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Abstract—Solving Hamilton-Jacobi-Isaacs (HJI) PDEs numer-
ically enables equilibrial feedback control in two-player differ-
ential games, yet faces the curse of dimensionality (CoD). While
physics-informed neural networks (PINNs) have shown promise
in alleviating CoD in solving PDEs, vanilla PINNs fall short in
learning discontinuous solutions due to their sampling nature,
leading to poor safety performance of the resulting policies when
values are discontinuous due to state or temporal logic con-
straints. In this study, we explore three potential solutions to this
challenge: (1) a hybrid learning method that is guided by both
supervisory equilibria and the HJI PDE, (2) a value-hardening
method where a sequence of HJIs are solved with increasing
Lipschitz constant on the constraint violation penalty, and (3) the
epigraphical technique that lifts the value to a higher dimensional
state space where it becomes continuous. Evaluations through
5D and 9D vehicle and 13D drone simulations reveal that the
hybrid method outperforms others in terms of generalization and
safety performance by taking advantage of both the supervisory
equilibrium values and costates, and the low cost of PINN loss
gradients.

Index Terms—general-sum differential game, physics-informed
neural network, safe human-robot interactions

I. INTRODUCTION

HUMAN-ROBOT interactions (HRI) become prevalent in
safety-critical applications such as transportation [1],

healthcare [2], and rescue [3]. Conventionally, safety is
achieved by incorporating state constraints in a model pre-
dictive control (MPC) framework. The constraints are usually
derived from a two-player zero-sum game formulation so that
the ego player avoids all system states from which the fellow
player can successfully launch attacks should it be adversar-
ial [4]. There are two limitations to this approach: First, the
zero-sum setting can often be overly conservative since fellow
players in civil applications are not always adversarial; Second,
real-time MPC is required on top of value approximation of the
zero-sum games, limiting the speed and quality of the player’s
decision making.

To address the first limitation, it is tempting to consider
HRI as general-sum differential games with state constraints
and incomplete information, where players have private types
(e.g., reward parameters). In this setting, players can overcome
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unnecessary conservatism by updating their beliefs about each
other’s type based on observations of their previous actions.
To address the second limitation, one would ideally need to
obtain the value of the game, which then enables feedback
control that intrinsically satisfies the state constraints while
optimizing the expected payoff, either obsoleting or at least
accelerating MPC.

A theoretical challenge towards these idealistic goals, how-
ever, is that we do not have the existence proof or the
characterization of values for general-sum differential games
with incomplete information and state constraints [5]. Hence
we take a step back and consider games with complete infor-
mation, for which Nash equilibrium exists [6] and therefore
values are governed by the Hamilton-Jacobi-Isaacs (HJI) equa-
tions. Computing values, however, is known to encounter the
curse of dimensionality (CoD) using mesh-based dynamic pro-
gramming (DP) solvers [7]. Physics-informed neural network
(PINN) has thus been introduced to approximate values while
circumventing CoD [8]. Nonetheless, recent studies showed
that while PINN is successful at approximating Lipschitz con-
tinuous PDE solutions [8]–[10], they encounter convergence
issues when applied to discontinuous ones [11]. In the context
of HJI, such value discontinuity arises when state constraints
and temporal logic specifications are imposed.

Within this context, our paper investigates three PINN-
based solutions for approximating values of state-constrained
differential games:

The first solution, called hybrid learning, is developed based
on the insight that discontinuity in value causes sampling-
based methods such as PINN to deviate from the true solutions
almost surely, since the measure of the discontinuous bound-
aries is zero (or close to zero when we approximate disconti-
nuities with large-Lipschitz functions in practice). The solution
is thus to augment PINN with supervised equilibrium data that
cover discontinuous regions of the value landscape in space
and time. These equilibria are generated by solving bound-
ary value problems (BVPs) following Pontryagin’s Maximum
Principle (PMP) [12]. This solution requires human insights
on where the informative equilibrium trajectories with discon-
tinuous values (e.g., collisions) lie and the global optimality
of the BVP solutions. The challenge with sampling discontin-
uous boundaries leads to the loss of spatiotemporal causality
during value approximation. Hence the second solution, called
value hardening, following curriculum learning [13], aims to
improve the chance of learning the discontinuous boundaries
by gradually increasing the Lipschitz constant of a constraint
violation penalty. The third solution, called epigraphical learn-
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ing, is based on the epigraphical technique that transforms
discontinuous values of state-constrained games into Lipschitz
continuous ones defined in an augmented state space [14]. We
extend the existing technique from zero-sum games [15] to
the general-sum setting and apply PINN to approximate the
smooth augmented values.

We summarize the systemic design of experiments to be
used to evaluate and compare these solutions: Methods:
vanilla PINN, supervised learning (SL), hybrid (HL), value-
hardening (VH), epigraphical (EL) methods and their variants.
PDE dimensionalities: 5D, 9D, and 13D. As of writing,
13D is largest dimensionality among existing test cases of
HJ equations in the differential game context. Dynamics:
linear and nonlinear vehicle and drone dynamics. Information
settings: complete- and incomplete-information two-player
general-sum games. Performance metrics: both in- and out-
of-distribution generalization and safety performance.

We claim the following contributions:
• We show that HL scales better than SL, VH and EL to

high-dimensional cases in terms of both generalization
(value and action prediction) and safety (when values are
used for feedback control). The key factors for its success
are (1) the supervision on the costate landscape, which is
directly related to the control policy, and (2) the low cost
of PINN training in comparison to supervised learning
via solving BVPs.

• Consistent with [16]–[18], our ablation studies highlight
the sensitivity of generalization and safety performance to
the choice of neural activation functions, and the need for
adaptive activations. In particular, tanh and continuously
differentiable variants of relu, such as gelu [19],
achieve the best empirical performance when combined
with HL and adaptive activation.

• While existing studies on solving HJ equations using
machine learning have shown promising results for reach-
ability analysis (e.g., [20]), the safety performance of the
resultant value networks when used as closed-loop con-
trollers is rarely investigated. We show in this paper that
low approximation errors in value does not necessarily
indicate high safety performance when the approximated
value is used for closed-loop control.

This work is extended from its conference version [21] in
the following significant ways: (1) a thorough investigation
of the efficacy of the epigraphical technique when applied to
solving differential games; (2) new studies to demonstrate and
explain the convergence challenge encountered when applying
value hardening to 9D and 13D problems; (3) new studies
that demonstrate the importance of costate loss for high safety
performance; (4) extension of the existing DP solver [22] from
zero-sum to general-sum setting, which enables comparisons
between values approximated by DP, BVP, and PINN variants.
These comparisons allow us to show that values obtained from
all three are similar in the test cases and therefore guiding
PINN by open-loop BVP solutions through hybrid learning is
reasonable.

The rest of this paper is organized as follows. Sec. II
provides an overview of the relevant literature on value ap-
proximation, physics-informed neural network, and complete-

and incomplete-information differential games. In Sec. III, we
present the formulation of two-player general-sum differential
games with state constraints, its HJ PDEs, and explain the
challenge in approximating its discontinuous values through a
toy case. We then discuss the three potential solutions. The
experimental results are presented and analyzed in Sec. IV.
We give discussion including safety guarantee, consistency
between BVP and HJI values, and efficacy of costate loss for
safety performance in Sec. V, and conclude in Sec. VI.

II. RELATED WORK

A. Value approximation and physics-informed neural network

The values of a general-sum differential game with two-
player and complete-information are viscosity solutions to
HJI equations [23], which are a set of first-order nonlinear
PDEs. The conventional approach to solving such equations
involves essentially non-oscillatory (ENO) schemes [24] and
level set methods [25], [26], which are known to provide
accurate approximations of both temporal and spatial deriva-
tives. However, these approaches suffer from CoD [27]. Re-
cent studies have shown that using physics-informed neural
network (PINN) to approximate PDE solutions can effectively
circumvent the CoD due to its Monte Carlo nature, provided
that the solution is smooth [8]. PINN trains neural nets as
PDE-governed fields, where the training loss is defined by
network-induced residuals with respect to (a) the boundary
conditions [28], [29], (b) the governing equations [18], [20],
and/or (c) supervisory data drawn from the ground-truth so-
lutions [30]. Initial studies on convergence and generalization
performance have emerged for (a) and (b), under the assump-
tion that both the solution and the network are Lipschitz
continuous [9], [10], [28]. Recent studies have explored the
effectiveness of PINN for solving PDEs with discontinuous
solutions, such as Burgers’ equation, where both initial and
terminal boundaries are specified [18]. However, we demon-
strate in Sec. III-E that PDEs with only terminal or initial
boundary conditions, such as HJIs, present an unidentifiability
challenge.

B. Differential games with incomplete information

One driving motivation for approximating values of differ-
ential games is to use the values for fast belief updates on
unknown player types in incomplete-information settings. The
update follows Bayes inference and relies on modeling player
control policies as a type-conditioned distribution shaped by
their values (see Sec. IV-A for details). In the case study on
uncontrolled intersection (Sec. IV-A), we evaluate the safety
performance induced by the value networks, which influence
both players’ control policies and their belief updates about the
types of their fellow players. In addition, we examine safety
performance when players are “empathetic”, i.e., when they
share common beliefs about each other, and when they are
“non-empathetic”, i.e., when they falsely assume that their
true types are known by their fellow players. Our study
shares the same motivation as [31] in that both seek fast
computation of equilibrium during interactions. We take the
approach of pre-computing values offline (which then enables
500Hz policy generation frequency during inference time),



IEEE TRANSACTIONS ON ROBOTICS 3

while [31] proposes to simplify games as linear-quadratic
which then facilitates fast (20Hz) equilibrium approximation
online. Our investigation into differential games with incom-
plete information sets us apart from previous HRI studies
that resort to various simplifications of the games in order
to balance theoretical soundness and practicality. These sim-
plifications involve modeling the games as optimal control
problems or complete-information ones [32]–[37]. While some
also use belief updates to adapt motion planning, they are
limited to empirical best responses of the uninformed player
in one-sided information settings [38]–[42]. A recent study
proposes to synthesize safety control policies that account for
evolving uncertainty by considering both physical and belief
dynamics [43]. This framework is currently constrained to one-
sided information settings, while this paper studies cases where
both players lack information. It is necessary to point out,
however, that we will only investigate best-response policies
of players, i.e., the players choose the best responses based
on their current belief about their fellows (via their common
knowledge about the values of the games) without considering
the future dynamics of beliefs. This is because the existence of
value and player policies for general-sum differential games
with incomplete information is still an open question, unlike
their zero-sum or discrete-time counterparts [44]–[47].

