. In future work, we will
incorporate such sequence-dependent features into our
inverse design approach in order to tighten the bound on
the required number of monomer types and broaden the
range of applicability of our heteropolymer design algo-
rithm.

In conclusion, our theory and inverse design approach
advance our understanding of multiphase condensate for-
mation in biology, as well as our ability to engineer
chemically diverse artificial condensates. Our predictions
could be tested using existing experimental technologies
in both biological [46–51] and synthetic [52–55] systems.
Our theory could also be applied to design “patchy”
colloidal particles [75], in which case the feature ma-
trix would indicate the surface area covered by a sticker
type and the feature–feature interactions would repre-
sent the interactions between different types of stickers.
Ultimately, by incorporating the design of tunable in-
terfacial tensions [76, 77] and nonequilibrium chemical
activity [78, 79] into this framework, it will be possible
to design fully “programmable” fluids and soft materials
that self-organize via multicomponent phase separation.
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SUPPLEMENTARY INFORMATION FOR
“EMERGENCE OF MULTIPHASE CONDENSATES FROM A LIMITED SET OF CHEMICAL

BUILDING BLOCKS”

I. RELATING INTERACTION INTERDEPENDENCIES AND BIOMOLECULAR CONDENSATE
THERMODYNAMICS

A. Multicomponent macromolecular solutions with pairwise interactions

Throughout this work, we consider a solution ofN macromolecular species in an implicit solvent. The concentrations
(i.e., number densities) of the macromolecular species, {ρi}, are related to the macromolecular volume fractions,
{ϕi ≡ viρi}, by the macromolecular excluded volumes, {vi}. As discussed in the main text, we assume a free-energy
density f in which the molecular interactions follow a pairwise approximation. This means that the (scaled) chemical
potentials of all macromolecular components, µi = ∂f/∂ϕi = v−1

i ∂f/∂ρi, can be described by the equation

µi(ϕ⃗) = µid,i(ϕ⃗) + µv,i(ϕ⃗) +
N∑

j=1

ϵijϕj , (S1)

where µid,i(ϕ⃗) = v−1
i kBT log ϕi is the ideal contribution to the chemical potential, µv,i(ϕ⃗) accounts for steric contri-

butions, and the pairwise interaction matrix, ϵ, is assumed to be independent of the macromolecular concentrations.

More specifically, µv,i(ϕ⃗) represents the excess chemical potential due to short-ranged (e.g., hard-core) repulsive inter-
actions between the macromolecules at finite concentration (and between the macromolecules and the solvent), while
the pairwise interactions only describe longer ranged attractive or repulsive interactions. This decomposition follows
the highly successful perturbative description of liquids developed by Weeks, Chandler, and Anderson [1]. An explicit
example will be given in SI Sec. III. Note that the chemical potential of macromolecular species i, as defined above,
is scaled with respect to the excluded volume vi; this choice is made for convenience and does not affect our results.
Both the ideal and the steric contributions are independent of the pairwise interaction matrix, ϵ.

B. Perturbative analysis of the landscape stability

Applying small perturbations to the component-wise interactions {ϵij}, we expand the free-energy density, f , to
linear order,

f̃ = f +
N∑

i=1

N∑

j=i

∂f

∂ϵij
∆ϵij +

N∑

i=1

∂f

∂ϕi
∆ϕi. (S2)

Since ϵ is a symmetric N × N matrix, we only consider the independent degrees of freedom {ϵij} for which i ≤ j.
Eq. (S1) implies that ∂f/∂ϵij = (1/2)δijϕiϕj . We can therefore rewrite the term in Eq. (S2) involving ∆ϵij in
matrix–vector notation,

N∑

i=1

N∑

j=i

∂f

∂ϵij
∆ϵij =

1

2

( N∑

i=1

ϕi∆ϵiiϕi + 2
∑

i<j

ϕi∆ϵijϕj

)

=
1

2

( N∑

i=1

ϕi∆ϵiiϕi +
∑

i<j

ϕi∆ϵijϕj +
∑

i>j

ϕi∆ϵijϕj

)

=
1

2
ϕ⃗
⊤
∆ϵϕ⃗.

(S3)

We then expand the chemical potentials at phase coexistence,

µ̃k = µk +
N∑

j=i

N∑

i=1

∂2f

∂ϵij∂ϕk
∆ϵij +

N∑

i=1

∂2f

∂ϕk∂ϕi
∆ϕi. (S4)

The change in the chemical potentials, ∆µ⃗, can be written in matrix–vector notation as

∆µ⃗ ≡ ˜⃗µ− µ⃗ = ∆ϵϕ⃗+

(
∂2f

∂ϕ⃗
2

)
∆ϕ⃗, (S5)
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where the ∆ϵϕ⃗ term is obtained by simplifying the expression

N∑

j=1

N∑

i=1

∂2f

∂ϵij∂ϕk
∆ϵij =

N∑

j=1

N∑

i=1

(1/2)δij (δikϕj + δjkϕi)ϵij

=
N∑

j=1

(1/2)δkj ϵkjϕj +
N∑

i=1

(1/2)δikϵkiϕk

=
1

2

∑

j ̸=k

∆ϵkjϕj +
1

2

∑

i̸=k

∆ϵkiϕi +∆ϵkkϕk

= (∆ϵϕ⃗)k.

(S6)

The grand potential density in the α phase, Ω̃(α) ≡ f̃ − ˜⃗µ · ϕ⃗, can similarly be written as

Ω̃(α) = Ω(α) +
∂f

∂ϕ⃗

∣∣∣∣
(α)

·∆ϕ⃗(α) +

N∑

i=1

N∑

j=i

∂f

∂ϵij

∣∣∣∣
(α)

∆ϵij − µ⃗ ·∆ϕ⃗(α) −∆µ⃗(α) · ϕ⃗(α)

= Ω(α) + µ⃗ ·∆ϕ⃗(α) +
1

2
ϕ⃗(α)⊤∆ϵϕ⃗(α) − µ⃗ ·∆ϕ⃗(α) −∆µ⃗(α) · ϕ⃗(α)

= Ω(α) +
1

2
ϕ⃗(α)⊤∆ϵϕ⃗(α) −∆µ⃗(α) · ϕ⃗(α).