III. DISCONTINUOUS VALUE APPROXIMATION

A. Notations

In a two-player differential game with complete-
information, Player i has a state space Xi ⊂ Rn and
an action space Ui ⊂ Rm. The time-invariant state dynamics
of Player i is denoted by

ẋi = fi(xi, ui), (1)

where xi ∈ Xi and ui ∈ Ui. We omit dependence on time
whenever possible and use ai = (ai, a−i) to concatenate
variables ai from Player i and a−i from the fellow player. We
denote the partial derivative with respect to x by ∇x· and the
joint state space by X :=

⋃
i=1,2 Xi. The fixed time horizon of

the game is [0, T ]. The instantaneous loss of Player i is denoted
by li(xi, ui) and the terminal loss gi(xi). Feasible states from
Player i’s perspective are defined by the sub-zero level set
{xi ∈ X | ci(xi) ≤ 0}. We will consider ci(·) a scalar function
that measures the worse state constraint violation in case
multiple constraints are present, i.e., if ci(xi) > 0, xi violates
at least one of the constraints. The value function of Player i
is denoted by ϑi(xi, t) : X × [0, T ] → R. To simplify notation,
we will use fi, li, gi, ci, and ϑi to refer to the dynamics, losses,
state constraint, and the value function of Player i. Denote by
αi ∈ A : X × [0, T ] → Ui Player i’s control policy, where
the policy space A is assumed to be common. We use xxi,t,αi

s

as the state of Player i at time s if it follows policy αi and
dynamics fi starting from (xi, t). We denote states for two
players at time s as xxi,t,αi,α−i

s :=
(
xxi,t,αi
s , x

x−i,t,α−i
s

)
. All

acronyms are summarized in Sec. VII-A.

B. Assumptions

Throughout the paper, we assume that Ui is compact and
convex; fi : Xi × Ui → Rn and ci : X → R are Lipschitz

continuous; li : Xi × Ui → R and gi : Xi → R are Lipschitz
continuous and bounded.

C. Preliminary

Hamilton-Jacobi-Isaacs equations: Let (αi, α−i) be a pair
of equilibrium policies. The values for a two-player general-
sum differential game are viscosity solutions to the HJI
equations denoted by (L) in Eq. (2), and satisfy the boundary
conditions denoted by (D) [48].

L(ϑi,∇xiϑi, xi, t, ξ−i) := ∇tϑi + max
ui∈Ui

{
∇xiϑ

T
i fi − li

}
= 0

D(ϑi, xi) := ϑi(xi, T )− gi = 0, for i = 1, 2.
(2)

With the values, the players’ equilibrium policies can then be
derived by αi(xi, t) = argmaxui∈Ui

{
∇xiϑ

T
i fi − li

}
. Notice

that L for Player i depends on the equilibrium policy α−i of
its fellow.

Pontryagin’s Maximum Principle: Although solving the HJI
equations would give a feedback control policy, it is often
more practical to compute open-loop policies for a specific
initial state (x̄1, x̄2) ∈ X by solving a boundary value problem
(BVP) following Pontryagin’s Minimum Principle (PMP)1:

ẋi = fi, xi(0) = x̄i,

λ̇i = −∇xi
hi, λi(T ) = −∇xi

gi,

ui = argmax
ui∈Ui

{hi} for i = 1, 2.
(3)

Here λi is the time-dependent co-state for Player i. The co-
state connects PMP and HJI through λi = ∇xiϑi. Solutions
to Eq. (3) are specific to the given initial states. Although
PMP characterizes local open-loop solutions, empirical studies
(see Sec. V-B) show that with an effort to search for global
solutions, BVP values are consistent with those governed by
the HJI equations.

State-constrained value function: With state constraints, the
value function for Player i with some equilibrium policy pair
(αi, α−i) is

ϑi(xi, t) =

∫ T

t

li
(
xxi,t,αi
s , αi

(
xxi,t,αi,α−i
s , s

))
ds+gi

(
xxi,t,αi

T

)
,

(4)
if ci

(
xxi,t,αi,α−i
s

)
≤ 0,∀s ∈ [t, T ], or +∞ otherwise. Thus

state constraints introduce discontinuity in the value landscape.

D. PINN for solving HJ equation

PINN trains neural networks ϑ̂i(·, ·) : X × [0, T ] → R to

approximate ϑi. We denote by D =
{(
x
(k)
1 , x

(k)
2 , t(k)

)}K

k=1
a

dataset consisting of uniform samples in X1×X2× [0, T ]. The
formulation of the training problem in Eq. (5) extends from
PINN for solving zero-sum games [20]:

min
ϑ̂1,ϑ̂2

L1

(
ϑ̂1, ϑ̂2; θ

)
:=

K∑
k=1

2∑
i=1

∥∥∥L(ϑ̂(k)i ,∇xi ϑ̂
(k)
i , x(k)

i , t(k))
∥∥∥

+ C1ϕ
(
D(ϑ̂i, x

(k)
i )

)
,

(5)

1It should be noted that solving the BVP has its own numerical challenges,
particularly when the equilibrium involves singular arcs [49]. However, these
challenges are beyond the scope of this paper.
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where ϑ̂
(k)
i is an abbreviation for ϑ̂i

(
x(k)
i , t(k)

)
and C1

balances the L1 PDE residual loss (∥L∥) and the boundary
loss (ϕ(D)). It is worth noting that in each iteration of solving
Eq. (5), a sub-routine is needed to find the control policies by
maximizing the Hamiltonian.

Figure 1: (a) Value comparison among the learning methods for a simple 1D
case. Red dots are the supervised data. (b) Evolution of the value function
due to gradually hardening delta function. Delta functions are shown on top.
Transparency reduces with hardening.

E. Challenge in approximating discontinuous HJI values

We use the following toy case to explain the challenge
in approximating discontinuous values using PINN. Consider
a one-dimensional function ϑ(x), which is the solution to
a differential equation ∇xϑ − δ(x) = 0 with the boundary
condition ϑ(1) = 0 in the interval x ∈ [−1, 1]. δ(x) is a delta
function that peaks at x = 0. Notice that with uniform samples
for D, the PINN loss (L1) can be minimized almost surely by
incorrect solutions, e.g., ϑ̂(x) = 0. This unidentifiability issue
is due to the differential nature of the governing equation: the
accuracy of ϑ̂ at one point in space and time depends solely
on that of its neighbors. However, informative neighbors, i.e.,
those at x = 0 in this toy case, have zero probability to be
sampled.

F. Solutions

(1) Hybrid learning: In the above toy case, we can learn a
much improved approximation to the solution using only two
informative data points sampled from each side of 0 (as shown
by the SL curve in Fig. 1). Indeed, [30] showed that supervised
learning can be used for value approximation. A drawback
of this approach, when applied to solving HJIs, is its high
data acquisition costs due to the need for repeatedly solving
BVPs to acquire state-value pairs. We hypothesize that this
drawback can be reduced by combining supervised learning
and PINN, since evaluating and differentiating the latter only
require one forward pass of ϑ̂, which is usually much cheaper
than calling the Newton-type iterative algorithms involved in
solving BVPs.

To implement this hybrid method, we define a dataset

Ds =
{(

x(k)i , t(k), ϑ
(k)
i ,∇xiϑ

(k)
i

)
for i = 1, 2

}K

k=1
derived

from solving Eq. (3) with initial states uniformly sampled in
X . We define the supervised loss as follows:

min
ϑ̂1,ϑ̂2

L2

(
ϑ̂1, ϑ̂2;Ds

)
:=

K∑
k=1

2∑
i=1

∣∣∣ϑ̂(k)i − ϑ
(k)
i

∣∣∣
+ C2

∥∥∥∇xi ϑ̂
(k)
i −∇xiϑ

(k)
i

∥∥∥ , (6)

where C2 is a hyperparameter that balances the losses on value
and its gradient. The hybrid method minimizes L1 + L2.

(2) Value hardening: The second solution is to introduce
a surrogate differential equation, which has a continuous
solution that approximates the ground truth. We can then
approximate the true solution by gradually “hardening” this
surrogate. For the toy case, we can improve the solution by
gradually hardening a softened delta function, as shown in
Fig. 1b. Just like hybrid learning, this method also introduces
additional computation, as we turn one learning problem into
a sequence of easier learning problems. In Sec. IV, we show
that with a limited budget, value hardening fails to converge
for high-dimensional value approximation tasks where hybrid
learning succeeds. Lastly, we note that value hardening is
similar to [11], where the authors introduce a gradually
hardening diffusion term to address the same discontinuity
issue when solving nonlinear two-phase hyperbolic transport
equations using PINN.