(S7)

At coexistence, it is required that µ⃗(α) = µ⃗(0) and Ω(α) = Ω(0) for every condensed phase α = 1, . . . ,K, where the index
0 indicates the dilute phase. Requiring that the perturbed phases remain at coexistence means that ∆µ⃗(α) = ∆µ⃗(0)

and Ω̃(α) = Ω̃(0). Since ∆µ⃗ = ∆ϵϕ⃗+ (∂2f/∂ϕ⃗
2
)∆ϕ⃗ from Eq. (S5), we find that the coexistence condition for Ω̃ is

−1

2
(ϕ⃗(α) − ϕ⃗(0))⊤∆ϵ(ϕ⃗(α) − ϕ⃗(0)) = (ϕ⃗(α) − ϕ⃗(0))⊤

(
∂2f

∂ϕ⃗
2

∣∣∣∣
(α))

∆ϕ⃗(α). (S8)

Assuming that the dilute phase is very dilute, this result simplifies to

∆ϵϕ⃗(α) = −2 ∂
2f

∂ϕ⃗
2

∣∣∣∣
(α)

·∆ϕ⃗(α). (S9)

Eq. (S9) relates changes in the macromolecular concentrations in the α phase to perturbations in the pairwise inter-
actions, assuming that the Hessian matrix of the α phase is known. We can then estimate the noise tolerance of the
interaction matrix ϵ in the worst-case scenario by considering compositional changes along the least stable direction,

ν̂
(α)
1 , of each target phase, where

∂2f

∂ϕ⃗
2

∣∣∣∣
(α)

· ν̂(α)1 = λ
(α)
1 ν̂

(α)
1 , (S10)

and the eigenvalues of the Hessian matrix are 0 > λ
(α)
1 ≥ λ

(α)
2 ≥ . . . ≥ λ

(α)
N . Projecting an arbitrary concentration

change ∆ϕ⃗ onto the least stable direction, we find

∥∆ϵϕ⃗(α)∥F = ηλ
(α)
1 , (S11)

where η ≡ 2∆ϕ⃗ · ν̂(α)1 /∥ϕ⃗(α)∥ corresponds to twice the relative percentage change of macromolecular composition in
the α phase and ∥ · ∥F is the Frobenius norm. Applying the sub-multiplicative property of the Frobenius norm to the
left-hand side, we have

∥∆ϵϕ̂∥F ≤ ∥∆ϵ∥F ∥ϕ̂∥2;

the equality holds if ϕ̂ and each row of ∆ϵ are linearly independent. Assuming that this is the case, we can express
the tolerance of the reconstruction error for each target phase α in terms of an allowed relative composition change η,

∥∆ϵ∥F ≈ ηλ
(α)
1 . (S12)
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The overall tolerance is therefore given by

∥∆ϵ∥F ≈ min
α

ηλ
(α)
1 . (S13)

The optimal interaction matrix ϵ should simultaneously maximize the landscape stability and minimize the recon-
struction error, ∥∆ϵ∥F . Using Eq. (S13), we can apply the Eckart–Young–Mirsky (EYM) theorem [2] to find the
smallest number of distinct molecular features, r, that successfully solve the inverse design problem,

[∑N−r
k=1 σ2

k

]1/2
≲ min

α
ηλ

(α)
1 , (S14)

where σ1 ≤ σ2 ≤ . . . ≤ σN are the singular values of ϵ. In other words, for a given N × N interaction matrix
ϵ, the rank-r approximation, ϵr, that minimizes ∥∆ϵ∥F = ∥ϵr − ϵ∥F can be obtained by eliminating the smallest
N − r singular values of ϵ. If these smallest singular values are nonzero, then the left-hand-side of Eq. (S14) will be
nonzero, and the rank-r approximation of the interaction matrix, ϵr, will not exactly equal the original interaction
matrix, ϵ. However, the macromolecular compositions of the resulting coexisting phases will deviate from the target
compositions within the allowed tolerance η if Eq. (S14) is satisfied. Eq. (S14) thus motivates the identification of the
minimal number of distinct molecular features, r, needed to stabilize a set of target phases.

II. TWO-STEP OPTIMIZATION-BASED INVERSE DESIGN APPROACH

A. Step 1: Optimization of component-wise interactions.

1. Overview of convex optimization for minimal-complexity interactions

In order to obtain coexisting phases with prescribed macromolecular volume fractions {ϕ⃗(1), ϕ⃗(2), . . . , ϕ⃗(K)}, we first
solve for the component-wise interactions using convex programming. This step introduces controlled approximations
to transform the nonlinear thermodynamic stability and design constraints into a convex optimization problem. This

convex relaxation is defined by the target condensed-phase volume fractions {ϕ⃗(1), ϕ⃗(2), . . . , ϕ⃗(K)}, the molecular vol-

umes of the N molecular species, and a minimum stability criterion λmin, which imposes a lower bound on λ
(α)
1 for

each condensed phase α. By satisfying the constraints of this convex optimization problem, we identify a “solution
space” of pairwise interaction matrices that closely approximate the target free-energy landscape. Importantly, con-
vexity implies that this solution space can be efficiently computed, or otherwise proven to be infeasible if solutions to
the inverse design problem do not exist [3–5]. The convex relaxation is defined explicitly in the following section, and
we refer the reader to Ref. [6] for a detailed discussion of this approach.

Within this solution space of pairwise interaction matrices, we wish to find a matrix with the fewest required number
of molecular features, in accordance with Eq. (S14). We therefore minimize the nuclear norm of the interaction

matrix, ∥ϵ∥∗ ≡
∑N

k=1 σk, which is a convex relaxation of the matrix rank [7], subject to the aforementioned convex
constraints. Including this objective function tends to reduce the magnitudes of the smallest singular values of ϵ.
Moreover, minimizing ∥ϵ∥∗ guarantees that the solution to the convex optimization problem is unique. We can then
determine an upper bound on the minimum required number of features, r, using Eq. (S14), and finally construct a
rank-r approximation of the interaction matrix, ϵr, by applying the EYM theorem.

2. Semi-definite program for component-wise interactions

The convex relaxation of the thermodynamic-stability and target-volume-fraction constraints defines a semi-definite
program (SDP) [3],

µid,i(ϕ⃗
(α); v⃗) + µex,i(ϕ⃗

(α); ϵ, v⃗) ≥ µi ∀i, α (S15a)

P (ϕ⃗(α); ϵ, v⃗) = 0 ∀α (S15b)

∂[µ⃗id(ϕ⃗
(α); v⃗) + µ⃗ex(ϕ⃗

(α); ϵ, v⃗)]/∂ϕ⃗ ≻ λminI ∀α (S15c)

ϕ
(0)
T (µ⃗; v⃗) < ϕ∗

T(v⃗). (S15d)

Components are either “enriched” or “depleted” in the α phase, depending on whether they make a substantial or
negligible contribution, respectively, to the macromolecular composition of that phase. The ideal chemical potential
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is µid,i = v−1
i log ϕ

(α)
i for any component i that is enriched in the α phase or µid,i = v−1

i log ϕ
(α)
depl for any component i

that is depleted in the α phase. The equality(inequality) in Eq. (S15a) applies to enriched(depleted) components. The

volume fraction of any component that is depleted in the α phase cannot exceed ϕ
(α)
depl ≡ ζϕ

(α)
T /[M (α)(N −M (α))],

where ϕ
(α)
T is the total volume compositions of all components in the α phase, M (α) is the number of enriched

components in the α phase, and ζ is an adjustable parameter. In this work, we choose ϕT ≥ 0.9 and ζ = 10−2 for
all target phases when performing this optimization step. Eq. (S15b) states that the pressure, P , must be zero in
all phases, since the pressure in the dilute phase, which is nearly ideal, is also approximately zero. In Eq. (S15c),
the parameter λmin ≥ 0 places a lower bound on the smallest eigenvalue of the Hessian matrix in order to guarantee

thermodynamic stability. The final constraint, Eq. (S15d), ensures that the volume fraction in the dilute phase, ϕ
(0)
T ,

is less than the critical volume fraction, ϕ∗
T(v⃗). This condition is independent of ϵ due to the zero-osmotic-pressure

assumption. We implement and solve this SDP in practice using efficient convex-optimization software [4, 5].
Within the approximations of this convex relaxation, the constraints given by Eq. (S15) define the joint space of

interaction matrices, ϵ, and chemical potential vectors, µ⃗, for which bulk phase coexistence can be established among
the target condensed phases and a dilute phase. We pick out a unique solution from within the solution space by
minimizing the nuclear norm, ∥ϵ∥∗, and then identify the smallest number of molecular features, r, with which we can
satisfy the bound given in Eq. (S14) to obtain the low-rank approximation ϵr. By contrast, the objective function
used in Ref. [6] tends to select ϵ with larger singular values; as a result, solutions obtained using this alternative
objective function tend to require a larger number of molecular features to satisfy the bound given in Eq. (S14).

B. Step 2: Factorization into molecular features.

1. Overview of nonnegative matrix factorization for feature-wise interactions

We next find a molecular realization of the pairwise interactions by factorizing the low-rank interaction matrix, ϵr.
The rank of the feature interaction matrix u must be exactly equal to r, so that exactly r features are required for
each row vector of the molecular feature matrix W . An optimal factorization is obtained by minimizing the Frobenius
norm of the reconstruction error,

∥∆reconϵ∥F ≡
∥∥ϵr −WuW⊤∥∥

F
. (S16)

Up until this point, the design approach has been agnostic to the details of the molecular features. However, the
optimal factorization given by Eq. (S16) must typically satisfy additional constraints. Most importantly, a physically
interpretable molecular feature matrix W typically has nonnegative entries, since each matrix element indicates
the existence and magnitude of a distinct feature within a particular molecule. In this case, nonnegative matrix
factorization (NMF) [8] must be used in place of eigenvalue decomposition when solving Eq. (S16). Further constraints
may also be required depending on the specific requirements of the molecular system and the nature of the molecular
features. For example, if each molecular feature represents the count of a monomer type in a heteropolymer, then
the elements of W must be nonnegative integers. Similarly, the feature interaction matrix u may either be fixed,
as in the case of amino-acid interactions, or designable, as in the case of nucleic acid motifs [9]. Regardless of these

system-specific constraints, the reconstruction error must obey ∥∆reconϵ∥F ≲ minα ηλ
(α)
1 in order for the designed

molecular mixture to form the prescribed condensed phases.
In practice, we factorize the low-rank approximation of the component-wise interaction matrix, ϵr, by specifying

the loss function

L ≡ ∥∆reconϵ∥2F = ∥ϵr −WuW⊤∥2F , (S17)

which is nonlinear with respect to the independent variables W and u. In the following sections, we consider two
possible scenarios, in which the molecular feature matrix, W , can either take nonnegative real values or nonnegative
integers.

2. NMF without integer constraints

When there are no integer constraints on the molecular feature matrix W , Eq. (S17) is biconvex with respect to
either W or u. The NMF problem can therefore be solved by iteratively alternating optimization of W and u, with
guaranteed convergence to a local optimum [8]. Here we consider a scenario in which W takes positive real values
(representing, e.g., the fraction of the surface area of a colloidal particle covered by “patches” of certain types [10]) and
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u takes negative real values (representing, e.g., the attractive interactions between patches). To ensure nonnegativity
of W and nonpositivity of u, we apply a multiplicative update scheme, where W and −u are multiplied by the ratio
of the negative and positive contributions to the corresponding gradient of the loss function. Specifically, we write
the gradient of the loss function L, Eq. (S17), with respect to a matrix X as ∇X. Then, since all the matrix elements
Wij and −uab are positive, we can separate the terms that appear when differentiating Eq. (S17) into positive, ∇X+,
and negative, ∇X−, contributions, such that ∇X = ∇X+ −∇X−. We then let

Wia ←Wia

(∇W−
ia

∇W+
ia

)γ

, (S18)

−uab ← −uab

(∇(−u)−ab
∇(−u)+ab

)γ

. (S19)

This scheme is equivalent to gradient descent with a step size proportional to the ratio (∇−/∇+)γ , where γ is an
adjustable hyperparameter [11]. In the absence of any additional constraints, differentiating Eq. (S17) yields the
update rules

Wia ←Wia

(
(ϵWu⊤ + ϵ⊤Wu)ia

(WuW TWu⊤ +Wu⊤W⊤Wu)ia

)γ

, (S20)

−uab ← −uab

(
(W⊤ϵW )ab

(W⊤WuW⊤W )ab

)γ

, (S21)

where we choose γ = 1/4 to ensure stable convergence [8]. We can also include additional constraints, such as
minimizing the variance of all monomer–monomer interactions or the variance of homotypic monomer–monomer
interactions. These constraints can be easily implemented by adding the corresponding positive and negative parts of
the constraints to the gradient, and then following the update scheme given above.