(3) Epigraphical learning: Recall that the discontinuity
of value in our context is caused by state constraints in
differential games. It is shown that a smooth augmented value
can be derived through the epigraphical technique for state-
constrained differential games [14], [15]. Our last approach
utilizes this technique to facilitate continuous value approx-
imation in an augmented state space and compute the value
for the original game based on the approximation. While HJ
PDEs with state constraint have been investigated in zero-
sum settings and numerical approximation of their values have
been attempted via dynamic programming and conservative
Q-learning [15], [50], this paper is among the first to solve
general-sum differential games with state constraints using
a combination of PINN and the epigraphical technique. For
completeness, we briefly introduce the epigraphical technique
in the following subsection.
G. The epigraphical technique for general-sum differential
games with state constraints

Let (α1, α2) be a pair of equilibrium policies. The epigraph-
ical technique introduces an augmented value Vi : X × R ×
[0, T ]:

Vi(xi, zi, t) := max

{
max
s∈[t,T ]

ci
(
xxi,t,αi,α−i
s

)
,

gi
(
xxi,t,αi

T

)
− zi(T )

} (7)

The auxiliary state zi follows

żi = −li(xi, ui) and zi(0) = z̄i, (8)

where z̄i represents the true value of Player i at (x̄i, t0) ∈
X × [0, T ] and is computed as follows: Find z̄i ∈ [zmin, zmax]
such that Vi(x̄i, z̄i, t0) = 0. If Vi(x̄i, z, t0) > 0 for all z ∈
[zmin, zmax], then z̄i = +∞. Lemma 1 (Lemma 1 of [15])
formally establishes this connection between the augmented
value Vi and the true value ϑi(xi, t):

Lemma 1. Suppose assumptions in Sec. III-B hold. For all
(xi, zi, t) ∈ X ×R× [0, T ], ϑi and Vi are related as follows:

ϑi(xi, t)− zi ≤ 0 ⇐⇒ Vi(xi, zi, t) ≤ 0;

ϑi(xi, t) = min zi s.t. Vi(xi, zi, t) ≤ 0.
(9)

Proof. See Sec. VII-B.
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Lemma 2 (Lemma 2 of [15]) provides the optimality con-
dition for Vi(xi, zi, t), which is the basis for the derivation of
HJ equations with state constraints.

Lemma 2. Suppose assumptions in Sec. III-B hold. For all
(xi, zi, t) ∈ X ×R× [0, T ], for small enough h > 0 such that
t+ h ≤ T we have

Vi(xi, zi, t) = min
αi∈A

max

{
max

s∈[t,t+h]
ci
(
xxi,t,αi,α−i
s

)
,

Vi (xi(t+ h), zi(t+ h), t+ h)

}
,

(10)

where xxi,t,αi,α−i
s and xi(t+h) are solutions to Eq. (1) using

(xi, t, ui) and zi(t + h) is a solution to Eq. (8). α−i is the
equilibrium policy of the fellow player.

Proof. See Sec. VII-C.
Theorem 1 presents the HJ equations for players in a

general-sum differential game with state constraints:

Theorem 1 (HJ PDE with state constraints for general-sum
differential games). For all (xi, zi, t) ∈ X × R × [0, T ],
Vi(xi, zi, t) in Eq. (7) is a viscosity solution to the following
HJ PDE and boundary conditions:

max{ci (xi)− Vi(xi, zi, t),
∇tVi −Hi(xi, zi,∇xiVi,∇ziVi, t)} = 0,

(11)

where Hi is the augmented Hamiltonian:

Hi = max
ui∈Ui

−∇xiV
T
i fi +∇ziV

T
i li, (12)

and Vi(xi, zi, T ) = max {ci(xi), gi(T )− zi(T )}.

Proof. See Sec. VII-D.
To solve state-constrained HJ PDEs using PINN, we define

residuals similar to Eq. (2).

L̃(Vi, xi, zi, t) := max
{
ci (xi)− Vi(xi, zi, t),

∇tVi −Hi(xi, zi,∇xiVi,∇ziVi, t)
}

D̃(Vi, xi, zi) := Vi(xi, zi, T )−max
{
ci(xi),

gi(T )− zi(T )
}
, for i = 1, 2.

(13)

Thus, the overall loss can be expressed using the same
formulation as in Eq. (5).

min
V̂1,V̂2

L3

(
V̂1, V̂2; θ

)
:=

K∑
k=1

2∑
i=1

∥∥∥L̃(V̂ (k)
i , x(k)

i , z
(k)
i , t(k))

∥∥∥
+ C3ϕ̃

(
D̃(V̂

(k)
i , x(k)i , z

(k)
i )

)
,

(14)
To take advantage of the structure of Vi, we introduce two
networks Ai : X × [0, T ] → R and Bi : X × [0, T ] → R:

V̂i(xi, zi, t) := max {Ai(xi, t), Bi(xi, t)− zi} . (15)

Essentially, Ai predicts the worse-case future constraint viola-
tion and Bi predicts the value of the game for Player i without
considering the constraint. If Ai > 0, then V̂i > 0 and ϑ does
not exist, i.e., state constraint cannot be satisfied.

IV. CASE STUDY

We conduct empirical studies to compare the generalization
and safety performance of value approximation models using
five different learning methods: vanilla PINN (shortened as
PINN), hybrid learning (HL), value hardening (VH), epigraph-
ical learning (EL), and supervised learning (SL). We use both
vehicle and drone simulations to formulate the games. The
first simulation involves an interaction between two players
(i.e., vehicle) at an uncontrolled intersection, which leads to
HJIs with coupled value functions defined on a 5D state space.
We study both complete- and incomplete-information settings
using this simulation. The second and third studies investigate
model safety performance on a 9D state space. The former
models a collision-avoidance case and the latter a double-lane
change case. It should be noted that our settings, in terms of
the dynamical models and the state space dimensions, are sim-
ilar to those of [20] and [4], yet we extend from their optimal
control or zero-sum settings to general-sum differential games.
The last case study on drone collision avoidance investigates
performance of PINN variants on a higher dimensional state
space (13D) and on nonlinear dynamics.

Data acquisition. The methods under comparison involve
diverse data acquisition algorithms (supervised data via it-
erative BVP solving and PINN data via random sampling)
and learning algorithms (supervised and curriculum learning).
Hence, we use the total wall-clock time for data acquisition
and learning as a unified measure of the computational cost.
To ensure a fair comparison, the data size for each method
is chosen to keep their computational costs as close to each
other as possible. Computational costs of all the case studies
are summarized in Tab. I. To improve training convergence,
we normalize the input data to lie in [−1, 1].

Table I: Computational costs for all learning methods in all case studies.

Case Study Computational Cost Learning Method

No. (minutes) HL VH EL SL PINN

Data Acquisition 83 - - 142 -
Case 1 Model Training 110 195 600 52 195

Total Cost 193 195 600 194 195

Data Acquisition 250 - - 363 -
Case 2 Model Training 165 420 840 60 420

Total Cost 415 420 840 423 420

Data Acquisition 250 - - 363 -
Case 3 Model Training 180 430 880 70 430

Total Cost 430 430 880 433 430

Data Acquisition 500 - - 625 -
Case 4 Model Training 210 - - 85 716

Total Cost 710 - - 710 716

Network architecture. For all cases, we will present results
obtained using fully-connected networks with 3 hidden layers,
each comprising 64 neurons, and with tanh, relu, or
sin activation functions. The following experimentations on
network architecture were conducted but omitted to keep the
paper concise: (1) Experiments on deeper and wider networks
did not lead to significant improvement in generalization and
safety performance, or qualitative changes to the conclusions
we will present; (2) we observe that gelu performs similarly
to tanh in terms of the generalization and safety performance.

Hardware. For all case studies, all methods except epi-
graphical learning are conducted on one workstation with
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3.50GHz Xeon E5-1620 v4 CPU and four GeForce GTX 1080
Ti GPU with 11 GB memory. Due to the increased dimension-
ality of the augmented value in epigraphical learning, we use
an A100 GPU with 40 GB memory to achieve convergence.
Our empirical results suggest that epigraphical learning is not
as data efficient as the hybrid method even with this advantage.

Performance metrics. Since all case studies involve col-
lision avoidance as their state constraints, our analysis will
focus on collision rate (Col.%) as a safety metric. Specifically,
collision rate is the probability of sampling an initial state
for which closed-loop control of both players using the value
network leads to a collision: Col.% = Npred/Ngt, where
Npred is the number of collision trajectories resulted from
the value network and Ngt is the number of collision-free
trajectories resulted from solving BVPs. Both share the same
uniform samples of initial states. Additionally, we report in
Case 1 generalization performance of the value networks in
terms of their mean absolute approximation errors in value
and control inputs along the test state trajectories. The ground
truth value and control inputs are derived from BVP.

Hypotheses. The following hypotheses will be tested em-
pirically through the case studies:

(1) With the same computational budget, HL yields better
generalization and safety performance than vanilla PINN, VH,
SL, and EL across all presented cases and settings. The key
ingredient for high safety performance is the costate loss.

(2) The choice of the activation function and its parameters
is critical to the safety performance. In general, continuously
differentiable activations, e.g., tanh and sin, are better than
activations with discontinuous derivatives, e.g., relu.
A. Case 1: uncontrolled intersection

Figure 2: (a) State trajectories of players projected to (d1, d2). Solid gray
box: collision area from the perspective of aggressive players; hollow boxes
(magenta for Player 1 and blue for Player 2): collision areas from the
perspectives of non-aggressive players. Red box: sampling domain for initial
states. Color: Actual values of Player 1. (b) Uncontrolled intersection setup.

Experiment setup. The schematics of the uncontrolled
intersection case and the parameters (R, L, and W for road
length, car length, and car width, respectively) are depicted
in Fig. 2. Each player is represented by two state variables:
location (di) and speed (vi), which together form the state of
the player as xi := (di, vi). The shared dynamics between
the players follow the equations ḋi = vi and v̇i = ui, where
ui ∈ [−5, 10]m/s2 represents the scalar control input, i.e., the
acceleration of the player. The instantaneous loss is

li(ui) = u2i , (16)

and the player type-dependent state constraint is

ci(xi; θ) = δ(di, θi)δ(d−i, 1) (17)

Here δ(d, θ) = 1 iff d ∈ [R/2 − θW/2, (R + W )/2 + L]
or otherwise δ(d, θ) = 0. θ ∈ Θ := {1, 5} represents
the aggressive (a) or non-aggressive (na) type of a player,
where the non-aggressive player adopts a larger collision zone,
see hollow boxes in Fig. 2. The terminal loss is defined to
incentivize players to move across the intersection and restore
nominal speed:

gi(xi) = −µdi(T ) + (vi(T )− v̄)2, (18)

where µ = 10−6, v̄ = 18m/s, and T = 3s. For hybrid, value-
hardening, and vanilla PINN, we treat the state constraint as
a penalty in a modified instantaneous loss:

l̃i(xi, ui; θ) = li(ui) + bσ(di, θi)σ(d−i, 1), (19)

where

σ(d, θ) = (1 + exp(−γ(d−R/2 + θW/2)))
−1

(1 + exp(γ(d− (R+W )/2− L)))
−1
,

(20)

γ = 5 is a shape parameter and b = 104 is chosen to be
large enough to avoid collisions, and cause a large Lipschitz
constant in the resulting value functions.

Data. For supervised learning, 1.7k ground truth trajectories
are generated from initial states uniformly sampled in XGT :=
[15, 20]m × [18, 25]m/s by solving Eq. (3). Each trajectory
consists of 31 × 2 data points (sampled with a time interval
of 0.1s and for two players), resulting in a total of 105.4k data
points. For vanilla PINN and value hardening, 122k states are
sampled uniformly in XHJ := [15, 105]m× [15, 32]m/s. For
hybrid learning, 1k ground truth trajectories (62k data points)
are uniformly sampled in XGT , and 60k states are uniformly
sampled in XHJ . For epigraphical learning, we first gather a
sample of 200k states from XHJ to ensure adherence to the
boundary conditions. Subsequently, additional 110k states are
sampled from XHJ every 30k training iterations, resulting in
a total of 1300k sampled data points upon completion of the
training process.

For the auxiliary state, recall that its initial value represents
the player’s value of the game. In the intersection case, the
best-case loss is −1.05×10−4 with zero collisions and control
efforts, while the worst-case loss without collision is 300
where the player constantly uses the maximum acceleration
or deceleration. Hence we uniformly sample zi ∈ [−1.05 ×
10−4, 300]. The same sampling procedure is applied to all sub-
cases with enumeration of player types: (a, a), (na, a), (a,
na), and (na, na).

The selection of state spaces to sample from, namely
XGT and XHJ , is based on various factors: In the case of
ground truth trajectories, the initial states for both players are
uniformly sampled from identical domains. This is because
informative collision and near-collision cases often occur when
players start from similar states. Additionally, the range of
locations for supervised data is chosen as [15, 20]m to increase
the likelihood of sampling informative trajectories within the
specified time window. The speed range of [18, 25]m/s is
selected based on typical vehicle speed limits. For PINN
and variants, the sample space XHJ approximately covers all
states that players can reach within the time window. It is
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noteworthy that within XHJ × XHJ , about 20% of the states
will induce collisions. Adaptive sampling for PINN such as in
[18] can potentially improve the data efficiency further but is
not studied in this paper.

Figure 3: (a), (g): Ground truth trajectories (projected to d1-d2) for XGT

and XXP , respectively. (b-f), (h-l): Trajectories generated using hybrid, value
hardening, epigraphical, supervised, and vanilla PINN methods under XGT

and XXP , respectively. Color: Actual equilibrial values of Player 1 along the
trajectories. Trajectories with inevitable collisions are removed for clearer
comparison on safety performance. Red dots represent initial states with
avoidable collisions.

Training. All training problems except epigraphical learn-

ing are solved using the Adam optimizer with a fixed learning
rate of 2 × 10−5. For supervised learning, the networks are
trained for 100k iterations. For vanilla PINN, we adopt the
curriculum learning method proposed in [20]. Specifically, we
first train the networks for 10k iterations using 122k uniformly
sampled boundary states at the terminal time. We then refine
the networks for 260k gradient descent steps, with states
sampled from an expanding time window starting from the
terminal. For value hardening, we follow the same learning
procedure, but we soften the collision penalty using sigmoid
functions and gradually increased the shape parameter of the
sigmoid to harden the penalty. To keep the computational cost
of value hardening similar to that of the hybrid, we use 5.4k
training iterations for each hardening step for a total of 50
steps. For the hybrid method, we pretrain the networks for
100k iterations using the supervised data and combine the
supervised data with states sampled from an expanding time
window starting from the terminal time to minimize L1 + L2

for 100k iterations. For epigraphical learning, we first train the
network to fulfill the boundary condition over 50k iterations.
Subsequently, we refine the network through 3k gradient steps
per epoch, encompassing a total of 10 epochs for every 30k
training iterations. The network refinement process spans 300k
training iterations in total.
Table II: Generalization and safety performance (collision rate) on complete-
information games. HL, VH, EL, SL, PINN are for hybrid, value hardening,
epigraphical, supervised, and vanilla physics-informed neural network meth-
ods, respectively.

Test Player Learning Metrics

Domain Types Method |ϑ − ϑ̂| ↓ |u − û| ↓ Col.% ↓

HL 0.46 0.09 ± 0.10 0.00%
VH 4.17 0.34 ± 0.19 0.67%

(a, a) EL 28.30 0.85 ± 3.92 42.3%
SL 0.57 0.12 ± 0.36 1.67%

PINN 3.39 0.96 ± 4.19 84.8%

HL 9.43 0.49 ± 3.55 3.50%
VH 79.35 1.10 ± 5.42 0.50%

XGT (a, na) EL 123.79 2.24 ± 20.8 42.7%
SL 10.58 0.54 ± 3.92 4.50%

PINN 15.33 1.27 ± 7.16 83.3%

HL 1.00 0.04 ± 0.03 1.33%
VH 21.76 0.34 ± 1.33 8.50%

(na, na) EL 130.53 0.66 ± 5.66 16.5%
SL 3.49 0.10 ± 0.46 4.33%

PINN 114.67 1.88 ± 13.72 83.5%

HL 0.41 0.09 ± 0.08 0.20%
VH 2.03 0.20 ± 0.07 0.20%

(a, a) EL 11.93 0.34 ± 1.62 19.0%
SL 0.69 0.17 ± 0.28 0.20%

PINN 1.54 0.37 ± 1.88 35.2%

HL 17.39 0.46 ± 3.17 0.10%
VH 32.64 0.57 ± 2.71 0.20%

XXP (a, na) EL 62.62 0.96 ± 8.64 10.5%
SL 19.01 0.56 ± 3.09 0.60%

PINN 19.57 0.58 ± 3.89 31.3%

HL 1.80 0.10 ± 0.12 0.00%
VH 11.54 0.24 ± 0.68 6.40%

(na, na) EL 63.73 0.41 ± 3.02 2.33%
SL 4.25 0.30 ± 0.72 2.20%

PINN 60.39 0.95 ± 7.31 36.0%

It should be noted that our initial experiment with epigraphi-
cal learning led to poor generalization and safety performance.
In the results we will present, adaptive activations [18] and
adaptive learning rates are implemented, in addition to the
use of a larger computational budget, to slightly improve the
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Figure 4: (a) Ground truth safe/unsafe initial states projected to d1-d2 frame, where black dots represent collision-free trajectories while orange dots depict
trajectories with collision. (b) Value contours at initial time to classify safe/unsafe zones using HL. (c-h): Value contours along time using EL. Blue (red)
regions represent unsafe (safe) states. (i) Comparison of mean and standard deviation of |u− û| from HL and EL across test trajectories sampled from XGT .

performance, which still falls short of that of hybrid learning.

1) Results for complete-information games: We generate a
separate set of 600 ground truth trajectories for each of the four
player type configurations by solving BVPs, with initial states
uniformly sampled from XGT . To evaluate generalization
performance, we measure the mean absolute errors (MAEs)
of value and control input predictions, denoted by |ϑ − ϑ̂|
and |u − û|, respectively, across the test trajectories. For
safety performance, we use the learned value networks to
compute the players’ closed-loop control inputs and the state
trajectories. From all resulting trajectories computed based on
test initial states, we report the percentage of collisions that
are avoidable according to BVP solutions. The performance
results are summarized in Tab. II, where we averaged the
performance of (a, na) and (na, a) due to their symmetry.
Sample trajectories for (a, a) are shown in Fig. 3.

To further evaluate the out-of-distribution performance of
supervised and hybrid learning, we repeat the tests using
500 uniformly sampled initial states in XXP := [15, 30]m ×
[18, 25]m/s. The results are summarized in the same table and
figure. In both tests, the hybrid method demonstrates the best
generalization and safety performance. Notably, the vanilla
PINN exhibits poor generalization due to value discontinuity.
Epigraphical learning performs only better than vanilla PINN
in regard of safety. Further inspection shows that epigraphical
learning can actually identify the backward reachable sets (i.e.,
unsafe zones) well, see Fig. 4. To elaborate, given t ∈ [0, T ]
and a value network V̂ trained for fix player types (a, a), the
unsafe zone is defined as {x ∈ XXP |V̂ (x, t) > 0}. We approx-
imate the ground truth unsafe zone by computing trajectories
of sample initial states in XXP by solving Eq. (3) (Fig. 4a).
We compare the ground truth with the approximations from
hybrid and epigraphical learning in Fig. 4b,c. The results here
reveal an important limitation of values approximated through
PINN: High empirical accuracy in characterizing the unsafe
zone does not necessarily imply high safety performance, such
as in the case of epigraphical learning. This is potentially
because feedback control requires accurate approximation of
the value gradients instead of the segmentation of value in

space-time (see |u− û| comparison in Fig. 4i). For the same
reason, high safety performance does not imply high accuracy
in characterizing the unsafe zone either, such as in the case of
hybrid learning. We further verify that adding the supervised
costate loss to EL improves its safety performance to be
comparable with that of HL. See Sec. V-C for details.

Figure 5: Trajectories generated using neural networks with (a) relu and
(b) sin activation functions and using L1 for boundary norm (for tanh,
refer to Fig. 3); trajectories generated using (c) L1- and (d) L2-norms for the
boundary values and using tanh for activation. All trajectories are based on
hybrid learning.

Ablation studies. We conduct ablation studies to under-
stand the effects of activation functions and the norm of
the boundary loss on model performance. Safety results are
summarized in Tab. III for player types (a, a) and using the
hybrid learning method, with training and testing conducted in
XGT . The corresponding trajectories are visualized in Fig. 5.
The results indicate that (1) the choice of the activation
function significantly affects the resultant models, with tanh
outperforming relu and sin, and (2) the choice of the
boundary norm does not have a significant influence.