3. NMF with integer constraints

Imposing integer constraints on W makes the NMF problem no longer convex in W . Thus, in cases such as the
heteropolymer design problem considered in the main text, where the molecular feature matrix must have integer
entries (see also SI Sec. III B 1), optimizing W becomes an NP-hard combinatorial optimization problem. For short
polymer chains with Lmax ≲ 10 and a prescribed monomer–monomer interaction matrix u, it is feasible to find
the globally optimal W matrix by brute force. However, brute-force search is infeasible for designing long polymer
chains. Instead, we follow an approach in which we sample W matrices from a probability distribution, and then
select candidate W matrices from the tail of the reconstruction-error distribution. Suppose that every row of the W

matrix is drawn from a multinomial distribution W⃗i ∼ Mr(Lmax; p⃗i) for i = 1, . . . , N , which gives the probability
of any particular combination of counts for various feature types a = 1, . . . , r. The probability vector p⃗i, which is
normalized such that

∑r
a=1 pia = 1, parameterizes the multinomial distribution. In the heteropolymer design scenario,

the number of categorical variables r = rank(ϵr) denotes the number of monomer types, Lmax is equal to the sum of

the counts in W⃗i, and pia represents the probability of adding a monomer of type a to chain i.
We are interested in finding an integer W solution in which the reconstruction error is smaller than a prescribed

threshold. If such W matrices are rare, then we can carry out the search using a cross-entropy (CE) optimization
approach [12]. This algorithm proceeds as follows:

1. Choose an initial parameter matrix p, which contains all the probability vectors p⃗i. Choose the total number
of samples to be generated (Nsamples = 10000) and the number of samples needed for parameter inference
(Ntop = 10). Let the initial iteration number be t = 1.

2. To generate a candidate solution pair (W ,u), sample each row W⃗1, ..., W⃗N ∼iidMr(Lmax, p⃗i). Then, given this
candidate W matrix, use gradient descent to optimize for a nonpositive u matrix by iteratively applying the
multiplicative update given in Eq. (S21) until convergence, defined as the point where the maximum difference
between updates of any element of u is less than 10−5.

3. Repeat step 2 to generate Nsamples samples and calculate the loss, Eq. (S17), for each sample.

4. Update pt+1 ← pt according to a maximum likelihood estimate. Specifically, determine the probability vectors
p⃗ t+1
i by computing the normalized average frequencies of all monomer types observed in chain type i in the

Ntop candidate solutions with the smallest values of the loss.
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5. Iterate steps 2, 3, and 4 until the maximum difference between updates of any element of the parameter matrix
p is less than 0.005 or the maximal number of iterations (chosen here to be 100) is exceeded. The (W ,u) pair
with the minimal loss is considered to be a solution if the reconstruction error is below the threshold, Eq. (S13).

We use uniform random initialization of the probability vectors to obtain all the design solutions presented in this
paper. Because permutation of the rows of W could potentially lead to degenerate solutions during the search, we
sort the rows with respect to descending monomer frequencies for every candidate W matrix. Furthermore, to make
the optimization problem easier, we relax the constraint on the degree of polymerization by allowing the sequence
length to be shorter than Lmax. To this end, we allow

∑r
a=1 pia ≤ 1, which is realized in practice by adding a dummy

column to the probability matrix p. This enhanced-sampling method allows us to efficiently search for NMF solutions
for arbitrary long polymer chains.

III. MULTICOMPONENT POLYMER MODEL AND SIMULATION METHODS

In the main text, we demonstrate the utility of our theory by applying it to a simulation model of heteropolymers
in implicit solvent. In the following sections, we provide a detailed description of the simulation model and then
describe how the interaction parameters are determined from the two-step optimization approach described above.

A. Lennard-Jones heteropolymer model

In our simulations, we consider a simple model of heteropolymers in implicit solvent. Nonbonded monomers of
types a, b = 1, . . . , r interact via the Lennard-Jones (LJ) pair potential [13],

ULJ
ab (r) = 4wLJ

ab

[
(d/r)12 − (d/r)6

]
+ Ucut,ab, (S22)

where wLJ
ab < 0 represents the interaction strength (i.e., well depth), d is the monomer diameter, and the cutoff

distance is 3d. The potential is shifted to zero at the cutoff distance by setting Ucut,ab = −4wLJ
ab [(1/3)

12 − (1/3)6].
Bonded monomers interact via finite-extensible nonlinear elastic (FENE) bonds [14], which comprise a nonlinear
attractive term and a repulsive LJ term. For the FENE bonds, we use the parameters (100, 4, 1, 1), corresponding
to the coefficient of the attractive term, the maximum length of the bond in units of d, the well depth for the LJ
potential between bonded monomers, and the diameter of the particle in units of d. All simulations are performed
using the LAMMPS molecular dynamics package [15].

B. Inverse design of heteropolymers

1. Determining the minimum required number of molecular features

The first step in the inverse-design process is optimizing the polymer–polymer interactions. For this purpose, we
utilize the mean-field Flory–Huggins (FH) model to apply our theory to the design of model heteropolymer solutions.

The Helmholtz free-energy density, f ; chemical potential, µ⃗ = ∂f/∂ϕ⃗; osmotic pressure, P ; and Hessian matrix,

∂2f/∂ϕ⃗2 = ∂µ⃗(ϕ⃗)/∂ϕ⃗, in the multicomponent Flory–Huggins model are

f =
N∑

i=1

ϕi

Li
log ϕi + (1− ϕT) log(1− ϕT) +

1

2

N∑

i=1

N∑

j=1

ϵijϕiϕj (S23a)

µi =
1

Li
log ϕi − log(1− ϕT)−

(
1− 1

Li

)
+

N∑

j=1

ϵijϕj (S23b)

P = − log(1− ϕT) +
N∑

i=1

ϕi

Li
− ϕT +

1

2

N∑

i=1

N∑

j=1

ϵijϕiϕj (S23c)

∂µi

∂ϕj
=

δij
Liϕi

+
1

1− ϕT
+ ϵij , (S23d)

respectively, where Li is the degree of polymerization of polymeric species i. As noted in SI Sec. IA, the pairwise
interaction matrix ϵ accounts for the interactions between macromolecules arising from the longer ranged portion of
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FIG. S1. Optimization of minimal-complexity interaction matrices. (A) Inverse design of the 4-component multiphase
system illustrated in Fig. 1B in the main text. The singular values of the optimized interaction matrix ϵ, obtained via nuclear-
norm minimization, as a function of the landscape stability criterion λmin. The singular values tend to increase as the condensed
phases become more stable. Comparing the singular values with the bound, Eq. (S14), where η is chosen to be equal to 0.1,
indicates that the minimum interaction matrix rank is r = 3. (B) The normalized pairwise interaction variance, Var(ϵij)/⟨ϵij⟩2,
tends to increase with λmin. Box plots show the distribution of normalized monomer–monomer interaction variances obtained
by nonnegative matrix factorization (NMF) of the optimized rank-3 polymer–polymer interaction matrices found in A, while

treating the distinct monomer types as the molecular features. All NMF solutions satisfy ∥∆reconϵ∥F /minα λ
(α)
1 ≤ 0.2. The

solid red line indicates the Pareto front, representing the NMF solutions that simultaneously minimize Var(uab)/⟨uab⟩2 and

maximize minα λ
(α)
1 . (C) The design solution corresponding to the starred location on the Pareto front (see arrow) in B. The

polymer sequences consist of exactly r = 3 monomer types. This design and its equilibrium phase behavior are shown in Fig. 2
of the main text. (D) Comparison of the “fitness” metric (see SI Sec. IIID) for the heteropolymer design shown in C (blue star)
and three alternative designs (black circles): (I) a 4-monomer-type design chosen to maximize the condensed-phase stabilities,
(II) a 3-monomer-type design constructed by applying the EYM theorem to an interaction matrix that was not obtained via
nuclear-norm minimization, and (III) a two-monomer-type design constructed by applying NMF with r = 2 (see SI Fig. S3).
[Note that only points (I) and (III) are shown in Fig. 2 of the main text for clarity.] Designs are classified as successes or
failures based on a fitness threshold of 0.85 (see SI Sec. IIID).

the LJ potential, while the ϕT-dependent terms provide an approximate model for the excess chemical potentials of
a heteropolymer reference system with soft-core repulsive interactions only. When applying our theory and design
approach to multicomponent polymer solutions, we use these expressions in the convex relaxation, Eq. (S15).

As an illustrative example for the discussion that follows, we consider the 4-component, 3-condensed-phase mixture
depicted in Fig. 1B in the main text, assuming a maximum degree of polymerization of Lmax = 20. By solving the
minimum-nuclear-norm convex optimization problem as a function of the minimum thermodynamic stability criterion,
λmin (SI Sec. IIA), we obtain the singular values of the optimized pair interaction matrix, ϵ, for this design problem
(SI Fig. S1A). The nuclear norm of the optimized ϵ tends to increase with λmin, up to the point at which the design
problem becomes infeasible, since imposing a stricter constraint on the free-energy landscape tends to shrink the
interaction-matrix solution space. Accordingly, the singular values of ϵ tend to increase with λmin. We then compare
the singular values with the right-hand side of Eq. (S14), assuming a composition tolerance of η = 20%. Since one
singular value lies below the bound in SI Fig. S1A, Eq. (S14) predicts that one singular value can be eliminated
while still satisfying the design problem. Thus, only r = 3 molecular features are required for the construction of a
heteropolymer mixture that phase-separates into the nontrivial phases shown in Fig. 1B in the main text.

2. Factorization into monomer–monomer interactions

We now assume that the molecular features represent distinct monomer types in the LJ heteropolymer model in
order to factorize ϵr into a molecular feature matrix, W , and a monomer–monomer interaction matrix, uLJ. With this
choice, each row of the N × r W matrix represents a count encoding of the number of occurrences of each monomer
type, a = 1, . . . , r, within each heteropolymer type, i = 1, . . . , N . All elements of W are therefore nonnegative
integers, and the row sums of W are bounded by the maximum degree of polymerization Lmax. Meanwhile, uLJ

is a nonpositive r × r interaction matrix determined by the attractive portion of the monomer–monomer LJ pair
potential. Here, assuming that the molecular features represent distinct monomer types is equivalent to a pairwise-
additive approximation for the polymer–polymer interactions, such that ϵij =

∑
a,b Wiau

LJ
abWjb. This factorization of ϵ
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follows directly from the Flory–Huggins model, since the pairwise portion of the free-energy density, (1/2)
∑

i,j ϵijϕiϕj ,

represents the mean-field interaction between all pairs of monomers in a polymer solution [16]. More specifically, we

can write this sum in the factorized form (1/2)
∑

i,j

∑
a,b uabWiaWjbϕiϕj = (1/2)

∑
a,b uabϕ̃aϕ̃b, where ϕ̃a ≡

∑
i Wiaϕi

is the volume fraction occupied by monomers of type a. We emphasize that this approximation is not required by our
theory, since the molecular features could represent interactions between units larger than individual monomers, such
as short motifs in nucleic acid sequences. However, we choose to make this assumption here to provide a transparent
proof of principle of our theory. We further note that this approximation establishes an upper bound on the required
number of distinct monomer types, since the number of molecular features obtained from an eigendecomposition of
ϵ cannot be less than the number of distinct monomer types. In other words, while we can use this approximation
to rigorously test our theory, the bound on the required number of monomer types could potentially be improved by
relaxing this assumption.

Given this choice of molecular features, we solve Eq. (S16) subject to the optimized low-rank interaction matrix,
ϵr, and the constraints on W and u. Following the algorithm described in SI Sec. II B 3, we generate an ensemble
of W matrices and iteratively solve for the interaction matrix u to ensure nonpositivity; we then utilize enhanced
sampling to probe the tail of the reconstruction-error distribution to find the W matrix with the smallest ∥∆reconϵ∥F .
Representative results of this stochastic algorithm are shown in SI Fig. S1B. We find that the relative variance of the
optimized monomer–monomer interactions, Var(uab)/⟨uab⟩2, tends to increase with the minimum stability constraint
λmin. This trend reflects the behavior of the polymer–polymer interaction matrix, ϵr, that is being factorized,
Var(ϵij)/⟨ϵij⟩2, and suggests a fundamental trade-off: Designing highly stable condensates, which are least sensitive
to interaction-matrix perturbations according to Eq. (S9), requires highly dissimilar monomer–monomer interactions.