Remarks: We note that relu networks have been shown
to converge to piecewise smooth functions in a supervised
setting [51]. However, convergence in the PINN setting re-



IEEE TRANSACTIONS ON ROBOTICS 9

quires continuity of the network and its gradient [9], which
relu does not offer. Our results are consistent with those of
[18], where relu underperforms in solving PDEs. We note,
however, that smooth variants of relu such as gelu can
achieve performance comparable to that of tanh. We also
note that while sin does not perform well for Case 1, it
achieves comparable performance to tanh in Cases 2-4 (see
Sec. IV-B, IV-C and IV-D). This result suggests that fine-
tuning of the frequency parameter of sin is necessary and
case-dependent [52].
Table III: Safety performance (collision rate) w/ different activation functions
(w/ L1) and boundary norms (w/ tanh)

Method Activation Boundary Norm

tanh relu sin L1 L2

Hybrid 0.00% 19.8% 28.7% 0.00% 0.4%
Value hardening 0.67% 85.1% 84.6% - -
Epigraphical 42.3% 78.8% 89.8% - -
Supervised 1.67% 2.50% 19.5% - -
Physics-informed 84.8% 84.0% 84.7% - -

2) Results for incomplete-information games: In games
with incomplete information, we investigate the effectiveness
of using value networks both for closed-loop control and for
belief updates: Each player is uncertain about the types of
the other players and therefore holds a belief about their
fellow player’s types. A belief is a probability distribution
over the type space and is updated over time as the player
observes new actions from their fellow player. We examine
two belief update settings: the first assumes that players have
common prior belief and synchronized belief dynamics [53].
In other words, Player i knows about Player j’s uncertainty
about Player i’s type. We refer to players in this setting as
“empathetic”. The second setting is non-empathetic, where
Player i falsely assumes that Player j has full knowledge
about Player i’s type. We follow [54] to simulate the state and
belief dynamics: We model Player i to continuously update
its belief based on observations, and then determine its next
control inputs based on the value network parameterized by
the most likely type of Player j as well as Player i’s truth
type. We evaluate the efficacy of the hybrid and supervised
methods, which achieve the best performance across cases, by
measuring their safety performance in incomplete-information
settings. The simulations use the same initial states as tests in
the complete-information games.

Empathetic belief update. We consider the case where
players can take one of the two types: Θ = {a, na}. Let Dt =
{(x(k),u(k))}tk=1 be a finite set of observed states and control
inputs of both players accumulated up to time t. Let pi(t) :=
Pr(θi = a | Dt−1) be the belief of Player j about Player i at
the beginning of time step t, and qθ̂i (t) := Pr(ui(t) | x(t), θ̂)
where θ̂ ∈ {(a, a), (a, na), (na, a), (na, na)} is a point esti-
mate of θ based on the current beliefs p.

We assume Player i’s control policy follows a Boltzmann
distribution:

qθ̂i (t) =
ehi(xi(t),ui(t),t;θ̂)∑
U e

hi(xi(t),u′
i,t;θ̂)

, (21)

where
hi(xi(t), ui(t), t; θ̂) = ∇xi f

T
i ϑ

θ̂
i − l̃θ̂ii . (22)

ϑθ̂i is Player i’s approximated value if the game is played
with player types θ̂, and l̃θ̂ii is the instantaneous loss that
incorporates the collision penalty if Player i is of type θ̂i.

Denote the marginal by qθ̂ii (t) := Pr(ui(t)|x(t), θ̂i), we
have

qθ̂ii (t) = q
(θ̂i,a)
i (t)p−i(t) + q

(θ̂i,na)
i (t)(1− p−i(t)). (23)

Given the observations Dt, pi follows a Bayes update:

pi(t+ 1) =
qai (t)pi(t)

qai (t)pi(t) + qnai (t)(1− pi(t))
. (24)

Remarks: (1) If any element of p(t) is mistakenly assigned
a zero probability, this mistake cannot be corrected in future
updates. To address this, we modify p(t) using

p(t) ⇐ (1− ϵ)p(t) + ϵp(0), (25)

before its next update and set the learning rate 1− ϵ = 0.95.
p(0) represents the initial belief. (2) To make Eq. (21) more
tractable, we discretize the space of control inputs as U :=
{−5,−4, ..., 0, ..., 10}m/s2. Additionally, we used discrete
time steps with a time interval of 0.05 seconds to simulate
the interactions. (3) We test two settings of initial beliefs.
In the first setting, each player believes that the other player
has a probability of 80% of being aggressive; in the second
setting, the probability is 20%. These initial beliefs correspond
to p(0) = (0.8, 0.2) and p(0) = (0.2, 0.8), respectively. While
a more extensive test over the initial belief space could be
interesting, it is beyond the scope of this study.

Non-empathetic belief update. A non-empathetic player
updates its belief about the other player’s type by assuming
that his type is known. Let the true types be θ∗. Player
−i’s belief about Player i’s type now becomes a conditional
p′i(t) := Pr(θi = a|Dt−1, θ

∗
−i). The Bayes update of p′i(t)

follows:

p′i(t+ 1) =
q
(a,θ∗

−i)

i (t)p′i(t)

q
(a,θ∗

−i)

i (t)p′i(t) + q
(na,θ∗

−i)

i (t)(1− p′i(t))
. (26)

Consequently, each player starts with its own belief, which are
not necessarily common during the interaction.

Control policy. Given the beliefs pi(t) or p′i(t), Player −i
finds the most likely type of Player i. The control policy of
Player i is determined by the value function corresponding to
(θ∗i , θ̂−i). It is worth noting that Player i employs a policy
that is consistent with its true type, even if Player j holds an
incorrect belief about Player i, which Player i acknowledges
in the empathetic setting. This setup allows players to signal
their own types through their actions.

Simulation results. We present simulated interactions be-
tween two players at an uncontrolled intersection in an
incomplete-information setting. The simulations are performed
on a grid that enumerates the following settings: (empathetic,
non-empathetic) × (correct prior, wrong prior) × (aggressive,
non-aggressive), where both players have identical settings to
limit the scope. For each setting, we evaluate the safety perfor-
mance of the value approximation models learned through the
hybrid and supervised methods using test samples from XGT .
Tab. IV summarizes the results that the hybrid models have a
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lower chance of collision than the supervised ones under all
settings.
Table IV: Collision rate in uncontrolled intersections with incomplete infor-
mation: e - empathetic, ne - non-empathetic

Belief update model Initial belief True type Hybrid Supervised

(e,e) (a,a) (a,a) 0.00% 0.00%
(ne,ne) (a,a) (a,a) 0.00% 0.00%
(e,e) (na,na) (na,na) 0.67% 6.67%
(ne,ne) (na,na) (na,na) 0.67% 6.67%
(e,e) (a,a) (na,na) 2.00% 2.67%
(ne,ne) (a,a) (na,na) 2.67% 2.67%
(e,e) (na,na) (a,a) 2.00% 8.00%
(ne,ne) (na,na) (a,a) 2.67% 4.00%

B. Case 2: narrow road collision avoidance

Figure 6: Narrow road collision avoidance setup with two players.

Experiment setup. The schematic is depicted in Fig. 6,
where the states of Player i consist of its location (pxi ,
pyi ), orientation (ψi), and speed (vi), denoted as xi :=
[pxi , p

y
i , ψi, vi]

T . The system dynamics is modeled using a
unicycle model:

ṗxi
ṗyi
ψ̇i

v̇i

 =


vi cos(ψi)
vi sin(ψi)

ωi

ui

 , (27)

where ωi ∈ [−1, 1]rad/s and ui ∈ [−5, 10]m/s2 are control
inputs that represent angular velocity and acceleration, respec-
tively. The instantaneous loss incorporates control effort:

li(xi, ui; θi) = kω2
i + u2i , (28)

where k = 100. The state constraint is:

ci(xi) = η −
√

((R− px2)− px1)
2 + (py2 − py1)

2. (29)

where η = 1.5m and R = 70m. ci(·) > 0 is considered as
a collision incident. The parameter R represents the length of
the road, and η = 1.5m is the collision threshold. The terminal
loss is designed to encourage players to move along the lane
and restore nominal speed:

gi(xi) = −µpxi (T ) + (vi(T )− v̄)2 + (pyi (T )− p̄y)2, (30)

where µ = 10−6, v̄ = 18m/s, p̄y = 3m, and T = 3s. For
hybrid, value-hardening, and vanilla PINN, we treat the state
constraint as a penalty in a modified instantaneous loss:

l̃i(xi, ωi, ui) = kω2
i + u2i + bσ(xi, η), (31)

where the penalty function is defined as

σ(xi, η) = (1 + exp(−γci(xi)))−1.

The parameter b is set to 104 to impose a high penalty on
collision, while γ = 5 is a shape parameter.

Figure 7: Narrow road collision avoidance visualization: (a): Ground truth
safe trajectory. Transparency reduces along time. (b-e): Trajectories generated
using hybrid, value hardening, epigraphical, supervised, and vanilla PINN
models, respectively.

Figure 8: (a): Ground truth distance between players over time for XGT .
(b-e): Distance between players over time using hybrid, value hardening,
epigraphical, supervised, and vanilla PINN under XGT , respectively. Red
dashed line represents the threshold distance for collision.

Data. For supervised learning, we generate 1.45k ground
truth trajectories by uniformly sampling initial states from
XGT := [15, 20]m × [2.25, 3.75]m × [−π/180, π/180]rad ×
[18, 25]m/s, resulting in a total of 89.9k data points. For
vanilla PINN and its value-hardening variant, we uniformly
sample 122k states from XHJ := [15, 90]m × [0, 6]m ×
[−0.15, 0.18]rad× [18, 25]m/s. For hybrid learning, we gen-
erate 1k ground truth trajectories (62k data points) by uni-
formly sampling initial states from [15, 20]m×[2.25, 3.75]m×
[−π/180, π/180]rad × [18, 25]m/s and sample 60k states
uniformly from [15, 90]m × [0, 6]m × [−0.15, 0.18]rad ×
[18, 25]m/s. For epigraphical learning, we introduce an aux-
iliary state zi with a range of [−9 × 10−5, 300] to account
for both the best- and worst-case scenarios. We employ the
same settings as in Case 1 for the remaining aspects of the
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experiment.
Training. For vanilla PINN, we pretrain the networks for

10k iterations using 122k uniformly sampled boundary states
and then train them for 430k iterations. For value hardening,
we use 8.8k training iterations for each hardening step and a
total of 50 steps for a fair comparison. The remaining settings
are the same as those in Case 1.