Finally, we use an optimized monomer-composition matrix, W , and monomer–monomer interaction matrix, uLJ,
to construct a set of heteropolymer sequences for simulation. Because the pairwise-additive approximation relating
ϵij and uLJ

ab is most accurate when Var(uab)/⟨uab⟩2 is small, we select monomer designs from the Pareto front shown
in SI Fig. S1B. We then compose the polymer sequences from the monomer compositions by interleaving the different
monomer types to minimize the blockiness of each sequence, as we describe in the next section. An example outcome
of this algorithm, which we will directly test via molecular simulation, is shown in SI Fig. S1C.

3. Constructing LJ interaction parameters and heteropolymer sequences

To perform simulation tests of our heteropolymer mixture designs, we need to construct LJ interaction matrices,
{wLJ

ab }, and polymer sequences using the optimal uLJ andW matrices obtained from the previous section. We describe
each of these steps in turn.

First, to convert between the mean-field monomer–monomer interaction coefficients, {uLJ
ab }, and the well depths

for the LJ interactions, {wLJ
ab }, we perform a nonlinear mapping by matching the longer-ranged contributions (i.e.,

excluding the soft-core repulsions) to the monomer–monomer second viral coefficients. Specifically, we relate the
attractive portion of the LJ second virial coefficient, for r > d, to uLJ

ab ,

uLJ
ab

|ūLJ| =
2π

d3

∫ 3d

d

dr r2
{
1− exp[−ULJ

ab (r)/kBT ]
}
, (S24)

given a fixed temperature T . For simplicity, we work at a standard temperature, such that kBT = 1 in our simulations.
The user-defined scale factor, |ūLJ|, controls the mean LJ interaction strengths used in the simulations; this scale factor
must be introduced empirically (as opposed to being determined from the mean-field model) because the critical
points of the mean-field FH model and the LJ heteropolymer simulations differ. In practice, we determine the LJ
coefficients {wLJ

ab } from a designed monomer–monomer interaction matrix, uLJ, by choosing an appropriate value of
|ūLJ| (determined from simulations of homomeric LJ heteropolymers with chain length Lmax) and inverting Eq. (S24).

Second, to design the polymer sequences for polymer species i = 1, . . . , N , we utilize the count encodings in each

row, W⃗i, of the optimized molecular feature matrix. We aim to construct sequences that are minimally “blocky”,
since the pairwise-additive assumption used in our heteropolymer design approach (see SI Sec. III B 2) does not
consider sequence-patterning effects. We therefore aim to construct sequences in which the monomers of each type
are homogeneously distributed throughout each polymer chain. Here we use a deterministic heuristic for interleaving
different monomer types. To generate the sequence design for chain i, we first sort the monomer frequency counts
{Wia} in descending order and associate the nth monomer of type a with the fractional number n/(1 +Wia), where
n goes from 1 to Wia. We then read off the order of the monomer types in the sequence by going through the array
of fractional numbers in ascending order.
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Following these procedures, we obtain the LJ coefficients used for simulating the heteropolymer design shown in
Fig. 2 in the main text,

wLJ =



0.520 0.863 0.380
0.863 0.345 0.238
0.380 0.238 0.788


 .

These LJ coefficients result in the uLJ matrix shown in SI Fig. S1C and in Fig. 2A of the main text. The corresponding
sequences are also shown in SI Fig. S1C and in Fig. 2A of the main text.

C. Direct-coexistence simulations

1. Initialization of multiphase simulations

To prepare condensed phases for molecular dynamics simulations, we first perform constant-temperature-and-
pressure (NPT) simulations for each individual target phase. We use Ntot = 432 chains in a cubic box with periodic
boundary conditions, where chain types are assigned according to the target-phase composition. Performing NPT
simulations at zero pressure allows us to estimate the average equilibrium total number density in a condensed phase,
ρeq. We then prepare the condensed phases for use in direct-coexistence simulations by deforming the simulation
box. In this step, we maintain periodic boundary conditions in both the x and y directions while imposing hard wall
constraints and open boundary conditions in the z direction. The final dimensions, consistent with the target density
ρeq determined from the NPT simulations, are lz = 40d and lx = ly = 20d for simulations of designs with Lmax = 20,
and lz = 40d and lx = ly = 24.5d for simulations of designs with Lmax = 30. Finally, the initial condition for a
direct-coexistence simulation of a pair of condensed phases is constructed by stitching together two condensed phases
and a dilute gas phase along the z axis of the simulation box. The region of the simulation box corresponding to the
dilute phase is initialized with 6 chains of each type at a total number density of ρdilute = 1.50× 10−3, 2.25× 10−3,
or 1.50× 10−3 for the designs shown in Fig. 2B, Fig. 4A, and Fig. 4C in the main text, respectively.

2. Production simulations

In our production runs, we perform constant-temperature-and-volume (NVT) direct-coexistence simulations. The
overall dimensions of the simulation box, including α, β, and dilute phases, are l = 20d× 20d× 120d for simulations
of designs with Lmax = 20, and l = 24.5d × 24.5d × 120d for simulations of designs with Lmax = 30. Each direct-
coexistence simulation contains a total of Ntot = 888 chains for the four-component case and Ntot = 900 chains for
the six-component cases. Our molecular dynamics simulations utilize the Nose–Hoover thermostat and a timestep of
5× 10−3 in LJ units.

To verify equilibration, we calculate the degree of mixing (d.o.m.) over the region of the simulation box that is
occupied by condensed phases (SI Fig. S2). The d.o.m. is defined to be

d.o.m. ≡ 1− 1

2

∫

ϕT(z)>1/2

dz

[
p
(β)
init(z)− p

(α)
init(z)

]2

p
(α)
init(z) + p

(β)
init(z)

, (S25)

where p
(α)
init(z) and p

(β)
init(z) represent the probability of finding a chain that was initialized in the α or β con-

densed phase, respectively, at the position z along the simulation box. These probabilities are normalized such

that
∫
ϕT(z)>1/2

dz p
(α)
init = 1. If the chains completely mix, such that there is no correlation between the location of a

particular chain and the condensed phase in which it was initially placed, then the degree of mixing tends to one. If
the chains remain in their original phases, then the degree of mixing is close to zero. In situations where one or more
species are shared between a pair of condensed phases, then the degree of mixing is expected to plateau at a value
between zero and one. In practice, we use the degree of mixing to determine the timescale over which equilibration
takes place in α = β control simulations (SI Fig. S2A). We also verify that the degree of mixing for α ̸= β direct-
coexistence simulations reaches a plateau value in the course of a simulation trajectory that is at least twice as long
as the control-simulation mixing timescale (SI Fig. S2B–C).
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FIG. S2. The degree of mixing as an indicator of equilibration. For the example design solution shown in Fig. 2 in the
main text, we compare the evolution of the degree of mixing (d.o.m.) between (A) an α = β control simulation and (B–C) two
α ̸= β direct-coexistence simulations. The left and right snapshots in each panel are colored according to the monomer types
and the initial phase labels (either red or blue) at the end of the simulation trajectory. From A, we determine that the mixing
timescale at this temperature and mean LJ interaction strength is approximately 107 timesteps (5 × 104τ). The d.o.m. is
significantly greater than zero in B because phases 1 and 2 share an enriched component. Interfacial effects, both at the α–β
interface and at the condensed–dilute interfaces, also tend to increase the d.o.m. in both B and C.

D. Defining the heteropolymer design “fitness” metric

To quantify the results of our equilibrium coexistence simulations and to compare alternative polymer designs, we
introduce an intuitive fitness metric based on the target order parameter profiles,

fitness ≡
∫
ϕT(z)>1/2

dz maxα

[
q(α)(ϕ⃗(z))

]

∫
ϕT(z)>1/2

dz
, (S26)

where the order parameter for the α target phase is defined to be

q(α)(ϕ⃗) ≡ ϕ⃗ · ϕ⃗(α)

||ϕ⃗|| ||ϕ⃗(α)||
. (S27)

The fitness metric is equal to one if the bulk molecular concentrations in the condensed phases are precisely equal to
the target molecular concentrations and the interfaces are perfectly sharp. However, in direct-coexistence simulations
with α, β, and dilute phases, a valid design will lead to (at least) three finite-width interfaces. A lower bound on the
fitness of a valid design can be estimated by assuming that the integrand in Eq. (S26) is zero in the interfacial regions
and that there are three interfacial regions, each of which comprises at most 5% of the total region in which ϕT ≥ 1/2
(based on the typical interfacial width in the control simulations shown in SI Fig. S2A). In this way, we estimate
that a valid design should have a fitness score of at least 0.85. We use this value as the threshold for determining
whether a heteropolymer design is a success or a failure in Figs. 2 and 4 in the main text. We note that this heuristic
fitness metric might not work as well as the number of components increases, since the order parameter is based on
a Euclidean distance, and it generally becomes harder to distinguish points in this way in high-dimensional spaces.

Using this fitness metric, we are able to objectively and consistently determine whether a heteropolymer mixture
design results in the target multicomponent phase behavior. The equilibrated concentration and order-parameter
profiles of the alternative designs for the example four-component design problem (see Fig. 1B and Fig. 2 in the main
text) are shown in SI Fig. S3. The corresponding fitness values for these four designs are shown in SI Fig. S1D.

E. Computing effective polymer–polymer interactions in dilute and condensed phases

1. Effective polymer–polymer interactions in the dilute limit

We first consider the interactions between polymers in a dilute mixture. Polymer–polymer interactions in the dilute
limit can be quantified by second virial coefficients [17],

Bsim
ij = 2π

∫ ∞

0

dr r2 {1− exp [−wij(r)/kBT ]} , (S28)

where wij(r) is the potential of mean force (PMF) between the centers of mass of two polymers of types i and j at
infinite dilution. In practice, we compute wij(r) using adaptive biasing force (ABF) simulations [18] implemented
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D

B

C

A

FIG. S3. Simulation results for alternative heteropolymer design strategies. Simulation results are shown for the
alternative LJ heteropolymer designs summarized in Fig. 2C of the main text and in SI Fig. S1D. (A) A full-rank r = 4 design.
The interaction matrix is obtained by minimizing the variance of the independent entries of ϵ, as in Ref. [6]. (B) The r = 3
design shown in Fig. 2A in the main text. (C) A design obtained by running the NMF solver on the interaction matrix used in
A, but enforcing r = 3 monomer types. (D) A design obtained by running the NMF solver on the optimized r = 3 interaction
matrix used in B, but enforcing r = 2 monomer types. The green and red outlines around each panel indicate whether the
design is determined to be a success or a failure, respectively, according to the fitness metric, Eq. (S26).

via the COLVARS package [19] in LAMMPS [15]. We run constant-temperature-and-volume (NVT) simulations with
two chains initialized in a 20d× 20d× 20d simulation box with shrink-wrapped boundary conditions. Force statistics
are stored in bins of width 0.25d. The biasing force is applied once 1000 samples are collected in each bin, after which
a final production run is performed for 108 steps with a timestep of 0.005τ (in LJ units). The second virial coefficient
is then obtained by integrating the PMF using Eq. (S28). In SI Fig. S4A, five independent ABF simulations are
performed for each Bij calculation to determine the statistical errors, which are shown as error bars.

We then compare the second virial coefficients computed via simulation to those predicted by the Flory–Huggins
model,

BFH
ij =

d3LiLj(1 + ϵij/kBT )

2
, (S29)

obtained via a power-series expansion of the pressure in Eq. (S23) [20]. This comparison is shown in SI Fig. S4A.
We find that Bsim

ij and BFH
ij are positively correlated with a Pearson correlation coefficient of 0.67, suggesting non-

negligible differences between the dilute-phase polymer–polymer interactions and the predictions of the pairwise-
additive approximation. This discrepancy is expected, since the interactions between pairs of polymer chains in dilute
solution are, in general, rarely described accurately by mean-field approximations [16].

2. Effective polymer–polymer interactions in condensed phases: Excess chemical potential differences

Turning to the condensed phases, we extract the excess chemical potential differences, ∆αβµex,i ≡ µ
(β)
ex,i − µ

(α)
ex,i,

from the equilibrium compositions determined from direct-coexistence simulations of simulated α and β bulk phases
via [21]

∆αβµ
sim
ex,i = kBT log

(
⟨ϕ(α)

i ⟩/⟨ϕ
(β)
i ⟩
)
. (S30)
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FIG. S4. Effective polymer–polymer interactions determined from dilute-phase calculations and radial distri-
bution functions (RDFs) in condensed phases. (A) Correlation between the second virial coefficients obtained from
simulations and predicted by the Flory–Huggins (FH) model. Labels indicate chain pairs. Simulated coefficients are normal-
ized by (Ri +Rj)

3, where Ri is the radius of gyration of chain i in isolation, while predicted coefficients are normalized by the
pervaded volume of an ideal polymer with chain length Lmax. (B) Correlations between the effective well depths inferred from
the RDFs (see Fig. 3B in the main text) and the pairwise interactions, ϵij . The legend indicates pairs of chain types. (C) Cor-
relations between the zero-mode partial structure factors, Sij(0), determined from the RDFs and the mean-field interactions
in the Flory–Huggins model. In all panels, the Pearson correlation coefficient, ρ, is indicated.