Table V: Collision rate w/ different activation functions

Test Activation Learning Method

Domain Functions HL VH EL SL PINN

tanh 1.67% 95.2% 48.3% 2.17% 81.3%
XGT relu 65.2% 98.2% 70.5% 67.7% 83.8%

sine 1.67% 98.5% 69.7% 3.17% 98.3%

Results. We evaluate the safety performance of the methods
on a test set of 600 ground truth collision-free trajectories with
initial states drawn from XGT . The results are summarized in
Tab. V, and the distance between players during interactions
is visualized in Fig.8. Similar to Case 1, the hybrid learning
method outperformed the others.

We notice that value hardening fails to generalize well in
this higher-dimensional case (and in Case 3). We hypothesize
that vanilla PINN, which value hardening is based on, is
less scalable in compute than hybrid PINN as the state
dimensionality increases.

While the relationship between learning dynamics of PINN
and state dimensionality is yet to be understood, here we em-
pirically show that value hardening PINN requires significantly
higher compute to converge in Case 2 due to its higher state
dimensionality. To make this empirical study more tractable,
we use a mildly softened collision penalty with γ = 0.1 in both
Case 1 and 2. We uniformly sample 122k states from XHJ

and train the model using 10 hardening steps until γ reaches
0.1. To visualize the convergence, in Figure 9 we show the
value along a randomly chosen equilibrium trajectory derived
from PMP for Case 1 (left) and Case 2 (right). We can see
that by 20k iterations, value hardening already converges to the
ground truth in Case 1, while in Case 2, convergence requires
more than 110k iterations.

Figure 9: (a): Value hardening uses 20k training iterations for each hardening
step, for a total of 10 steps to converge to ground truth in Case 1. (b) Value
hardening uses 20k/110k training iterations for each hardening step, for a total
of 10 steps to converge to ground truth in Case 2. Compared to Case 1, value
hardening takes around 5.6 times longer to converge to the ground truth in
Case 2.

C. Case 3: double-lane change

Experiment setup. The schematic is shown in Figure 10,
depicting the states of Player i as its location (pxi , pyi ), orien-

tation (ψi), and speed (vi). xi := [pxi , p
y
i , ψi, vi]

T . The dashed
blue and orange color (with increasing transparency along the
x-axis) in the figure represents desired trajectories for both
players. We use the same unicycle model and instantaneous
loss as in Sec. IV-B. The terminal loss is set to incentivize
players to stay within their respective lanes and regain the
nominal speed:

gi(xi) = −µpxi (T ) + (pyi (T )− p̄yi )
2+

(vi(T )− v̄)2 + κ(ψi(T )− ψ̄)2,
(32)

where µ = 10−6, κ = 100, p̄y1 = 6m for player 1 and p̄y2 =
2m for player 2, v̄ = 18m/s, ψ̄ = 0rad, and T = 4s.

Figure 10: Double-lane change setup with two players.

Figure 11: (a): Ground truth distance between players over time for XGT .
(b-e): Distance between players over time using hybrid, value hardening,
epigraphical, supervised, and vanilla PINN models under XGT , respectively.
Red dashed line represents the threshold distance for collision.

Data. In the case of supervised learning, we generate
1.45k ground truth trajectories by uniformly sampling ini-
tial states from the set X 1

GT := [0, 3]m × [1.25, 2.75]m ×
[−π/180, π/180]rad× [18, 25]m/s for player 1, and X 2

GT :=
[0, 3]m× [5.25, 6.75]m× [−π/180, π/180]rad× [18, 25]m/s
for player 2, resulting in a total of 118.9k data points.
For vanilla and value-hardening PINN, we uniformly sample
162k states from the set X 1

HJ := [0, 95]m × [0, 6]m ×
[−0.15, 0.13]rad × [17, 26]m/s for player 1, and X 2

HJ :=
[0, 95]m× [2, 8]m× [−0.13, 0.15]rad× [17, 26]m/s for player
2. In the case of hybrid learning, we generate 1k ground
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Figure 12: Double-lane change visualization: (a): Ground truth safe trajectory. Transparency reduces along time. (b-e): Trajectories generated using hybrid,
value hardening, epigraphical, supervised, and vanilla PINN models, respectively.

truth trajectories (82k data points) by uniformly sampling
initial states from X 1

GT for player 1, and X 2
GT for player 2.

Additionally, we sample 80k states uniformly from X 1
HJ for

player 1, and X 2
HJ for player 2. For epigraphical learning, we

initially gather a sample of 200k states from XHJ to ensure
adherence to the boundary condition. We set the range of the
auxiliary state zi as [−9.5 × 10−5, 400]. All other settings
follow Case 1.

Training. In this experiment, we employ the Adam opti-
mizer with a constant learning rate of 1 × 10−4. For vanilla
PINN, we initiate the pre-training phase with 10k iterations,
utilizing 162k boundary states uniformly sampled. Subse-
quently, we continue with the training phase, performing 350k
iterations. For value hardening, we set the training duration for
each hardening step to 7.2k iterations, completing a total of
50 steps to ensure a fair comparison. All other settings remain
consistent with those of Case 1.

Results. We assess the safety performance on a test set
comprising 600 ground truth collision-free trajectories. These
trajectories are generated by sampling initial states from XGT .
The results are summarized in Tab. VI, while the interaction
distances between players are visualized in Fig. 11. Similar
to Cases 1 and 2, the hybrid method demonstrates superior
performance compared to the others. Similar to Case 2, value
hardening fails to generalize effectively within a computational
budget similar to hybrid learning. Fig. 12 shows interaction
trajectories starting from one particular initial state where the
hybrid method achieves safe interaction while the others fail.

Table VI: Collision rate w/ different activation functions

Test Activation Learning Method

Domain Functions HL VH EL SL PINN

tanh 0.00% 23.0% 46.2% 0.33% 30.2%
XGT relu 1.33% 40.3% 61.0% 0.00% 52.5%

sine 0.50% 11.2% 48.5% 1.00% 17.3%

D. Case 4: two-drone collision avoidance

Experiment setup. In this experiment, we consider that the
states of Player i consist of its location (pxi , pyi , pzi ), and speed
(vxi , vyi , vzi ), denoted as xi := [pxi , p

y
i , p

z
i , v

x
i , v

y
i , v

z
i ]

T . We use
the flight dynamics (in the near-hover regime, at zero yaw with
respect to a global coordinate frame) described in [42]:

ṗxi
ṗyi
ṗzi
v̇xi
v̇yi
v̇zi

 =


vxi
vyi
vzi

g tan(θi)
−g tan(ϕi)
τi − g

 , (33)

where the tracking control ui = (θi, ϕi, τi) corresponds to roll,
pitch and thrust. In this experiment, θi ∈ [−0.05, 0.05]rad,

Figure 13: Two-drone collision avoidance visualization: (a): Ground truth safe
trajectory. (b-d): Trajectories generated using hybrid, supervised, and vanilla
PINN models, respectively.

ϕi ∈ [−0.05, 0.05]rad, τi ∈ [7.81, 11.81]m/s2, and g =
9.81m/s2. Note that we have assumed a zero yaw angle for the
quadrotor. The instantaneous loss considers the control effort
and the collision penalty:

l̃i(xi, ωi, ui) = kθ tan
2(θi) + kϕ tan

2(ϕi)

+(τi − g)2 + bσ(xi, η),
(34)

where the penalty function is defined as

σ(xi, η) = (1 + exp(γ(S − η)))−1,

S =
√

((Rx − px2)− px1)
2 + ((Ry − py2)− py1)

2 + (pz2 − pz1)
2.

b = 104 and γ = 5. Additionally, the parameters Rx = 5m
and Ry = 5m are used to transform the coordinate positions
of the two players along the x− and y− axes, respectively.
The values of kθ = 100 and kϕ = 100 determine the trade-off
between control effort for roll, pitch, and thrust. Furthermore,
η = 0.9m represents the collision threshold. The terminal loss
is set to encourage players to move along their respective x
and y directions, to return to 0m on the z axis, and to remain
stationary when the simulation is complete:

gi(xi) = −µpxi (T )− µpyi (T ) + (pzi (T )− p̄zi )
2+

(vxi (T )− v̄xi )
2 + (vyi (T )− v̄yi )

2 + (vzi (T )− v̄zi )
2.

(35)
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where µ = 10−6, p̄zi = 0m , v̄xi = v̄yi = v̄zi = 0m/s, and
T = 4s. In this case study, we only compare the generalization
and safety performance between the hybrid and the supervised
methods, and use vanilla PINN as a baseline. Value hardening
and epigraphical learning are dropped from the comparison
since they do not generalize well in high-dimensional cases as
we found in Sec. IV-B and IV-C.

Figure 14: (a): Ground truth distance between players over time for XGT .
(b-d): Distance between players over time using hybrid, supervised, and
vanilla PINN models under XGT , respectively. Red dashed line represents
the threshold distance for collision.

Data. In the case of supervised learning, we generate 1.25k
ground truth trajectories by uniformly sampling initial states
from the set XGT := [0, 1]m × [0, 1]m × [−0.1, 0.1]m ×
[2, 4]m/s × [2, 4]m/s × [0, 0.1]m/s, resulting in a total of
102.5k data points. For vanilla PINN, we uniformly sample
162k states from the set XHJ := [0, 15.5]m × [0, 15.5]m ×
[−1.8, 2]m× [0.3, 4.5]m/s× [0.3, 4.5]m/s× [−1.8, 1.8]m/s.
In the case of hybrid learning, we generate 1k ground truth
trajectories (82k data points) by uniformly sampling initial
states from XGT . Additionally, we sample 80k states uniformly
from XHJ .

Training. We use the Adam optimizer with a fixed learning
rate of 1× 10−4. For vanilla PINN, we pretrain the networks
for 100k iterations using 162k uniformly sampled boundary
states and subsequently train them for an additional 400k
iterations. The remaining settings for this experiment align
with those used in Case 1.