We then compare these calculations with the Flory–Huggins prediction,

∆αβµ
FH
ex,i = −kBT log[(1− ϕ

(β)
T )/(1− ϕ

(α)
T )] +

∑

j

ϵij(ϕ
(β)
j − ϕ

(α)
j ). (S31)

This comparison, shown in Fig. 3A in the main text (where ∆αβµ
FH
ex,i is labeled ∆αβµ

pw
ex,i) demonstrates a strong

correlation (ρ = 0.953) between the predicted and measured excess chemical potential differences in the condensed
phases. This result supports our conclusion that the pairwise approximation is best suited to the description of
condensed phases.

3. Effective polymer–polymer interactions in condensed phases: Radial distribution functions and structure factors

We can also assess the accuracy of the pairwise-additive approximation by analyzing the microstructure of simulated
condensed phases. For each condensed phase, we run an NPT simulation at zero pressure to compute the radial
distribution function (RDF) with respect to the center of mass distance between polymers of various species. The
RDF between chain types i and j is denoted gij(r). The results of these simulations are shown in Fig. 3B in the main
text; note that these calculations can only be performed with sufficient statistical accuracy for chain types that are
enriched in a particular condensed phase. From the RDFs, we measure the well depths of the effective interactions,
minr − log gij(r), which strongly correlate with the predicted pairwise interactions, ϵij (ρ = 0.959; SI Fig. S4B). This
correspondence provides additional support for our conclusion that the mean-field approximations hold well in the
condensed phases.

The mean-field interactions can also be related to the RDFs using linear response theory [17]. Specifically, the

partial structure factor is related to the Fourier transform of the pair correlation function, ĥ ≡ ĝ − 1, via

Sij(k⃗) = xiδij + xixjρĥij(k⃗), (S32)

where xi = ϕi/ϕT is the chain composition in a condensed phase, ρ = Ntot/V is the total number density in the
condensed phase, and V is the simulated volume of the condensed phase. It follows that

lim
|⃗k|→0

Sij(k⃗) = xiδij + 2xixjρ

∫ ∞

0

dr rh(r)× lim
|⃗k|→0

sin(2πr|⃗k|)
|⃗k|

= xiδij + 4πxixjρ

∫ ∞

0

dr r2h(r).

(S33)
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FIG. S5. Convex optimization results for example six-component condensate design problems. (A) Convex
optimization results for the condensate design problem shown in Fig. 4A in the main text, using η = 0.1 for the calculation of
the bound. Data are shown as in SI Fig. S1A. (B) Comparison of the optimized design shown in A with alternative designs,
as in SI Fig. S1D. The alternative designs (I) maximize the stability of the condensed phases using six monomer types, (II)
apply the EYM theorem without nuclear-norm minimization, and (III) apply NMF with r = 3 monomer types. (C) Convex
optimization results for the condensate design problem shown in Fig. 4C in the main text, using η = 0.1 for the calculation
of the bound. (D) Comparison of the optimized design shown in C with alternative designs, following the same definitions as
in B.

Finally, from linear response theory [17], we find

Sij(0) = V −1 ∂⟨Ni⟩
∂βµj

= kBT

(
∂µj

∂ρi

)−1

= kBT

(
Li

∂µj

∂ϕi

)−1

. (S34)

We calculate the zero mode for number density fluctuations, Sij(0), via the mean-field expression, Eq. (S23)d, and
the simulated single-phase RDFs, Eq. (S33), and find that the results are highly correlated (ρ = 0.996; SI Fig. S4C).
This finding also supports our conclusion that the mean-field approximations hold well in the condensed phases.

4. Calculation of overlap parameter

We compute the overlap parameter, P [16], from single-phase NPT simulations by estimating the median number
of distinct neighboring chains with which every chain in a condensed phase interacts. A chain is considered to be
an interacting neighbor if there is at least one inter-chain pair of monomers that are within the cutoff distance, 3d,
of the monomer–monomer LJ potential. The relatively large average value of the overlap parameter, P ≈ 13 ± 2, is
consistent with the observed mean-field behavior of the condensed phases.

IV. DESIGN AND SIMULATION DATA FOR 6-COMPONENT HETEROPOLYMER DESIGNS

In this section, we present the optimization results and resulting simulation data for the problems considered in
Figs. 4A and 4C in the main text. The results of convex optimization for both problems are shown in SI Fig. S5A,C
using the same format as in SI Fig. S1A. For the condensate design problem shown in Fig. 4A, we select the optimal
solution using the parameters λmin = 0.5kBT and Lmax = 20. For the condensate design problem shown in Fig. 4C,
we select the optimal solution using the parameters λmin = 0.075kBT and Lmax = 30.

The LJ coefficients used for simulating the heteropolymer design shown in Fig. 4A in the main text are

wLJ =



0.630 0.559 0.430 0.264
0.559 0.582 0.374 0.877
0.430 0.374 0.516 0.361
0.264 0.877 0.361 0.663


 .
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The LJ coefficients used for simulating the heteropolymer design shown in Fig. 4C in the main text are

wLJ =



0.135 0.701 0.482 0.457
0.701 0.483 0.271 0.375
0.482 0.271 0.951 0.525
0.457 0.375 0.525 0.982


 .

The corresponding simulation data for these designs, along with the optimized sequences shown in Figs. 4A and 4C
in the main text, are shown in SI Fig. S6. The simulation fitness metrics for these designs, as well as for alternative
heteropolymer mixture designs that do not follow our two-step optimization approach, are shown in SI Fig. S5B,D
and for each pair of phases (α, β) in Fig. 4 of the main text.
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FIG. S6. Molecular simulation results for optimized LJ heteropolymer solutions to example six-component
condensate design problems. Simulation results of all pairs of coexisting phases are shown for (A) the condensate design
problem presented in Fig. 4A of the main text and (B) Fig. 4C of the main text. Results in dashed boxes correspond to control
simulations, for which α = β. Results in solid boxes correspond to direct-coexistence simulations of immiscible phases, for
which α ̸= β.