Table VII: Collision rate w/ different activation functions

Test Activation Learning Method

Domain Functions HL SL PINN

tanh 0.00% 0.17% 75.8%
XGT relu 34.0% 0.67% 76.2%

sine 0.00% 0.17% 75.7%

Results. We assess the safety performance on a test set
comprising 600 ground truth collision-free trajectories. These
trajectories are generated by uniformly sampling initial states
from XGT . The results are summarized in Tab. VII, while
the interaction distances between players are visualized in
Fig. 14. Similar to the first three cases, the hybrid learning
method demonstrates superior performance compared to the

other methods. Fig. 13 visualizes the trajectories starting from
a particular initial state where the hybrid method achieves
safe interaction, while the other baselines yield collisions and
undesired trajectories.

V. DISCUSSION

A. Safety guarantee
We note that our method does not provide safety certificate

in its current form and discuss potential future directions.
Policy certification: For fixed-time differential games, it is
possible to consider the interaction, i.e., the interchanging
computation of actions (via approximated value gradients) and
states (via an ODE solver), as a neural-network controlled
system (NNCS), for which certification tools emerge [55],
[56]. It should be noted that reachability analysis of NNCS is
currently limited to small state space (due to the exponential
growth in the approximation polynomial degree with respect to
the state space dimensionality [55]), small Lipschitz constant
(due to linear growth of approximation error with respect to the
Lipschitz constant of the neural network), and small network
sizes (e.g., 4 layers each with 20 neurons in [55]). Specifically,
reachability analysis (e.g., forward [57], backward [58], or
automated [59] methods) for NNCS can be applied to a
6D quadrotor system. However, these analyses are limited to
small network sizes and face challenges in achieving real-time
verification for each closed-loop policy using trained models.
Post-hoc state-constrained control: When policy certification
becomes intractable, an alternative could be to use a linear-
quadratic reformulation of the game with conservative state
constraint approximation for online computation of policies. In
this setting, the value approximation network offers good ini-
tial policy guesses. This method trades off overall performance
of policies in attaining Nash equilibrium for a computationally
tractable safety guarantee. A recent study [60] explores online
value approximations with safety guarantees for zero-sum
games, yet it does not cover general-sum games and safe
reachable analysis of online policy computation. [61] proposes
a unified framework to review the existing safety analysis
approaches for closed-loop policy.
B. Consistency between BVP and HJI values

Recognizing that PMP is only necessary conditions for local
optimality [62] while HJ solutions satisfy global optimality, we
adopted multiple initial guesses to solve BVPs in order to seek
global solutions. This treatment was applied to all case studies.
Taking Case 1 as an example, we initialize the BVP solver
with four state trajectories that follow constant control inputs:
{(−5,−5)m/s2, (−5, 10)m/s2, (10,−5)m/s2, (10, 10)m/s2}.
These trajectories represent four categories of interactions
where each of the players either yield or accelerate through
the intersection, and potentially lead to different equilibria.
To address the issue with multiplicity of equilibrium, we
choose the one that yields the best sum of values (i.e., Pareto
optimal Nash equilibrium).

In the following, we empirically show that this treatment
leads to consistent value landscapes between BVP and HJI. A
visualization of the comparison uses the value contour from
Case 1, projected to (d1, d2) with fixed v1,2 = 18m/s and
t = 0 and with player types (a, a). See Fig. 15.
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To compute values from the BVP solver, we sample initial
states from [15, 40]m × [15, 40]m with fixed v1,2 = 18m/s
and with the spatial resolution dx = 0.3m. For each initial
state, we solve the BVP and compute ϑ at t = 0.

For HJI values, we consider two approximations of the
ground truth. First, we extend an existing HJ PDE solver [22]
from zero-sum to general-sum. Since this DP solver has
limited scalability with respect to state dimensions (up to 6D
as demonstrated in [22]), we only applied the solver to Case 1
where values are 5D. The value difference between BVP and
the DP solver, |ϑBV P −ϑDP |, is visualized for two DP spatial
resolution settings: dx = 0.5 and dx = 0.3 in Fig. 15a and
c, respectively. dx = 0.3 is the highest resolution supported
by our computing hardware. Note that values reported do not
take into account constraint violation penalty, and unsafe states
are assigned a constant value of −100. We observe that the
difference |ϑBV P−ϑDP | decreases as the resolution improves,
and expect the trend to continue if the resolution were to be
further increased. Since the DP solver has limited resolution,
we resort to VH as a second approximation of the ground truth
because it achieves relatively good generalization performance
without using supervisory data in Case 1. Fig. 15e visualizes
the value difference between BVP and VH, |ϑBV P − ϑV H |,
which again shows the similarity between the two.

Figure 15: (a,c): Difference |ϑBV P − ϑDP | in (d1, d2) frame with v1,2 =
18m/s at t = 0 using DP spatial resolution dx = 0.5 and dx = 0.3,
respectively. (b,d): Numerical solutions ϑ obtained through DP and BVP
solver, respectively. (e): Difference |ϑBV P − ϑV H | in (d1, d2) frame with
v1,2 = 18m/s at t = 0. (f): Approximated solutions ϑ obtained through
HJI-based learning approach-value hardening.

C. Importance of the costate loss for safety performance

Lastly, we provide details on the empirical study where
we show that achieving good safety performance requires
accuracy costate (value gradient) approximation. While the

epigraphical technique facilitates smooth value approximation,
it does not explicitly enforce small approximation errors on
costates. In the following, we conducted a comparison between
the hybrid learning (HL) and the epigraphical learning (EL)
methods with identical training settings for Case 1: During
their training, HL and EL uniformly sample 1k ground-truth
trajectories (62k data points) in XGT and 60k states in XHJ .
Additionally, we uniformly sample the auxiliary state zi ∈
[−1.05 × 10−4, 300] for EL. Both methods are solved using
the Adam optimizer with a fixed learning rate of 2×10−5. We
pretrain the networks for 100k iterations using the supervised
data and combine the supervised data with states sampled from
an expanding time window starting from the terminal time to
minimize L1 +L2 (Eq. (5) and Eq. (6)) and L2 +L3 (Eq. (6)
and Eq. (14)) with 100k iterations for HL and EL, respectively.
We show that the safety performance of EL is still worse than
HL when using supervised data without the costate loss in
L2 (see Fig. 16b), and its safety performance significantly
improves when the costate loss is considered (Fig. 16d). On the
other hand, Fig. 16a shows that HL performs worse without the
costate loss. Hence, we conjecture that ensuring good safety
performance requires not only small approximation errors for
values but also for costates.

Figure 16: (a,c): Trajectories generated using HL w/o and w costate loss under
XGT . (b,d): Trajectories generated using EL w/o and w costate loss under
XGT .

VI. CONCLUSION

We proposed a hybrid learning method that combines the
strengths of supervised learning and vanilla PINN to approxi-
mate discontinuous value functions as solutions to two-player
general-sum differential games. The proposed method yields
better generalization and safety performance than an array of
baselines, including supervised learning, vanilla PINN, value
hardening, and epigraphical learning, when using the same
computational budget. We empirically demonstrate that the
costate loss is the key factor for high safety performance,
and the choice of the activation function and its parameters is
crucial to the safety performance of learned models. Finally,
all results in this paper can be reproduced using our code
https://github.com/dayanbatuofu/Value Appro Game

https://github.com/dayanbatuofu/Value_Appro_Game
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VII. APPENDIX

A. Summary of acronyms

Tab. VIII summarizes acronyms used in the paper.
Table VIII: Acronyms used throughout the paper

Acronym Full Name Acronym Full Name

HJI Hamilton-Jacobi-Isaacs PINN Physics-Informed
Neural Network

CoD Curse of Dimensionality PMP Pontryagin’s Max-
imum Principle

DP Dynamic Programming NNCS Neural-Network
Control System

HRI Human-Robot Interaction a aggressive
MPC Model Predictive Control na non-aggressive
BVP Boundary Value Problem e empathetic
ENO Essentially Non-Oscillatory ne non-empathetic
MAEs Mean Absolute Errors GT Ground Truth
EL Epigraphical Learning HL Hybrid Learning
SL Supervised Learning VH Value Hardening

B. Proof of Lemma 1 (Following proofs in [15])

Proof. (i) ϑi(xi, t) − zi ≤ 0 implies that there exists αi ∈ A
such that∫ T

t

li(x
xi,t,αi
s , αi

(
xxi,t,αi,α−i
s , s

)
)ds+ gi

(
xxi,t,αi

T

)
− zi ≤ 0,

(36)
and ci(x

xi,t,αi,α−i
s ) ≤ 0 for s ∈ [t, T ]. Thus, there exists αi

such that Vi(xi, zi, t) ≤ 0.
(ii) Vi(xi, zi, t) ≤ 0 and ci(x

xi,t,αi,α−i
s ) ≤ 0 implies that

there exists αi ∈ A such that∫ T

t

li(x
xi,t,αi
s , αi

(
xxi,t,αi,α−i
s , s

)
)ds+ gi

(
xxi,t,αi

T

)
− zi ≤ 0.

(37)
which concludes ϑi(xi, t)− zi ≤ 0.

C. Proof of Lemma 2 (Following proofs in [15], [63])

Proof. For any policy αi and a small step h > 0, we can
use Eq. (7) to derive the following relation (α∗

−i represents
equiliribum policy for the fellow player of Player i).

Vi(xi, zi, t) = min
αi∈A

max

{
max
s∈[t,T ]

ci(x
xi,t,αi,α

∗
−i

s ),

gi
(
xxi,t,αi

T

)
− zi(T )

}
,

=max

{
max

s∈[t,t+h]
ci(x

xi,t,αi,α
∗
−i

s ),

max{ max
s∈[t+h,T ]

ci(x
xi,t,αi,α

∗
−i

s ),

gi
(
xxi,t,αi

T

)
− zi(T )}

}
.

There exists two different policies αi1 , αi2 ∈ A such that

αi =

{
αi1(s), s ∈ [t, t+ h],

αi2(s), s ∈ (t+ h, T ].

Then we have

Vi(xi, zi, t) = min
αi1∈A,αi2∈A

max

{
max

s∈[t,t+h]
ci(x

xi,t,αi,α
∗
−i

s ),

max{ max
s∈[t+h,T ]

ci(x
xi,t,αi,α

∗
−i

s ),

gi
(
xxi,t,αi

T

)
− zi(T )}

}
,

= min
αi1∈A

max

{
max

s∈[t,t+h]
ci(x

xi,t,αi,α
∗
−i

s ),

min
αi2∈A

max{ max
s∈[t+h,T ]

ci(x
xi,t,αi,α

∗
−i

s ),

gi
(
xxi,t,αi

T

)
− zi(T )}

}
,

= min
αi1∈A

max

{
max

s∈[t,t+h]
ci(x

xi,t,αi,α
∗
−i

s ),

Vi(xi(t+ h), zi(t+ h), t+ h)

}
,

= min
αi∈A

max

{
max

s∈[t,t+h]
ci(x

xi,t,αi,α
∗
−i

s ),

Vi(xi(t+ h), zi(t+ h), t+ h)

}
.

D. Proof of Theorem 1 (Following proofs in [15], [63])

Proof. (i) When t = T , Vi is easily satisfied based on
definition

Vi(xi, zi, T ) = max
{
ci(x

xi,t,αi,α
∗
−i

T ), gi
(
xxi,t,αi

T

)
− zi(T )

}
= max {ci(xi(T )), gi(T )− zi(T )}

(38)
(ii) Let Wi ∈ C∞(X ×R× [0, T ]), and assume that Vi−Wi

has local maximum at (xi(t0), zi(t0), t0) ∈ X ×R× [0, T ) and
(Vi −Wi)(xi(t0), zi(t0), t0) = 0, we need to prove

max
{
ci(x

xi,t,αi,α
∗
−i

t0 )−Wi(xi(t0), zi(t0), t0),

∇tWi(xi(t0), zi(t0), t0)−Hi(t0, xi(t0), zi(t0),
∇xiWi(xi(t0), zi(t0), t0),∇ziWi(xi(t0), zi(t0), t0))

}
≥ 0.

(39)
Suppose not. Then there exists ξ > 0 and α̃i ∈ A such that

ci(x
xi,t,α̃i,α

∗
−i

s )−Wi(xi(t0), zi(t0), t0) ≤ −ξ,
∇tWi(xi, zi, t) +∇xiWi(xi, zi, t) · fi(xi, α̃i, α

∗
−i)

−∇ziWi(xi, zi, t) · li
(
xxi,t,α̃i
s , α̃i

(
xxi,t,α̃i,α

∗
−i

s , s
))

≤ −ξ.
(40)

for all points (xi, zi, t) sufficiently close to (xi(t0), zi(t0), t0):
there exists small enough h1 > 0 such that ||xi−xi(t0)||+|zi−
zi(t0)|+|t−t0| < h1. According to Assumptions in Sec. III-B,
choose a small h such that ||xi−xi(t0)||+|zi−zi(t0)| < h1−h
for s ∈ [t0, t0 + h], then

ci(x
xi,t,α̃i,α

∗
−i

s )−Wi(xi(t0), zi(t0), t0) ≤ −ξ,
∇tWi(xi, zi, s) +∇xiWi(xi, zi, s) · fi(xi, α̃i, α

∗
−i)

−∇ziWi(xi, zi, s) · li
(
xxi,t,α̃i
s , α̃i

(
xxi,t,α̃i,α

∗
−i

s , s
))

≤ −ξ.
(41)
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According to the condition that Vi−Wi has a local maximum
at (x(t0), zi(t0), t0), then

Vi(xi(t0 + h), zi(t0 + h), t0 + h)

−Wi(xi(t0 + h), zi(t0 + h), t0 + h)

≤ Vi(xi(t0), zi(t0), t0)−Wi(x(t0), zi(t0), t0)
⇒Vi(xi(t0 + h), zi(t0 + h), t0 + h)− Vi(xi(t0), zi(t0), t0)

≤Wi(xi(t0 + h), zi(t0 + h), t0 + h)−Wi(xi(t0), zi(t0), t0)
⇒Vi(xi(t0 + h), zi(t0 + h), t0 + h)− Vi(xi(t0), zi(t0), t0)

≤
∫ t0+h

t0

dWi

dt
ds

⇒Vi(xi(t0 + h), zi(t0 + h), t0 + h)− Vi(xi(t0), zi(t0), t0)

≤
∫ t0+h

t0

{
∇tWi(xi, zi, s) +∇xiWi(xi, zi, s) · fi

−∇ziWi(xi, zi, s) · li
}
ds ≤ −ξh

(42)
Lemma 2 says that

Vi(xi(t0), zi(t0), t0) = min
ui∈Ui

max

{
max

s∈[t0,t0+h]
ci(xi(s)),

Vi(xi(t0 + h), zi(t0 + h), t0 + h)

}
,

(43)
Subtract Eq. (43) by Wi(xi(t0), zi(t0), t0) on both sides and
combine Eq. (41) and (42):

0 = (Vi −Wi)(xi(t0), zi(t0), t0)

= min
ui∈Ui

max {−ξ,−ξh} < 0, (44)

which is a contradiction. Thus, we prove that

max
{
ci(x

xi,t,αi,α
∗
−i

t0 )−Wi(xi(t0), zi(t0), t0),
∇tWi(xi(t0), zi(t0), t0)−Hi(t0, xi(t0), zi(t0),
∇xiWi(xi(t0), zi(t0), t0),∇ziWi(xi(t0), zi(t0), t0))

}
≥ 0.

(45)
(iii) Let Wi ∈ C∞(X ×R× [0, T ]), and assume that Vi −Wi

has local minimum at (xi(t0), zi(t0), t0)) ∈ X × R × [0, T )
and (Vi −Wi)(xi(t0), zi(t0), t0)) = 0, we need to prove

max
{
ci(x

xi,t,αi,α
∗
−i

t0 )−Wi(xi(t0), zi(t0), t0),

∇tWi(xi(t0), zi(t0), t0)−Hi(t0, xi(t0), zi(t0),
∇xiWi(xi(t0), zi(t0), t0),∇ziWi(xi(t0), zi(t0), t0))

}
≤ 0.

(46)
The definition of Vi says that

Vi(xi(t0), zi(t0), t0) =max

{
max

s∈[t0,T ]
ci(x

xi,t,αi,α
∗
−i

s ),

gi
(
xxi,t,αi

T

)
− zi(T )

}
,

≥max

{
ci(x

xi,t,αi,α
∗
−i

t0 ),

gi
(
xxi,t,αi

T

)
− zi(T )

}
.

(47)

for all αi ∈ A(t0). Subtract Eq. (47) by Wi(xi(t0), zi(t0), t0)
on both sides to have

0 =(Vi −Wi)(xi(t0), zi(t0), t0) ≥ max{ci(x
xi,t,αi,α

∗
−i

t0 )−
Wi(xi(t0), zi(t0), t0), gi

(
xxi,t,αi

T

)
− zi(T )−

Wi(xi(t0), zi(t0), t0)}.
(48)

Then we must prove the following inequality

∇tWi(xi(t0), zi(t0), t0)−Hi(t0, xi(t0), zi(t0),
∇xiWi(xi(t0), zi(t0), t0),∇ziWi(xi(t0), zi(t0), t0)) ≤ 0,

(49)
Suppose not. Then there exists ξ > 0 such that

∇tWi(xi, zi, t)− max
ui∈Ui

[
−∇xiWi(xi, zi, t) · fi

+∇ziWi(xi, zi, t) · li
]
≥ ξ,

(50)

for all points (xi, zi, t) sufficiently close to (xi(t0), zi(t0), t0):
there exists small enough h1 > 0 such that ||xi − xi(t0)|| +
|zi − zi(t0)|+ |t− t0| < h1. For any αi ∈ A, where

αi ∈ argmax
αi∈A

−∇xiWi(xi, zi, s) · fi(xi, αi, α
∗
−i)

+∇ziWi(xi, zi, s) · li
(
xxi,t,αi
s , αi

(
xxi,t,αi,α

∗
−i

s , s
))

,

(51)
According to Assumptions in Sec. III-B, choose a small h such
that ||xi− xi(t0)||+ |zi− zi(t0)| < h1−h for s ∈ [t0, t0+h],
then

∇tWi(xi, zi, s) +∇xiWi(xi, zi, s) · fi(xi, αi, α
∗
−i)

−∇ziWi(xi, zi, s) · li
(
xxi,t,αi
s , αi

(
xxi,t,αi,α

∗
−i

s , s
))

≥ ξ,

(52)
for all s ∈ [t0, t0+h]. We integrate Eq. (52) over s ∈ [t0, t0+h]
to get

Wi(xi(t0 + h), zi(t0 + h), t0 + h)

−Wi(xi(t0), zi(t0), t0) ≥ ξh,
(53)

We have the following relation because Eq. (53) holds for all
ui ∈ Ui

min
ui∈Ui

Wi(xi(t0 + h), zi(t0 + h), t0 + h)

−Wi(xi(t0), zi(t0), t0) ≥ ξh,
(54)

According to the condition that Vi−Wi has a local minimum
at (xi(t0), zi(t0), t0), then

min
ui∈Ui

Vi(xi(t0 + h), zi(t0 + h), t0 + h)

− Vi(xi(t0), zi(t0), t0)

≥ min
ui∈Ui

Wi(xi(t0 + h), zi(t0 + h), t0 + h)

−Wi(xi(t0), zi(t0), t0)
≥ ξh

⇒ min
ui∈Ui

Vi(xi(t0 + h), zi(t0 + h), t0 + h)

> Vi(xi(t0), zi(t0), t0)

(55)

However, Lemma 2 says that

min
ui∈Ui

Vi(xi(t0 + h), zi(t0 + h), t0 + h) ≤ Vi(x(t0), zi(t0), t0),
(56)



IEEE TRANSACTIONS ON ROBOTICS 17

which is a contradiction. Thus, we prove that

max
{
ci(x

xi,t,αi,α
∗
−i

t0 )−Wi(xi(t0), zi(t0), t0),

∇tWi(xi(t0), zi(t0), t0)−Hi(t0, xi(t0), zi(t0),
∇xiWi(xi(t0), zi(t0), t0),∇ziWi(xi(t0), zi(t0), t0))

}
≤ 0.

(57)
Hence, we prove that Vi(xi, zi, t) is the viscosity solution.
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